导航栏

×
范文大全 > 初中教案

坐标轴的平移初中教案精选

当我们提起初中教学,你印象最深刻的一定是教案吧。教案能够安排教学的方方面面,写出一份教学方案需要经过精心的准备,那么如何写一份初中教案?欢迎大家阅读小编为大家收集整理的《坐标轴的平移初中教案精选》。

坐标轴的平移

一、教材分析

1、坐标变换是化简曲线方程,以便于讨论曲线的性质和画出曲线的一种重要方法。这一节教材主要讲坐标轴的平移,要求学生在正确理解新旧坐标之间的关系的基础上掌握平移公式;并能利用平移公式对新旧坐标系中点的坐标和曲线的方程进行互化。这就是本节课的教学目的之一。

2、本教材的重点是平移公式的推导及其简单应用。为了解决重点,教学中先以圆(x-3)²+(y-2)²=5²化为x'²+y'²=5²这个例子引入来说明,虽然点的位置没有改变曲线的位置、形状和大小没有改变,但是由于坐标系的改变,点的坐标和曲线的方程也随着改变,而且适当地变换坐标系,曲线的方程就可以化简,以此指明平移坐标轴的意义和作用,并由此引出平移的定义,导出平移公式。在推导平移公式时,先从特殊到一般,通过观察、归纳、猜想和推导,得出平移公式,还引导学生运用代数中刚学过的复数的几何意义来证明,既开阔视野,沟通学科知识,又培养学生的思维能力,同时还可通过一组练习,让学生正用、逆用、变用平移公式,达到进一步加深理解、熟练掌握公式的目的,进而培养学生的发现、推理能力和教学思想方法。

3、本节教材的难点是平移公式两种形式何时运用,学生易产生混淆,教学中应通过实例让学生自己领会,并及时加以小结,掌握其规律,加强公式的记忆并培养灵活运用知识的能力。

4、本节寓德于教的要点,主要是通过事物变化过程的内在联系,认识变与不变的矛盾对立统一规律,对学生进行辩证唯物主义的教育。

二、教学过程

(一)提出问题

教师先在黑板上画出图形,让学生观察、思考并提问以下问题:

1、如图,点O'和○O'关于坐标系xoy的坐标和方程各是什么?点O'和○O'关于坐标系x'o'y'的坐标和方程各是什么?两个方程,那一个较为简单?

(学生回答,教师在黑板上板书:)

直角坐标系点O'的坐标○O'的方程

在x'o'y'中(0,0)x'²+y'²=5²

两个方程,显然后一个方程简单。

(二)引入新课

(继续提问)

1、从上面的例子可以看出什么?

(答)(1)对于同一点或同一曲线,由于选取的坐标系不同,点的坐标功曲线的方程也不同。

(2)把一个坐标系变换为另一个适当的坐标系,可以使曲线的方程简化,便于研究曲线的性质。

教师继续提出新的话题,即如何把一个坐标系变换为另一个适当的坐标系呢?我们再从上面的例子来观察坐标系

xoy与x'o'y'有何异同点呢?(提问)

(答)(1)坐标轴的方向和长度单位都相同——不变

(2)坐标系的原点的位置不同——变

(教师归纳)这种坐标系的变换叫做坐标轴的平移,简称移轴。

(让学生打开课本阅读移轴的定义,教师在黑板上板书)

(板书)坐标轴的平移

(三)讲授新课

(板书)1、坐标轴平移的定义

2、坐标轴平移公式

思路:(1)以特殊到一般,在已画出的图形上任取四个点(分别在第一、二、三、四系限或坐标轴上)让学生分别写出在新、旧坐标系里的坐标,并观察、分析出它们的关系。

(答)坐标平面上任意一点在原坐标系中坐标和在新坐标系中的坐档,归纳出来有如下关系:

(板书)原系横坐标x=新系横坐标x'+3

原系纵坐标y=新系纵坐标y'+2

现在把(3,2)推广到一般(h,k)能否得出x=x'+h

y=y'+k

这个公式呢?(让学生自己动手证明)

思路(2)第一步用有向线段的数量表示x,y,h,k,x',和y',

第二步据图进行推导

第三步由推出的公式x=x'+h(1)再推出x'=x-h

y=y'+ky'=y-h

小结:这两个公式都叫做平移(移轴)公式。同学们还可以运用代数中学过的向量加、减法则,建立复平面来证明(留给学生课后自己作练习)

3、平移公式的应用

(1)利用平移公式求在新坐标内点的新坐标

例与练:①平移坐标轴,把原点平移到O'(-4,3),求A(0,0),B(4,-5)的新坐标;C(5,-7),D(4,-6)的旧坐标。

②平移坐标轴,把原点平移到O'()使A(2,4)的新坐标为(3,2);B(-4,0)的旧坐标为(0,3)

(2)利用平移公式化简方程

例与练:(课本例)平移坐轴,把原点移到O'(2,-1),求下列曲线关于新坐标系的方程,并画出新旧坐标轴和曲线。

(x-2)

①x=2②y=-1③(x+2)²/9+(y+1)²/4=1

分析:解①②时用分别把x=2,y=-1代入公式

(2)得x'=0y'=0(比课本中的解法简单)而在解③时,却要用公式(1)分别用x=+2,y=y'-1代入原方程得出新方程x'/9+y'/4=1(引导学生正确作出图)

小结:从例中可以看出,要把方程(x-2)²/9+(y+1)²/4

化为简单的方程x'²/9+y'²/4=1,可把x-2=x'y+1=y',得出应

把坐标原点平移到(2,-1),由此可推广,形如(x-h)²/a²+(y-k)²/b²的方程如何化简。

选择题1.坐标轴平移后,下列各数值中发生变化的是()

(A)某两点的距离(B)某线权中点的坐标

(C)某两条直线的夹角(D)某三角形的面积

答案选(C)从此题可看出,坐标轴平移后,与坐标有关的量发生变化,但图形本身的几何性质不变。

选择题2:曲线x²+y²+2x-4y+1=0在新坐标系中的方程是x'²+y'²=4,则新坐标系原点在旧坐标系中的坐标是()

(A)(-1,2)(B)(1,-2)(C)2,-1)(D)(-2,1)

分析:把x²+y²+2x-4y+1=0配方为(x+1)²+(y-2)²=4

由x+1=x'===h=-1y-2=y'===k=2故应选(A)

(四)教师小结:今天讲的主要内容是坐标轴平移的意义,平移公式及其简单应用。移轴的目的在几何上是使曲线图形的中心(或顶点)与原点重合,使图形“居中”,而在代数上则是将一般二元二次方程通过代数变形(变量代换),消去其中的一次项,从而使方程简化,这个问题,下一节课将作更具体深入的研究与探讨。

平移公式的两种形式何时应用较好方便,一般说来,由点的旧坐标求其新坐标时用(2)较方便,而由曲线的原方程求其新方程时用(1)较方便,但这也不是固定不变的,如例2中把方程x=2化为新方程,直接代入(2),马上就可求出x'=0这个新方程。

平移坐标轴,可以简化曲线的方程,但不含改变曲线原来的性质与不变,可以看出其中的辩证关系和内在规律。

(五)布置作业(略)

三、课后附记

1、本节课曾在福州市教育学院组织的青年教师培训班的观摩课上讲授,反映较好,从学生的作业反馈及下节课的复习提问,利用坐标轴的平移化简二元二次方程中,引用平移公式进行运算,学生都能较熟练掌握,在半期考中,关于平移公式的应用题得分率在90%以上,说明本节课的效果较好,但因本教材在整个圆锥曲线教材内容中占的分量不重,公式较少使用,容易出现反生与遗忘,因此在平时教学中可适时加以引用。

2、本节课的设计遵照“一体三重五环节”的福八中数学教学的特色,重视发挥学生的主体与教师的主导作用,重视“过程”的教学,尽量做到:提出问题,循循诱导;疏通思路,耐心开导;解题练习,精心指导;存在不足,热情辅导;掌握过程,尽心引导;真正体现重情善导的教风与特色。

说课,作为一种教学、教研改革的手段,最早是由河南省新乡市红旗区教室于1987年提出来的。实践证明,说课活动有效地调动了教师投身教学改革,学习教育理论,钻研课堂教学的积极性。是提高教师素质,培养造就研究型,学者型青年教师的最好途径之一。

我市的说课活动是1994年开始的,在不断的实践探索中,我们完善了说课的理论,改进了说课的方法,取得了令人满意的成绩。现在说课已经在我市的教学研究、职称评定、年度考核、教师比武等许多方面广泛运用。

一、什么叫说课

那么,什么叫说课呢?应该说到目前为止还没有一种具体的科学的定义。按红旗区的说法,说课就是教师口头表述具体课题的教学设想及其理论依据,也就是授课教师在备课的基础上,面对同行或教研人员,讲述自己的教学设计,然后由听者评说,达到互相交流,共同提高的目的的一种教学研究和师资培训的活动。我们在说课实践中认识到,这个定义是不全面的。根据我们的理解,说课既可以是针对具体课题的,也可以是针对一个观点或一个问题的。所以我们认为,说课就是教师针对某一观点、问题或具体课题,口头表述其教学设想及其理论依据。说得简单点,说课其实就是说说你是怎么教的,你为什么要这样教。

二、说课的意义

说课活动的好处很多,从不同的角度去看,有不同的答案。根据我们的实践和理解,说课活动有以下几个方面的意义:

1、说课有利于提高教研活动的实效

以往的教研活动一般都停留在上几节课,再请几个人评评课。上课的老师处在一种完全被动的地位。听课的老师也不一定能理解授课教师的意图。导致了教研实效低下。通过说课,让授课教师说说自己教学的意图,说说自己处理教材的方法和目的,让听课教师更加明白应该怎样去教,为什么要这样教。从而使教研的主题更明确,重点更突出,提高教研活动的实效。另外,我们还可以通过对某一专题的说课,统一思想认识,探讨教学方法,提高教学效率。

