导航栏

×
范文大全 > 教案

高中数学教资教案模板

时间:2024-04-23 高中数学教资教案 高中数学教资

高中数学教资教案模板(集锦4篇)。

为今天的主题编辑为您整理了“高中数学教资教案模板”。老师的部分工作内容就有制作自己教案课件,因此我们老师需要认认真真去写。 精心准备的教学教案能帮助教师应对教学中的异常情况。希望您能够收藏此文以便过后参考!

高中数学教资教案模板【篇1】

高中数学试讲模板

一、教学目标 :任意角

(一)知识与技能目标 理解任意角的概念(包括正角、负角、零角)与象限角的概念.(二)过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合

(三)情感与态度目标 1. 提高学生的推理能力; 2.培养学生应用意识.

二、教学重点:任意角概念的理解;终边相同的角的集合的表示三、教学难点:终边相同角的集合的表示 四、教学过程 (一)引入 1、回顾角的定义(在初中我们学习过角,那么请同学们回忆一下角的概念) 有公共端点的两条射线组成的图形叫做角.2、讨论实际生活中出现一系列关于角的问题 一只手表慢了 5 分钟,另外一只快了 5 分钟,你是怎么校准的?校准后,两种情况下分针旋转形成的角一样的吗? 那么我们怎样才能准确的描述这些 角呢?这就不仅需要我们知道角的形成结果,还要知道角的形成过程。(今天同学们就跟着老师一起来学习角的新知识) (二)新课讲解:

1.角的有关概念:(在原来初中学习的角的概念基础上,我们重新给了角一个定义) (1)角的定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。 一条射线绕着它的端点 0,从起始位置 OA 旋转到终止位置

OB, 形成一个角α , 点 O 是角的顶点, 射线 OA、OB 是角α 的始边、终边

2)角的分类:

正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角

注意: ①为了简单起见,在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”; ②零角的终边与始边重合,如果α是零角α =0°; ③角的概念经过推广后,已包括正角、负角和零角.

(4)练习:老师举一些例子让同学说出角α、β、γ各是多少度? 2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终

边(端点除外)在第几象限,我们就说这个角是第几象限角。如果角的终边在坐标 轴上,就认为这个角不属于任何一个象限。

②课堂练习,初步理解象限角 在直角坐标系中,下列各角的始边与 x 轴的非负半轴重合,请指出它们是第几象限的角⑴ 30°;⑵ -120°;⑶ 180°; 3.终边相同的角 讨论:对于直角坐标系内任意一条射线 OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系呢?

(1)终边相同的角的表示: 所有与角α终边相同的角,连同α在内,可构成 一个集合 S={ β | β = α + k·360°,k∈Z},即任一与角α终边相同的角, 都可以表示成角α与整个周角的和.

注意: ⑴ k∈Z ⑵α是任一角; ⑶终边相同的角不一定相等,但相等的角 终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍; ⑷角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

4、例题精讲 例 1.在 0°到 360°范围内,找出与-950°12'角终边相等的角,并判断它们是第几象限角. 例 2.写出终边在 y 轴上的角的集合(用 0°到 360°的角表示) . 例 3.写出终边在 xy 上的角的集合 S,并把 S 中适合不等式-360°≤β<720°的元素β写出来

五、课堂小结 ①与角相关的概念; ②象限角; ③终边相同的角的表示方法;六、课后作业: ①教材 P5 练习第 1-5 题; ②预习弧度制 七、板书设计

高中数学试讲模板

一、课题:简单随机抽样二、教学目标分析 1.知识与技能目标

正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。 2.过程与方法目标

(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。 3.情感态度和价值观目标

通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。 三、教学的重点和难点

重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法);难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性。四、课时:1 课时 五、教具:多媒体六、教学方法

采用讨论发现法教学,并对学生渗透“从特殊到一般”的学习方法。由于本节课内容实例多、信息容量大、文字多,我采用多媒体辅助教学。

七、教学过程

(一)设置情境,提出问题

例 1:请问下列调查是“普查”还是“抽样调查”? A.一锅水饺的味道 B.旅客上飞机前的安全检查C.一批炮弹的杀伤半径 D.一批彩电的质量情况 E.美国总统的民意支持率

学生讨论后,教师指出生活中处处有“抽样”。 (二)主动探究,构建新知

例 2:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?

a.在班级 12 名班委名单中逐个抽查 5 位同学进行背诵 B.在班级 45 名同学中逐一抽查 10 位同学进行背诵

先让学生分析,选择 B 后,师生一起归纳其特征:1 不放回逐一抽样,2 抽样有代表性(个体被抽到可能性相等)。学生体验 B 种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题——简单随机抽样。

例 3:我们班有 44 名学生,现从中抽出 5 名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。

先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤:1 编号制签;2 搅拌均匀;3 逐个不放回, 抽取 n 次。教师板书以上步骤。

请一位同学说说例 2 采用“抽签法”的实施步骤。 (屏幕出示)

例 4:假设我们要考察某公司生产的 500 克袋装牛奶的质量是否达标,现从 800 袋牛奶中抽取 60 袋进行检验。提问:这道题适合用抽签法吗?

