每位老师不可或缺的课件是教案课件,因此教案课件可能就需要每天都去写。教案编写是促进教育教学教学质量提升的重要手段,好的教案课件需要注意哪些方面呢?希望这份“初中数学教学课件教案”能够为您带来惊喜和满意,收藏此文方便将来的参考!
本节课是在学习了角平分线的概念和全等三角形的基础上进行的,是全等三角形知识的运用和延续.用尺规作一个角的平分线,其作法原理是三角形全等的“边边边”判定方法和全等三角形的性质;角的平分线的性质证明,运用了三角形全等的“角角边”判定方法和全等三角形的性质.角的平分线的性质证明提供了使用角的平分线的一种重要模式──利用角平分线构造两个全等的直角三角形,进而证明相关元素相应相等.
角的平分线的性质反映了角的平分线的基本特征,也是证明两条线段相等的常用方法.数学问题中涉及角的平分线时,就相当于已知一对线段(角的平分线上的点到角的两边的垂线段)相等.角的平分线的性质的研究过程为以后学习线段垂直平分线的性质提供了思路和方法. 因此它既是对前面所学知识的应用,又是为后续学习作铺垫,具有举足轻重的作用.因此本节课在教材中占有非常重要的地位.
1.会用尺规作一个角的平分线,知道作法的合理性.
2.探索并证明角的平分线的性质.
3.能用角的平分线的性质解决简单问题.
达成目标1的标志是:学生明确尺规作图的基本要求,知道用尺规作角的平分线的方法与原理,能在教师的引导下用尺规作出一个已知角的平分线.
达成目标2的标志是:学生能在教师的引导下通过观察、测量等方法,发现角的平分线的性质,能准确表述性质的内容,能正确地写出已知、求证,能运用三角形全等的“AAS”判定方法和全等三角形的性质证明角的平分线的性质.
达成目标3的标志是:学生能利用角的平分线的性质构造全等三角形,证明与线段相等有关的简单问题.
本节课的学习中,学生在分清角的平分线的性质的条件和结论,并进行严格的逻辑证明的过程中常常感到困难.例如,在用符号语言表述性质的条件和结论时,不知“距离”应为“条件”还是“结论”.其主要原因是角的平分线的性质是以文字命题的形式给出的,其条件和结论具有一定的隐蔽性.教学时,教师要引导学生分析性质中的条件和结论(必要时可让学生将性质改写成“如果……那么……”的形式),找出结论中的隐含条件(垂直),正确写出已知和求证,并归纳出证明几何命题的一般步骤.
基于以上分析,本节课的教学难点是:证明以文字命题形式给出的角的平分线的性质.
如图是小明制作的风筝,AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?
师生活动:学生根据三角形全等的知识口述其中的道理,从而引入新课.
一、教学内容分析:
本节课是在刚学习完三角形全等的判定,利用平分角的仪器情境引入。内容包括角平分线的作法、角平分线的性质、用数学语言表述角平分线及初步应用,本节内容在数学知识体系中起到了承上启下的作用。
二、学生情况分析:
在学生能利用定义、SSS、SAS、ASA、AAS、HL判定两个三角形全等前提下,根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器)能直观认识。学生自己动手实践,观察,组织讨论等方法,多媒体引导,以学生为主,给学生提供足够的活动时间,充分发挥他们的个性,让学生在实践中感受知识的力量,在探索中创新。
1、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理。
2、会用尺规作角平分线的作法。
1、掌握角的平分线的性质定理。
3、角平分线定理的应用。
不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法? 学生讨论、动手。(对折)
师:再打开纸片,看看折痕与这个角有何关系? 探究活动2:
如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢? 已知:一个角平分仪,其中AB=AD,BC=DC。将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗? 证明:在△ACD和△ACB中
∴AC平分∠DAB(角平分线的定义) 探究活动3:
根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器)
(1)实验:将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
(3)已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于点E 求证: PD=PE 证明:
∴PD=PE(全等三角形的对应边相等) (4)得到角平分线的性质:
角平分线上的点到角两边的距离相等。 ∵ ∠1= ∠2,
PD ⊥ OA, PE ⊥ OB(已知) ∴PD=PE(全等三角形的对应边相等) 活动5:
1、△ABC的角平分线BE、CF相交于一点O,求证:点O到三边AB、BC、CA的距离相等.
2、在Rt△ABC中,BD平分∠ABC, DE⊥AB于E,则 ⑴图中相等的线段有哪些?相等的角呢? ⑵哪条线段与DE相等?为什么?
⑶若AB=10,BC=8,AC=6,求BE,AE的长和△AED的周长。
3、如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,CF=EB;求证:BD=DF
4、已知:如图, AD平分∠BAC , BE⊥AC于E, CF⊥AB于F,BE、CF相B 交于D.
2、知识小结:
本节课学习了那些知识?有哪些运用?你学了吗?做了吗?用了吗? 用尺规作角的平分线. 定理 角平分线上的点到这个角的两边距离相等. ∵OC是∠AOB的平分线, P是OC上任意一点PD⊥OA,PE⊥OB,垂足分别是D,E(已知) ∴PD=PE(角平分线上的点到这个角的两边距离相等).
一、教材内容及设置依据
?教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。
?设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。
二、教材的地位和作用
本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,
特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了
类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。
三、对重点、难点的处理
?对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:
1、知识巩固型
2、实际应用型
3、方法多变型
4、知识拓展型等。
?对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)
四、关于教学方法的选用
根据本节课的内容和学生的实际水平,本节课可采用的方法:
1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。
2、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。
3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。
五、关于学法的指导
“授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。
六、课时安排:1课时
教学程序:
一、复习铺垫:
首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。
1、45+(-23)2、9-(-5)
3、-28-(-37)4、(-13)+0
5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)
从四排学生中个推选一名学生代表板演6、7、8、题。
通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。
然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。
二、新知探索:
1、出示引例1:一架飞机作特技表演,起飞后的高度变化如下表:高度变化记作
上升4.5千米+4.5千米
下降3.2千米-3.2千米
上升1.1千米+1.1千米
下降1.4千米-1.4千米
此时飞机比起飞点高了多少米?
让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:
①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4
=1.3+1.1+(-1.4)=1.3+1.1-1.4
=2.4+(-1.4)=2.4-1.4
=1千米=1千米
教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。
1、《数学课程标准》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探求和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”
2、课堂教学目标明确,做到了教师心中有标,教学过程靠标,课堂结束达标。
3、教学的指导思想端正,教师始终处在指导的地位,学生始终处在主体地位,在老师的指导下,学生自主学习。
4、教法独特。根据学生已有的知识(初步认识圆),根据小学生的思维特点(具体形象——表象——抽象)和认知规律,采取动手操作的方法,在老师的指导下让学生自己操作(折、量、画、观察、讨论)自己发现,自己总结。在探索中分别认识圆心、半径、直径,再让学生分析比较,总结出直径与半径的关系,从而完成对圆的整体认识。
5、在探求知识的过程中,重点放在培养学生的能力上。例如:在认识圆心时老师提出了“对折若干次后,你们发现了什么?”(学生发现了⑴折痕一样长,⑵交点在圆的中心,⑶每条折痕一样长,⑷交点把折痕分成相等的两部分。)学生的发现,无疑是一种创新。老师提出的这个开放性问题,有效地培养了学生的创新意识。例如:在认识半径时,让学生观察数据组,通过观察、比较、概括出同圆的半径相等的结论。培养了学生的概括能力。例如:老师让学生回答直径与半径的关系时,注重引导学生推理出来,培养学生的推理能力。
6、课堂教学结构严密,层次分明,并注意了课堂延伸,解决课内的余留问题。
7、基础知识落实的很好,重难点知识通过学生自己动手操作,自己发现,自己分析总结得到很好的落实和巩固。
教学反思:本节课的教学力求遵循知识的发展规律和学生的认知规律,较好地贯彻了“教师为主导,学生为主体,思维为核心,培养学生能力,发展学生智力”的教学理念,充分调动学生思维的积极性。教学中由于让学生自己动手操作,自己发现。自己分析总结,参与知识的形成过程和发展过程,促进了思维的发展和能力的形成。
角平分线的性质一节内容原本只是关于角平分线上的点到角的两边的距离相等这个定理。但在人教版教材中则是先通过一个平分角的简单学具进行引入,再来学习角平分线的画法的尺规作图,而后是角平分线性质的内容。教材内容给人一种拼凑、零散的感觉。
在授完《角平分线的性质(1)》内容后,在回顾本节课的教学环节上,我深刻查觉到自己的不足,故作此反思。
1、在授课开始,没有把平分角的学具的建模思想充分传达给学生,只是利用它起到了一个引课的作用。并且没有在尺规作图后将平分角的`学具与角平分线的画法的关系两相对照。
2、在授课过程中,我对学生的能力有些低估,表现在整个教学过程中始终大包大揽,没有放手让学生自主合作,在教学中总是以我在讲为主,没有培养学生的能力。
3、对课堂所用时间把握不够准确,由于在开始的尺规作图中浪费了一部分时间,当然这一环节时间的浪费与我讲授尺规作图的方式不够合理是分不开的,以至于在后面所准备的习题练习时间比较紧迫,感觉这节课不够完整。再就是课堂上安排的内容过多,也是导致前面所提问题的原因。这也使我注意到在授课内容的安排上不应死板教条,而应根据内容和学生情况进行更合理的配置。
通过这节课的反思我深刻的意识到:自己在利用学案教学的教学模式的教学中还有太多的不足,以后要在实际教学中多注意和多反思,更好地培养学生的合作精神与个人能力。
教师要加强生活化内容的引入提升课堂的生活化特色
数学知识原本就是生活知识的积累,是一种科学化、理论化的知识体系,而对于数学知识的学习目的,其实也是为了更好的指导实践,提升生活质量、提高办事效率,从某种意义上来讲,生活与数学是不可分割的,是一个有机的统一体。所以在教学的过程中,笔者就特别重视数学知识的生活化,同时也会加强课堂教学中生活素材的引入,让学生对于数学知识的学习变成对于生活问题的解决,让他们有目的、有兴致的进行数学知识的学习。比如学校组织300名同学外出旅游,大客车能装32人,每辆车要200元,小客车能装22人,每辆车要180元,问该选多少辆大客车、多少辆小客车最省钱?通过这样的问题就能够使学生将所学习的知识与实际生活联系起来,提升数学知识的生活特征,让数学变得更加“平易近人”。
又比如很多学生想知道学校旗杆的高度,但是又没法测量,在学习相似三角形的时候,笔者就给大家说满足大家的这个愿望,我们来测量下旗杆的高度。很多学生都以为要用皮尺或者要将旗杆放倒,但是在实际操作的过程中,我只带了一把直尺、一根木棍,很多同学都感觉诧异,最终我通过相似三角形的性质以及测量的旗杆影子长度、木棍的影子长度以及木棍的长度,很快便算出了旗杆的高度,这一举措很大程度上激发了学生学习数学的积极性。此后也有不少同学用同样的方法来测量教学楼的高度,测量学校大树的高度,甚至还有同学计划去测量山的高度!通过生活化的素材引入,在激发学生的学习兴趣的同时,也很好的实现了数学知识的具体化、形象化,也便于学生的理解、掌握,同时也对于学生解决生活问题、丰富课外生活提供了很好的帮助,可以说是一举多得。
教师要重视学生的主体地位,提升学生的学习自主性
俗话说“师傅引进门,修行靠个人”,这句话在当前新课改的形势下得到了很好的诠释:新课改确定了学生在课堂上的主体地位,更加注重学生的学习体验以及学习自主性,教师作为课堂的引导者,体现的是教师的引导作用。这就很大程度上的纠正了传统教学中教师单纯的“教”与学生被动的“学”这个误区,使学生真正的成为了课堂学习的主人,促进他们主动学习、主动探究。另外在教学的过程中我们应该认识到,初中时期的学生其学习目的往往不够成熟,很多人对于学习往往没有足够的认识,这就需要教师在教学中不能放手让学生“自由发展”,同时也要加强教师的引导教育。
因为学生的主体地位,更多的是为了让学生参与课堂,让学生自己感知知识的形成过程,让学生体会到学习的兴趣,进而自觉的去学习,创造性的去学习。比如在进行“随机事件与概率”教学时,教师提出问题:随机抛掷一枚硬币,尽管事先不能确定“正面朝上”还是“反面朝上”,但大家很容易猜到这两个随机事件发生的可能性是一样的,各占一半。那么,大家的这种直觉是否正确呢?然后,教师布置试验任务,引导学生动手实践,合作探究在各组测得的数据后,填写教材上的表格,教师将各组数据记录在黑板上,全班学生对数据进行统计,全班进行总结交流。通过这样的方法,就能够让学生在学习的过程中参与进来,同时通过自身的实践、统计来进行数据的汇总,在全班同学交流、学习的同时真正的实现对于知识点的掌握与了解,这就能够很好的实现教学的目的,同时也能够激发学生的学习兴趣,使他们感受到数学课堂的多姿多彩,进而提升对于数学科目的学习积极性,实现数学教学的有效进行。
学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,每个人都要计划自己的教案课件了。不过在写时,需要充分展现教学过程的每个知识点。你不是否正为教案课件而苦恼呢?小编陆续为大家整理了[荐]数学教学教案精选3篇,感谢您的参阅。
教学目标:
1、使学生借助具体内容,初步体会集合的数学思想方法。
2、运用集合的思想方法解决一些简单的数学问题或实际问题。
3、使学生在学习活动中获得成功的体验,提高学生学习数学的兴趣。
教学重、难点:
1、初步体会集合的思想方法。
2、运用集合图来表示事物。
教具准备:展示题
教学过程:
一、激趣引入
师:同学们喜欢参加什么课外兴趣小组?
