可能性知识点归纳 小学教案范例
时间:2022-02-22 生物选修一知识点归纳 初中数学知识点归纳第一课时摸球游戏
【知识点】:
1、通过“猜测—实践—验证”,让学生初步感受事情发生的确定性与不确定性,即一定发生或不可能发生的现象是确定的,而可能发生或可能不发生的现象是不确定的。
2、理解事件发生的可能性是有大有小的,可能性的大小与事件的基础条件及发展过程等许多因素有关。
3、在活动中培养学生的合作意识及合理推断的能力。
第二课时生活中的推理
【知识点】:
让学生在以解决问题中经历对生活现象的推理、判断的过程,同时领悟出现逻辑推理问题的解决方法,如排除法、假设法、图解法等,并加以运用。在解决问题中培养学生的逻辑推理能力与语言表达能力,体验学习的乐趣。
jk251.coM小编推荐
观察物体知识点归纳
第一课时
【知识点】:
1、举出生活中的简单物体让学生观察总结:同一个物体从不同的角度看会有不同的形状。
2、引入由正方体搭建的立体图形,给学生示范书中提供的搭建活动,边操作边讲解。
3、让学生分组进行操作,并给予指导,引导学生观察所搭建的立体图形。
4、总结:同一立体图形从不同角度观察会有不同的形状。
第二课时
【知识点】:
1.示范书中提供的第二个搭建活动。
2.让学生分组进行练习,在学习中学会如何描述物体的相对位置。
3.对学生搭建活动予以指导和肯定,让学生在搭建的过程中学会描述正方体的相对位置。
4.指导学生多做几次搭建练习,巩固所学的知识。
上册比较知识点归纳
【知识点】:
1、比较动物谁多谁少有两种策略:一是基于“数数”,二是进行“配对”,从而体验“一一对应”的数学思想。
2、通过比较具体数量多少的数学活动,获得对“>”、“<”、“=”等符号意义的理解,学会写法,并会用这些符号表示10以内的数的大小。
3、体验“同样多”、“多”、“少”、“最多”、“最少”的含义。
高矮(比高矮、比长短)
【知识点】:
1、长短、高矮、厚薄都属于物体长度的比较的问题,只是在实际生活中,人们习惯把水平放的物体的长度比较叫比长短,把垂直摆放的物体达到长度的比较叫比高矮。把扁平的物体上下距离的比较叫比厚薄。它们的比较方法是相通的。
2、认识高矮的区别,知道比较高矮、长短、厚薄时要在起点相同的情况下才能正确比较。
3、知道高矮比较的相对性
轻重(比轻重)
【知识点】:
1、经历比较轻重的过程,体验一些具体的比较方法及轻重的相对性。2.初步体会借助工具确定轻重的必要性和解决问题方法的多样性。3.间接比较轻重,渗透了等量对换的思想,对学生说具有一定的难度,不要求所有的学生都能独立完成。
乘法知识点归纳 优秀教案推荐
第一课:购物
【知识点】:
1、探索并掌握两、三位数乘一位数(不进位)的计算方法,并能正确的进行计算。
2、师引导学生在看懂图意的基础上,提取数学信息,提出问题,并能运用不同的方法解决问题。
3、让学生经历独立思考、合作交流的过程,探索两、三位数乘一位数(不进位)的计算方法。教师要有意识的引导学生列竖式计算乘法。
在计算中明确算理,学会竖式的书写。用乘数从个位起依次去乘另一个乘数的每一位,把得数写在对应的数位上。
第二课:去游乐场
【知识点】:
1、探索并掌握两、三位数乘一位数(进位)的计算方法,并能正确的进行计算。
结合具体情境,逐步培养提出问题,解决问题的意识和能力。
3、理解“满十进一”的算理,进而类推出“满几十进几”的算法,初步掌握进位法则:两(三)位数乘一位数,从个位乘起,哪一位乘积满几十,就向前一位进几。
培养学生对知识的类推能力和主动获取新知识的学习习惯。
第三课:乘火车
【知识点】:
1、探索并掌握两、三位数乘一位数(连续进位)的计算方法,并能正确的进行计算。
2、结合具体情境,逐步培养提出问题,解决问题的意识和能力。
3、在已有两位数乘一位数进位乘法的基础上,放手让学生自主探索连续进位乘法的计算方法,并能正确计算。
4、体验算法的多样化
第四课:0×5=?