让学生进行思考,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:1 编号;2 在随机数表上确定起始位置;3 取数。教师板书以上步骤。 请一位同学说说例 2 采用“随机数表法”的实施步骤。 (三)课堂小结

1.简单随机抽样及其两种方法 2.两种方法的操作步骤 (采用问答形式) (四)布置作业课本练习 2、3。八、板书设计

高中数学试讲模板

一、课题:简单随机抽样二、教学目标分析 1.知识与技能目标

正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。 2.过程与方法目标

(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。 3.情感态度和价值观目标

通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间

的联系,认识数学的重要性。三、教学的重点和难点

重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法); 难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性。四、课时:1 课时 五、教具:多媒体六、教学方法

采用讨论发现法教学,并对学生渗透“从特殊到一般”的学习方法。由于本节课内容实例多、

信息容量大、文字多,我采用多媒体辅助教学。七、教学过程

(一)设置情境,提出问题

例 1:请问下列调查是“普查”还是“抽样调查”? A.一锅水饺的味道

B.旅客上飞机前的安全检查 C.一批炮弹的杀伤半径 D.一批彩电的质量情况

E.美国总统的民意支持率学生讨论后,教师指出生活中处处有“抽样”。 (二)主动探究,构建新知识

2.语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式? 为什么?

a.在班级 12 名班委名单中逐个抽查 5 位同学进行背诵 B.在班级 45 名同学中逐一抽查 10 位同学进行背诵。

先让学生分析,选择 B 后,师生一起归纳其特征:1.不放回逐一抽样,2.抽样有代表性(个体被抽到可能性相等)。学生体验 B 种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题——简单随机抽样。

例 3:我们班有 44 名学生,现从中抽出 5 名学生去参加学生座谈会,要使每名学生的机

会均等,我们应该怎么做?谈谈你的想法。

先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后 师生一起归纳“抽签法”步骤:1 编号制签,2 搅拌均匀,3 逐个不放回,抽取 n 次。教师板书上面步骤。

请一位同学说说例 2 采用“抽签法”的实施步骤。(屏幕出示) 请一位同学说说例 2 采用“随机数表法”的实施步骤。 (三)课堂小结

1.简单随机抽样及其两种方法

2.两种方法的操作步骤(采用问答形式) (四)布置作业课本练习 2、3。

高中数学教资教案模板【篇2】

高中数学教案

精选高中数学教资面试教案两篇

第一篇《函数的单调性》

1.题目:函数的单调性

2.内容:

3.基本要求

(1)试讲时间约10分钟;

(2)创设问题进行导入,建立与已学知识之间的联系;

(3)采用恰当的教学方法,让学生直观感受数形结合思想。

4.考核目标:教学设计,教学方法,教学实施。

课时:

1课时

课型:

新授课

教学目标:

1、知识与技能:从形与数两方面理解单调性的概念,初步学会利用函数图象和单调性定义判断、证明函数单调性的方法。

2、过程与方法:通过对函数单调性定义的探究,提高观察、归纳、抽象的能 力和语言表达能力;通过对函数单调性的证明,提高推理论证能力,体验数形结合思想方法。

3、情感态度价值观:通过知识的探究过程养成细心观察、认真分析、严谨论证的良好思维习惯;感受用辩证的观点思考问题。

教学重点:

函数单调性的概念形成和初步运用。

教学难点:

函数单调性的概念形成。

教学过程:

(一)创设情境,导入新课

教师活动:分别作出函数y=2x,y=-2x和y=x2+1的图象,并且观察函数变化规律,描述前两个图象后,明确这两种变化规律分别称为增函数和减函数。 然后提出两个问题:问题一:二次函数是增函数还是减函数?问题二:能否用自己的理解说说什么是增函数,什么是减函数?

学生活动:观察图象,利用初中的函数增减性质进行描述,y=2x的图象自变量x在实数集变化时,y随x增大而增大,y=-2x的图象自变量x在实数集变化时,y随x增大而减小。在此基础上描述y=x2+1在(-∞,0]上y随x增大而减小,在(0,+∞)上y随x增大而增大。理解单调性是函数的局部性质,在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。

设计意图:数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本环节的设计上,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。通过一次函数认识单调性,再通过二次函数认识单调性是局部性质,进而完善感性认识。

(二)初步探索,形成概念

教师活动:(以y=x2+1在 (0,+∞)上单调性为例)让学生理解如何用精确的数

学语言(随着、增大、任取)来描述函数的单调性,进而得到增(减)函数的定义。并进一步提出如何判断的问题。

1 / 4

高中数学教案

学生活动:通过交流、提出见解,提出质疑,相互补充理解函数定义的解释,讨论表示大小关系时,理解如何取值,明白任取的意义。

设计意图:通过启发式提问,实现学生从“图形语言”到“文字语言”到“符号语言”认识函数的单调性,实现“形”到“数”的转换。

(三)概念深化,延伸扩展

教师活动:提出下面这个问题:能否说f(x)=在它的定义域上是减函数?从这个例子能得到什么结论?并给出例子进行说明:

进一步提问:函数在定义域内的两个区间A,B上都是增(减)函数,何时函数在A∪B上也是增(减)函数,最后再一次回归定义,强调任意性。

学生活动:思考、讨论,提出自己观点,并提出反例,如x1=-1,x2=1,进而得出结论:函数在定义域内的两个区间A,B上都是增(减)函数,函数在A∪B上不一定是增(减)函数将函数图象进行变形(如x

设计意图:通过上面的问题,学生已经从描述性语言过渡到严谨的数学语言。而对严谨的数学语言学生还缺乏准确理解,因此在这里通过问题深入研讨加深学生对单调性概念的理解。

(四)证明探究,应用定义

教师活动:展示例题

例1:证明函数在(0,+)上是增函数

证明:任取且

∴函数在(0,+)上是增函数。

进一步提问:如果把(0,+∞)条件去掉,如何解这道题?要求学生课后思考。

学生活动:根据单调性定义进行证明、讨论,规范出证明步骤:设元、作差、变形、断号、定论,理解根据定义进行判断,体会判断可转化成证明并完成课后思 考题。

设计意图:本环节是对函数单调性概念的准确应用,本题采用前面出现过的函数,一方面希望学生体会到函数图象和数学语言从不同角度刻画概念,另一方面避免学生遇到障碍,而是把注意力都集中在单调性定义的应用上。课标中指出“形式化是数学的基本特征之一,但不能仅限于形式化的表达。高中课程强调返璞归真”因此本题不再从证明角度,而是让学生再次从定义出发,寻求方法,并体会转化思想。

(五)小结评价,作业创新

教师活动:从知识、方法两个方面引导学生进行总结,留出如下的课后作业(1、2、4必做,3选做):

1、证明:函数在区间[0,+∞)上是增函数。

2、课上思考题

3、求函数的单调区间

4、思考P46 探索与研究

学生活动:回顾函数单调性定义的探究过程、证明、判断函数单调性的方法步骤和数学思想方法,完成课后作业。

设计意图:使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义,并且作业实现分层,满足学生需求。

六、板书设计

第二篇《函数的奇偶性》

1.题目:函数的奇偶性

2.内容:

2 / 4

高中数学教案

3.基本要求:

(1)试讲时间约10分钟;

(2)通过问题设计,联系学生已有知识经验探索新知识;

(3)设计一些基础性例题,以帮助学生理解函数奇偶性的主要特征。

4.考核目标:问题设计,知识归纳,教学实施。

教学设计

课时:

1课时

课型:

新授课

教学目标:

1、知识与技能目标:理解函数的奇偶性及其几何意义。

2、过程与方法目标:经历从图形直观感知到代数抽象概括,从特殊到一般的概念形成过程,培养学生观察、抽象的能力。

3、情感、态度与价值观目标:通过自主探索,体会数形结合的思想,感受数学的对称美。

教学重点:

理解函数的奇偶性及其几何意义。

教学难点:

判断函数奇偶性的方法。

教学准备:多媒体

教学过程:

一、图片展示,引入新课

多媒体展示喜字、蝴蝶、扑克牌、交通标志四幅图片,请学生观察这些图片具有什么样的共同特征。

通过观察,老师适当引导,学生能够发现前两幅图是轴对称的,后两幅图是中心对称的。

继续追问数学中这样的对称,请学生举例说明。由于前几节课都在学习函数,会有部分学生想到有些函数的图像是对称的。

引入课题:今天我们一起来研究图像具有对称特征的函数的性质——奇偶性

二、合作探索,学习新知

1.观察下列函数的图像:说明图像有什么样的特点。

思考1:这两个函数的图像有何共同特征?

思考2:对于上述两个函数,f(1)与f(-1),f(2)与f(-2),f(a)与f(-a)有什么关系?

一般地,若函数y=f(x)的图象关于y轴对称,当自变量x任取定义域中的一对相反数时,对应的函数值相等。即f(-x)=f(x) 思考3:怎样定义偶函数?

学生先进行独立思考,然后小组讨论形成小组结论,最后展示本组讨论结果。

师生互动将学生得到的定义进行补充完善最终得到精确的偶函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。 练习:判断下列函数是否为偶函数?(口答)

2.观察下面两个函数的图像,回答以下问题。

问题1:观察图像,从对称的角度思考,它们有什么共同特征?

问题2:分别求当自变量x=±1, ±2时的函数值,从中你能发现什么规律?

问题3:是否对于定义域内所有的x,都有类似的情况?