1、师根据学生回答逐步引导出学生对自己的兴趣既喜欢又喜欢或者只喜欢
师:刚才和同学们聊了你们喜欢的兴趣小组,今天我们在数学广角中继续研究这方面的问题。(板书:数学广角)
二、互动探究
1、出示例题
三(数学课外小组的学生名单
语文杨明李芳刘红陈东王爱华张伟丁旭赵军
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东
师:同学们从例题当中得到了那些信息?
师:参加语文和数学兴趣小组的一共有多少人?
1、教师根据学生的回答相机板书人数。
14人……
师:这么简单的一个问题为什么会出现好几个答案?
师:我们一起来演示了看看你能发现什么。
2、教师请学生把名字条放到相应的小组里。出现了多余的三个,怎么办?用什么好办法能解决这个问题?请学生讨论思考并动手试一试。
语文小组数学小组
杨明、李芳、刘红
3、师生一起互动解决问题后,把得到的信息板书在黑板上。
4、介绍韦恩图。
5、教师手指韦恩图每个部分让生说出这个部分表示的意思并相机板书。
喜欢语文
喜欢数学
只喜欢语文
只喜欢数学
既喜欢语文又喜欢数学
6、根据这些板书信息尝试列式。
7、学生汇报列式教师相机板书。
5+3+6=14(人)
……
8、同学们现在知道参加两个兴趣小组的共多少人了吗?
9、学生选择自己喜欢的计算方法相互说算理。
回看学生最初汇报的语文和数学兴趣小组的人数并评价。
对比韦恩图和统计表请学生评价。
三(数学课外小组的学生名单
语文杨明李芳刘红陈东王爱华张伟丁旭赵军
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东
语文小组数学小组
教师小结:原来的统计表只能看出喜欢语文和喜欢数学的同学
而韦恩图不仅能看出喜欢语文和喜欢数学的同学还能看出只喜欢语文和只喜欢数学以及既喜欢语文又喜欢数学的同学。
师:我们打开108页,刚才咱们学习的就是108页的内容,请同学们再看一遍还有什么不懂的吗?
三、运用知识解决问题
1、完成书上110页练习二十四第一题和第二题。
四、总结
师:今天上了这节课你有什么收获?
五、课外延伸
师:听说过学以致用这个词语吗?就是说学了知识要把它运用到解决周围的问题当中,今天朱老师就给大家一个学以致用的机会。
作业:运用韦恩图的知识调查本班同学喜欢的两个体育运动项目交给老师以备运动会的时候用。
板书设计:
数学广角
幻灯片
教学过程设计
教学内容
师生活动
备注
一、 引入新课
二、教学新课
三、巩固联系
四、作业
1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)
引入新课
2、出示两道文字题
(!)3千米是5千米的几分之几?
(2)8吨是4吨的几倍?
学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。
1、学生用十分钟自习书本52到53页
2、问:通过自习你知道了哪些知识?还有哪些疑问?
3、小组内互相说,解决问题。
4、教师请个别同学说,然后师生一起探讨、研究。
5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。
6、说明相关注意点。如:单位、比值、名称、写法、读法......
1、书本53页练一练
2、练习十二1、2
练习十二3、4、5
1、在白板上出示:6∶8、12∶16和3:4,要求学生分别求出比值。
提问:这三个比相等吗?为什么?学生:这三个比相等,因为它们的比值都是(0.75).
教师用等号连结三个比(6∶8=12∶16=3∶4),提问:在这个式子中的三个比,同学们看到什么变了?什么没有变?
2、教师引导学生观察后指出:为什么这几个比的前项、后项都变了,而它们的比值却不变呢?前项和后项的变化有没有规律呢?下面我们一起来探讨这个问题.
引导学生对等式(6∶8=12∶16=3∶4)进行分析,寻找规律.
先引导学生根据商不变性质进行观察,
[1][2][3]下一页
(1)6∶8怎么变成等于12∶16?教师用白板课件展示变化过程。
提问:请认真观察这些式子,谁能用一句话把其中的规律表达出来?
引导学生得出:比的前项和后项都乘相同的数,比值不变.
再引导学生认真观察.6∶8怎么会变成等于3∶4呢?课件展示变化过程,请学生说理由。
(2)问:谁能用一句话把其中的规律表达出来?
引导学生初步归纳出:比的前项和后项都除以相同的数,比值不变.
然后提问:比的前项和后项都乘或者除以相同的数,这里说的是不是什么数都行?乘0或者除以0可以吗?为什么?
组织学生讨论,使他们明确:因为除以0本身没有意义,乘0使比的.后项没有意义.
最后让学生完整地归纳总结出比的基本性质,教师用课件出示。
(设计意图:因为有“分数的基本性质”作基础,所以学生的猜测较容易,这里完全放手,让学生大胆去猜,但并非单纯的模仿,得自己举例验证猜测的正确性。使学生养成严谨的思考问题的方式,任何猜想在没有得到证实的情况下,它的可行性都是不确定的,从而影响到今后的生活方式这里安排小组活动非常有必要,留有足够的时间让学生充分猜想、举出充分的例子来说明他们猜想的正确性,然后小组交流、汇报验证方法,再用课件展示。使学生在汇报、质疑的过程中理解并掌握比的基本性质。)
3、指导学生看书,齐读性质后,问:在比的基本性质中,你认为哪些字词是关键字词?(要求学生说出“同时”、“相同的数”、“零除外”,教师用红笔圈上.)
教师范文大全的编辑已经为您准备好了“初中数学教学课件教案”的相关资料敬请查收,欢迎您参阅读本网页。教学过程中教案课件是基本部分,又到了写教案课件的时候了。 课堂上的学生反应是衡量教学成果的重要指标。
问:函数概念是中学数学中最重要的概念之一,函数定义的形成经历了较长的演变过程,您可以谈谈函数定义的发展历史吗?
▲史教授:是的,函数定义的形成确实经历了较长的时间。即使在今天,在我们数学教科书中,函数的定义在初中、高中、大学还是有所不同的,这也从一个侧面反映了函数定义的发展历史。
最初,是德国数学家莱布尼茨(Leibniz)在他的一部手稿中,用到了Function一词。是用来表示任何一个随着曲线上的点变动而变动的量,例如,切线、法线、次切线等的长度和纵坐标等,那是在17世纪(1673年)。
到了18世纪(17),贝努利(Bernoulli)给出了函数的解析定义:是由变量x和常数组成的式子。
欧拉(Euler)首先给出了函数的变量定义(1755年):“如果某变量以如下方式依赖于另一些变量,即当后者变化时,前者本身也发生变化,则称前一个变量是后一些变量的函数。”可以看到,我国初中数学教科书中关于函数的定义就采用了这一说法。
后来,黎曼(Riemann)给出了函数的对应定义(1851年):“我们假定Z是一个变量,如果对它的每一个值,都有未知量W的一个值与之对应,则称W是Z的函数。”这可以被看作我国高中数学教科书中关于函数定义的雏形。
到了上个世纪(1939年),布尔巴基学派认为,函数的定义应当强调关系,于是借用了笛卡儿积:若X、Y是两个集合,二者的笛卡儿积是指集合{(x,y|x∈X,y∈Y)},笛卡儿积中的子集F被称为x与y之间的一种关系。如果关系F满足:对于每一个x∈X,都存在唯一的一个Y,使得(x,y)∈F,则称F是一个函数。在美国中学的一些教科书中就采用了这种定义, 我国的一些大学数学教科书也有采用这种定义的。
有时,分别称上述三种定义为变量说、对应说和关系说。
问:既然函数的定义可以是多样的,那么函数定义的核心思想是什么呢?
▲史教授:我认为,在整个基础教育阶段数学的核心是研究关系,具体来说研究三种关系,即数量关系、图形关系和随机关系,我在一篇文章中曾经谈到这一点。 函数研究的是两个变量之间的数量关系:一个变量的取值发生了变化,另一个变量的取值也发生变化,这就是函数表达的数量之间的对应关系。其中有三点是重要的:一是变量的取值是实数;二是因变量的取值是唯一的;三是必须借助数字以外的符号来表示函数。我想,这些就是函数定义的核心思想。关于符号表达,无论是借助解析式,还是利用图像或者列表都是可以的。
问:函数是中学数学的重要内容,您能否谈一下在中学学习函数的重要性?
▲史教授:在中学阶段的数学教学要突出函数的内容,这是数学家们长期实践后得出的结论。克莱因(F.Klein)在为中学数学教学起草的《米兰大纲》(19)中明确提出:“应将养成函数思想和空间观察能力作为数学教学的基础。”在他的名著《高观点下的初等数学》中,他进一步强调用近代数学的观点来改造传统的中学数学内容,主张加强函数和微积分的教学,改革和充实代数的内容。 (19—21)
刚才已经谈到,要表达函数必须借助数字以外的符号。利用符号表达是具有一般性的,因此函数表达是数字表达的抽象和深化。同时,利用符号进行运算和推理所得到的结论也是具有一般性的,正因为这一点,使得人们能够借助函数构建模型,能够更好地刻画现实世界中的数量关系,并且通过数量关系的研究来解释现实世界。这不仅仅体现在自然科学、体现在工程技术上,也逐渐广泛地体现在人文社会科学上:世界万物之间的联系与变化都有可能以各种不同的函数作为它们的数学模型。这些,又促使数学家们深入地研究各种函数的性质、运算以及与空间形式的关联,使得数学经历了从常量到变量、从有限到无限、从低维到高维的发展,一批新的数学分支应运而生。因此,无论是从数学的应用还是从数学本身的发展上,函数的重要性怎么说都不过分。
问:函数、方程、不等式都是中学代数的重要数学内容,您能否谈一谈它们之间的联系和区别?
▲史教授:函数、方程、不等式是从不同角度刻画变量之间的数量关系,它们之间是有关联的,但又有本质的区别。比如,令f(x)=x2-3x-4,这是一个函数。表面上看,f(x)=0与方程x2=3x+4是等价的,但是二者所表达的意义是不同的:前者表示函数取0值,而后者表示变量之间的等量关系。同样,f(x)>0与不等式x2>3x+4所表达的意义也是不同的。在解决具体问题时应当注意它们之间的关联,比如,在求不等式的解的过程中,可以先求出等式的解,借助等式的解画出函数的图像,然后通过函数的图像写出不等式的解。
教学目标
(一)教学知识点
1.利用方程解决实际问题.
2.训练用配方法解题的技能.
(二)能力训练要求
1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.
2.能根据具体问题的实际意义检验结果的合理性.
3.进一步训练利用配方法解题的技能.
通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.
教学重点
利用方程解决实际问题
教学难点
对于开放性问题的解决,即如何设计方案
教学方法
分组讨论法
教具准备
投影片二张
第一张:练习(记作投影片2.2.3A)
第二张:实际问题(记作投影片2.2.3B)
教学过程
Ⅰ.巧设情景问题,引入新课
[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片2.2.3A)
用配方法解下列一元二次方程:
(1)x2+6x+8=0;
(2)x2-8x+15=0;
(3)x2-3x-7=0;
(4)3x2-8x+4=0;
(5)6x2-11x-10=0;
(6)2x2+21x-11=0.
[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、
(4)、(6).
[师]各组做完了没有?
[生齐声]做完了.
[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.
[生甲]我改的是__同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即
x-3x=7,
x2-3x+32=7+32应为(-23
2)2.
[师]很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?
[生乙]方程(3)的解为x1=
[师]好,继续.3?237,x2?3?237.
[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.__同学解的对,其解为x1=52,x2=-32.
[生丁]__同学做的是方程(2)、(4)、(6).他解的完全正确,即
方程(2)的解:x1=5,x2=3,
方程(4)的解:x1=2,x2=
方程(6)的解:xl=32,12,x2=-11.
[师]利用配方法求解方程时,一定要注意:
①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.
②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.
另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.
这节课我们就来解决一个实际问题.
Ⅱ.讲授新课
[师]看大屏幕.(出示投影片2.2.3B)在一块长16m,宽12m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?
[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.
[生甲]我们组
的设计方案如右图
所示,其中花园四
周是小路,它们的
宽度都相等.
这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2m或12m.
[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.
[生乙]甲组的设计符合要求.
我们可以假设小路的宽度为xm,则根据题意,可得方程(16-2x)(12-2x)=1
2×16×12,
也就是x2-14x-24=0.
然后利用配方法来求解这个方程,即
x-14x=-24,
x2-14x+72=-24+72,
(x-7)=25,
x-7=±5,
即x-7=5,x-7=-5.
∴x1=12.x2=2.
因此,小路的宽度为2m或12m.
由以上所述知:甲组的设计方案符合要求.
[生丙]不对,因为荒地的宽度是12m,所以小路的宽度绝对不能为12m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2m.
[师]大家来作判断,谁说的合乎实际?
[生齐声]丙同学说得有理.
[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.
[生丁]我们组
的设计方案如右图.
我们是以矩形
的四个顶点为圆心,以约5.5m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.
因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为xm,根据题意,可得
πx2=22
1
2×12×16.
解得x=±96
?≈±5.5.
因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.
[生戊]由丁同
学组的启发,我又
设计了一个方案,
如右图.