2、说课有利于提高教师备课的质量

我们检查了很多教师的备课笔记,从总体上看教师的备课都是很认真的。但是我们的老师都只是简单地备怎样教,很少有人会去想为什么要这样备,备课缺乏理论依据,导致了备课质量不高。通过说课活动,可以引导教师去思考。思考为什么要这样教学,这就能从根本上提高教师备课的质量。

3、说课有利于提高课堂教学的效率

教师通过说课,可以进一步明确教学的重点、难点,理清教学的思路。这样就可以克服教学中重点不突出,训练不到位等问题,提高课堂教学的效率。4、说课有利于提高教师的自身素质

一方面,说课要求教师具备一定的理论素养,这就促使教师不断地去学习教育教学的理论,提高自己的理论水平。另一方面,说课要求教师用语言把自己的教学思路及设想表达出来,这就在无形中提高了教师的组织能力和表达能力,提高了自身的素质。

5、说课没有时间和场地等的限制

上课听课等教研活动都要受时间和场地等的限制。说课则不同,它可以完全不受这些方面的限制,人多可以,人少也可以。时间也可长可短,非常灵活。

三、说课的类型

说课的类型很多,根据不同的标准,有不同的分法。

按学科分:语文说课、数学说课、音体美说课等;按用途分:示范说课、教研说课、考核说课等;但我们从整体来分,说课可以分成两大类:一类是实践型说课,一类是理论型说课。实践型说课就是指针对某一具体课题的说课。而理论型说课是指针对某一理论观点的说课。

四、说课的内容

说课的内容是说课的关键。不同的说课类型说课的内容自然也不同。这也是我们这几年主要研究的问题。

根据我们的实践,实践型说课主要应该有以下几个方面的内容:1、说教材主要是说说教材简析、教学目标、重点难点、课时安排、教具准备等,这些可以简单地说,目的是让听的人了解你要说的课的内容。

2、说教法就是说说你根据教材和学生的实际,准备采用哪种教学方法。这应该是总体上的思路。

3、说过程这是说课的重点。就是说说你准备怎样安排教学的过程,为什么要这样安排。一般来说,应该把自己教学中的几个重点环节说清楚。如课题教学、常规训练、重点训练、课堂练习、作业安排、板书设计等。在几个过程中要特别注意把自己教学设计的依据说清楚。这也是说课与教案交流的区别所在。理论型说课与实践型说课有一定的区别,实践型说课侧重说教学的过程和依据,而理论型说课则侧重说自己的观点。一般来说,理论型说课应该包含以下几个方面的内容:

1、说观点理论型说课是针对某一理论观点的说课,所以我们首先要把自己的观点说清楚。赞成什么,反对什么,要立场鲜明。

2、说实例理论观点是要用实际的事例来证实的。说课中要引用恰当的、生动的例子来说明自己的观点,这是说课的重点。

3、说作用说课不是纯粹的理论交流,它注重的是理论与实践的结合。因此我们要在说课时结合自己的教学实践,把该理论在教学中的作用说清楚。

说课的研究

五、说课的范例

实践型说课的例子:

例1《我家的小院》

"我家有个小院子。院子里种着许多花草树木,一年四季都有迷人的景色。初春,迎春花开出金灿灿的小黄花,最先迎来了春天月季花像一张张笑得合不拢嘴的小脸。地上长着厚厚的苔藓,像铺上一层绿色的地毯。盛夏,茉莉花散发着阵阵清香。海棠开着耀眼的红花。葡萄架上的绿叶,一片挨着一片,密密层层。站在葡萄架下,抬头可见一串串快要成熟的葡萄像珍珠似的挂满了藤架。深秋,枯黄的树叶像飞舞的黄蝶从树上一片片飘落下来。可是,万年青的叶子仍旧碧绿碧绿的,显得格外精神。一盆盆菊花正开得茂盛。隆冬,鹅毛般的大雪纷纷扬扬,给万物披上了银装。那些娇惯的花草都住进了温暖的屋子,腊梅花却昂首挺胸,迎着风雪,无所谓惧。"

说课问题:1、本课的教学目标如何确定,如何落实这些目标?2、本单元的重点训练是读懂长句子。请你说说如何教学文中划线的两个长句子。3、请你写出本课的板书设计,并说说你设计的思路。

理论型说课的例子:

例2:学法迁移是我们教学中经常运用的一种方法,请你结合自己的教学实践,举例说如何在课堂教学中利用正迁移,克服负迁移,提高教学效率。

例3:新课导入的好坏直接影响着课堂教学的效率。请你结合自己任教的学科,举一个成功的例子和失败的例子,分别说说。

例4:要把素质教育落实到课堂。在教学关系上,必须突出学生的主体地位,即学生自身发展的主体,其自主性、能动性和创造性应当充分受到尊重,给予其展现的机会。请你结合自己的实践,谈谈体会。

例5:要把素质教育落实到课堂。在教学方法上,必须体现教与学的交融,重视教法与学法的相互转化。教师的教是教学生去学,教是为学服务的,教是为了“不教”。在具体操作中,要重视课堂训练,通过语言文字训练,来培养学生的能力,提高课堂教学的效率。请你结合自己的实践,谈谈体会。

坐标轴的平移

一、教材分析

1、坐标变换是化简曲线方程,以便于讨论曲线的性质和画出曲线的一种重要方法。这一节教材主要讲坐标轴的平移,要求学生在正确理解新旧坐标之间的关系的基础上掌握平移公式;并能利用平移公式对新旧坐标系中点的坐标和曲线的方程进行互化。这就是本节课的教学目的之一。

2、本教材的重点是平移公式的推导及其简单应用。为了解决重点,教学中先以圆(x-3)²+(y-2)²=5²化为x'²+y'²=5²这个例子引入来说明,虽然点的位置没有改变曲线的位置、形状和大小没有改变,但是由于坐标系的改变,点的坐标和曲线的方程也随着改变,而且适当地变换坐标系,曲线的方程就可以化简,以此指明平移坐标轴的意义和作用,并由此引出平移的定义,导出平移公式。在推导平移公式时,先从特殊到一般,通过观察、归纳、猜想和推导,得出平移公式,还引导学生运用代数中刚学过的复数的几何意义来证明,既开阔视野,沟通学科知识,又培养学生的思维能力,同时还可通过一组练习,让学生正用、逆用、变用平移公式,达到进一步加深理解、熟练掌握公式的目的,进而培养学生的发现、推理能力和教学思想方法。

3、本节教材的难点是平移公式两种形式何时运用,学生易产生混淆,教学中应通过实例让学生自己领会,并及时加以小结,掌握其规律,加强公式的记忆并培养灵活运用知识的能力。

4、本节寓德于教的要点,主要是通过事物变化过程的内在联系,认识变与不变的矛盾对立统一规律,对学生进行辩证唯物主义的教育。

二、教学过程

(一)提出问题

教师先在黑板上画出图形,让学生观察、思考并提问以下问题:

1、如图,点O'和○O'关于坐标系xoy的坐标和方程各是什么?点O'和○O'关于坐标系x'o'y'的坐标和方程各是什么?两个方程,那一个较为简单?

(学生回答,教师在黑板上板书:)

直角坐标系点O'的坐标○O'的方程

在x'o'y'中(0,0)x'²+y'²=5²

两个方程,显然后一个方程简单。

(二)引入新课

(继续提问)

1、从上面的例子可以看出什么?

(答)(1)对于同一点或同一曲线,由于选取的坐标系不同,点的坐标功曲线的方程也不同。

(2)把一个坐标系变换为另一个适当的坐标系,可以使曲线的方程简化,便于研究曲线的性质。

教师继续提出新的话题,即如何把一个坐标系变换为另一个适当的坐标系呢?我们再从上面的例子来观察坐标系

xoy与x'o'y'有何异同点呢?(提问)

(答)(1)坐标轴的方向和长度单位都相同——不变

(2)坐标系的原点的位置不同——变

(教师归纳)这种坐标系的变换叫做坐标轴的平移,简称移轴。

(让学生打开课本阅读移轴的定义,教师在黑板上板书)

(板书)坐标轴的平移

(三)讲授新课

(板书)1、坐标轴平移的定义

2、坐标轴平移公式

思路:(1)以特殊到一般,在已画出的图形上任取四个点(分别在第一、二、三、四系限或坐标轴上)让学生分别写出在新、旧坐标系里的坐标,并观察、分析出它们的关系。

(答)坐标平面上任意一点在原坐标系中坐标和在新坐标系中的坐档,归纳出来有如下关系:

(板书)原系横坐标x=新系横坐标x'+3

原系纵坐标y=新系纵坐标y'+2

现在把(3,2)推广到一般(h,k)能否得出x=x'+h

y=y'+k

这个公式呢?(让学生自己动手证明)

思路(2)第一步用有向线段的数量表示x,y,h,k,x',和y',

第二步据图进行推导

第三步由推出的公式x=x'+h(1)再推出x'=x-h

y=y'+ky'=y-h

小结:这两个公式都叫做平移(移轴)公式。同学们还可以运用代数中学过的向量加、减法则,建立复平面来证明(留给学生课后自己作练习)

3、平移公式的应用

(1)利用平移公式求在新坐标内点的新坐标

例与练:①平移坐标轴,把原点平移到O'(-4,3),求A(0,0),B(4,-5)的新坐标;C(5,-7),D(4,-6)的旧坐标。

②平移坐标轴,把原点平移到O'()使A(2,4)的新坐标为(3,2);B(-4,0)的旧坐标为(0,3)

(2)利用平移公式化简方程

例与练:(课本例)平移坐轴,把原点移到O'(2,-1),求下列曲线关于新坐标系的方程,并画出新旧坐标轴和曲线。

(x-2)