问题4:类比偶函数的定义给出奇函数的定义。

3 / 4

高中数学教案

学生先进行独立思考后,小组内进行交流,形成小组最后结论,最终展示本组成果。

小组代表展示结果后,师生互动得出奇函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。 练习:判断下列函数是否为偶函数?(口答)

3.强化定义,深化内涵

对奇函数、偶函数定义的说明:

(1)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x),具有奇偶性。

(2)函数具有奇偶性的前提是:定义域关于原点对称。

(3)若f(x)为奇函数,则f(-x)=-f(x)成立;若f(x)为偶函数,则f(-x)=f(x)成立。

三、讲练结合,巩固提升

例1.利用定义判断下列函数的奇偶性

小结:用定义判断函数奇偶性的步骤: :

(1)先求定义域,看是否关于原点对称;

(2)再判断f(-x)与f(x)的关系;

(3)若f(-x)=f(x)则f(x)是偶函数;若f(-x)=-f(x),则f(x)是奇函数。

例题2:利用定义判断下列函数的奇偶性

四、总结升华

师生一起回顾函数奇偶性的定义,图像性质,已经如何判断一个函数的奇偶性。

五、布置作业

1.教材42页习题

2.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,求x板书设计:

函数的奇偶性

偶函数:

奇函数:

判断函数奇偶性步骤: 一看

二找

三判断

4 / 4

高中数学教资教案模板【篇3】

高中数学面试教案模板 教案一

【篇1:教师资格证试讲高中数学教案一】

(人教版必修一 第一单元 课时1:集合的含义和表示)

一、题目:集合的含义和表示

二、教学时间:45分钟

三、授课人数:

四、课时:1课时

五、课型:

六、教学目标: l.知识和技能

(1)通过实例,了解集合的含义,体会元素和集合的属于关系; (2)知道常用数集及其专用记号;

(3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力. 2.过程和方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识. 3.情感.态度和价值观

使学生感受到学习集合的必要性,增强学习的积极性.七、教学重点.难点:

重点:集合的含义和表示方法.难点:表示法的恰当选择.

八、学法和教学用具:

1.学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标. 2.教学用具:投影仪.九、教学思路:

(一)创设情景,揭示课题

1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?

引导学生回忆.举例和互相交流.和此同时,教师对学生的活动给予评价.

2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习 的内容.

(二)研探新知

1.教师利用多媒体设备向学生投影出下面9个实例: (1)1—20以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥; (6)到一个角的两边距离相等的所有的点 (7)方程的所有实数根; (8)不等式x-30的所有解;

(9)国兴中学2004年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这9个实例的共同特征是什么? 3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.

一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母a,b,c,d,?表示,元素常用小写字母a,b,c,d?表示.

(三)质疑答辩,排难解惑,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数; (2)我国的小河流.

让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

(1)如果用a表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a,b和集合a分别有什么关系?由此引导学生得出元素和集合的关系有两种:属于和不属于.

如果a是集合a的元素,就说a属于集合a,记作a∈a.如果a不是集合a的元素,就说a不属于集合a,记作a?a.

(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本和集合a的关系分别是什么?请用数学符号分别表示. (3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题: (1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合a={x∈n|1≤x8}

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

(五)归纳整理,整体认识

在师生互动中,让学生了解或体会下例问题: 1.本节课我们学习过哪些知识内容? 2.你认为学习集合有什么意义? 3.选择集合的表示法时应注意些什么? (六)布置作业

1.课后书面作业:第13页习题组第4题.

2.元素和集合的关系有多少种?如何表示?类似地集合和集合间的关系又有多少种呢?如何表示?

【篇2:经典数学说课模板(数学教师面试用)】

数学说课稿模板

尊敬的各位老师、评委:

大家早上好!我是 号选手。今天我说课的题目是《 》,是人民教育出版社出版的年级数学第 册第 章第 节的内容。下面我将从教材分析、学情分析、教法学法、教学过程、板书设计等几个部分来说这一节课。

一、教材分析

1、教材的地位和作用 的内容,并能用来解决一些简单的问题。它是对前面学习过的知识们今后学习 识都具有承上启下的作用。 2、教学三维目标

(1)、知识和技能:

(2)、过程和方法: (33

(高一)学生已具备了一定的分此,本节要注重改变学生这些不良习惯。

三、教法、学法 1、教法

为了达到以上的教学目标,解决本节课的重点、难点问题,最大限度的调动学生积极参和课

堂教学活动,充分体现“教师主导,学生主体”的教学原则,我计划本节课使用如下的教学方法。

(讲授法、启发式教学法、演示实验法、情景激学法、目标导学法、比较法、讨论法、谈话法、推理法、类比法、归纳法、探究法、讲练结合法??)

在突破难点、形成重点的同时,培养学生自主、合作、探究学习的能力。从而使教师的指导作用和学生学习主动性相统一,及时强化有关知识,提高掌握知识的准确性。 2、学法

有利于教和学双边活动的开展,使教学轻松而高效。课使用如下学法:

四、教学过程 1、导入新课

(1)

(2)、多媒体课件式:展示 然后围绕

(3)

(4)

2、新课教学

第一部分:

第二部分:

第三部分:

3(1)