以矩形的对角
线的交点为圆心,以5.5m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.
[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.
[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?
[生庚]我们组
设计的方案如右图.
顺次连结矩形
各边的中点,所
得到的四边形即
是作为花园的场
地.
因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24m2(即1
2×6×8),所以四
个直角三角形的面积之和为96m2,则剩下的面积也正好是96m2,即等于矩形面积的一半.因此这个设计方案也符合要求.
[生辛]我们组设计的方案如下图.
图中的阴影部分可作为建花园的场所.
因为阴影部分的面积为96m,正好是矩形面积的一半,所以这个设计也符合要求.
[生丑]我们组
设计的方案如右图.
图中的阴影部
分可作为建花园的
场地.
经计算,它符合要求.
[生癸]我们组的设计方案如下图.
2
图中的阴影部分是作为建花园的场地.
[师]噢,同学们能帮癸组求出图中的x吗?
[生]能,根据题意,可得方程
2×1
2(16-x)(12-x)
=1
2
2×16×12,即x-28x+96=0,
x2-28x=-96,
x2-28x+142=-96+142,
(x-14)2=100,
x-14=±10.
∴x1=24,x2=4.
因为矩形的长为16m,所以x1=24不符合题意.因此图中的x只能为4m.
[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案.
接下来,我们再来看一个设计方案.
Ⅲ.课堂练习
(一)课本P55随堂练习1
1.小颖的设计方案如图所示,你能帮助她求出图中的x吗?
解:根据题意,得(16-x)(12-x)=
212×16×12,即x-28x+96=0.
解这个方程,得
x1=4,x2=24(舍去).
所以x=4.
(二)看课本P53~P54,然后小结.
Ⅳ.课时小结
本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.另外,还应注意用配方法解题的技能.
Ⅴ.课后作业
(一)课本P55习题2.51、2
(二)1.预习内容:P56~P57
2.预习提纲
如何推导一元二次方程的求根公式.
1、让学生了解鄂伦春族的服饰特点、生活习性等简单知识。培养学生热爱少数民族的感情。
难点:
2、用打击乐器敲打节奏并尝试三个声部的敲击并能为歌曲伴奏。
教师头戴小鹿头饰:小朋友们,大家好!我是森林里的小鹿,今天,我想邀请大家到森林里去郊游。(课件:出示森林图片,背景音乐《小鹿,小鹿》。)
师:森林里有许多可爱的小动物,我们来看看都有谁呀!
师:我还给大家带来一首好听的儿歌,请小朋友们轻轻拍手为我伴奏好吗?
师:小朋友快瞧,那里有一群我的小伙伴唱着歌向我们跑过来了。
师:现在我们来到了森林游乐园,大家看,这只看门的小鹿好象有话要对我们说。
学生戴上各种小动物的头饰。
(课件:小鹿说:“大家先别着急,我还有要求呢,你们要把歌里唱的小鹿是怎么做的跟自己平时玩的游戏结合起来,教给游乐园里的小动物,怎么样,能做到吗?)
师:(放音乐示意大家归位),小朋友们都准备的很认真,现在我和我的小伙伴们请大家来表演,好吗?希望每个小组上来表演的时候,先由小组长告诉大家你们跟什么小动物玩的什么游戏,下面的小朋友要认真地看,轻轻拍手为他们伴奏,好吗?
学生依次展示两到三组,每组展示完可由教师和学生进行评价。
师:小朋友们玩的游戏可真精彩,我也想把自己编的游戏跟大家一起玩,谁愿意上来?(挑选10人左右上台)。下面的小朋友,请你拍手为我们伴奏,学会了这个游戏,下课后可以跟你的小伙伴一起玩呢!
(课件:小鹿说:“小朋友们,时间过得真快,我们的郊游要结束了,可我看到咱们玩过的地方有许多小朋友留下的垃圾,如果每个人都这样不爱护环境,我的家会变成什么样子呀!”)
师:那让我们一起行动起来,还小动物们一个美丽的家吧!
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2、学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3、学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的`准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4、教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展……
电脑显示,带领学生复习全等三角定义及其性质。
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等。但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
按照三角形“边、角” 元素进行分类,师生共同归纳得出:
按以上分类顺序动脑、动手操作,验证。
教师收集学生的作品,加以比较,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
下面将研究三个条件下三角形全等的判定。
(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。
学生得出结论后,再举例体会一下。举例说明:
如老师上课用的三角尺与同学用的三角板三个角分别对应 相等,但一个大一个小,很显然不全等;
再如同是:等边三角形,边长不等,两个三角形也不全等。等等。
(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。
板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。
实物演示:
由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。
图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
3、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)
教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。
在教师引导下回忆前面知识,为探究新知识作好准备。
议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件…经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?
画一画:
按照下面给出的两个条件做出三角形:
把所画的三角形分别剪下来。
比一比:
同一条件下作出的三角形与其他同学作的比一比,是否全等。
学生重复上面的操作过程,画一画,剪一剪,比一比。
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。
鼓励学生自己举出实例,体验数学在生活中的应用。
学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。
学生在教师引导下回顾反思,归纳整理。
z+z平台演示,教师加以分析。
学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。
结论很显然只需学生想像即可,z+z平台辅助直观演示。
学生动手操作,通过实践、自主探索、交流,获得新知。
一、设计教学活动,让学生参与到教学中
在初中数学知识的学习过程中,学生总会感觉初中数学的学习是枯燥的、是无味的、是毫无实际意义的,这就需要教师在初中数学教学中设计丰富的数学活动,让学生在“学”中“玩”,在“玩”中“学”.初中数学的教学必须通过学生自主参加教学活动、亲身体验,才能培养学生的数学技能,促进学生的整体发展,达到最终的初中数学教学目的.在初中数学教学中,为了能够较好地改善师生之间的关系组织教学活动是必要的.教学活动的设计不仅要做到以教学重点为核心还要做到以学生为主体以适合学生发展为要求以能激发学生的兴趣为目标.如果教学活动的设计偏离了初中数学的教学重点,那么就会造成数学教学“事倍功半”,不仅浪费了学生的学习时间还会导致学生对数学失去了原有的兴趣.活动的设计以学生为主体,让学生在每个活动的毎个阶段都能有所收获,在实际活动中发现数学知识,并能运用数学知识解决实际问题,帮助学生积累解决实际问题的经验,让学生感到“学有所成”.当然,活动的设计不能偏离或超出学生的认知,每个活动的设计都必须有清晰明确的目标,都能做到以适合学生发展为要求,不能束缚学生的发展,在活动中激发学生的创新能力和勇于探索的能力.“兴趣是最好的老师”.设计有趣的教学活动其根本目标还是激发学生数学学习的兴趣,当然这也就决定了数学教学活动的设计不能千篇一律,需要依据不同的教学重点设计不同的教学活动,学生和老师共同参与,提高课堂教学效率.
二、以数学知识的发展为导向
新课程标准明确指出:实行“人人学有价值的数学”.那么,数学的价值又在何处?是为了攀比所记公式的多少?还是追求数学分数的高低?当然,这些都不是数学的价值.那么怎样才能有“学而能会,会而能用”呢?新课改下,初中数学的教学不再是以学生的成绩为主要目的.教师在教学设计中应摒弃以“死记硬背”的方式让学生记住初中数学知识,可以通过教具或多媒体等工具的演示,将数学知识的发展展现给学生,以数学知识的发展过程为导向,让学生明白所学知识中蕴藏的道理,不仅能知其然还能知其所以然,深刻理解所学知识的本质特征,了解所学数学知识的内在结构.
三、巧设数学问题,培养学生独立思考能力
在数学的学习过程中,思考重于一切.初中数学的教学中,设计合适的数学问题,让学生学会解除数学中的疑问,才能更大程度地提高学生的数学水平.当然,合适的数学问题并不是老师信手拈来学生脱口而出的问题,需要体现学生的一个思考过程.高效的数学课堂是以巧妙的数学问题为基础的,数学问题设计得好,学生不仅能通过问题将所学知识融会贯通还能提前思考理解即将要学习的数学知识.也就是说,好的数学问题是贯穿整个数学教学中的主线,能让数学教学达到事半功倍的效果.教师在设计数学问题时,应结合所授知识和学生能力,让学生在解决数学问题的过程中,树立自信,培养对数学的学习兴趣,从而提高学生的数学素养.
四、总结
因此,初中数学教学设计是一门艺术.新课改下,教师应深入钻研教材;了解学生的学习情况,培养学生的`学习兴趣,调动学生学习的积极主动性,锻炼学生的独立思考能力,让学生参与到课堂教学中,学会用所学数学知识解决实际生活问题,提高学生的数学知识水平和数学素养.通过艺术的设计初中数学教学,让学生不再为繁重的数学作业而苦恼,不再为解决不了的难题而烦心,深深爱上数学,徜徉在数学的艺术之美中.
1.2二次根式的性质 课时1 授课对象 八年级
教学目标
1、经历二次根式的性质的发现过程,体验归纳、猜想的思想方法。
2、了解二次根式的上述两个性质。
3、会运用上述两个性质进行有关计算。
教学重难点 教学重点:理解二次根式的上述两个性质;
教学难点:灵活运用上述两个性质进行有关计算。
教学准备 上课教具
教学过程
导入过程
一、复习旧知,导入新知
1、二次根式的概念:像根号内含有字母的代数式和一个数的算术平方根都叫做二次根式。
2、大家抢答
填空
教师提示:参照教材右边的图(启发诱导数形结合思想)
教学步骤
(重难点突破的过程、巩固方法)
二、探索新知:
从熟悉的知识出发先练习、再观察发现总结规律得出性质一
1、教师板书
性质一:
2、学生合作学习,完成课本P6填空
3、教师引导学生:比较 和有何关系?当a≥0时,=和a﹤0,=
通过练习、再观察发现总结规律得出性质二
教师板书
4、学生练习(利用性质二进行运算):
梳理知识使条理清楚,及时练习巩固
5、例1 计算
(1)(2)
教师强调:规范书写,知道运算程序、强调性质运用的条件,二次根式运算顺序
6、学生完成:课本P7课内练习第2题(领悟方法,学会迁移)
7、例2计算:
要求比较先算括号里与直接利用二次根式性质的优劣;强调先判断中a的符号
三、引申与提高
例3 化简:
(1)(2)(3)(a<0,b>0)
(4)(a>1)
做一做:
你能把一张三边长分别为的三角形纸片放入4×4方格内,使它的三个顶点都在方格的顶点上吗?
学生动手,教师引导。
(解决前面提出的问题,使之呼应,让学生明白,我们所学的是有用的数学)板书设计 1.2二次根式的性质
性质一性质二
例1例2例3
学生版演
教学反思
备课中常常是把教材备得很到位,把流程写得很清楚,很多时候,忽视了学生是学习的主体,老师只不过是合作者,引导者,很多问题都自己包办了,学生没有经过深刻的体验,难以在头脑中合成自身的信息,导致有问题一而再的发生。
学生的合作学习,使学生能从学生身上发现自己的不足,有对比才有进步,并且这样更能激发学生的兴趣,不会太枯燥,同时也增进了同学之间的合作精神。
让学生主动上去版演,可以更直接的发现学生的不足,也可以更直观的体现他的好方法,增强其成就感和自信心。
这次上课给学生更多的思考空间和操作空间,比以前有所改善。
如果再重新上这堂课,在学生相对自由的学习中,不会忽视做题的规范,必须的格式步骤也要美观整洁。
实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想。
反思对学生思维品质的各方面的培养都有作积极的意义。反思题目结构特征可培养思维的深刻性;反思解题思路可培养思维的广阔性;反思解题途径,可培养思维的批判性;反思题结论,可培养思维的创造性;运用反思过程中形成的知识组块,可提高学思思维的敏捷性;反思还可提高学生思维自我评价水平,从而可以说反思是培养学生思维品质的有效途径。案例:甲同学在解完“梯形ABCD中,点E是腰AB上一点,在腰CD上求作一点F,使CF:FD = BE:EA”之后在作业的反思栏内写道:“老师,如果E点在底边上,如何在另一底上找到F,我有一种方法,不知对否?作法,1.连结AC; 2.作EO // DC交AC于O; 3.作OF // AB交BC于F。AE:ED = BF:FC。” 同时,另一位学生在作业本中提出同样的问题,写道:“如果,在梯形ABCD中,点E是底边上一点,那么在另一底边找一点F,使AE:ED = BF:FC,应怎样找?” 两位学生对同一个题目,提出了相同的问题,前者解决了问题,但不能用准确的数学语言表述问题,后者虽没有找到解决问题的方法,但能准确的描述问题,两位学生都良好的运用了直觉思维,这本身就是一种创新能力,我及时公布了两位的猜想,并鼓励他们的这种主动猜想的创新精神,公布之后,同学们反映强烈,并进行了广泛的讨论,并且在讨论中思维更加深刻,问题得到引伸,方法也出现了多种。第二次作业本交上来了,一位学生对在讨论中提出的新方法给出了证明,他写道:“今天乙说,如下图,已知梯形ABCD,E是底边的一点,延长腰交于F,连结EA交AB与G就是昨天甲要找的点。我觉得它说的是对的;证明如下:……(证明略)” 我也即时公布了这位学生提供的乙的发现和他的证明,并说,乙能想到这种方法,正如他在反思中所说,是他对解过的P244第22题的反思在这里起了作用,因为当时作了深刻的反思,从而对做过的题目有深刻的映象,自然很容易想到这种方法,因此,同学们应向他学习,解题以后不要停止,一定要多作反思。接下来的几天中,都有同学围绕着这个问题继续思考,并且有的同学还将此问题作了进一步引伸,如丙在反思中写道:“任意多边形,知道一边上一点,就可以由甲那种方法,在其它任一边上找到一点,使与分得的线段的比等于这点分得的这边上的两条线段的比,只要先把多边形变成三角形后就行。对吗?”我批语道:“你已推广了甲提出的命题,很好,且你是对的,请试一试能不能给出证明”。鼓励学生结合解题后的反思,提出问题,并将其指定为反思内容之一,既能充分发挥学生的主体性,又能形成师生互动、生生互动的教学情境,还能培养学生的不断探索的精神,从而使学生的创新意识得到保护和培养。这无疑对学生“心态的开放,主体的凸现,个性的张显”是十分有益的。
教材与学情:
解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
信息论原理:
将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。
教学目标:
⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。
⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。
⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。
信息优化策略:
⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。
⑶重视学法指导,以加速教学效绩信息的顺利体现。
1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性
2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识
教学过程:
一、复习引入,输入并贮存信息:
⑴三边a、b、c有什么关系?