①x=2②y=-1③(x+2)²/9+(y+1)²/4=1

分析:解①②时用分别把x=2,y=-1代入公式

(2)得x'=0y'=0(比课本中的解法简单)而在解③时,却要用公式(1)分别用x=+2,y=y'-1代入原方程得出新方程x'/9+y'/4=1(引导学生正确作出图)

小结:从例中可以看出,要把方程(x-2)²/9+(y+1)²/4

化为简单的方程x'²/9+y'²/4=1,可把x-2=x'y+1=y',得出应

把坐标原点平移到(2,-1),由此可推广,形如(x-h)²/a²+(y-k)²/b²的方程如何化简。

选择题1.坐标轴平移后,下列各数值中发生变化的是()

(A)某两点的距离(B)某线权中点的坐标

(C)某两条直线的夹角(D)某三角形的面积

答案选(C)从此题可看出,坐标轴平移后,与坐标有关的量发生变化,但图形本身的几何性质不变。

选择题2:曲线x²+y²+2x-4y+1=0在新坐标系中的方程是x'²+y'²=4,则新坐标系原点在旧坐标系中的坐标是()

(A)(-1,2)(B)(1,-2)(C)2,-1)(D)(-2,1)

分析:把x²+y²+2x-4y+1=0配方为(x+1)²+(y-2)²=4

由x+1=x'===h=-1y-2=y'===k=2故应选(A)

(四)教师小结:今天讲的主要内容是坐标轴平移的意义,平移公式及其简单应用。移轴的目的在几何上是使曲线图形的中心(或顶点)与原点重合,使图形“居中”,而在代数上则是将一般二元二次方程通过代数变形(变量代换),消去其中的一次项,从而使方程简化,这个问题,下一节课将作更具体深入的研究与探讨。

平移公式的两种形式何时应用较好方便,一般说来,由点的旧坐标求其新坐标时用(2)较方便,而由曲线的原方程求其新方程时用(1)较方便,但这也不是固定不变的,如例2中把方程x=2化为新方程,直接代入(2),马上就可求出x'=0这个新方程。

平移坐标轴,可以简化曲线的方程,但不含改变曲线原来的性质与不变,可以看出其中的辩证关系和内在规律。

(五)布置作业(略)

三、课后附记

1、本节课曾在福州市教育学院组织的青年教师培训班的观摩课上讲授,反映较好,从学生的作业反馈及下节课的复习提问,利用坐标轴的平移化简二元二次方程中,引用平移公式进行运算,学生都能较熟练掌握,在半期考中,关于平移公式的应用题得分率在90%以上,说明本节课的效果较好,但因本教材在整个圆锥曲线教材内容中占的分量不重,公式较少使用,容易出现反生与遗忘,因此在平时教学中可适时加以引用。

2、本节课的设计遵照“一体三重五环节”的福八中数学教学的特色,重视发挥学生的主体与教师的主导作用,重视“过程”的教学,尽量做到:提出问题,循循诱导;疏通思路,耐心开导;解题练习,精心指导;存在不足,热情辅导;掌握过程,尽心引导;真正体现重情善导的教风与特色。

说课,作为一种教学、教研改革的手段,最早是由河南省新乡市红旗区教室于1987年提出来的。实践证明,说课活动有效地调动了教师投身教学改革,学习教育理论,钻研课堂教学的积极性。是提高教师素质,培养造就研究型,学者型青年教师的最好途径之一。

我市的说课活动是1994年开始的,在不断的实践探索中,我们完善了说课的理论,改进了说课的方法,取得了令人满意的成绩。现在说课已经在我市的教学研究、职称评定、年度考核、教师比武等许多方面广泛运用。

一、什么叫说课

那么,什么叫说课呢?应该说到目前为止还没有一种具体的科学的定义。按红旗区的说法,说课就是教师口头表述具体课题的教学设想及其理论依据,也就是授课教师在备课的基础上,面对同行或教研人员,讲述自己的教学设计,然后由听者评说,达到互相交流,共同提高的目的的一种教学研究和师资培训的活动。我们在说课实践中认识到,这个定义是不全面的。根据我们的理解,说课既可以是针对具体课题的,也可以是针对一个观点或一个问题的。所以我们认为,说课就是教师针对某一观点、问题或具体课题,口头表述其教学设想及其理论依据。说得简单点,说课其实就是说说你是怎么教的,你为什么要这样教。

二、说课的意义

说课活动的好处很多,从不同的角度去看,有不同的答案。根据我们的实践和理解,说课活动有以下几个方面的意义:

1、说课有利于提高教研活动的实效

以往的教研活动一般都停留在上几节课,再请几个人评评课。上课的老师处在一种完全被动的地位。听课的老师也不一定能理解授课教师的意图。导致了教研实效低下。通过说课,让授课教师说说自己教学的意图,说说自己处理教材的方法和目的,让听课教师更加明白应该怎样去教,为什么要这样教。从而使教研的主题更明确,重点更突出,提高教研活动的实效。另外,我们还可以通过对某一专题的说课,统一思想认识,探讨教学方法,提高教学效率。

2、说课有利于提高教师备课的质量

我们检查了很多教师的备课笔记,从总体上看教师的备课都是很认真的。但是我们的老师都只是简单地备怎样教,很少有人会去想为什么要这样备,备课缺乏理论依据,导致了备课质量不高。通过说课活动,可以引导教师去思考。思考为什么要这样教学,这就能从根本上提高教师备课的质量。

3、说课有利于提高课堂教学的效率

教师通过说课,可以进一步明确教学的重点、难点,理清教学的思路。这样就可以克服教学中重点不突出,训练不到位等问题,提高课堂教学的效率。4、说课有利于提高教师的自身素质

一方面,说课要求教师具备一定的理论素养,这就促使教师不断地去学习教育教学的理论,提高自己的理论水平。另一方面,说课要求教师用语言把自己的教学思路及设想表达出来,这就在无形中提高了教师的组织能力和表达能力,提高了自身的素质。

5、说课没有时间和场地等的限制

上课听课等教研活动都要受时间和场地等的限制。说课则不同,它可以完全不受这些方面的限制,人多可以,人少也可以。时间也可长可短,非常灵活。

三、说课的类型

说课的类型很多,根据不同的标准,有不同的分法。

按学科分:语文说课、数学说课、音体美说课等;按用途分:示范说课、教研说课、考核说课等;但我们从整体来分,说课可以分成两大类:一类是实践型说课,一类是理论型说课。实践型说课就是指针对某一具体课题的说课。而理论型说课是指针对某一理论观点的说课。

四、说课的内容

说课的内容是说课的关键。不同的说课类型说课的内容自然也不同。这也是我们这几年主要研究的问题。

根据我们的实践,实践型说课主要应该有以下几个方面的内容:1、说教材主要是说说教材简析、教学目标、重点难点、课时安排、教具准备等,这些可以简单地说,目的是让听的人了解你要说的课的内容。

2、说教法就是说说你根据教材和学生的实际,准备采用哪种教学方法。这应该是总体上的思路。

3、说过程这是说课的重点。就是说说你准备怎样安排教学的过程,为什么要这样安排。一般来说,应该把自己教学中的几个重点环节说清楚。如课题教学、常规训练、重点训练、课堂练习、作业安排、板书设计等。在几个过程中要特别注意把自己教学设计的依据说清楚。这也是说课与教案交流的区别所在。理论型说课与实践型说课有一定的区别,实践型说课侧重说教学的过程和依据,而理论型说课则侧重说自己的观点。一般来说,理论型说课应该包含以下几个方面的内容:

1、说观点理论型说课是针对某一理论观点的说课,所以我们首先要把自己的观点说清楚。赞成什么,反对什么,要立场鲜明。

2、说实例理论观点是要用实际的事例来证实的。说课中要引用恰当的、生动的例子来说明自己的观点,这是说课的重点。

3、说作用说课不是纯粹的理论交流,它注重的是理论与实践的结合。因此我们要在说课时结合自己的教学实践,把该理论在教学中的作用说清楚。

说课的研究

五、说课的范例

实践型说课的例子:

例1《我家的小院》

"我家有个小院子。院子里种着许多花草树木,一年四季都有迷人的景色。初春,迎春花开出金灿灿的小黄花,最先迎来了春天月季花像一张张笑得合不拢嘴的小脸。地上长着厚厚的苔藓,像铺上一层绿色的地毯。盛夏,茉莉花散发着阵阵清香。海棠开着耀眼的红花。葡萄架上的绿叶,一片挨着一片,密密层层。站在葡萄架下,抬头可见一串串快要成熟的葡萄像珍珠似的挂满了藤架。深秋,枯黄的树叶像飞舞的黄蝶从树上一片片飘落下来。可是,万年青的叶子仍旧碧绿碧绿的,显得格外精神。一盆盆菊花正开得茂盛。隆冬,鹅毛般的大雪纷纷扬扬,给万物披上了银装。那些娇惯的花草都住进了温暖的屋子,腊梅花却昂首挺胸,迎着风雪,无所谓惧。"

说课问题:1、本课的教学目标如何确定,如何落实这些目标?2、本单元的重点训练是读懂长句子。请你说说如何教学文中划线的两个长句子。3、请你写出本课的板书设计,并说说你设计的思路。

理论型说课的例子:

例2:学法迁移是我们教学中经常运用的一种方法,请你结合自己的教学实践,举例说如何在课堂教学中利用正迁移,克服负迁移,提高教学效率。

例3:新课导入的好坏直接影响着课堂教学的效率。请你结合自己任教的学科,举一个成功的例子和失败的例子,分别说说。

例4:要把素质教育落实到课堂。在教学关系上,必须突出学生的主体地位,即学生自身发展的主体,其自主性、能动性和创造性应当充分受到尊重,给予其展现的机会。请你结合自己的实践,谈谈体会。

例5:要把素质教育落实到课堂。在教学方法上,必须体现教与学的交融,重视教法与学法的相互转化。教师的教是教学生去学,教是为学服务的,教是为了“不教”。在具体操作中,要重视课堂训练,通过语言文字训练,来培养学生的能力,提高课堂教学的效率。请你结合自己的实践,谈谈体会。