、知识小结

(1)总结本节课学习的主要内容

(2)互动交流,总结收获 5、布置作业

五、板书设计

【篇3:教师资格证面试教案模板】

本人刚参加完2014年下半年的教师资格证高中生物的面试测试,想为以后参加此类测试的同学提供一些经验,并提供自己总结的教案模板一份以供参考。

先从笔试说起吧,关于笔试报名的流程什么的网上随便一搜就能看见,再此不赘述了,我就从笔试准备讲起。我是笔试测试前半个月左右开始准备测试的,资料就是中公的3本辅导书,分别为综合素质、教育知识和能力、学科知识和教育能力3门。本人认为根本没有报考辅导班的必要,只要你找些测试相关的资料认真复习半个月,肯定能过的,我就是踏踏实实的认真复习之后,非常自信的通过了自己的笔试。 查看了自己的笔试成绩之后,就是面试的报名了,流程什么的也不赘述了,不明白的网上百度。报名成功后,我就将面试先抛到一边了,因为这中间有一个月的准备时间,而我高中生物学的挺扎实的,所以准备在面试前一周左右再复习。到了面试前5天左右的时间时我收起其他的心思,准备专心复习高中所学的知识。

由于测试没有指定教材,这就增加了面试的难度,我们得对高中所学的所以知识加以复习。我从百度文库中下载了高一、高二、高三生物的教案,电子课本及一些知识点的总结什么的,然后对这些资料进行仔细的复习。由于面试时会要求写教案,所以我就认真的研究了一下下载的 教案的模式,然后写了一个比较全面的、合适的教案模板。有了这个模板,在20min的备课时间里,我心里就比较有底,知道该怎样合理的利用这二十分钟写出比较优秀的教案。

我的准考证上写的进入备考室时间是上午9点45到10点,我提前了一点过去,然后看到前面有很多人在排队。原来我们是先在外面按照报考科目进行排队,然后按照工作人员的安排4个人一组进去,先签到,然后一起去抽题,题目打印出来后被交给带队的工作人员,我们都看不到自己的题目,然后又被带上楼进入备课室,按照自己的编号入座,每个座位上都有一张白纸,这张白纸就是用来写教案的,如果需要草稿纸可以向工作人员要求。我觉得再要一张草稿纸很有必要,你可以在这张草稿纸上写上你试讲的思路什么的,因为最后你的教案跟你抽的题目都得交给面试官,自己试讲的时候手里拿点提醒自己思路的东西总是必要的。20分钟备课结束后,我们就被分到不同的房间准备面试。我被分配到的是203房间,幸运的是我前面还排着一个待考的女生,这样我准备的时间就更充分了。我就利用这段时间理了下自己试讲的思路,开始怎么讲、怎么导入、讲课的重点是什么、怎么提问、组织小组讨论、布置课外作业、小结等。轮到我的时候估计老师都有些着急了(我是最后1个,而且当时都将近中午12点了),就问了我1个规定问题(课堂上一个学生总是答非所问,引起哄堂大笑,该怎么办?),而原本应该是2个规定问题的。然后我就开始讲课,先对上节课的内容进行了回顾,并提问,然后引入新课,先组织小组讨论,然后总结,布置课外作业等。结束后面试官对我的试讲做了评价,然后就结束了。

下面是我总结的教案模板 高中生物教案

一、题目 :减数第二次分裂

二、教学目标(三维目标)

三、教学重难点

①重点

②难点

四、教学用具

幻灯片、xxx挂图

五、教学过程

教学内容教师活动学生活动

⑸小结

⑹课外作业

高中数学教资教案模板【篇4】

高中数学面试试讲教案

【篇1:教师资格证试讲高中数学教案一】

教案一

(人教版必修一 第一单元 课时1:集合的含义与表示)

一、题目:集合的含义与表示

二、教学时间:45分钟

三、授课人数:

四、课时:1课时

五、课型:

六、教学目标: l.知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号;

(3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力. 2.过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识. 3.情感.态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性.七、教学重点.难点:

重点:集合的含义与表示方法.难点:表示法的恰当选择.

八、学法与教学用具:

1.学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标. 2.教学用具:投影仪.九、教学思路:

(一)创设情景,揭示课题

1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 引导学生回忆.举例和互相交流.与此同时,教师对学生的活动给予评价.

2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习 的内容.

(二)研探新知

1.教师利用多媒体设备向学生投影出下面9个实例: (1)1—20以内的所有质数; (2)我国古代的四大发明;

(3)所有的安理会常任理事国; (4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥; (6)到一个角的两边距离相等的所有的点 (7)方程的所有实数根;

(8)不等式x?3?0的所有解;

(9)国兴中学2004年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这9个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.

一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母a,b,c,d,?表示,元素常用小写字母a,b,c,d?表示.

(三)质疑答辩,排难解惑,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数; (2)我国的小河流.

让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价. 4.教师提出问题,让学生思考

(1)如果用a表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.

如果a是集合a的元素,就说a属于集合a,记作a?a.

如果a不是集合a的元素,就说a不属于集合a,记作a?a.

(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示. (3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题: (1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合a?{x?n|1?x?8}

(3)试选择适当的方法表示下列集合:教材第6页练习第2题. (五)归纳整理,整体认识

在师生互动中,让学生了解或体会下例问题: 1.本节课我们学习过哪些知识内容? 2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么? (六)布置作业

1.课后书面作业:第13页习题组第4题.

2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?