【知识点】:
1、探索并掌握“0和任何数相乘都等于0”这个规律。
2、一个因数中间或末尾有0的乘法是本节课的教学重点。
3、借助“乘法的意义”“找规律”等方法探索并掌握“0和任何数相乘都等于0”这个规律。
4、因数末尾有0的乘法,当因数末尾有0时,计算时0可以先不参加运算,计算结束后因数末尾有几个0就在乘积后加几个0。
因数中间有0的乘法,可以通过对比进行教学,如:402×3=1206,
307×8=2456,同样是因数中间有0,为什么一个乘积中间有0,而另一个却没有。通过讨论402×3积中间是0的那位,因为没有进位,积当中就保留了0,而307×8,因为发生了进位,所以积当中的0就不见了。
结论:因数的末尾有0,乘积中一定有0。
因数的中间有0,乘积中不一定有0。
5、掌握因数末尾有0的乘法竖式的写法。
6、通过小组讨论,经历与他人交流各自算法的过程,使学生逐步学会合作学习。
第五课:买矿泉水
【知识点】:
1、学生已经掌握了两、三位数乘一位数的基础上,探索多样的估算和计算方法。
2、结合解决问题的过程,理解并掌握连乘的运算顺序,并能正确计算。
3、在学生已经掌握了两、三位数乘一位数的基础上,探索多样的估算和计算方法。
4、结合买矿泉水的具体情境进行估算,并解释估算过程,逐步培养估算意识和估算能力。鼓励学生运用多种方法进行估算。
5、在交流算法的过程中,对于学生汇报的多种计算方法都要予以肯定,但要着重引导用连乘的方法解决问题,并掌握连乘的运算顺序。
数数知识点归纳 教案精选篇
人口普查(亿以内数的读法、写法)
【知识点】:
亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管有几个零,只读一个零。
亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个也没有,就在那一位上写0。
比较数大小的方法。
多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。
国土面积(多位数的改写)
【知识点】:
改写以“万”或“亿”为单位的数的方法。
以“万”为单位,就要把末尾的四个0去掉,再添上万字;以“亿”为单位,就要把末尾八个0去掉,再添上亿字。
改写的意义。
为了读数、写数方便。
森林面积(求近似数)
【知识点】:
精确数与近似数的特点。
精确数一般都以“一”为单位,近似数都是省略尾数,以“万”或“亿”为单位。
用四舍五入法保留近似数的方法。
根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。
方向与位置知识点归纳 教案精选
确定位置(一)(用数对确定位置)
【知识点】
1、数对的表示方法:先表示横的方向,后表示纵的方向,即根据直角坐标系,确定某一点的坐标(x,y).
2、数对的写法:先横向观察,在第几位就在小括号里先写几,再点上逗号;然后再纵向观察,在第几位,就在小括号里面写上几。如小青的位置在第三组,第二个座位,用数对表示为(3,2)。
3、能根据数对说出相应的实际位置。如某个同学在(5,6)这个位置。他的实际位置是,班级中(从左往右数)第五组第六个座位。
新课标第一网
确定位置(二)(根据方向和距离确定位置)
【知识点】:
1、认识方向:东、南、西、北、东南、东北、西南、西北。
2、根据方向和距离确定物体位置的方法:(1)以某一点为观测中心,标出方向,上北、下南、左西、右东;将观测点与物体所在的位置连线;用量角器测量角度,最后得出结论在哪个方向上。(2)用直尺测量两点之间的图上距离。
补充【知识点】:认识并初步了解比例尺:如1:5000单位:千米就表示图上1厘米等于实际距离5000千米。
线的认识知识点归纳 优秀小学教案 教案精选
线的认识知识点:
1、认识直线、线段与射线,会用字母正确读出直线、线段和射线。
直线:可以向两端无限延伸;没有端点。读作:直线ab或直线ba。
线段:不能向两端无限延伸;有两个端点。读作:线段ab或线段ba。
射线:可以向一端无限延伸;有一个端点。读作:射线ab(只有一种读法,从端点读起。)
补充知识点:
1、画直线。
过一点可画无数条直线;过两个能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。
2、明确两点之间的距离,线段比曲线、折线要短。
3、直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。
旋转与角知识点:
1、角的概念。由一点引出两条射线所组成的图形叫做角。角是由一个顶点和两条边组成的。
2、认识平角、周角。
平角:角的两边在同一直线上,(像一条直线),平角等于180°,等于两个直角。
周角:角的两边重合,(像一条射线),周角等于360°,等于两个平角,四个直角。
3、角的分类:小于90度的角叫做锐角;等于90度的角叫做直角;大于90度小于180度的角叫做钝角;等于180度的角叫做平角;大于180度小于270度叫做优角(此为补充内容);等于360度的角叫做周角。
4、动手画平角、周角。
角的度量知识点:
1、认识度。将圆平均分成360份,把其中的1份所对的角叫做1度,记作1°,通常用1°作为度量角的单位。
2、认识量角器。量角器是把半圆平均分成180份,一份表示1度。量角器上有中心点、0刻度线、内刻度线、外刻度线。