JK251.com延伸阅读

数学教案-坐标轴的平移相关教学方案


坐标轴的平移

一、教材分析

1、坐标变换是化简曲线方程,以便于讨论曲线的性质和画出曲线的一种重要方法。这一节教材主要讲坐标轴的平移,要求学生在正确理解新旧坐标之间的关系的基础上掌握平移公式;并能利用平移公式对新旧坐标系中点的坐标和曲线的方程进行互化。这就是本节课的教学目的之一。

2、本教材的重点是平移公式的推导及其简单应用。为了解决重点,教学中先以圆(x-3)²+(y-2)²=5²化为x²+y²=5²这个例子引入来说明,虽然点的位置没有改变曲线的位置、形状和大小没有改变,但是由于坐标系的改变,点的坐标和曲线的方程也随着改变,而且适当地变换坐标系,曲线的方程就可以化简,以此指明平移坐标轴的意义和作用,并由此引出平移的定义,导出平移公式。在推导平移公式时,先从特殊到一般,通过观察、归纳、猜想和推导,得出平移公式,还引导学生运用代数中刚学过的复数的几何意义来证明,既开阔视野,沟通学科知识,又培养学生的思维能力,同时还可通过一组练习,让学生正用、逆用、变用平移公式,达到进一步加深理解、熟练掌握公式的目的,进而培养学生的发现、推理能力和教学思想方法。

3、本节教材的难点是平移公式两种形式何时运用,学生易产生混淆,教学中应通过实例让学生自己领会,并及时加以小结,掌握其规律,加强公式的记忆并培养灵活运用知识的能力。

4、本节寓德于教的要点,主要是通过事物变化过程的内在联系,认识变与不变的矛盾对立统一规律,对学生进行辩证唯物主义的教育。

二、教学过程

(一)提出问题

教师先在黑板上画出图形,让学生观察、思考并提问以下问题:

1、如图,点O和○O关于坐标系xoy的坐标和方程各是什么?点O和○O关于坐标系xoy的坐标和方程各是什么?两个方程,那一个较为简单?

(学生回答,教师在黑板上板书:)

直角坐标系点O的坐标○O的方程


在xoy中(0,0)x²+y²=5²

两个方程,显然后一个方程简单。

(二)引入新课

(继续提问)

1、从上面的例子可以看出什么?

(答)(1)对于同一点或同一曲线,由于选取的坐标系不同,点的坐标功曲线的方程也不同。

(2)把一个坐标系变换为另一个适当的坐标系,可以使曲线的方程简化,便于研究曲线的性质。

教师继续提出新的话题,即如何把一个坐标系变换为另一个适当的坐标系呢?我们再从上面的例子来观察坐标系

xoy与xoy有何异同点呢?(提问)

(答)(1)坐标轴的方向和长度单位都相同——不变

(2)坐标系的原点的位置不同——变

(教师归纳)这种坐标系的变换叫做坐标轴的平移,简称移轴。

(让学生打开课本阅读移轴的定义,教师在黑板上板书)

(板书)坐标轴的平移

(三)讲授新课

(板书)1、坐标轴平移的定义

2、坐标轴平移公式

思路:(1)以特殊到一般,在已画出的图形上任取四个点(分别在第一、二、三、四系限或坐标轴上)让学生分别写出在新、旧坐标系里的坐标,并观察、分析出它们的关系。

(答)坐标平面上任意一点在原坐标系中坐标和在新坐标系中的坐档,归纳出来有如下关系:

(板书)原系横坐标x=新系横坐标x+3

原系纵坐标y=新系纵坐标y+2

现在把(3,2)推广到一般(h,k)能否得出x=x+h

y=y+k

这个公式呢?(让学生自己动手证明)

思路(2)第一步用有向线段的数量表示x,y,h,k,x,和y,

第二步据图进行推导

第三步由推出的公式x=x+h(1)再推出x=x-h

y=y+ky=y-h

小结:这两个公式都叫做平移(移轴)公式。同学们还可以运用代数中学过的向量加、减法则,建立复平面来证明(留给学生课后自己作练习)

3、平移公式的应用

(1)利用平移公式求在新坐标内点的新坐标

例与练:①平移坐标轴,把原点平移到O(-4,3),求A(0,0),B(4,-5)的新坐标;C(5,-7),D(4,-6)的旧坐标。

②平移坐标轴,把原点平移到O()使A(2,4)的新坐标为(3,2);B(-4,0)的旧坐标为(0,3)

(2)利用平移公式化简方程

例与练:(课本例)平移坐轴,把原点移到O(2,-1),求下列曲线关于新坐标系的方程,并画出新旧坐标轴和曲线。

(x-2)

①x=2②y=-1③(x+2)²/9+(y+1)²/4=1

分析:解①②时用分别把x=2,y=-1代入公式

(2)得x=0y=0(比课本中的解法简单)而在解③时,却要用公式(1)分别用x=+2,y=y-1代入原方程得出新方程x/9+y/4=1(引导学生正确作出图)

小结:从例中可以看出,要把方程(x-2)²/9+(y+1)²/4

化为简单的方程x²/9+y²/4=1,可把x-2=xy+1=y,得出应

把坐标原点平移到(2,-1),由此可推广,形如(x-h)²/a²+(y-k)²/b²的方程如何化简。

选择题1.坐标轴平移后,下列各数值中发生变化的是()

(A)某两点的距离(B)某线权中点的坐标

(C)某两条直线的夹角(D)某三角形的面积

答案选(C)从此题可看出,坐标轴平移后,与坐标有关的量发生变化,但图形本身的几何性质不变。

选择题2:曲线x²+y²+2x-4y+1=0在新坐标系中的方程是x²+y²=4,则新坐标系原点在旧坐标系中的坐标是()

(A)(-1,2)(B)(1,-2)(C)2,-1)(D)(-2,1)

分析:把x²+y²+2x-4y+1=0配方为(x+1)²+(y-2)²=4

由x+1=x===h=-1y-2=y===k=2故应选(A)

(四)教师小结:今天讲的主要内容是坐标轴平移的意义,平移公式及其简单应用。移轴的目的在几何上是使曲线图形的中心(或顶点)与原点重合,使图形“居中”,而在代数上则是将一般二元二次方程通过代数变形(变量代换),消去其中的一次项,从而使方程简化,这个问题,下一节课将作更具体深入的研究与探讨。

平移公式的两种形式何时应用较好方便,一般说来,由点的旧坐标求其新坐标时用(2)较方便,而由曲线的原方程求其新方程时用(1)较方便,但这也不是固定不变的,如例2中把方程x=2化为新方程,直接代入(2),马上就可求出x=0这个新方程。

平移坐标轴,可以简化曲线的方程,但不含改变曲线原来的性质与不变,可以看出其中的辩证关系和内在规律。

(五)布置作业(略)

三、课后附记

1、本节课曾在福州市教育学院组织的青年教师培训班的观摩课上讲授,反映较好,从学生的作业反馈及下节课的复习提问,利用坐标轴的平移化简二元二次方程中,引用平移公式进行运算,学生都能较熟练掌握,在半期考中,关于平移公式的应用题得分率在90%以上,说明本节课的效果较好,但因本教材在整个圆锥曲线教材内容中占的分量不重,公式较少使用,容易出现反生与遗忘,因此在平时教学中可适时加以引用。

2、本节课的设计遵照“一体三重五环节”的福八中数学教学的特色,重视发挥学生的主体与教师的主导作用,重视“过程”的教学,尽量做到:提出问题,循循诱导;疏通思路,耐心开导;解题练习,精心指导;存在不足,热情辅导;掌握过程,尽心引导;真正体现重情善导的教风与特色。

说课,作为一种教学、教研改革的手段,最早是由河南省新乡市红旗区教室于1987年提出来的。实践证明,说课活动有效地调动了教师投身教学改革,学习教育理论,钻研课堂教学的积极性。是提高教师素质,培养造就研究型,学者型青年教师的最好途径之一。

我市的说课活动是1994年开始的,在不断的实践探索中,我们完善了说课的理论,改进了说课的方法,取得了令人满意的成绩。现在说课已经在我市的教学研究、职称评定、年度考核、教师比武等许多方面广泛运用。

一、什么叫说课

那么,什么叫说课呢?应该说到目前为止还没有一种具体的科学的定义。按红旗区的说法,说课就是教师口头表述具体课题的教学设想及其理论依据,也就是授课教师在备课的基础上,面对同行或教研人员,讲述自己的教学设计,然后由听者评说,达到互相交流,共同提高的目的的一种教学研究和师资培训的活动。我们在说课实践中认识到,这个定义是不全面的。根据我们的理解,说课既可以是针对具体课题的,也可以是针对一个观点或一个问题的。所以我们认为,说课就是教师针对某一观点、问题或具体课题,口头表述其教学设想及其理论依据。说得简单点,说课其实就是说说你是怎么教的,你为什么要这样教。

二、说课的意义

说课活动的好处很多,从不同的角度去看,有不同的答案。根据我们的实践和理解,说课活动有以下几个方面的意义:

1、说课有利于提高教研活动的实效

以往的教研活动一般都停留在上几节课,再请几个人评评课。上课的老师处在一种完全被动的地位。听课的老师也不一定能理解授课教师的意图。导致了教研实效低下。通过说课,让授课教师说说自己教学的意图,说说自己处理教材的方法和目的,让听课教师更加明白应该怎样去教,为什么要这样教。从而使教研的主题更明确,重点更突出,提高教研活动的实效。另外,我们还可以通过对某一专题的说课,统一思想认识,探讨教学方法,提高教学效率。

2、说课有利于提高教师备课的质量

我们检查了很多教师的备课笔记,从总体上看教师的备课都是很认真的。但是我们的老师都只是简单地备怎样教,很少有人会去想为什么要这样备,备课缺乏理论依据,导致了备课质量不高。通过说课活动,可以引导教师去思考。思考为什么要这样教学,这就能从根本上提高教师备课的质量。