⑵两锐角∠A、∠B有怎样的关系?
⑶边与角之间有怎样的关系?
注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息
二、实例讲解,处理信息:
例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。
⑴引导学生将实际问题转化为数学问题。
Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。
⑶解题过程,学生练习。
⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。
例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。
分析:
⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。
⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。
在Rt△ADB中,∠B=90°∠ADB=45°
例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。
(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。
练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。
仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。
教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:
⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。
⑵引导学生归纳三个练习题的等量关系:
练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2
《几何》第三册P57第10题,P58第4题。
摘 要:本着对课堂练习分层教学设计的要求与目的,本节课设计了三个层次。针对学困生的特殊情况,课堂练习通过诵读定理和抄写例题来使其加深印象;在巩固练习中中等生要求书面写出步骤并进行展示;对于优等生在快结束本节课时抛出变式让他们进行思考,并交流思路。这三个层次都贯穿于整个课堂教学,使每位学生上课都有事可做,根据自己的能力来解决能力范围内的问题。
关键词:相切;环节说明;分层体现;
一、案例背景介绍
(一)教学环境
在我们着手进行课题《初中数学分层教学方式与策略研究》的研究开始后,大家齐心协力探索、研究方法,组内各种分层招数可谓是百花齐放,为此我代表课题组上了一节分层教学的展示课,以供同仁观摩点评,为促进数学教学的分层设计向更好的方向前行作贡献。
(二)学生情况
我校学生大部分来自韩庄镇不同的自然村,由于小学地域的不同,所以学生的基础各不相同,很多学生的基础还相当薄弱。因此这种情况特别适合分层教学。
(三)教材情况
本课是人教版初三数学上册第24章圆第2节点和圆、直线和圆的位置关系中的一个课时:直线和圆相切的情况。学生已经有了点和圆的位置关系的基础以及直线和圆的位置关系的数量的认识,本节课研究直线与圆的特殊位置关系相切,将相切从位置到数量的逻辑自然过渡,进而引出圆的切线的判定和性质。重点是圆的切线的判定定理和性质定理。难点是判定定理的理解和性质定理证明中反证法的理解。
二、案例内容设计及说明
环节一:复习引入
通过回顾旧知再次加深圆与直线的位置关系,在全班集体朗读中体会d与r的关系,并顺势将位置关系量化这一问题显化,同时自然引出特殊情况――相切
环节说明:俗话说书读百遍,其意自现。数学概念在朗读中更能逐渐理解其本质,因此不光语文需要朗读,数学也要朗读。而且针对我班学困生上课听不懂,不会做的现象,这样来设计复习方式更能调动我班学生学习的动力,让每位学生都参与到课堂教学中来。这也是这个环节分层的体现。
环节二:新知探究
活动
1、引导学生从直线与圆相切的位置及数量关系上来深入探究,通过动态演示来理解一条直线何时变成圆的切线。
环节说明:上节课得到的圆与直线相切是数量上的关系,通过动态的演示让学生明确位置的变化,从而总结出切线的判定。但是引导很重要,从两个方面去观察:直线经过哪里?与圆的半径有什么位置关系?需要老师点拨。并要等待学生来总结,不能操之过急。分层体现1对观察的结果分别让两位程度较差的学生回答,再让中等程度的学生来总结;体现2对定理的数学表达让全体学生写在练习本上,老师选择展示,并修改;体现3对总结出的判定进行朗读。
活动
2、将判定的题设和结论互换后的探究。
环节说明:反证法在过三点做圆时已有所涉及,所以在这里用反证法证明切线的性质时让学生互相交流讨论然后进行汇报就行,不要进行过多的引申,否则淡化了主题。分层体现1讨论交流时采取师傅和徒弟在同一组,师傅负责解释证明的方法;体现2数学语言的书写让学生自己写并派代表写在黑板上。
环节三:巩固和应用
通过判断题加深对切线的判定和性质的理解。通过师生共同分析解决几何解答证明题,并由学生书写证明步骤。
环节说明:判断题中设置了3道小题,并给出了反例,能使学生更加明确定理的意义。这里教学的分层体现在针对反例来问学困生为什么不对,让学生说出违背了所需条件的哪一条,强化切线判定条件在这部分学生头脑中的印象。例题的分析采取了小组讨论交流的方法,与环节二中的分组一样,分层体现在“师带徒”弄清解题思路,师傅增强了解题的逻辑性,更严密,徒弟学会了解题的分析,拓宽了视野,打开了思路。在有思路的前提下,全班安静书写步骤。还可以展示在投影下,由学生来评判书写的是否清楚。
环节四:课堂小结
在小结中,除了总结出本节课所学的判定和性质外,将相关的判定和性质做一归纳很有必要,“在不断的总结中收获、进步”不是吗?同时提出下节课要学习的相关性质更能激起学生学习的积极性。
环节说明:在小结的分层中判定由程度稍差点的学生总结,哪怕照着书上找都行,并进行诵读,使其再次熟知所学知识。在性质的总结中,老师抛出两条本节未涉及的性质给学生,让学生课后思考证明,在下节课时可由学生简要发表见解并证明。
环节五:拓展练习
通过引导学生添加辅助线,点拨学生圆中常用辅助线的做法,分情况添加恰当的辅助线。这两个练习旨在拓展尖子生的思维。
环节六:作业布置
通过分层布置,使每位学生都能在自己能力范围内进行巩固练习。
环节说明:作业
1、重点面向学困生考察其掌握基础的程度。作业
2、针对待优生夯实基础的基础上,提高其运用能力。作业
3、是设计的培优计划,对学有余力的学生来说是个很好的锻炼机会。
三、案例分析与反思
实际上本节课中圆的切线的判定定理是为了便于应用而对直线和圆相切的定义改写得到的一种形式,而圆的切线的性质定理的证明仅仅要求学生再次感受反证法,并不要求会应用,所以本节的设计在分层中很注重理解和感知,通过互帮互助和朗读感知达到难点的突破,另外圆是学生学习的第一个曲线形,由直线形到曲线形,在知识上是一个飞跃,本节利用图形运动变化过程发现其中图形的性质,做好了知识前后的衔接,同时加强了新旧知识的联系,发挥出了知识的迁移作用。类比也是本节课所用到的一个重要的学习方法,而且在教授过程中难度的控制非常适当,分层的影子处处可见。纵观整节课的分层之处进入都很自然,也落到了实处,但分层效果的检测没有体现出来,这也是遗憾之处。
初中数学教学案例与反思
一、教学目标:
1、知道一次函数与正比例函数的定义;
2、理解掌握一次函数的图象的特征和相关的性质;体会数形结合思想。
3、弄清一次函数与正比例函数的区别与联系;
4、掌握直线的平移法则简单应用;
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点: 重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。难点:对直线的平移法则的理解,体会数形结合思想。
三、教学媒体:大屏幕。
四、教学设计简介:
因为这是初三总复习节段的复习课,在这之前已经复习了变量、函数的定义、表示法及图象,而本节的教学任务是一次函数的基础知识及其简单的应用,没有涉及实际应用。为了节约学生的时间,打造高效课堂,我开门见山,直接向学生展示教学目标,然后让学生根据本节课的复习目标进行联想回顾,变被动学习为主动学习。例如,在“图象及其性质”环节中,老师让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充纠正。这样,使无味的复习课变得活跃一些,增强学习气氛。随后教师就用大屏幕展示出标准答案,然后教师组织学生以比赛的形式做一些针对性的练习。为了巩固知识点,学生解决每一个问题时都要求其说出所运用的知识点。
五、教学过程:
1、一次函数与正比例函数的定义 :
一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是x的一次函数 正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2.一次函数与正比例函数的区别与联系:
(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练一:
1、指出下列函数中的正比例函数和一次函数:①y = x +1;②y =2X-2 不经过第 象限,y随x的增大而。3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是。4.已知正比例函数 y =(3k-1)x,若y随x的增大而增大,则k的取值范围是。
5、过点(0,2)且与直线y=3x平行的直线是。
6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是。
7、若函数y = ax+b的图像过一、二、三象限,则ab 0。
8、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y =-4。
9、直线y=-5x+b与直线y=x-3都交y轴上同一点,则b的值为。
10、将直线y =-2x-2向上平移2个单位得到直线 ;
将它向左平移2个单位得到直线。
综合训练:已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。
六、教学反思:
本节课是我这学期做的一节汇报课。教学任务基本完成,最后剩下一道综合训练题没来得及探讨,留作了课后作业。从本节课的设计上看,我自认为知识全面,讲解透彻,条理清晰,系统性强,讲练结合,训练到位,一节课下来后学生在基础知识方面不会有什么漏洞。因为复习课的课堂容量比较大,需要展示给学生的知识点比较多,训练题也比较多,所以我选择在多媒体上课。应该说在设计之初,我是在两种方案中选出的一种为学生节省时间的复习方法,课前的工作全由教师完成,教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。可没想到,在课的进行中,我就听到有的教师在切切私语,都是初三学生了,怎么好象没有几个学习的。我也感觉到这节课确实有一大部分学生注意力涣散,没有全身心地投入到学习中去。以致于面对简单的问题都卡,思维不连续。纠其原因,是我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。
通过这节复习课的教学让我从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。
教材分析
1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。
2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。
学情分析
1.去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;(2)去括号的法则增加了解题长度,降低了学习效率;(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。
教学目标
1.熟练掌握去括号时符号的变化规律;
2.能正确运用去括号进行合并同类项;
3.理解去括号的依据是乘法分配律。
教学重点和难点
重点
去括号时符号的变化规律。
难点
括号外的因数是负数时符号的变化规律。
教学过程
一、创设情景问题
青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。
请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?
解:这段铁路的全长为100t+120(t-0.5)(千米)
冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。
提出问题,如何化简上面的两个式子?引出本节课的学习内容。
二、探索新知
1.回顾:
1你记得乘法分配率吗?怎么用字母来表示呢?
a(b+c)=ab+ac
2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3
2.探究
计算(试着把括号去掉)
(1)13+(7-5)(2)13-(7-5)
类比数的运算,去掉下面式子的括号
(3)a+(b-c)(4)a-(b-c)
3.解决问题
100t+120(t-0.5)=100t-120(t-0.5)=
思考:
去掉括号前,括号内有几项、是什么符号?去括号后呢?
去括号的依据是什么?
三、知识点归纳
去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
注意事项
(1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;
(2)括号内原有几项去掉括号后仍有几项.
四、例题精讲
例4化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
五、巩固练习
课本P68练习第一题.
六、课堂小结
1.今天你收获了什么?
2.你觉得去括号时,应特别注意什么?
七、布置作业
课本P71习题2.2第2题
老师在上课前需要有教案课件,只要课前把教案课件写好就可以。制定教案是教育教学实践的必要要求。经过反复比较栏目小编认为“初中数学教学课件教案”是最精华的一篇文章,经过阅读相信您会有所体会!
一、背景
新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。
二、教学片段
在刚过去的这个学期,我上了一节“一元一次不等式组的应用”。
出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。猜猜看,小宝的体重约多少千克?
我问学生:“你们玩过跷跷板吗?先看看题,一会请同学复述一下。”学生复述后,基本已经熟悉了题目。我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的两种文字形式的不等关系:
爸爸体重>小宝体重+妈妈体重
爸爸体重<小宝体重+妈妈体重+一副哑铃重量
我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。一学生举手了:“可以列不等式组。”我给出提示:“小宝的体重应该同时满足上述的两个条件。怎么把这个意思表达成数学式子呢?”这时学生们七嘴八舌地讨论起来,都抢着回答,
我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:“可以设小宝的体重为x千克,能列出两个不等式。可是接下来我就不知道了。”我听了心中一动,意识到这应是思想渗透的好机会,便解释说:“我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组”不等我说完,学生都齐声答:“列不等式组。”全班12小组积极投入到解题活动中了。5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。于是提议学生说说列不等式组解应用题分几步,应注意什么。此时学生也基本上形成了对不等式方法的完整认识。我便出示拓展应用课件:
一次考试共25道选择题,做对一道得4分,做错一道减2分,不做得0分。若小明想确保考试成绩在60分以上,那么他至少要做对多少题?