【篇2:教师资格证试讲高中数学教案二】

教案二 (人教版必修一 第一单元 课时2:集合间的基本关系)

一、题目:集合间的基本关系

二、教学时间:45分钟

三、授课人数:

四、课时:1课时

五、课型:

六、教学目标: 1.知识与技能

(1)了解集合之间包含与相等的含义,能识别给定集合的子集. (2)理解子集、真子集的概念.

(3)能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.

2.过程与方法

让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.

3.情感.态度与价值观 (1)树立数形结合的思想.

(2)体会类比对发现新结论的作用.七、教学重点、难点:

重点:集合间的包含与相等关系,子集与真子集的概念.难点:难点是属于关系与包含关系的区别.

八、学法与教学用具: 2.学用具:投影仪.

九、教学思路:

(—)创设情景,揭示课题

问题l:实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?

让学生自由发言,教师不要急于做出判断。而是继续引导学生;欲知谁正确,让我们一起来观察.研探. (二)研探新知

投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?

(1)a?{1,2,3},b?{1,2,3,4,5};

理科组 组?高中数学 no.姓名: 第 1 页 (2)设a为国兴中学高一(3)班男生的全体组成的集合,b为这个班学生的全体组成的集合;

(3)设c?{x|x是两条边相等的三角形},d?{x|x是等腰三角形}; (4)e?{2,4,6},f?{6,4,2}.

组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:

①一般地,对于两个集合a,b,如果集合a中任意一个元素都是集合b中的元素,我们就说这两个集合有包含关系,称集合a为b的子集.

记作:a?b(或b?a)

读作:a含于b(或b包含a).

②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为venn图。如图l和图2分别是表示问题2中实例1和实例4的venn图.

图1图2

投影问题3:与实数中的结论“若a?b,且b?a,则a?b”相类比,在集合中,你能得出什么结论?

教师引导学生通过类比,思考得出结论: 若a?b,且b?a,则a?b.

问题4:请同学们举出几个具有包含关系.相等关系的集合实例,并用venn图表示.

学生主动发言,教师给予评价. (三)学生自主学习,阅读理解

然后教师引导学生阅读教材第7页中的相关内容,并思考回答下例问题:

(1)集合a是集合b的真子集的含义是什么?什么叫空集?

(2)集合a是集合b的真子集与集合a是集合b的子集之间有什么区别?

(3)0,{0}与?三者之间有什么关系?

(4)包含关系{a}?a与属于关系a?a正义有什么区别?试结合实例作出解释.

(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?

理科组 组?高中数学 no.姓名: 第 2 页 (6)能否说任何一人集合是它本身的子集,即a?a?

(7)对于集合a,b,c,d,如果a?b,b?c,那么集合a与c有什么关系? 教师巡视指导,解答学生在自主学习中遇到的困惑过程,然后让学生发表对上述问题看法. (四)巩固深化,发展思维

1.学生在教师的引导启发下完成下列两道例题:

例1.某工厂生产的产品在质量和长度上都合格时,该产品才合格。若用a表示合格产品,b表示质量合格的产品的集合,c表示长度合格的产品的集合.则下列包含关系哪些成立? a?b,b?a,a?c,c?a

试用venn图表示这三个集合的关系。

例2 写出集合{0,1,2)的所有子集,并指出哪些是它的真子集. 2.学生做教材第8页的练习第l~3题,教师及时检查反馈。强调能确定是真子集关系的最好写真子集,而不写子集. (五)归纳整理,整体认识

1.请学生回顾本节课所学过的知识内容有建些,所涉及到的主要数学思想方法又哪些.

2.在本节课的学习过程中,还有那些不太明白的地方,请向老师提出. (六)布置作业

1.第13页习题 组第5题.

理科组 组?高中数学 no.姓名: 第 3 页

【篇3:教师资格证试讲高中数学教案】

教案三

(人教版必修一 第一单元 课时3:集合的基本运算)

一、题目:集合的基本运算 二、教学时间:45分钟 三、授课人数: 四、课时:1课时 五、课型: 六、教学目标: 1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.(2)理解在集合中一个子集的补集的含义,会求给定子集的补集.

(3)能使用venn图表达集合的运算,体会直观图示对理解抽象概念的作用.2.过程与方法

学生通过观察和类比,借助venn图理解集合的基本运算.3.情感.态度与价值观

(1)进一步树立数形结合的思想.(2)进一步体会类比的作用. (3)感受集合作为一种语言,在表示数学内容时的简洁和准确.七、教学重点、难点:

重点:交集与并集,全集与补集的概念.

难点:理解交集与并集的概念.符号之间的区别与联系. 八、学法与教学用具:

1.学法:学生借助venn图,通过观察.类比.思考.交流和讨论等,理解集

合的基本运算.

2.教学用具:投影仪.九、教学思路: (一)创设情景,揭示课题

问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?