3、说课有利于提高课堂教学的效率

教师通过说课,可以进一步明确教学的重点、难点,理清教学的思路。这样就可以克服教学中重点不突出,训练不到位等问题,提高课堂教学的效率。4、说课有利于提高教师的自身素质

一方面,说课要求教师具备一定的理论素养,这就促使教师不断地去学习教育教学的理论,提高自己的理论水平。另一方面,说课要求教师用语言把自己的教学思路及设想表达出来,这就在无形中提高了教师的组织能力和表达能力,提高了自身的素质。

5、说课没有时间和场地等的限制

上课听课等教研活动都要受时间和场地等的限制。说课则不同,它可以完全不受这些方面的限制,人多可以,人少也可以。时间也可长可短,非常灵活。

三、说课的类型

说课的类型很多,根据不同的标准,有不同的分法。

按学科分:语文说课、数学说课、音体美说课等;按用途分:示范说课、教研说课、考核说课等;但我们从整体来分,说课可以分成两大类:一类是实践型说课,一类是理论型说课。实践型说课就是指针对某一具体课题的说课。而理论型说课是指针对某一理论观点的说课。

四、说课的内容

说课的内容是说课的关键。不同的说课类型说课的内容自然也不同。这也是我们这几年主要研究的问题。

根据我们的实践,实践型说课主要应该有以下几个方面的内容:1、说教材主要是说说教材简析、教学目标、重点难点、课时安排、教具准备等,这些可以简单地说,目的是让听的人了解你要说的课的内容。

2、说教法就是说说你根据教材和学生的实际,准备采用哪种教学方法。这应该是总体上的思路。

3、说过程这是说课的重点。就是说说你准备怎样安排教学的过程,为什么要这样安排。一般来说,应该把自己教学中的几个重点环节说清楚。如课题教学、常规训练、重点训练、课堂练习、作业安排、板书设计等。在几个过程中要特别注意把自己教学设计的依据说清楚。这也是说课与教案交流的区别所在。理论型说课与实践型说课有一定的区别,实践型说课侧重说教学的过程和依据,而理论型说课则侧重说自己的观点。一般来说,理论型说课应该包含以下几个方面的内容:

1、说观点理论型说课是针对某一理论观点的说课,所以我们首先要把自己的观点说清楚。赞成什么,反对什么,要立场鲜明。

2、说实例理论观点是要用实际的事例来证实的。说课中要引用恰当的、生动的例子来说明自己的观点,这是说课的重点。

3、说作用说课不是纯粹的理论交流,它注重的是理论与实践的结合。因此我们要在说课时结合自己的教学实践,把该理论在教学中的作用说清楚。

说课的研究

五、说课的范例

实践型说课的例子:

例1《我家的小院》

"我家有个小院子。院子里种着许多花草树木,一年四季都有迷人的景色。初春,迎春花开出金灿灿的小黄花,最先迎来了春天月季花像一张张笑得合不拢嘴的小脸。地上长着厚厚的苔藓,像铺上一层绿色的地毯。盛夏,茉莉花散发着阵阵清香。海棠开着耀眼的红花。葡萄架上的绿叶,一片挨着一片,密密层层。站在葡萄架下,抬头可见一串串快要成熟的葡萄像珍珠似的挂满了藤架。深秋,枯黄的树叶像飞舞的黄蝶从树上一片片飘落下来。可是,万年青的叶子仍旧碧绿碧绿的,显得格外精神。一盆盆菊花正开得茂盛。隆冬,鹅毛般的大雪纷纷扬扬,给万物披上了银装。那些娇惯的花草都住进了温暖的屋子,腊梅花却昂首挺胸,迎着风雪,无所谓惧。"

说课问题:1、本课的教学目标如何确定,如何落实这些目标?2、本单元的重点训练是读懂长句子。请你说说如何教学文中划线的两个长句子。3、请你写出本课的板书设计,并说说你设计的思路。

理论型说课的例子:

例2:学法迁移是我们教学中经常运用的一种方法,请你结合自己的教学实践,举例说如何在课堂教学中利用正迁移,克服负迁移,提高教学效率。

例3:新课导入的好坏直接影响着课堂教学的效率。请你结合自己任教的学科,举一个成功的例子和失败的例子,分别说说。

例4:要把素质教育落实到课堂。在教学关系上,必须突出学生的主体地位,即学生自身发展的主体,其自主性、能动性和创造性应当充分受到尊重,给予其展现的机会。请你结合自己的实践,谈谈体会。

例5:要把素质教育落实到课堂。在教学方法上,必须体现教与学的交融,重视教法与学法的相互转化。教师的教是教学生去学,教是为学服务的,教是为了“不教”。在具体操作中,要重视课堂训练,通过语言文字训练,来培养学生的能力,提高课堂教学的效率。请你结合自己的实践,谈谈体会。

..用坐标表示平移的教学方案


6.2.2用坐标表示平移

[教学目标]

1.知识技能

掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程.

2.数学思考

发展学生的形象思维能力,和数形结合的意识.

3.解决问题

用坐标表示平移体现了平面直角坐标系在数学中的应用.

4.情感态度

培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.

[教学重点与难点]

1.重点:掌握坐标变化与图形平移的关系.

2.难点:利用坐标变化与图形平移的关系解决实际问题.

[教学过程]

一、引言

上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.

二、新课

展示问题:教材第56页图.

(1)如图将点a(-2,-3)向右平移5个单位长度,得到点a1,在图上标出它的坐标,把点a向上平移4个单位长度呢?

(2)把点a向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?

(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?

规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(,));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,)).

教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.

例如图(1),三角形abc三个顶点坐标分别是a(4,3),b(3,1),c(1,2).

(1)将三角形abc三个顶点的横坐标后减去6,纵坐标不变,分别得到点a1、b1、c1,依次连接a1、b1、c1各点,所得三角形a1b1c1与三角形abc的大小、形状和位置上有什么关系?

(2)将三角形abc三个顶点的纵坐标都减去5,横坐标不变,分别得到点a2、b2、c2,依次连接a2、b2、c2各点,所得三角形a2b2c2与三角形abc的大小、形状和位置上有什么关系?

引导学生动手操作,按要求画出图形后,解答此例题.

解:如图(2),所得三角形a1b1c1与三角形abc的大小、形状完全相同,三角形a1b1c1可以看作将三角形abc向左平移6个单位长度得到.类似地,三角形a2b2c2与三角形abc的大小、形状完全相同,它可以看作将三角形abc向下平移5个单位长度得到.

思考题:

由学生动手画图并解答.

归纳:

三、练习

教材第58页练习;习题6.2中第1、2、4题.

四、作业

教材第59页第3题

平面直角坐标系初中教案精选


1、教材分析:

⑴知识结构:

日常生活及其它学科需要一种确定平面内点的位置的方法.在数学上,可以类比数轴,引出的概念.完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来.

⑵重点、难点分析:

本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标.直角坐标系的基本知识是学习全章的基础,在后面学习函数的图象以及一些具体函数的图象时都要应用这些知识.通过对这部分知识的反复而深入的练习、应用,渗透坐标的思想,进而形成数形结合的的数学思想.

本节的难点是中的点与有序实数对间的一一对应.限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,或不能很好地理解一一对应,有的只限于机械地记忆,这样会影响对数形结合思想的形成.教材上只给出了比较简单的描述.教师可以通过课堂练习,让学生从一点一滴处理解横、纵坐标的值不同,即实数对不同,则在直角平面上的点的位置也不同,反之,亦然.

2、教学建议:

数学是世界的一部分,同时又隐藏在世界中.这样,数学教学的目的之一就是使学生通过数学的学习,认识数学与现实世界的联系,数学与人类生活的密切联系,以及数学对人类历史发展的影响与作用.因此,数学概念的产生有其必然性与合理性.

(1)概念的引入

组织学生看本章引言中的气温图,说明确定平面内点的位置是实际需要的.可以让学生进行讨论,他们的生活中还有什么类似的例子.如电影院中的座位,到图书馆找书,学生的课程表等.从丰富的背景材料中,体会数学的广泛应用性.

(2)讲授概念:

现实生活和其它学科向数学提出了问题,如何建立数学模型以解决这个问题呢?以前,我们学习过数轴.数轴上每一个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,数轴上的点与实数是一一对应的.这样利用数轴可以研究一些数量关系的问题.确定平面内点的位置的方法也可以与此类似,类比出的概念,并结合图形讲述的有关概念.

(3)练习,深入地理解概念:

平面直角这节课的概念较多,又都是新的,开始的时候不适合太快,给学生一个适应的过程,一个思维的空间.如:x轴、y轴不在任何象限内,原点是x轴、y轴的交点等.然后,就可以多练习一些简单题,如给出坐标,在中标点,或反之,给出中点的位置,找出其坐标.通过小题的练习,使学生能逐步理解坐标平面内的点和有序实数对之间的一一对应关系.

总之,形成初步的数学概念后,学生可以通过变式,逐步加深对概念的理解.在解题过程中,教师的任务是创设环境,激励学生凭借自己的原有认知水平,完成对数学知识的建构.在相互讨论评价的过程中,培养学生的责任心.

这节课可以分两课时完成,第一节课由实际引入,类比数轴定义,给出的概念,并通过练习达到熟练的程度.第二节课,可视第一节课的掌握情况,适当增加一些有探索性的题目.如求一已知点关于x轴、y轴、原点的对称点的坐标;一三象限角平分线上的点的坐标特点等.

教学目标:

1、使学生进一步熟悉由坐标确定点和由点求坐标的方法.理解平面内的点与有序实数对之间的一一对应关系.

2、会用象限和坐标轴说明直角坐标系内点的位置,并会根据点的位置,确定点的横坐标、纵坐标的符号.

3、掌握确定已知点关于坐标轴(或原点)的对称点的方法.培养学生观察,归纳总结的能力.