设置这道题,既有调查本节课效果的意图,也想巩固拓展一下学生的思维。没料到相当多学生对“至少”一词理解不准确,导致失误。这正好让我们的“本课小结”填补了一个空白——弄清题目中描述数量关系的关键词才是解题的关键。
三、反思
本节课讲完后,我感到一丝欣慰,看到孩子们跃跃欲试的学习劲头,突然领悟到:教师的教学行为至关重要,成功的教学,能开启学生心灵的窗户,能帮学生树立学习的自信心。
本节课我有几个深刻的感受:
1、在课前准备的时候,我就觉得不等式组的应用是个难点。所以在课堂教学中设置了几个台阶,这也正好符合了循序渐进的教学原则。
2、例题贴近学生实际,我在教学中有采用了更亲近的教学语言,有利于激发学生的探究欲望。
3、关注学生的学习状态,随时采取灵活适宜的教学方法,师生互动,生生互动,课堂教学才更加有效。
4、学生在学习后,确实感受到“不等式的方法”就像方程的方法一样是从字母表示数开始研究解决的。这种方法可以帮助我们用数学的.方式解决实际问题。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2、学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3、学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的`准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4、教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展……
电脑显示,带领学生复习全等三角定义及其性质。
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等。但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
按照三角形“边、角” 元素进行分类,师生共同归纳得出:
按以上分类顺序动脑、动手操作,验证。
教师收集学生的作品,加以比较,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
下面将研究三个条件下三角形全等的判定。
(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。
学生得出结论后,再举例体会一下。举例说明:
如老师上课用的三角尺与同学用的三角板三个角分别对应 相等,但一个大一个小,很显然不全等;
再如同是:等边三角形,边长不等,两个三角形也不全等。等等。
(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。
板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。
实物演示:
由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。
图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
3、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)
教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。
在教师引导下回忆前面知识,为探究新知识作好准备。
议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件…经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?
画一画:
按照下面给出的两个条件做出三角形:
把所画的三角形分别剪下来。
比一比:
同一条件下作出的三角形与其他同学作的比一比,是否全等。
学生重复上面的操作过程,画一画,剪一剪,比一比。
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。
鼓励学生自己举出实例,体验数学在生活中的应用。
学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。
学生在教师引导下回顾反思,归纳整理。
z+z平台演示,教师加以分析。
学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。
结论很显然只需学生想像即可,z+z平台辅助直观演示。
学生动手操作,通过实践、自主探索、交流,获得新知。
随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。
制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。
制定教法学法应结合各层次学生的具体情况而定,如对A层学生少讲多练,注重培养其自学能力;对B层学生,则实行精讲精练,注重课本上的例题和习题的处理;对C层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。
教学重难点的制定也应结合各层次学生的具体情况而定。
4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。
4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。
4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的B层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。
教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使A层学生有练习的机会,B、C两层学生也有充分发展的余地。
分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。
这种模式是数学新课程教学中应用较为广泛的一种教学模式,在教学活动中,教师不是将现成的知识灌输给学生,而是通过精心设置的一个个问题链,激发学生的求知欲,使学生在老师的引导与合作下,通过自主探索、合作交流、发现问题、解决问题。
这种模式通过教师的引导,学生自主参与数学实践活动,在活动中通过动手探索,参与实践,密切数学与生活实际的联系,掌握数学知识的发生、形成过程和数学建模方法,形成用数学的意识。
在数学教学中,数学活动内容是丰富多彩的,部分数学活动既可在课内进行又可以在课外进行,像问题解决、数学游戏、数学实验。一般来说,课外活动更重视培养兴趣、提高自学能力和实际操作能力,学习内容受课本的约束也很少。
“活动――参与”模式主要有以下几种形式:①数学调查;②数学实验;③测量活动;④模型制作;⑤数学游戏;⑥问题解决。
这种模式有利于学生积极思维,有助于学生合作学习,因此也是数学新课程教学中常用的一种模式。
这一模式的教学目标是:养成积极思维的习惯,培养批判性思维的能力,培养数学交流的能力和协作能力。它的特点是,对学习内容通过问题串形式开展讨论,学生积极思考,充分发表自己的意见和看法。通过讨论,交流思想,探究结论,掌握知识和技能。
“讨论――交流”模式一般的教学结构是:提出问题――课堂讨论――交流反馈――小结。(例:完全平方公式)
“ 自学――辅导”模式是学生在教师的指导和辅导下进行自学、自练和自改作业,从而获得知识,发展能力的一种模式。在这一模式中,学生通过自学,进行探索、研究,老师则通过给出自学提纲,提供一定的阅读材料和思考问题的线索,启发学生进行独立思考。它的特点是学生的自主性、独立性较强,有利于学生在自学中学会学习,掌握学习方法。
“自学――辅导”模式一般的教学结构是:提出要求――自学――提问――讨论交流――讲解――练习。
这种教学模式以教师的系统讲解为主脉,教师进行适当的启发引导,促使学生进行积极思考。这种教学模式主要用于陈述性知识和程序性知识的传授和学习。它有助于学生在短时间内掌握大量知识和形成熟练技能。
以上我们介绍了几种常见的初中数学教学模式。在选择教学模式时,要明确三点:
1、最有效的学习应是让学生在体验和创造的过程中进行有意义的学习;
2、数学课堂教学的关键是学生接受式学习与发展式学习互相补充、合理结合;
3、数学教学模式不能机械的截然划分,在数学新课程教学中,几种模式可以进行相互渗透与综合。
每一位教师都应认识到,没有可适用于各种情况的教学模式,也没有所谓最好的教学模式。对某一种教学目标、某一类数学教学内容、某一个班学生不一定只有一种教学模式,有多种模式可以选用。我们必须从教学目标、教学内容、学生的实际情况、教师的特点等诸多方面来考虑,灵活地进行选择与组合,这样才能实现最佳的教学过程。
宜未雨绸而缪,毋临竭而掘井。优质课堂,就是幼儿园的老师在讲学生在答,讲的知识都能被学生吸收,大部分老师为了让学生学的更好都会事先准备好教案,教案为学生带来更好的听课体验,从而提高听课效率。所以你在写幼儿园教案时要注意些什么呢?小编现在向你推荐小学数学教学课件教案精选,欢迎阅读,希望你能阅读并收藏。
摘 要: 随着技术的不断更新, 信息技术的发展给教育铺就一条创新道路。但是, 对目前而言, 尽管信息新技术在不断革新发展, 它在实际的教育应用中展示的效果却一点都不理想, 往往都是使用传统的教育模式。如果想信息技术在实际教育应用中起到明显的效果, 那么就一定要在智慧教学模型上进行改革, 以达到个性化学习的目的。本文从在小学数学学习过程中存在的问题进行分析与研究, 然后再对信息技术支持下的小学数学智慧教学模型开展理论分析, 在核心因素和模型上进行全面探讨, 最终利用模型的研究应用对智慧教学模型开展效果分析。
关键词: 信息技术; 智慧教学; 智慧教学模型;
1、 智慧教学下的小学数学课堂现状探讨
智慧教学课程的出发点是为了锻炼培养学生的思维能力和适应时代的发展能力, 而教育模式创新与掌握时代定位这俩个方向是设计者在实施智慧教学过程中必须考虑, 尽管课程实施具备智慧与创造、虚拟与真实等等的特征, 但是, 对目前的小学数学课堂而言, 依然存在以下问题:
培养“发现问题”与“提出问题”的能力不足
从目前的小学数学教学情况来看, 教师都以应用教学为主, 一般将问题抛给学生, 然后让学生应用所学的知识和内容去分析解决该问题。但是, 直接针对问题进行解决与让学生自己去“发现问题”和“提出问题”这种学习精神相比, 后者的学生素养更加可贵。将问题直接进行分析解决是从已条件和问题出发的, 而发现问题再提出问题是在未知情况下运用自己的数学思维进行寻找与提炼, 它需要一定的创新意识和创新能力。尽管教师知道培养学生去“发现问题”和“提出问题”的能力重要性, 但是在现实教学中提供的情景教学案例仍然缺少吸引力, 有时候是夸大其词的“假情景”, 对学生的思维发展能力没有起到帮助性。
缺乏“基本活动经验”与“基本思想”的能力培养
数学课程标准在总体目标中曾提出, 学生经历并通过义务教育数学学习阶段, 能提前适应社会在发展中所必须要了解掌握的数学“基本知识”、“基本技能”、“基本活动经验”和“基本思想”。如今在“双基”的基础上增加了俩基, 即“基本数学思想方法”和“基本数学活动经验”。在各个版本的数学教课书都能查看到数学思想, 但是, 在这多年来, 小学数学只存在基础知识与基础技能的培养, 基础知识与基础技能和思想经验相比较, 前者更容易去进行实行与评价。教师喜欢实行数学教学中的精讲多练, 往往都把概念公式等等知识先一股脑传授给学生, 然后以考试要求做为对比, 进行大量地考试训练, 尽管这种做法能把学生的分数提高, 但是对学生的学习兴趣和数学思维发展并没有起到推动的实质性作用, 同时, 教材都是以静态的方式展示给学生看、老师教学时间的限定、老师教学目标不够明确等等因素, 让数学思想教学显得势单力薄。而数学的.活动经验是老师没办法传授给学生的, 只能让学生在“做”中进行积累。尽管当前有许多教师也强调注重教学活动设计, 但是往往内容都比较单调乏味, 不够灵活, 导致学生并没有积极且合理高效的参与到活动教学过程中。
缺少“策略生成”和“活动归纳”的总结
尽管课程标准已经提出课程教学要进行“四基”, 但是在一些一线城市教学依然存在只注重学生的知识技能, 忽视学生的思维发展和缺乏活动经验的累积。积极响应演绎活动, 却不够重视活动的归纳。俗话说, 教育过程的内在是生成性, 它是对教育产生一种不确定性。而学习的生成心理过程会有四个阶段, 即转换、社会化、外显化和内化吸收;加上每个学生在兴趣爱好、思维方式以及学习基础都不一样, 在对个人的知识构架和社会认知过程中, 会形成不一样的个人需求, 所以, 一刀切再齐步走的教学方式已经跟不上时代的步伐, 而当前的课堂教学策略也不能适应学生个体之间的学习差异。
2、 小学数学智慧教学模型设计
从智慧教学的角度来看目前的小学数学教学, 教学目标不明确、缺乏学习活动依然是问题存在的主要因素, 有些学生不喜欢在课堂上课, 不能吸收学习内容自我学习意识不足等等。我将针对以上一系列问题, 展开智慧教学模型研究设计。
模型的建构依据
数学来自生活, 又可以作用生活。可以说, 数学已经和生活息息相关。课程标准曾说过数学教学要将学生的综合素质进行提高, 在数学教学过程中, 一方面要注重数学学科的本质, 另一方面也要符合学生的学习心理规律。让学生从现有的生活经验开始, 亲自去体验数学由生活现象转换到数学模型的过程当中来, 进一步地再去指引在生活当中的运用, 从而让学生不仅能收获数学知识与数学技能, 还能获得数学思维并使用相应的学科知识去解决生活中碰到的疑难问题。课程标准液倡导老师要应用信息技术模式去建设学习数学的体验环境, 帮助学生在研究知识的过程中能体验到思考与探究的活动, 使学生能在学习过程中产生数学思想。
智慧教育教学理念为指导
智慧不仅仅能展现在教育过程中, 还能展现到思维发展的过程中以及实践考察过程。智慧教育教学不仅要启迪学生思考, 还要让学生学会怎么去思考, 去积累思维发展的经验。教师要创造一种生动活波且有知识的教学背景, 让学生自行感悟。而不是老师强行教出来。在智慧教育教学过程中, 教师要告诉学生怎么去发现问题、构想问题、抉择问题、评价问题、归纳总结问题。在发现问题, 让学生能针对这些问题, 自己有独立培养问题的意识能力, 对待学习有一种积极态度。在构想问题的过程当中, 要重点培养学生对待问题的分析能力, 让学生通过现象去感知规律。在抉择问题时, 学生要能够综合使用自己所学的知识和技能去处理问题。在评价问题时, 学生要提高自我认识。在归纳问题时, 学生要从感性的认识转换为理性的认识, 从而培养自己的演绎逻辑能力。
3、 总结
全文对小学数学智慧教学模型研究进行了深度探析, 并且在教学的实施过程提出几点建议, 以便为以后的智慧教学呈现更清晰的学习目标、更加的合理化和多样灵活化。对学生的数学思想和活动经验积累打下良好基础, 进一步提升学生的发现和提出问题能力。
参考文献:
[1]陈琳, 陈耀华, 李康康, 赵苗苗.智慧教育核心的智慧型课程开发[J].现代远程教育研究, 2016 (1) :33-40.
[2]黄平, 李太平.教育过程的界定及其生成特性的诠释[J].教育研究, 2013 (7) :18-27.
[3]杨承军.义务教育阶段渗透数学模型思想的意义与策略探究[J].教育评论, 2014 (4) :117-119.
[4]钟绍春等.关于信息技术促进教学方法创新的思考[J].中国电化教育, 2013 (2) :106-110.