3、量角器的使用方法。“两合一看”,“两合”是指中心点与角的顶点重合;0刻度线与角的一边重合。“一看”就是要看角的另一边所对的量角器的刻度。
4、看角的度数时要注意是看外刻度还是内刻度。交的开口向左看外刻度线,角的开口向右看内刻度线。
画角知识点:
1、用量角器画指定度数的角的方法。
画一条射线,中心点对准射线的端点,0刻度线对准射线(两合),对准量角器相应的刻度点一个点(一看),把点和射线端点连接,然后标出角的度数。
2、30度、60度、90度、45度、75度、105度、135度、120度和150度用三角板比较方便。另外15度和165度也可以用三角板画出。
(注意:这11个能用三角板画出的角度都是15的倍数。)
补充知识点:因为角是由两条射线和一个顶点组成的,所以在画角连线时,不能两点相连,而要冲过一点或不连到那一点。
上册位置与顺序知识点归纳
【知识点】:
1、注意用前、后等词语描述物体的顺序与描述物体的准确位置两者之间的区别。
2、鹿在最前面,谁在它的后面?这个答案不唯一,不仅仅有一个松鼠,还有兔子、乌龟和蜗牛都在鹿的后面。
3、注意让学生会用前、后等词语描述物体的相对位置。
上下(上下的位置关系)
【知识点】:
1、在具体的情境中理解“上下”的相对性。
2、能用语言表达实际情境中物体的“上下”位置关系。
左右(左右的位置关系)
【知识点】:
1、能用语言描述物体的左右位置关系。
2、能在情境中体会左右位置的相对性。进一步再体会:两人如果面向同一方向,他们所看到的左右位置与顺序是一致的;如果面对着面,他们看到的左右位置与顺序是相反的。
教室(前后、上下、左右综合应用)
【知识点】:
综合运用前面三课所学的知识,进行物品的位置与顺序的描述活动
生活中的负数知识点归纳
温度
【知识点】:
1、零下温度的表示方法,在温度前面写上“—”号,如“—2℃”“—12℃”通常读作零下2摄氏度、零下12摄氏度。
2、能够正确地比较两个零下的温度的高低:0℃和零上的温度高于零下的温度;零下温度的数字越大表示温度越低。
正负数
【知识点】:
1、正数:比0大的数字都是正数,有的时候我们在正数前面添上“+”号,如+5、+20等等,读作:正5、正20。
2、负数:比0小的数字都是负数,我们在负数前面提案上“—”号,如—2、—10等等,读作:负2、负10。
3、明确0既不是正数也不是负数。
能用正数、负数表示实际问题,要确定以什么作为标准(即以什么作0点)
上册乘法知识点归纳优秀模板
卫星运行(三位数乘两位数)
【知识点】:
估算方法。用四舍五入法进行估算。
利用竖式计算三位数乘两位数。注意,第二个因数的十位要乘三遍,第二步的乘积末尾写在十位上。
补充【知识点】
时、分、日之间的单位互化。
1时=60分1日=24时
因数中间或末尾有0的三位数乘两位数。
中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。
体育场(实际生活中的估算)
【知识点】:
估算的方法及注意事项:要将因数估成整十、整百或整千的数。估算时注意,要符合实际,接近精确值。
神奇的计算工具
【知识点】:
在学生原有基础上进一步认识并会使用计算器。
利用“m+”存储键,“mr”提取键,计算四则运算的题目。
了解计算机中使用的是二进制计数法,就是满2进1。
补充【知识点】:了解两个因数越接近(即差越小),积越大,两个因数相等时,积是最大的;两个因数的差越大,积越小。
探索与发现(一)(有趣的算式)
【知识点】:
第一组算式:积的位数是两个因数位数之和-1,积的最高位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)
第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)
第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。
第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的最大的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个最大的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。
探索与发现(二)(乘法结合律)
【知识点】:
乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。用字母表示是:(a×b)×c=a×(b×c).
使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。乘法结合律可以改变乘法运算中的顺序。数字如;25和4、50和2、125和8、50和4、500和2等。
探索与发现(三)(乘法分配律)
【知识点】:
乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c
补充【知识点】:
式子的特点:式子的原算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)基本上是能凑成整十、整百、整千的数。
102×88、99×15这类题的特点:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成整十、整百、整千与一个数的和(或差),再应用乘法分配律可以使运算简便。