4、培养学生发现问题,主动探索的能力.在与同伴的合作交流中,培养学生的责任心.

5、渗透数形结合的思想,培养学生思维的严谨性和深刻性.

教学重点:

1、掌握象限或坐标轴上的点的坐标的特点.

2、会求已知点关于坐标轴或原点的对称点的坐标.

教学难点:理解平面内的点与有序实数对之间的一一对应关系.

教学用具:直尺、计算机

教学方法:合作学习,讨论,探究

教学过程:

1、提出问题,主动探索

上节课我们学习了的概念,并介绍了象限与坐标轴.初步体会到平面内的点与有序实数对是一一对应的.今天我们需要开始新的探索,发现数学知识.

下面看例1

例1、指出下列各点所在象限或坐标轴;

你能发现什么规律吗?

解:描点画图后,可以从图中观察出,A点在第二象限;B点在第三象限;C点在第四象限;D点在第一象限;E点在x轴上;F点在y轴上.

做完这道题后,你发现能直接从点的坐标判断出点所在象限或坐标轴吗?

通过学生的分组讨论后,可总结如下:

象限与坐标轴的定义都是以图形的形式直观给出的.通过本例题,又总结出了相应的代数规律.渗透了数与形的结合.并培养了学生由特殊到一般的抽象思维能力.

练习:习题13.1的第三题

例2、在直角坐标系中,标出下列各对点的位置,

并发现其中的规律.

(1)(3,5),(2,5)

(2)(1,2),(1,-3)

(3)(4,4),(6,6)

(4)

通过观察可以总结出:平行于x轴的直线上的点,其纵坐标相同,横坐标为任意实数;平行于y轴的直线上的点,其横坐标相同,纵坐标为任意实数.

另外一、三象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标相同;二、四象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标互为相反数.

建议:如果学生在观察时有困难,可以适当增加题量,丰富观察的对象,逐步得出最后的结论.

这些规律也是有其必然的,如两点的纵坐标相同,则这两点在x轴的同侧,且到x轴的距离相等,由平面几何的知识,可推出这两点的连线平行于x轴.其它的性质也有其存在的道理.通过对规律的总结,渗透数形结合思想,并让学生体会数学知识的形成过程.而点的坐标不同,它在平面上的位置也不相同.即平面上的点与有序实数对是一一对应的.从图中可以看出.

例3、在直角坐标系中,描出下列各点

⑴(2,1),(-2,1)

⑵(-3,4),(-3,-4)

⑶(5,-4),(-5,-4)

你能发现上述各对点的位置有何特点吗?它们的坐标有何异同?你能总结出一般的规律吗?并说明其中的道理吗?

解:(从图中观察出的点的位置)特点两点坐标间关系

(1)两点关于y轴对称横坐标为相反数,纵坐标相同

(2)两点关于x轴对称横坐标相同,纵坐标为相反数

(3)两点关于原点对称横坐标互为相反数,纵坐标互为相反数

这道题能引发我们得出什么样的结论呢?(答案不固定,本教案只给出参考答案).我们可以这样说:对于直角坐标平面上的任意两点,如果它们的横坐标相反,纵坐标相同,则它们关于y轴对称;如果它们横坐标相同,纵坐标相反,则它们关于x轴对称;如果题目的横、纵坐标都相反,则它们关于原点对称,反之亦然.

以上的规律可以解决很多问题,比如,已知点(-10,3).求这个点关于x轴、y轴,及原点的对称点的坐标.

答:(-10,-3);(10,3);(10,-3).

你想过这其中的道理吗?

如两点关于y轴对称.根据轴对称的定义,这两点的连线垂直于y轴,且到y轴的距离相等.所以这两点的连线就平行于x轴,它们的纵坐标相同,对称点在y轴的两点.到y轴的距离相等.即这两点的横坐标相反.

类似地,可以组织学生进行其它两种情况的讨论.这个规律只要求学生能理解,并不要求严格地证明.通过学生的主动探索,复习了对称的概念,体验了数形的结合.亲身经历了数学知识的形成过程.也增强了学生的自信心,激发了他们互动探索的精神.

小结:本节我们讨论了三道例题,这三道题都是大家共同讨论,通过观察归纳总结探索出的规律,这也是数学知识产生的一种过程.而且每道题的解决都离不开数形结合的思想.而且也能逐步体会出平面内的点与有序实数对之间的一一对应关系.这一部分知识为今后的学习打下了基础,希望大家能真正地理解并能熟练应用.

作业:习题13.1B组的1-3.

数学教案-平面直角坐标系初中教案精选


1、教材分析:

⑴知识结构:

日常生活及其它学科需要一种确定平面内点的位置的方法.在数学上,可以类比数轴,引出平面直角坐标系的概念.完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来.

⑵重点、难点分析:

本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标.直角坐标系的基本知识是学习全章的基础,在后面学习函数的图象以及一些具体函数的图象时都要应用这些知识.通过对这部分知识的反复而深入的练习、应用,渗透坐标的思想,进而形成数形结合的的数学思想.

本节的难点是平面直角坐标系中的点与有序实数对间的一一对应.限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,或不能很好地理解一一对应,有的只限于机械地记忆,这样会影响对数形结合思想的形成.教材上只给出了比较简单的描述.教师可以通过课堂练习,让学生从一点一滴处理解横、纵坐标的值不同,即实数对不同,则在直角平面上的点的位置也不同,反之,亦然.

2、教学建议:

数学是世界的一部分,同时又隐藏在世界中.这样,数学教学的目的之一就是使学生通过数学的学习,认识数学与现实世界的联系,数学与人类生活的密切联系,以及数学对人类历史发展的影响与作用.因此,数学概念的产生有其必然性与合理性.

(1)概念的引入

组织学生看本章引言中的气温图,说明确定平面内点的位置是实际需要的.可以让学生进行讨论,他们的生活中还有什么类似的例子.如电影院中的座位,到图书馆找书,学生的课程表等.从丰富的背景材料中,体会数学的广泛应用性.

(2)讲授概念:

现实生活和其它学科向数学提出了问题,如何建立数学模型以解决这个问题呢?以前,我们学习过数轴.数轴上每一个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,数轴上的点与实数是一一对应的.这样利用数轴可以研究一些数量关系的问题.确定平面内点的位置的方法也可以与此类似,类比出平面直角坐标系的概念,并结合图形讲述平面直角坐标系的有关概念.

(3)练习,深入地理解概念:

平面直角这节课的概念较多,又都是新的,开始的时候不适合太快,给学生一个适应的过程,一个思维的空间.如:x轴、y轴不在任何象限内,原点是x轴、y轴的交点等.然后,就可以多练习一些简单题,如给出坐标,在平面直角坐标系中标点,或反之,给出平面直角坐标系中点的位置,找出其坐标.通过小题的练习,使学生能逐步理解坐标平面内的点和有序实数对之间的一一对应关系.

总之,形成初步的数学概念后,学生可以通过变式,逐步加深对概念的理解.在解题过程中,教师的任务是创设环境,激励学生凭借自己的原有认知水平,完成对数学知识的建构.在相互讨论评价的过程中,培养学生的责任心.

这节课可以分两课时完成,第一节课由实际引入,类比数轴定义,给出平面直角坐标系的概念,并通过练习达到熟练的程度.第二节课,可视第一节课的掌握情况,适当增加一些有探索性的题目.如求一已知点关于x轴、y轴、原点的对称点的坐标;一三象限角平分线上的点的坐标特点等.

教学目标:

1、使学生进一步熟悉由坐标确定点和由点求坐标的方法.理解平面内的点与有序实数对之间的一一对应关系.

2、会用象限和坐标轴说明直角坐标系内点的位置,并会根据点的位置,确定点的横坐标、纵坐标的符号.

3、掌握确定已知点关于坐标轴(或原点)的对称点的方法.培养学生观察,归纳总结的能力.

4、培养学生发现问题,主动探索的能力.在与同伴的合作交流中,培养学生的责任心.

5、渗透数形结合的思想,培养学生思维的严谨性和深刻性.

教学重点:

1、掌握象限或坐标轴上的点的坐标的特点.

2、会求已知点关于坐标轴或原点的对称点的坐标.

教学难点:理解平面内的点与有序实数对之间的一一对应关系.

教学用具:直尺、计算机

教学方法:合作学习,讨论,探究

教学过程:

1、提出问题,主动探索

上节课我们学习了平面直角坐标系的概念,并介绍了象限与坐标轴.初步体会到平面内的点与有序实数对是一一对应的.今天我们需要开始新的探索,发现数学知识.

下面看例1

例1、指出下列各点所在象限或坐标轴;

你能发现什么规律吗?

解:描点画图后,可以从图中观察出,A点在第二象限;B点在第三象限;C点在第四象限;D点在第一象限;E点在x轴上;F点在y轴上.

做完这道题后,你发现能直接从点的坐标判断出点所在象限或坐标轴吗?

通过学生的分组讨论后,可总结如下:

象限与坐标轴的定义都是以图形的形式直观给出的.通过本例题,又总结出了相应的代数规律.渗透了数与形的结合.并培养了学生由特殊到一般的抽象思维能力.

练习:习题13.1的第三题

例2、在直角坐标系中,标出下列各对点的位置,

并发现其中的规律.

(1)(3,5),(2,5)

(2)(1,2),(1,-3)

(3)(4,4),(6,6)

(4)

通过观察可以总结出:平行于x轴的直线上的点,其纵坐标相同,横坐标为任意实数;平行于y轴的直线上的点,其横坐标相同,纵坐标为任意实数.

另外一、三象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标相同;二、四象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标互为相反数.

建议:如果学生在观察时有困难,可以适当增加题量,丰富观察的对象,逐步得出最后的结论.