从知识与技能、过程与方法、情感态度与价值观三个维度对该课题预计要达到的教学目标做出一个整体描述。 (修改后的课标要求从四个方面进行分析)
说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。要注意结合特定的情境,切忌空泛。
说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的'编制使用等。
说明本课题设计的基本理念、主要采用的教学与活动策略,以及这些策略实施过程中的关键问题。
教学资源与工具包括两个方面:一是为支持教师教的资源;二是支持学生学习的资源和工具,包括学习的环境、多媒体教学资源、特定的参考资料、参考网址、认知工具以及其他需要特别说明的传统媒体。
如果是其他专题性学习、研究性学习方面的课程,可能还需要描述需要的人力支持及可获得情况。
这一部分是该教学设计方案的关键所在。
在这一部分,要说明教学的环节及所需的资源支持、具体的活动及其设计意图以及那些需要特别说明的教师引导语。
最后,画出教学过程流程图。同时,流程图中需要清楚标注每一个阶段的教学目标、媒体和相应的评价方式。
创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。另外,可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价。
说明教师以何种方式向学生提供帮助和指导,可以针对不同的学习阶段设计相应的不同帮助和指导,针对不同的学生提出不同水平的要求,给予不同的帮助。
在学习结束后,对学生的学习做出简要总结。可以布置一些思考或练习题以强化学习效果,也可以提出一些问题或补充的链接鼓励学生超越这门课,把思路拓展到其他领域。
T:孩子们,你们已经是二年级的学生了,平时你们喜欢看课外书吗?(喜欢)
T:谁能说说你在课余时间都喜欢看什么类型的课外书呀?
T:看来你们都是爱读书的孩子,现在学校决定为你们购买一些课外书,快说说你们想要什么类型的书?
T:你们说了这么多,我都记不住了,这可怎么办呀?
T:这个办法不错,下面我们把刚才那些同学说的一起记录下来。
T:请同学们拿出老师给你准备的小卷子,用你喜欢的方法记录同学们的答案。(全班动手记录20名左右学生的情况)
T:刚才我们记录了一些同学想要的书籍,下面我们来看看大家记录的结果如何,谁愿意给大家展示一下你记录的结果。(或教师巡视,找出典型的方法)
T:刚才我们展示了几位同学和老师的记录过程,下面我们看看这些方法有什么相同和不同的地方。
S:都是每个人记录一次,不同的地方是他们选择了不同的图形记录。
S:画“正”的方法,因为那种方法比较好数结果。
T:我们已经收集了同学们的数据,下面我们把这个结果制成统计图来方便我们观察。请大家把小卷子翻过来,看着大屏幕的统计结果来制作统计图。(每一个小格代表一个人,提要求)
T:刚才我们经历了收集数据和根据结果制作统计图的过程,看着统计图你有什么发现?
T:你们观察的真仔细,那谁能看着统计图提出一些问题呀!
1、刚才我们经历了统计的整个过程,并且体会到了统计给我们的生活带来的方便,下面我们就用刚才学过的知识来试着解决生活中的实际问题。请同学们翻开数学书P111,读题,明确要求。
2、看来统计还真能给我们的生活带来很多方便,最后我们以小组为单位,合作完成,统计组员最爱吃的一种蔬菜。提要求。
通常老师在上课之前会带上教案课件,通常老师都会认真负责去设计好。 教学过程中学生的表现同样重要。教师范文大全小编为您整理了“初中数学教学课件教案”相关的一些比较有用的信息,热烈欢迎您的阅读希望您能够喜欢此文!
一、学情分析
八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理
二、教材分析
这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
三、教学目标设计
知识与技能
探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用
过程与方法
(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。
情感态度与价值
(1)在探索勾股定理的`过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。
(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
四、教学重点难点
教学重点
探索和证明勾股定理 ·教学难点
用拼图的方法证明勾股定理
五、教学方法
(学法)“引导探索法”
(自主探究,合作学习,采用小组合作的方法。
六、教具准备
课件、三角板
七、教学过程设计
教学环节1
教学过程:创设情境探索新知 教师活动:出示第24届国际数学家大会的会徽的图案向学生提问
(1) 你见过这个图案吗?
(2) 你听说过“勾股定理”吗?
学生活动:学生思考回答
设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。
教学环节2 教学过程:实验操作获取新知归纳验证完善新知
教师活动:出示课件,引导学生探索
学生活动:猜想实验合作交流画图测量拼图验证
设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。
教学环节3 教学过程:解决问题应用新知
教师活动:出示例题和练习
学生活动:交流合作,解决问题
设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。
教学环节4 教学内容:课堂小结巩固新知布置作业
教师活动:引导学生小结
学生活动:讨论交流、自由发言
设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。
通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。
八、板书设计
勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。
九、习题拓展
如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。
(1)求梯子上端A到墙的底端B的距离AB。
(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?
十、作业设计
1。收集有关勾股定理的证明方法, 下节课展示、交流。
2。做一棵奇妙的勾股树(选做)
构建提问的教学情境
教师要随时注意挖掘教材中隐藏的“发现”因素,适时利用暗示性语言、语气创设一种使学生主动发现问题提出问题的情境,启发学生自己发现问题、探索知识,使教学过程围绕学生在学习中产生的问题而展开。教师应构建良好的提问教学情境,这样不仅能激发数学问题的提出,而且也能为数学问题的提出和解决提供相应的信息和依据。通过具体数学问题引起的悬念或探索活动激起学生的问题欲望,进而形成教学情境中国知网论文数据库。这就要求初中数学教师在课堂教学中,要积极主动利用暗示性语言、语气,结合有效问题串创设学生自主提问的情景。
初中数学教师还应设置有梯度、可延展性的课堂提问,以便给学生连续.广泛的提问空间。每个问题都要留一定的窗口给学生,让学生在解题时,在教师的暗示性语言下能找到题目的漏洞,充分发挥学生的创造力,进行自主提问.例如,在教学“变量与函数”内容时,教师可以针对这样一道题:“一个矩形的周长为60,其中一边长为10,求这个矩形的面积。”启发激励学生提出问题。学生在认真思索和热烈讨论后提出:“边长还可以取其他的值吗?”“若其中一边长为15、20、25,矩形的面积是多少呢?”“什么时候面积最大?”“若设面积为S,其中一边长为X,S如何表示?”等等,只有给予学生充足的提问时间,给所有想表达的学生表达自己想法的机会,认真倾听学生的提问,尊重学生以不同的方式和速度理解和解答问题。
提高数学课堂教学质量
采用问题教学,激发学生学习的动机和欲望
所谓问题教学,就是以问题为载体贯穿教学过程,使学生在设问和释问的过程中萌生自主学习的动机和欲望,进而逐渐养成自主学习的习惯,并在实践中不断优化自主学习的过程和方法,提高自主学习能力的一种教学方法。问题教学法充分体现学生的主体地位,能有效地激发学生自主学习的主动性和积极性。爱因斯坦曾说:“提出问题比解决问题更重要。”爱提问题的人,往往是积极思考,富有创造力的人。因此教师要随时注意挖掘教材中隐藏的“发现”因素,创设一种使学生主动发现问题、提出问题的情境,启发学生自己发现问题、探索知识,使教学过程围绕学习中产生的问题而展开。
对问题的好奇,促使学生引发内在的需要,自主地去尝试、探究、感悟,从而自然而然地体会到问题的本质。问题的发现,不仅使课堂上处处闪烁探究、创新的火花,更使学生进入到深层次的学习探索阶段。学生在自读、自问、自悟、自解的过程中初步体验到尝试性探究学习的成功喜悦,从而唤起他们进一步学习的内驱力,完成“要我学”的过渡。例如在创设了大象过生日的情景后,从过生日的场面引导学生提出问题,再解决问题,这样一步步的去实现教学目标。
领会教材意图,建立学生的时间观念
教材是死的,人是活的。新课标要求教师用教材,而不是教教材。教师不能认为让教材再现就是完成了教学任务,必须经过再加工重新创造,使教材“新鲜出炉”,更大程度上把知识的教学伴随在培养态度、能力的过程之中。笔者曾听过一节“认识整时”的课(数学第一册第91-92)。讲课的老师从第91页的主题图引出了课题,接着在师生互动中认识整时,动手操作拨“整时”后教师指导正确写整时,最后以第92页的插图来巩固对整时的认识。整节课知识技能、过程方法落实得很扎实。
可讲课的老师对插图并没有物尽其用,只是看一幅说一幅,缺少了有机的结合起来观察与讨论,难免令人感到浪费了珍贵的教学资源。实际上,教材中的插图都是经过编写教材的老师精挑细选,几乎每一幅图都不止一层意思。笔者建议授课的老师把第92页的插图(一位小朋友一天的生活、学习时间的安排)以“先分后总”方式加以诠释,即先让学生自主选择插图讲解图意,巩固对整时的认识,再让学生综合起来看这几幅图谈谈自己的感受。尽量让学生主动的与自己的生活实际经验结合起来,体验到数学学习是有价值的,并有意识的建立学生的时间观念,渗透要养成珍惜时间、遵守时间的生活习惯和学习习惯。
培养学生数学学习兴趣
要了解学生,尊重学生,平等、民主的对待学生
辨证唯物主义告诉我们,事物变化的决定因素是内因,外因只能通过内因才能起作用。培养学生的学习兴趣,必须首先弄清学生的实际,懂得学生在想什么、干什么,希望老师为他们做些什么;必须弄清学生现有认知水平、对基础知识的掌握程度;通过座谈、提问、检测、问卷调查等渠道了解学生的知识现状和学法现状,根据学生现有的能力和水平进行教学;必须掌握学生的思想动态,帮助他们树立起学习数学的信心,培养起他们热爱学习、酷爱学习的品格;
让他们充分认识到学习是自己的权利,把自己培养成为有理想、有道德、有文化、有纪律的一代新人更是每一个青年学生的光荣义务;要关心和爱护每个学生,培养学生对老师的亲近感,建立融洽、亲密、和谐、平等、朋友式的师生关系。调查表明,学生对课程是否感兴趣,老师的因素是其它诸多因素之首。[2]一些学生之所以对数学课程不感兴趣是因为老师曾有意或无意地伤害过他,他感受不到老师的关爱,因而疏远了数学老师也疏远了数学课程。而对于哪些备受学生尊敬的老师,学生是永远不会忘记的,们带着惟恐不能取得好成绩而有负于老师培养的心理,会自觉学好数学课程。
培养学生数学学习兴趣
用和谐师生关系,调动学习情感
作为数学教师,在教数学知识的同时,更应教会学生学习数学的方法。引导学生养成良好的学习习惯。人常说,习惯决定性格,性格决定人生,没有好的学习习惯是造成初中数学后进生的一个重要原因。后进生多半不会学习,对数学概念、公式、定理、法则死记硬背,不愿动脑筋,一遇到问题就靠别人,甚至扔在一边不管。因此,在教学实践中,教师应注重培养学生自觉学习、善于探讨、善于观察、善于小结等方面的好习惯。如在解答问题时,要注重启发引导学生思考,教师只是随时纠正他们在分析解答中出现的错误,逐步培养他们自觉思考的能力。
在布置作业时,给后进生设计较简单的题目,使后进生经过思考能独立完成,养成他们认真独立完成作业的好习惯。还要求后进生每周末将本周学习的内容总结一次,使所学知识系统化。建立一种稳定和谐的师生关系是调动学生学习兴趣的关键。在建立良好的师生关系基础上,课堂教学要充分发挥“情感场”的作用。正如德国教育学家第斯多惠所说:教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞。试想:没有生气勃勃的精神怎么能鼓舞人呢?没有兴奋的情绪怎么能激励人?每一个人都渴望成功,渴望别人和社会对自己的承认。后进生也不例外,他们有强烈的上进心,渴望学习进步,渴望得到教师的表扬。因此,教师更应关注后进生的学习状况,从教学目标、教学内容、课后练习、辅导、检测等方面分层设计,实施差异教学;对后进生降低目标要求,教学内容由易到难,缓步上升,课堂上把简单问题留给后进生回答;当后进生通过自己的独立思考做出数学题时,教师要及时地给于肯定和鼓励,使后进生体会到成功的喜乐,从而增强学习数学的自信心,渐渐从“要我学”变成“我要学”,达到自觉学习的目的。
数学思维能力的培养
尊重个体差异,实施分层教学,开展良性评价
美国心理学家华莱士指出,学生显著的个体差异、教师指导质量的个体差异,在教学中必将导致学生创造能力、创造性人格的显著差异。因此,教师调控教学内容时必须在知识的深度和广度上分层次教学,尽可能地采用多样化的教学方法和学习指导策略;在教学评价上要承认学生的个体差异,对不同程度、不同性格的学生提出不同的学习要求。由于智力发展水平及个性特征的不同,认识主体对于同一事物理解的角度和深度必然存在明显差异,由此所建构的认知结构必然是多元化的、个性化的和不尽完善的。学生的个体差异表现为认识方式与思维策略的不同,以及认知水平和学习能力的差异。作为一名教师要及时了解并尊重学生的个体差异,积极评价学生的创新思维,从而建立一种平等、信任、理解和相互尊重的和谐师生关系,营造民主的课堂教学环境,学生才会在此环境中大胆发表自己的见解,展示自己的个性特征,对于有困难的学生,教师要给予及时的关照与帮助,要鼓励他们主动参与数学活动,尝试用自己的方式去解决问题,发表自己的看法;教师要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。
课程改革以轰轰烈烈地在全国范围展开,如何探索一条适合学生主动发展、有利于学生创新精神、实践能力、合作品质培养的教学方式,成为在新课改中教育工作者面临的主要课题。我在教学工作中,体会到课程改革后的数学课堂应创设富有探索性、挑战性的问题,让学生通过自主探索和合作交流,不仅能更好地激发学生的学习兴趣,更重要的是培养学生的创新意识和创造能力,实施课堂教学的过程中,注重引导学生在课堂活动过程中感悟知识的发生、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神。将创新的教材、创新的教法与创新的课堂环境有机地结合起来,将学生的主动学习与创新意识的培养落到实处,为素质教育开启一条广阔的大道。
鼓励学生求异、质疑和总结,培养创新思维能力
教师应当充分鼓励学生发现问题,提出问题,讨论问题、解决问题,通过质疑、解疑,让学生具备创新思维、创新个性、创新能力。教师运用有深度的语言,创设情境,激励学生打破自己的思维定势,从独特的角度提出疑问,鼓励学生进行批判性质疑。批判性质疑是创新思维的集中体现,科学的发明与创造正是从批判性质疑开始的。让学生敢于对教材上的内容质疑,敢于对教师的讲解质疑,尤其是同学的观点,由于商榷余地较大,更要敢于质疑。能够打破常规,进行批判性质疑,并且勇于实践、验证,寻求解决的途径,是具有创新意识的学生必备的素质。
在课堂教学过程中,教师在每堂课里都要进行各种总结,也必须有意识地让学生总结,总结能力是一种综合素质的体现。培养学生总结能力,即锻炼学生集中思维的能力,这与培养学生的求异思维是相辅相成的,集中思维使学生准确、灵活地掌握各种知识,将它们概括、提取为自己的观点,作为求异思维的基础,保障求异思维的广度、新颖程度和科学性。在课堂教学中教师要将总结的机会尽可能地放给学生,包括总结一个问题;总结一堂课的内容;总结一次讨论的结果;总结一次辩论的正、反意见,等等。每次总结,都挑选多位学生发言,要求他们说出自己的独特理解,不要众口一词,随声附和。总结完后,让学生提出自己发现的更深层次的问题,进一步延伸,拓展思维。
1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。
2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。
1.去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;(2)去括号的法则增加了解题长度,降低了学习效率;(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。
1.熟练掌握去括号时符号的变化规律;
2.能正确运用去括号进行合并同类项;
3.理解去括号的依据是乘法分配律。
重点
去括号时符号的变化规律。
难点
括号外的因数是负数时符号的变化规律。
青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。
请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?