请同学们考察下列各个集合,你能说出集合c与集合之间的关系吗? (1)a?{1,3,5},b?{2,4,6},c?{1,2,3,4,5,6};

(2)a?{x|x是理数},b?{x|x是无理数},c?{x|x是实数}

理科组 组?高中数学 no.姓名: 第 1 页

引导学生通过观察,类比.思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。 (二)研探新知 l.并集

—般地,由所有属于集合a或属于集合b的元素所组成的集合,称为集合a与b的并集.记作:a∪b.读作:a并b.其含义用符号表示为:

ab?{x|x?a,或x?b} 用venn图表示如下:

请同学们用并集运算符号表示问题1中a,b,c三者之间的关系.练习.检查和反馈

(1)设a={4,5,6,8),b={3,5,7,8),求a∪b. (2)设集合a a?{x|?1?x?2},集合b?{x|1?x?3},求ab.

让学生独立完成后,教师通过检查,进行反馈,并强调:

(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.(2)对于表示不等式解集的集合的运算,可借助数轴解题.2.交集

(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?

请同学们考察下面的问题,集合与集合c之间有什么关系? ①a?{2,4,6,8,10},b?{3,5,8,12},c?{8}; ②a?{x|x是国兴中学2004年9月入学的高一年级女同学}.b={x|x是国兴中学2004年9月入学的高一年级同学},c={x|x是国兴中学2004年9月入学的高一年级女同学}.

教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义; 一般地,由属于集合a且属于集合b的所有元素组成的集合,称为a与b的交集.

理科组 组?高中数学 no.姓名: 第 2 页 记作:a∩b.读作:a交b

其含义用符号表示为: ab?{x|x?a,且x?b}.

接着教师要求学生用venn图表示交集运算.(2)练习.检查和反馈

①设平面内直线l1上点的集合为l1,直线l2上点的集合为l2,试用集合的运算表示l1、l2的位置关系.

②学校里开运动会,设a={x|x是参加一百米跑的同学},b={x|x是参加二百米跑的同学},c={x|x是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算a∩b与a∩c的含义.

学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.

(三)学生自主学习,阅读理解

1.教师引导学生阅读教材第11~12页中有关补集的内容,并思考回答下例问题:

(1)什么叫全集?

(2)补集的含义是什么?用符号如何表示它的含义?用venn图又表示? (3)已知集合a?{x|3?x?8},求era.

(4)设s={x|x是至少有一组对边平行的四边形},a={x|x是平行四边形},b={x|x是菱形},c={x|x是矩形},求bc,痧ab,请学生回答上述问题,并及时给予评价.(四)归纳整理,整体认识

1.通过对集合的学习,同学对集合这种语言有什么感受? 2.并集.交集和补集这三种集合运算有什么区别? 理科组 组?高中数学 no.姓名: 第 3 页 s a.

在学生阅读.思考的过程中,教师作个别指导,待学生经过阅读和思考完后, (五)作业

1.课外思考:对于集合的基本运算,你能得出哪些运算规律? 2.请你举出现实生活中的一个实例,并说明其并集.交集和补集的现实含义.3.书面作业:教材第14页习题组第7题和b组第4题.

理科组 组?高中数学 no.姓名: 第 4 页

jk251.cOm扩展阅读

高中数学教案4篇


教师按照预先备好的教案课件内容给学生授课,教案课件准备的时刻已经到了。教案是保障教学质量的重要工具。最近,读了一篇网络文章关于“高中数学教案”的描述非常精彩,如果符合您的需求,为何不立即把本页加入收藏呢?

高中数学教案 篇1

教学目标

1.了解映射的概念,象与原象的概念,和一一映射的概念.

(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;

(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;

(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.

2.在概念形成过程中,培养学生的观察,比较和归纳的能力.

3.通过映射概念的学习,逐步提高学生对知识的探究能力.

教学建议

教材分析

(1)知识结构

映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

(2)重点,难点分析

本节的教学重点和难点是映射和一一映射概念的形成与认识.

①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;

映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.

教法建议

(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:

(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

教学设计方案

2.1映射

教学目标(1)了解映射的概念,象与原象及一一映射的概念.

(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.

(3)通过映射概念的学习,逐步提高学生的探究能力.

教学重点难点::映射概念的形成与认识.

教学用具:实物投影仪

教学方法:启发讨论式

教学过程:

一、引入

在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.

二、新课

在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)

我们今天要研究的是一类特殊的对应,特殊在什么地方呢?

提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?

让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)

提问2:能用自己的语言描述一下这几个对应的共性吗?

经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)

高中数学教案 篇2

教学目标:

1。了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2。会求一些简单函数的反函数。

3。在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4。进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:

求反函数的方法。

教学难点:

反函数的概念。

教学过程:

教学活动

设计意图一、创设情境,引入新课

1。复习提问

①函数的概念

②y=f(x)中各变量的意义

2。同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

3。板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究

1。问题组一:

(用投影给出函数与;与()的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2。问题组二:

(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(3)函数 ()的定义域与函数()的值域有什么关系?