这些规律也是有其必然的,如两点的纵坐标相同,则这两点在x轴的同侧,且到x轴的距离相等,由平面几何的知识,可推出这两点的连线平行于x轴.其它的性质也有其存在的道理.通过对规律的总结,渗透数形结合思想,并让学生体会数学知识的形成过程.而点的坐标不同,它在平面上的位置也不相同.即平面上的点与有序实数对是一一对应的.从图中可以看出.

例3、在直角坐标系中,描出下列各点

⑴(2,1),(-2,1)

⑵(-3,4),(-3,-4)

⑶(5,-4),(-5,-4)

你能发现上述各对点的位置有何特点吗?它们的坐标有何异同?你能总结出一般的规律吗?并说明其中的道理吗?

解:(从图中观察出的点的位置)特点两点坐标间关系

(1)两点关于y轴对称横坐标为相反数,纵坐标相同

(2)两点关于x轴对称横坐标相同,纵坐标为相反数

(3)两点关于原点对称横坐标互为相反数,纵坐标互为相反数

这道题能引发我们得出什么样的结论呢?(答案不固定,本教案只给出参考答案).我们可以这样说:对于直角坐标平面上的任意两点,如果它们的横坐标相反,纵坐标相同,则它们关于y轴对称;如果它们横坐标相同,纵坐标相反,则它们关于x轴对称;如果题目的横、纵坐标都相反,则它们关于原点对称,反之亦然.

以上的规律可以解决很多问题,比如,已知点(-10,3).求这个点关于x轴、y轴,及原点的对称点的坐标.

答:(-10,-3);(10,3);(10,-3).

你想过这其中的道理吗?

如两点关于y轴对称.根据轴对称的定义,这两点的连线垂直于y轴,且到y轴的距离相等.所以这两点的连线就平行于x轴,它们的纵坐标相同,对称点在y轴的两点.到y轴的距离相等.即这两点的横坐标相反.

类似地,可以组织学生进行其它两种情况的讨论.这个规律只要求学生能理解,并不要求严格地证明.通过学生的主动探索,复习了对称的概念,体验了数形的结合.亲身经历了数学知识的形成过程.也增强了学生的自信心,激发了他们互动探索的精神.

小结:本节我们讨论了三道例题,这三道题都是大家共同讨论,通过观察归纳总结探索出的规律,这也是数学知识产生的一种过程.而且每道题的解决都离不开数形结合的思想.而且也能逐步体会出平面内的点与有序实数对之间的一一对应关系.这一部分知识为今后的学习打下了基础,希望大家能真正地理解并能熟练应用.

作业:习题13.1B组的1-3.

经典初中教案坐标平面内的图形变换


〖教学目标〗◆1、从点的运动的过程,培养学生由特例发现问题一般规律性的能力.◆2、在点的运动到线段平移到图形的变换的过程中,学会有条理的思考并进行演绎推理.◆3通过对问题的共同探讨,培养学生的合作精神、.〖教学重点与难点〗◆教学重点:点平移时坐标的变化规律.◆教学难点:由点的平移到图形的变换的演绎过程.〖教学过程〗一、创设情境,引入新课多媒体显示:(1)机器人位于坐标系中的a(-3,3),若作以下平移变换,向右(左)平移5个单位,请画出机器人所在位置,并写出坐标。(2)机器人位于b(4,5),向上(下)平移3个单位,则机器人位于什么位置,并写出坐标。二、合作交流,探求新知坐标变化(1)课件显示:图示机器人变换点横坐标纵坐标a(-3,3)aˊ(2,3)加5不变a(-3,3)aˊˊ(-8,3)减5不变b(4,5)bˊ(4,8)不变加3b(4,5)bˊˊ(4,2)不变减3(交流探索,总结规律)左右平移时,纵坐标不变,横坐标右加,左减上下平移时,横坐标不变,纵坐标上加,下减(2)巩固新知①课本练习“做一做”1,2②由(2,3)(-3,3)(4,8)(4,5)各经过怎样变换?由(-7,3)(-3,3)(4,3)(4,5)呢?二、应用新知,演绎推理1.引例:若将(一)中机器人走过的路线标成红色,则得到线段aaˊ,bbˊ,现将aaˊ向下平移4个单位,bbˊ向左平移5个单位,请作出平移后的像。(多媒体显示)2.例2教学(让学生想一想:1<x≤5,例2的三个问题怎样解决)例2教学其实是先通过作平移变换,然后经看图以后解题的,这是解决数学问题的好方法,在以后教学中我们应该引导学生用这种方法解决数学问题。例3教学注意:(1)图形的变换其实就是点的变换,因此上两例就是特殊点的变换确定图形的变换。(2)一般情况下,讨论的是图形的一般变换(左右、上下)3.想一想:例3中,从图甲到图乙可以看作只经过一次平移变换吗?请描述这个平移变换。四、巩固练习(p143页1、2)五、小结(1)点的变换规律(2)由点的变换到线段的变换到图形变换的演绎推理六、作业(p143,144页a,b组)

平移的妙用


教学内容:平移的妙用

教学目标:

一、知识与能力目标

1、要求学生掌握平移的基本特征

2、能在理解平移性质的基础上巧妙运用的平移的知识来解决日常生活中的数学问题。

二、过程与方法目标:

1、引导学生概括平移的基本特征。

2、引导学生平移实例中的图形,探索运用平移知识解决实际问题。

3、引导学生亲自动手尝试对平移的再探索,发现平移的妙用!

三、情感与态度目标:

1、通过学生自己观察发现,培养学生对数学的兴趣。

2、通过学生亲自操作并解决问题,让学生了解学习探索中的艰辛与成功的乐趣。从而帮助他们树立学习数学的正确态度。

3、让学生在生活中观察应用例子,从而让他们体会到数学中的图形美。

教学重点、难点及教学突破

重点:平移特征---------平移中的不变量

难点:对图形进行理解和平移

教学突破:从实例入手,让学生思考小学解答方法,从而引导学生观察:能否进行平移。引导学生进行平移,从而让学生多平移角度来解决问题;引导学生再探索,让学生的妙用得到升发。

教学准备:学生复习平移特征,准备纸笔和画图工具。

教师用小黑板准备例题。

教师活动

学生活动

活动说明

一、复习平移的概念及特征;

教师:同学们,本期11.1学习了平移,同学们想想:什么叫平移?平移的二要素是什么?平移的特征是什么?

1.学生思考后,教师抽学生回答

学生:图形的平行移动叫平移

平移的二要素是:方向和距离

平移的特征:

平移后的图形与原来的图形的对应线段平行且相等,对应角相等,图形的形状与大小都没有发生变化

如图:线段AB以如图所示的方向平移2cm.

通过复习平移的概念及特征,让学生更进一步加深对平移理解,为后面的探索作准备

二、创设情境,引出问题:

问题一、要在如图楼梯上铺设某种红地毯,已知,这种地毯每平方米售价为40元,楼梯梯道宽为3米,侧面如图所示。计算一下,购买这种地毯至少要多少钱?

学生采取小组合作学习,共同寻找解决此题的办法,教师引导学生应用平移知识进行平移

一通过平移发现,楼梯长实际就是

AA’+A’M=2.8+6.2=9米

这样便可计算出购买这种地毯至少要

(2.8+6.2)×3×40=1080元

平移是难点,教师引导学生平移,注意对平移后图形的理解

教师活动

学生活动

活动说明

问题二、从县城到石桥镇有两条路可走,请你判断一下哪条路长一些?

教师提问:第①、②条路横向距离一样吗?纵向距离呢?

学生亲自动手平移。

学生回答:道路①的横向距离的和等于道路②的横向距离的和,道路①的纵向距离的和等于道路②的纵向距离的。

结论:①、②两条路一样长。

学生从表面上看总认为②比①要长。

因此,引导学生平移是难点,教师注意引导。

教师:从以上两个问题发现:平移在生活中是很重要的,生活中的许多问题可以应用平移的知识来解决。

学生相互讨论后得出:平移是有妙用的!

问题三、如图,在宽为20米,长为32米的长方形地面上修筑同样宽的两条互相垂直的道路余下的部分作为耕地,要使耕地面积为540米2.道路宽为多少米?

学生合作学习,讨论怎样解决这个问题,(可以用小学的方法解)

允许学生应用小学思维来解

平面直角坐标系教案模板


一:教学目标

1:认识并能画出平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。

2:经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合意识、合作交流意识。

二:教学重点

能画出平面直角坐标系;会根据坐标描出点的位置,由点的位置写出它的坐标。

三:教学难点

能能建立平面直角坐标系;求出点的坐标,由点的位置写出它的坐标。

四:教学时间

三课时

五:教学过程

第一课时

一)引入新课

1:要在平面内确定一个地点的位置需要几个数据?

2:练习如图你能确定各个景点的位置吗?“大成殿”在“中心广场”西、南各多少个格?“碑林”在“中心广场”东、北各多少个格?

二)新课

1:我们可以以“中心广场”为原点作两条互相垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,你能表示出“碑林”的位置吗?“大成殿”的位置吗?(学生回答,老师小结)

2:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。(通常两条数轴成水平位置与铅直位置,取向上或向右为正方向,水平位置的数轴叫横轴,铅直位置的数轴叫纵轴,它们的公共原点叫直角坐标系的原点。)

3:两条坐标轴把平面分成四部分:右上部分叫第一象限,其它三部分按逆时针方向依次叫第二象限、第三象限、第四象限。

4:怎样求平面内点的坐标?

对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫该点的横坐标、纵坐标。

例1写出多边形ABCDEF各顶点的坐标

y

AB

FOCx

ED

5:想一想

(1)点A与B的纵坐标相同,线段AB的位置有什么特点?

(2)线段DB的位置有什么特点?

(3)坐标轴上点的坐标有什么特点?

6:练习P131做一做

三:小结(1)怎样画平面直角坐标系?

(2)怎样求平面内点的坐标?

(4)知道点的坐标怎样描出点?

四:作业P132

第二课时

一:复习

1)怎样画平面直角坐标系?