解:这段铁路的全长为100t+120(t-0.5)(千米)
冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。
提出问题,如何化简上面的两个式子?引出本节课的学习内容。
1.回顾:
1你记得乘法分配率吗?怎么用字母来表示呢?
a(b+c)=ab+ac
2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3
2.探究
计算(试着把括号去掉)
(1)13+(7-5)(2)13-(7-5)
类比数的运算,去掉下面式子的括号
(3)a+(b-c)(4)a-(b-c)
3.解决问题
100t+120(t-0.5)=100t-120(t-0.5)=
思考:
去掉括号前,括号内有几项、是什么符号?去括号后呢?
去括号的依据是什么?
去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
注意事项
(1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;
(2)括号内原有几项去掉括号后仍有几项.
例4化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
课本P68练习第一题.
1.今天你收获了什么?
2.你觉得去括号时,应特别注意什么?
课本P71习题2.2第2题
教案课件是我们老师工作的一部分,相信老师对写教案课件也并不陌生。教案是教学目标实现的关键。我们为您整理了以下有关“初中数学教学优秀教案”的范文,希望这些经验能够帮助你在工作中更好的表现!
了解圆柱、圆锥、圆台和球的有关概念、认识圆柱、圆锥、圆台和球及其简单组合体的机构特征。
1、下面几何体有什么共同特点或生成规律?
这些几何体都可看做是一个平面图形绕某一直线旋转而成的。
2、圆柱、圆锥、圆台和球的有关概念。
3、圆柱、圆锥、圆台和球的表示。
如图,将直角梯形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
例2指出图、图中的几何体是由哪些简单的几何体构成的、
直角三角形中,,将三角形分别绕边,三边所在直线旋转一周,由此形成的几何体是哪一种简单的几何体?或由哪几种简单的几何体构成?
1、指出下列几何体分别由哪些简单几何体构成。
2、如图,将平行四边形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
3、充满气的车轮内胎可以通过什么图形旋转生成?
圆柱、圆锥、圆台和球的有关概念及图形特征。
3、用平行与圆柱底面的平面截圆柱,截面是_____________________________________.
4、_____________________可以看作圆柱的一个底面收缩为圆心时,形成的空间几何体、
5、用平行于圆锥底面的一平面去截此圆锥,则底面和截面间的部分的名称是_________。
6、如图是一个圆台,请标出它的底面、轴、母线,并指出它是怎样生成的。
7、请指出图中的几何体是由哪些简单几何体构成的。
8、如图,将直角梯形绕、边所在直线旋转一周,由此形成的几何体分别是由哪些简单几何体构成的?
一、教学目标
1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。
2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。
二、教学重、难点
1、重点:正确运用科学记数法表示较大的数
2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数
三、教学用具
1、教具:多媒体平台及多媒体课件、图片
四、教学过程
一、创设情境,兴趣导学:
1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?
2、展示课本第63页图片,现实中,我们会遇到一些比较
大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。
师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。
(1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000
生1:答:13.7亿,640万,3亿。
师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗? 生:不好用。(让学生意识到以前所学的方法不够用了) 师:接下来我们一起来探索新的记数方法。
分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。
二、尝试探索,讲授新课:
1、探索10n的特征
计算一下102、103、104、105、1010你发现什么规律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000
(观察并思考,小组讨论)
(1)结果中“0”的个数与10的指数有什么关系?
(2)结果的位数与10的指数有什么关系?
2、练习:将下列个数写成只有一位整数乘以10n的形式。
(1)500(2)3000(4)40000
师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。 分析:通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。
4、科学记数法:
像上面这样,把一个大于10的数表示成 a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。
(思考,小组讨论)
10的指数与结果的位数有什么关系?
分析:这是本节课的重难点:10的幂指数n与原数的`整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。
三、巩固新知,知识运用:
1、将下列各数写成科学记数法形式。
(1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科学记数法表示是多少米? 分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。
(观察并思考,小组讨论)
5、如何将一个用科学记数法表示的数写成原数?
a×10n将a的小数点向右移动n位原数
分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。
练习:人体内约有2.5×10 5个细胞,其原数为多少个?
五、教学反思:
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好
地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。
1.助数轴初步理解绝对值的概念及表示方法;
2.体会绝对值的作用与意义;
3.能熟练掌握有理数绝对值的求法和有关的简单计算。
通过观察,分析,思考,归纳,探索绝对值的几何意义,代数意义和性质,渗透数形结合和分类的数学思想,培养学生分析问题和解决问题的能力。
让学生在探索活动中产生对数学的好奇心,体验探索的乐趣和成功的快乐,增强学好数学的兴趣与信心。
正确理解绝对值的概念,能求一个数的绝对值。
甲乙两辆车从城站火车站同时开出,甲车向东行驶5千米到达一候车亭,乙车向西行驶5千米到达另一候车亭。问:
(2)这两个有理数有什么关系?
(3)在数轴上把这两个有理数表示出来。
设计意图:通过提问,复习用有理数表示具有相反意义的量,相反数的意义,在数轴上表示有理数等有关内容,为学习新知识做准备。
1.引入:
(1)若每辆车行驶每千米耗油0.2升,则甲乙两辆车各耗多少升油?
(2)计算汽车耗油量的过程中,只与什么有关?而与什么无关?
耗油量的计算只与汽车行驶的路程有关,而与方向无关,在实际生活中不注重方向的量还有很多,本节我们将学习一个新的不注重方向的量——绝对值。
2.引导学生从数轴上认识绝对值的几何意义。
师:+6和-6是相反数,它们只有符号不同,它们什么相同呢??
师:在数轴上标出到原点距离是6个单位长度的点。
引导学生观察:数轴上表示+6和-6两点,虽然分居在原点的两旁,符号不同,但与原点之间都是相隔6个单位长度。
指出:
在数轴上表示+6和-6的点与原点的距离都是6,我们就说+6的绝对值是6,-6的绝对值也是6。
归纳:
绝对值的几何意义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做∣a∣。
师:一个正数的绝对值是什么?0的绝对值是什么?负数呢??
生:学生小组交流、讨论,小组代表汇报讨论结论。
师:同学们说的对,但这只是绝对值意义的文字叙述,事实上,这意义还可以用数学式子来表达。大家知道怎样用数学式子来表达吗?
生:学生分组讨论,分析思考,得到三个相应的表达式。?
即:
(1)如果a>0,那么│a│=a;
(2)如果a=0,那么│a│=0;
(3)如果a
归纳:非负数的绝对值是它本身,非正数的绝对值是它的相反数。互为相反数的两个数的绝对值相等。
归纳:由此可知,不论a取何值,它的绝对值总是正数或0(通常也称为非负数),即对任意有理数a而言,总有:a≧0?。这是一条非常重要的性质,即绝对值的“非负性”。
补充:
(1)绝对值等于0的数只有一个,就是0;
(2)绝对值等于同一个正数的数有两个,这两个数互为相反数;
(3)互为相反数的两个数的绝对值相等。
例1.?-5的相反数是______;|-5|=______,不小于-2的负整数是______。
例2.若x>0,y
例3.绝对值不大于4的整数有______个。
一个数的绝对值就是数轴上表示数a的点到原点的距离,要注意一个数的绝对值不可能是负数,而是非负数。一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值就是零。
本节课的教学过程注重创设情境,遵循从特殊到一般的认知规律,给学生充分的思考空间,让他们自主探究,主动学习,体会小组合作及分析思考的过程,从而培养学生浓厚的学习兴趣。
1、通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.
2、掌握成中心对称的两个图形的性质,以及利用两种不同方式作出中心对称的图形.
利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.
经历对日常生活与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.
中心对称与旋转之间的关系.
如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋 转后的三角形,并写出简要作法.
1、观察、实验:选择你最喜欢的一幅图,用透明纸覆盖在图上,描出其中的一部分,用大头针固定在O处。旋转180°后,你有什么发现?
发现:把一个图形绕着某一个 旋转 ,如果他们能够与另一个图形 ,那么就说这 个图形 或 ,这个点叫做 ,这两个图形中的 叫做关于中心的 .
在图5中,我们通过实验知四边形A B C D和四边形A'B'C'D'关于点O对称。
(1)你知道它的对称中心、对称点吗?
(2)连接A A'、 B B' 、C C' 、D D'你有什么发现?
(3)线段AB、BC、CD、DA的对应线段是什么?AB与A'B'的关系是怎样的?四边形ABCD和四边形A'B'C'D'有什么关系?为什么?
(四)自我尝试:
(1)、已知点A和点O,画出点A关于点O的对称点A'。
(2)、已知如图△ABC和点O,画出与△ABC关于点O的对称图形A'B'C'。
1、 中心对称与图形旋转的关系?
1、已知下列命题:① 关于中心对称的两个图形一定不全等; ②关于中心对称的两个图形一定全等; ③两个全等的图形一定成中心对称,其中真命题的个数是( )
3、已知,△ABC与△DEF成中心对称,请找出它们的对称中心。
4、如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.
5、如图,点A'是A关于点O的对称点,请作出线段AB关于点O对称的线段A'B'
1、如图,在△ABC中,B=90°,C=30°,AB=1 ,将△ABC绕定点A旋转180°,点C落在C'处,求CC'的长为多少?
2、如图,已知AD是△ABC的中线:
1)画出与△ACD关于D点成中心对称的三角形;
2)找出与AC相等的线段;
3)探索:三角形中AB与AC的和与中线AD之间的关系,并说明理由;
4)若AB=5、AC=3,则线段AD的取值范围为多少?
义务教育课程标准实验教科书教科书(人教版)七年级下册第五章相交线与平行线,
知识与技能目标:
掌握平移的概念,发现并归纳平移的性质,学会利用平移绘制某些特殊的图案.
过程与方法目标:
经历操作、探究、归纳和总结平移性质的过程,感受数学知识的发生和发展,培养学生的抽象概括能力;体会从数学的角度理解问题,提高综合运用所学知识和技能解决问题的水平.
情感、态度与价值观目标:
通过丰富多彩的活动,让学生感受数学充满了探索性与创造性,激发学生的探究热情,并培养学生良好的团队合作意识和创新精神.
难点:1、对平移的两要素的理解;2、如何运用平移的性质解决问题.
对于理解掌握平移的概念及性质,学生要对生活中的平移现象有一些感性的认识,同时必须具有线段相等及平行线的判定等知识储备.七年级的孩子正处于思维活跃,模仿能力强,对新知事物满怀探求欲望的阶段,同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.
看完后,我将引导学生仔细分析从中抽象出的平面图形的变换,提出问题:“在刚才的过程中,图形是怎么移动的呢?”
1.以老师的生活片段作为引入,可以在最短时间内激发学生的兴趣,引起学生的高度注意力,进入情景,感受生活中的平移.
2. 渗透将实际问题转化为数学问题的思想.
活动二 观看下列美丽的图案,并回答问题.
(1)这些图形有什么共同特点?
(2)能否根据其中一部分绘制整个图案?
在老师用动画演示的启发下,经过同学们的热烈讨论,大家将达成共识:
“可以将其中的一部分沿一条直线移动,得出若干个形状、大小完全相同的图形,组合成图案”.
请大家试试看!在一张白纸上划一条直线,将手中的硬纸板图形沿着这条直线移动,并把每一次移动后的图形画下来!
我先在黑板上演示,然后学生动手作图,完成后用实物投影仪展示部分同学的作品,并告诉学生:“我们刚才做的就是将图形进行平移”.
让学生感受到通过平移可以创造生活中的美,并进一步加深对平移的印象:
“一个图形的整体沿一条直线移动”.
1.平移的定义: 将一个图形沿某一直线方向移动一定的距离,图形的这种移动叫做平移变换,简称平移
.
接着我将引导学生关注定义中包含平移的两要素:方向和距离.
对应点的定义:
新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.
在教师的引导下,通过观察多媒体再一次演示平移,学生很容易得出平移的第一条性质:
(1)平移不改变图形的形状和大小,只改变图形的位置.
接着,我要求学生观察课本P28图中A、B、C点与它们的对应点的连线,并提问:“这些线段有怎样的数量关系和位置关系呢?”
在本节课之前,学生已经掌握了对线段大小的比较和平行线的判定的方法.在这里他们可以使用刻度尺、量角器、圆规等工具,通过度量线段、画截线和比较角的大小等方法,探究出平移的第二条性质:
在了解平移定义的基础上,通过观察猜想、动手操作、合作交流,让学生自主探讨出平移的性质,既培养了学生的探索精神和协作意识,又有利于学生对新知识的理解和掌握.
让学生在寻找身边的平移的过程中,进一步认识到“数学来源于生活”,激发他们学好数学,将来更好地让“数学服务于生活”.
B
A .平行不相等 B. 相等不平C.平行且相等 D. 既不平行,又不相等
(3)经过平移,图形上每个点都沿同一个方向移动了一段距离,下面说法正确的是( )
为了学生加深对平移性质的理解,突破了重、难点.
例题2.下列变换中可能属于平移的有哪些?
强调平移“是图形沿一条直线运动”,让学生意识到“不符合平移性质的不是平移”,突出了重点,突破了难点.
3、 练习:
(1)下图中,每个方格的边长为一个单位长度,左边的小船是右边的小船向平移 单位长度后得到的;
(2)请找出A、B、C的对应点A′、B′、C′;
(3)请找出与线段AA′相等且平行的两条线段,它们的长度是多少?
练习题的设计,是为了巩固对平移两要素与性质的理解和掌握,实现重、难点的落实,
并为下一步“平移作图和用坐标表示平移”的学习作好铺垫.
用同样的基本图形绘制的图案,其效果为什么会有这么大的差异呢?”
通过对图形欣赏和对比,让学生体会到:用同样一个基本图形,如果平移的方向不同或平移的距离不一样,将会产生出不同的视觉效果,从而加深对平移的两要素的理解.
通过观察多媒体绘制这幅图片的过程,让学生感受到用一个基本图形通过不同的平移可以构造出生活中的美,激发学生运用平移设计图案的兴趣.
2. 请大家谈谈这节课的收获!
一、教学目标
1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2 .数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
二、教学重、难点
1.重点:对平行线性质的掌握与应用。
2.难点:对平行线性质1的探究。
五、教学用具
1.教具:多媒体平台及多媒体课件.
2.学具:三角尺、量角器、剪刀。
三、教学过程
1.创设情境,设疑激思
⑴播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。
⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。
2.数形结合,探究性质
⑴画图探究,归纳猜想。
教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,填写结果:
第一组:同位角( )( ) 角的度数( )( ) 数量关系( )
第二组:同位角( )( ) 角的度数( )( ) 数量关系( )
第三组:同位角( )( ) 角的度数( )( ) 数量关系( )
第四组:同位角( )( ) 角的度数( )( ) 数量关系( )
教师提出研究性问题二:
将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的`数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想
⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
3.引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)
又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)
所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)
教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
4.实际应用,优势互补
⑴(抢答)课本P21 练一练1、2及习题5.31、3.
⑵(讨论解答)课本P22 习题5.32、4、5.
5.课堂总结:
这节课你有哪些收获?
⑴学生总结:平行线的性质1、2、3.
⑵教师补充总结:
①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。
②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。
③用准确的语言来表达问题(如平行线的性质1、2、3的表述)。
④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
6 .作业。学习与评价: P 2 3 6 ( 选择);P247、12(拓展与延伸)。
四、教学反思
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变:
1.教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。
2.学的转变
学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。
3.课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!
一.学习目标:
1.掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用;
2.正确运用二次根式的性质及运算法则进行二次根式的混合运算.
二.学习重点:正确运用二次根式的性质及运算法则进行二次根式的混合运算.
1.满足下列条的二次根式是最简二次根式.
2.回忆有理数,整式混合运算的顺序.
⑴(3+22)×6 ⑵(827-53)6 ⑶(6-3+1)×23
⑷(3-22)(33-2) ⑸(22-3)(3+2) ⑹(5-6)(3+2)
⑴(5+1)(5-1) ⑵(7+5)(5-7) ⑶(25-32)(25+32) ⑷(a+b)(a-b)
⑸(3-2)2 ⑹(32-45)2 ⑺(3-22)(22-3) ⑻(a-b)2
⑼(1-23)(1+23)-(1+3)2 ⑽(3+2-5)(3?2?5)
1. 计算:(22-3)( 22+3). 2. 若x=10-3,求代数式x2+6x+11的值.
3. 若x=11+72, y=11—72,求代数式x2-xy+y2的值.
1. 计算12(2-3)= .
2. 计算⑴(2+3)(2-3)= ; ⑵(5-2)( 5+2)2011= .
3. 计算:
⑴12(75+313-48) ⑵(1327-24-323)12 ⑶(23-5)(2+3)
⑷(5-3+2)(5+3-2) ⑸(312-213+48)÷23
4. 已知a=3+2 ,b=3-2,求下列各式的值.
5. 若x=3+1,求代数式x2-2x-3的值.
教学目标知识目标:
1.理解平行线分三角形两边成比例定理;
2.进一步熟悉平行线分三角形两边成比例定理的应用;
能力目标:
培养学生的观察、分析、概括能力;
问题:
1、三角形中位线定理的推论是什么?
2、如何用几何语言描述?
(1)如果 ,那么 等于多少?为什么?
(2)如果 ,是否也有 呢?为什么?
(3)如果把条件改为 那么 是否还与 相等?为什么?
教师进行简单说明。
2、由此我们可以得到什么样的结论?如何描述?
这个比例关系还可以怎么表示?为什么?
平行线分三角形两边成比例定理:
平行于三角形一边的直线截其他两边,所得的对应线段成比例。
例1已知:如图,在△ABC中,DE∥BC,AD=4,DB=3,AC=10,求AE、EC的长。
小结平行线分三角形两边成比例定理;
1.利用方程解决实际问题.
1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.
2.能根据具体问题的实际意义检验结果的合理性.
3.进一步训练利用配方法解题的技能.
通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.
通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片2.2.3 A)
(2)x2-8x+15=0;
(3)x2-3x-7=0;
(4)3x2-8x+4=0;
(5)6x2-11x-10=0;
(6)2x2+21x-11=0.
我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、
(4)、(6).
各组做完了没有?
做完了.
好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.
我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即
x-3x=7,
2)2.
很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?
方程(3)的解为x1=
好,继续. 3?237,x2?3?237.
方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x1=52,x2=-32.
××同学做的是方程(2)、(4)、(6).他解的完全正确,即
利用配方法求解方程时,一定要注意:
①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.
②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.
另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.
看大屏幕.(出示投影片2.2.3B)在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?
大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.
宽度都相等.
这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m或12 m.
噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.
甲组的设计符合要求.
我们可以假设小路的宽度为x m,则根据题意,可得方程 (16-2x)(12-2x)= 1
2×16×12,
也就是x2-14x-24=0.
x-14x=-24,
x2-14x+72=-24+72,
(x-7)=25,
x-7=±5,
即x-7=5,x-7=-5.
∴x1=12.x2=2.
因此,小路的宽度为2 m或12 m.
不对,因为荒地的宽度是12 m,所以小路的宽度绝对不能为12 m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m.
大家来作判断,谁说的合乎实际?
丙同学说得有理.
好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.
的四个顶点为圆心,以约5.5 m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.
因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m,根据题意,可得
?≈±5.5.
因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.
设计了一个方案,
线的交点为圆心,以5.5 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.
老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.
同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?
地.
因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m2(即1
个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半.因此这个设计方案也符合要求.
我们组设计的方案如下图.
图中的阴影部分可作为建花园的场所.
因为阴影部分的面积为96 m,正好是矩形面积的一半,所以这个设计也符合要求.
场地.
经计算,它符合要求.
图中的阴影部分是作为建花园的场地.
噢,同学们能帮癸组求出图中的x吗?
2×16×12, 即x-28x+96=0,
x2-28x=-96,
x2-28x+142=-96+142,
(x-14)2=100,
x-14=±10.
∴x1=24,x2=4.
因为矩形的长为16 m,所以x1=24不符合题意.因此图中的x只能为4 m.
同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案.
212×16×12, 即x-28x+96=0.
x1=4,x2=24(舍去).
所以x=4.
(二)看课本P53~P54,然后小结.
本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性. 另外,还应注意用配方法解题的技能.
汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S甲(米)与车速x(千米/时)之间有下列关系:S甲=0.1x+0.01x2;乙种车的刹车距离S乙(米)与车速x(千米/时)的关系如下图所示.
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
设计思想:
这堂课为章节复习课,教师可以先从总体知识结构入手,引导学生逐步回顾所学的知识,要知道本章主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。
初步认识二次函数;
掌握二次函数的表达式,体会二次函数的意义;
会用数表、图像和表达式三种表示方法来表示二次函数,并会相互转化;
会画二次函数,能利用二次函数求一元二次方程的近似解;
利用二次函数的图像和性质解决相关实际问题,灵活应用二次函数。
通过利用二次函数的图像解决问题,体会数形结合的数学方法;
在学习探索的过程中逐步体会和认识二次函数。
体会从特殊函数到一般函数的过渡,注意找函数之间的联系和区别;
树立主动参与积极探索尝试、猜想和发现的精神;
注意运用数形结合的思想,改变过去只利用数式,而忽略图形的思想。
教学难点:二次函数y= 的图像及性质;二次函数的应用。
师:这堂课是这章的总结课,下面我们来看这章整体知识框架图:(幻灯片)
观看这章的知识整体框架,思考下面的问题:
1.你能用二次函数的知识解决哪些问题?
2.日常生活中,你在什么地方见到过二次函数的图像抛物线的样子?
3.你知道二次函数与一元二次方程的关系吗?你能解决什么问题?
同学们,想想你们学习本章的收获是__________。
同学们相互讨论,然后师生互动共同探讨上面的问题。
例1:某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图2-1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?
要求:(1)请提供四条信息;(2)不必求函数的解析式。
解:(1)2月份每千克销售价是3.5元;(2)2月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9与、4月与10月、3月与11月,2月与12月的销售价相同。
(注:此题答案不唯一,以上答案仅供参考,若有其他答案,只要是根据图象得出的信息,并且叙述正确即可)
师:要重点看一下横轴与纵轴分别是哪一个变量,然后再看一下它的数据分别是多少。
例2:(北京石景山)已知:等边 中, 是关于 的方程 的两个实数根,若 分别是 上的点,且 ,设 求 关于 的函数关系式,并求出 的最小值。
当 ,即 为 的重点时, 有最小值6。
师:本题涉及到等边三角形的性质,解直角三角形。二次函数的有关内容,是一道综合性题目。
例3:某校初三年级的一场篮球比赛中,如图2-2,队员甲正在投篮,已知球出手时离地面高 ,与篮球中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m。
(1)建立如图2-3的平面直角坐标系,问此球能否准确投中?
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?
将 点坐标代入解析式;左=右;所以一定能投中。
生:此球能否准确投中,与二次函数的知识有何联系,我不大清楚。
师:篮球运行的轨迹为抛物线,蓝圈可以看成一个点,所以此球能否准确投中的问题,实际上就是看一下该点在不在抛物线上即可。
例4:如图2-4,一位篮球运动员跳起投篮,球沿抛物线 运行,然后准确落入篮框内,已知篮框的中心离地面的距离为3.05米。
(1)球在空中运行的最大高度为多少米?
(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?
解:(1) 抛物线 的顶点坐标为(0,3.5)。
∴球在空中运行的最大高度为3.5米。
(2)在 中,当 时,
故运动员距离篮框中心水平距离为 米。
师:运动员距离篮框中心水平距离,就是过蓝框向地面做垂线,垂足与人的站立点的距离。
(1)证明抛物线顶点一定在直线 上。
(2)若抛物线与 轴交于 两点,当 ,且 时,求抛物线的解析式。
(3)若(2)中所求抛物线顶点为 ,与 轴交点在原点上方,抛物线的对称轴与 轴脚于点 ,直线 与 轴交于点 ,点 为抛物线对称轴上一动点,过点 作 ⊥ ,垂足 在线段 上,试问:是否存在点 ,使 若存在,求出点 的坐标;若不存在,请说明理由。
(2)∵抛物线与 轴交于 两点,∴ 。
即 ,解得 。
∵ 或 当 时, (与 矛盾,舍去), 。
当 时, 或 。
(3)∵抛物线与 轴交点在原点的上方,∴
解得 。
师:将抛物线的顶点坐标代入直线的解析式,如果适合直线的解析式,则点在直线 上;否则,点不在直线 上。
我们这堂课主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。
本文网址://m.jk251.com/jiaoan/142472.html
上一篇:2024三字经读后感
下一篇:反省的句子