(学生练习画平面直角坐标系)

(2)怎样求平面内点的坐标?

y

A

BC

Ox

已知等边三角形的边长为2cm,求出各顶点的坐标?

(3)道点的坐标怎样描出点?

二:新课

例在直角坐标系中描出下列各点,并将各组内的点用线段依次连接起来。

(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5)

(2)-9,3),(-9,0),(-3,0),(-3,3)

(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9)

(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7)

(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)

观察所得的图形,你觉得它像什么?

y

Ox

三:练习P134做一做

四:作业P135习题5.4(1、2)

第三课时

一;新课引入与复习

1)怎样画平面直角坐标系?画平面直角坐标系时应注意些什么?

2)怎样求平面内点的坐标?(对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫该点的横坐标、纵坐标。)

二:新课

例3如图,矩形ABCD的长与宽分别是6,4。建立适当的直角坐标系,并写出各个顶点的坐标。

y

BA

解:如图:以点C为坐标原点,分别以CD、CB所在

直线为x轴y轴,建立直角坐标系。此时C(0,0)

O

CDx

由CD长为6,CB长为4,可得D,B,A的坐标分别为D(6,0),B(0,4),A(,4)

思考:(还可以建立直角坐标系吗?与同学交流)

例4对于边长为4的正三角形ABC,建立适当的直角坐标系,并写出各个顶点的坐标。

A

BC

三:小结建立适当的直角坐标系,求的坐标要注意以下几点?

1)要找出坐标原点。

2)要说明横轴与纵轴的位置。

3)要求出必要的线段的长度。

四:练习P161(议一议)与随堂练习

P162习题的第一题

五:作业P162习题的第二题

六:课外练习P162(试一试)

鱼的变化第二课时

一:复习点的坐标的特征

1)关于横轴对称的两点横坐标相等,纵坐标相反

2)关于纵轴对称的两点纵坐标相等,横坐标相反

3)关于原点对称的两点横坐标相反,纵坐标相反

二:看图确定点的坐标

1)左右两幅图关于Y轴对称,已知A(1,3)B(-3,-1),试确定点C,D的坐标?

AC

BD

2)左右两幅图关于Y轴对称,已知A(-3,2)B(-3,1),试确定点C,D的坐标?

y

AD

BC

x

三;练习

1)P142做一做

2)P143随堂练习

四:小结P143议一议

五:作业P144习题(做在书上)

第五章回顾与思考

一:学生看书回答问题

1)在平面内,确定点的位置一般需要几个数据?举例说明。

2)在直角坐标系中,如何确定给定点的坐标?举例说明。

3)在直角坐标系中,横、纵坐标系轴上点的坐标各有什么特点?举例说明。

4)在直角坐标系中,将图形沿坐标轴方向平移,变化前后的对应点的坐标有什么异同?举例说明。

5)在直角坐标系中,将图形上各点的横坐标或纵坐标加上一个数(或乘-1),变化前后的图形有什么关系?举例说明。

二:练习

P145复习题A组

三:小结点的坐标•一:点P(a,b)到X轴的距离是︱b︱,到Y轴的距离是︱a︱,到原点的距离是√a2+b2•二:对称性1)关于X轴对称的两点横坐标相等,纵坐标互为相反。•2)关于Y轴对称的两点横坐标互为相反,纵坐标相等。•3)关于原点轴对称的两点横坐标互为相反,纵坐标互为相反。•三:平行1)两点的横坐标相等,纵坐标不相等,则这两点所在的直线与Y轴平行,与X轴垂直。2)两点的横坐标不相等,纵坐标相等,则这两点所在的直线与X轴平行,与Y轴垂直。举例•1)点P(-3,4)与X轴对称的点的坐标为。与Y轴对称的点的坐标为。与原点轴对称的点的坐标为。•2)点A(6,-3)到X轴的距离为,•到Y轴的距离为,到原点轴的距离为•3)点A(a,-4)与B(2,b)所在的直线与X轴平行,则a,b.所在的直线与Y轴平行,则a,b.•4)点A(a,b)在第一、三象限的角平分线上,则a、b的关系是。在第二、四象限的角平分线上,则a、b的关系是。练习•1)点P(4,-3)与X轴对称的点的坐标为。与Y轴对称的点的坐标为。与原点轴对称的点的坐标为。•2)点A(-2,-3)到X轴的距离为,•到Y轴的距离为,到原点轴的距离为•3)点A(a-1,-4)与B(2,b+3)所在的直线与X轴平行,则a,b.所在的直线与Y轴平行,则a,b.•4)点A(-a,b)在第一、三象限的角平分线上,则a、b的关系是。在第二、四象限的角平分线上,则a、b的关系是点的平移练习•一:1)点P(-2,3)沿X轴的方向向右平移四个单位长度得到的点的坐标为。•2)点P(-2,3)沿X轴的方向向左平移四个单位长度得到的点的坐标为。•3)点P(-2,3)沿Y轴的方向向上平移四个单位长度得到的点的坐标为。•4)点P(-2,3)沿Y轴的方向向下平移四个单位长度得到的点的坐标为。•5)点P(-2,3)沿X轴的方向先向右平移四个单位长度再沿Y轴的方向向下平移三个单位长度得到的点的坐标为。•6)点P(-2,3)沿X轴的方向先向左平移二个单位长度再沿Y轴的方向向下平移三个单位长度得到的点的坐标为。•5)点P(-2,3)沿Y轴的方向先向上平移四个单位长度再沿X轴的方向向右平移三个单位长度得到的点的坐标为。•6)点P(-2,3)沿Y轴的方向先向下平移二个单位长度再•沿X轴的方向向左平移三个单位长度得到的点的坐标为。•二1)把点P(3,-2)沿X轴方向向平移个单位得到点A(5,-2)•2)把点P(3,-2)沿X轴方向向平移个单位得到点A(0,-2)•3)把点P(3,-2)沿Y轴方向向平移个单位得到点A(3,2)•4)把点P(3,-2)沿Y轴方向向平移个单位得到点A(3,1)点的坐标练习•1)点P(3,-4)沿X轴的方向向右平移四个单位长度得到的点的坐标为。•2)点P(-2,5)沿X轴的方向向左平移四个单位长度得到的点的坐标为。•3)点P(0,-3)沿Y轴的方向向上平移四个单位长度得到的点的坐标为。•4)点P(-1,-3)沿Y轴的方向向下平移四个单位长度得到的点的坐标为。•5)点P(4,-2)沿X轴的方向先向右平移四个单位长度再沿Y轴的方向向下平移三个单位长度得到的点的坐标为。•6)点P(-2,0)沿X轴的方向先向左平移二个单位长度再沿Y轴的方向向下平移三个单位长度得到的点的坐标为。•7)点P(-1,3)沿Y轴的方向先向上平移四个单位长度再沿X轴的方向向右平移三个单位长度得到的点的坐标为。•8)点P(-2,1.5)沿Y轴的方向先向下平移二个单位长度再沿X轴的方向向左平移三个单位长度得到的点的坐标为。•9)把点P(-2,-2)沿X轴方向向平移个单位得到点A(5,-2)•10)把点P(3,2)沿X轴方向向平移个单位得到点A(0,-2)•12)把点P(3,-2)沿Y轴方向向平移个单位得到点A(3,2)•13)把点P(-3,-4)沿Y轴方向向平移个单位得到点A(3,1)•14)点P(4,-2)与X轴对称的点的坐标为。与Y轴对称的点的坐标为。与原点轴对称的点的坐标为。•15)点A(-4,-1)到X轴的距离为,•到Y轴的距离为,到原点轴的距离为•16)点A(a,3)与B(-2,b)所在的直线与X轴平行,则a,b.所在的直线与Y轴平行,则a,b.•17)点A(a,b)在第一、三象限的角平分线上,则a、b的关系是。在第二、四象限的角平分线上,则a、b的关系是。•18)点P(-2,-3)与X轴对称的点的坐标为。与Y轴对称的点的坐标为。与原点轴对称的点的坐标为。•19)点A(5,-2)到X轴的距离为,•到Y轴的距离为,到原点轴的距离为•20)点A(a+1,-4)与B(2,b+3)所在的直线与X轴平行,则a,b.所在的直线与Y轴平行,则a,b.•21)点A(a,-b)在第一、三象限的角平分线上,则a、b的•关系是。在第二、四象限的角平分线上,则a、b的关系是•22)X轴上的坐标为0,Y轴上的坐标为0。•23)点P(a,b)若a=0,则点P在,若b=0则点P在。若ab=o,则点P在。

经典范文:5.4平移


[教学目标]

了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题

培养学生的空间观念,学会用运动的观点分析问题.

[教学重点与难点]

重点:平移的概念和作图方法.

难点:平移的作图.

[教学设计]观察图形形成印象

生活中有许多美丽的图案,他们都有着共同的特点,请

同学们欣赏下面图案.

观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?

学生思考讨论,借助举例说明.

二.提出新知实践探索

平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.

(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点.

(3)连接各组对应的线段平行且相等.

图形的这种变换,叫做平移变换,简称平移(translation)

探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案

三.典例剖析深化巩固

例如图,(1)平移三角形abc,使点a运动到a`,画出平移后的三角形a`b`c`.

[巩固练习]

教材33页:1,2,4,5,6,7

[小结]

在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上

利用平移的特征,作平行线,构造等量关系是接7题常用的方法.

[作业]

必做题:教科书33页习题:3题

[备选题]

经过平移,三角形abc的边ab移到了ef,作出平移后的三角形,你能给出几种作法?

如图,将半圆图形按箭头所指的方向平移,其中a点到了a`点,作出平移后的图形.

如图,在四边形abcd中,ad//bc,ab=cd,ad

平移后的三角形中,与b,e的对应点f,g,还是在bc边上吗?

∠b和∠c相等吗?说明理由。

本文网址:http://m.jk251.com/jiaoan/11371.html

相关文章
最新更新

热门标签