3。渗透反函数的概念。

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

三、师生互动,归纳定义

1。(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

2。引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因。

3。两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

4。函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值 域

C

A

四、应用解题,总结步骤

1。(投影例题)

【例1】求下列函数的反函数

(1)y=3x—1 (2)y=x 1

【例2】求函数的反函数。

(教师板书例题过程后,由学生总结求反函数步骤。)

2。总结求函数反函数的步骤:

1° 由y=f(x)反解出x=f(y)。

2° 把x=f(y)中 x与y互换得。

3° 写出反函数的定义域。

(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

(2)的反函数是________。

(3)(x

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

五、巩固强化,评价反馈

1。已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

(1)y=—2x 3(xR) (2)y=—(xR,且x)

( 3 ) y=(xR,且x)

2。已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

六、作业

习题2。4 第1题,第2题

进一步巩固所学的知识。

教学设计说明

"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

高中数学教案 篇3

第一章:空间几何体

1.1.1柱、锥、台、球的结构特征

一、教学目标

1.知识与技能

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪

四、教学思路

(一)创设情景,揭示课题

1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知

1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2.棱柱的何两个平面都可以作为棱柱的底面吗?

3.课本P8,习题1.1A组第1题。

4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化

练习:课本P7练习1、2(1)(2)

课本P8习题1.1第2、3、4题

五、归纳整理

由学生整理学习了哪些内容

六、布置作业

课本P8练习题1.1B组第1题

课外练习课本P8习题1.1B组第2题

1.2.1空间几何体的三视图(1课时)

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本P12练习1、2P18习题1.2A组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

1.2.2空间几何体的直观图(1课时)

一、教学目标

1.知识与技能

(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法

学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观

(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

二、教学重点、难点

重点、难点:用斜二测画法画空间几何值的直观图。

三、学法与教学用具

1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规

四、教学思路

(一)创设情景,揭示课题

1.我们都学过画画,这节课我们画一物体:圆柱

把实物圆柱放在讲台上让学生画。

2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知

1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

练习反馈

根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2.例2,用斜二测画法画水平放置的圆的直观图

教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3.探求空间几何体的直观图的画法

(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

4.平行投影与中心投影

投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

5.巩固练习,课本P16练习1(1),2,3,4

三、归纳整理

学生回顾斜二测画法的关键与步骤

四、作业

1.书画作业,课本P17练习第5题

2.课外思考课本P16,探究(1)(2)

高中数学教案 篇4

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

教学难点:

分层抽样的步骤.

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分.

(2)确定比例:计算各层的个体数与总体的个体数的比.

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

四、数学运用

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

对这三件事,合适的抽样方法为()

A.分层抽样,分层抽样,简单随机抽样

B.系统抽样,系统抽样,简单随机抽样

C.分层抽样,简单随机抽样,简单随机抽样

D.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系.

高中数学完整教案模板


作为一无名无私奉献的教育工作者,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。写教案需要注意哪些格式呢?以下是小编为大家收集的高中数学备课教案模板,仅供参考,欢迎大家阅读。

高中数学完整教案模板 篇1

教学目标:

1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。

2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。

3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。

教学重点、难点:

1、 重点:指数函数的图像和性质

2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。

教学方法:

引导——发现教学法、比较法、讨论法

教学过程:

一、事例引入

T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的.函数。什么是函数?

S: --------

T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:

C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )

S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),

从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点题。

二、指数函数的定义

C:定义: 函数 y = a x (a>0且a≠1)叫做指数函数, x∈R.。

问题 1:为何要规定 a > 0 且 a ≠1?

S:(讨论)

C: (1)当 a

就没有意义;

(2)当 a=0时,a x 有时会没有意义,如x= - 2时,

(3)当 a = 1 时, 函数值 y 恒等于1,没有研究的必要。

巩固练习1:

下列函数哪一项是指数函数( )

A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x

高中数学完整教案模板 篇2

活动目标:

1、知道生病时不怕打针和吃药。

2、认识数字1-5,并能理解数字的实际意义。

活动准备:药瓶若干,任务单每人一张

活动过程:

一、讨论导入

1、说说生病了怎么办。

1、生病了怎么办

提问:你生病时有没有打过针呢?打针时你怕吗?

小结:打针是有一点点痛,但忍一忍病就会好了。

2、说说自己生病的时候

提问:生病的时候你吃过药吗?药是什么味道的?为什么要吃药?

小结:吃药能治病,让你的身体快快好起来,所以生病了就要去看病,不要怕吃药,要做个勇敢的孩子。

二、第一次买药

我们小朋友都是勇敢的孩子,生病了都能不怕打针吃药。可是,娃娃家的宝宝说:我生病了,可我怕吃药!那我们一起来做娃娃家的爸爸妈妈,帮宝宝去医院买药。

1、认识数字

提问:看看每个药瓶上都有数字宝宝,请你根据上面的数字帮宝宝买药。

2、师生共同检验

小结:宝宝说谢谢爸爸妈妈帮我们买药。

三、第二次买药

宝宝说我们第二天吃的药没有了,请爸爸妈妈再帮忙到医院买些药。

1、请你根据医生开的单子帮宝宝领药。

2、请3名幼儿做医生,根据幼儿的任务单给相应的药,幼儿互相检查。

3、请你根据宝宝的要求,把药送给相应的宝宝吃。

小结:生病了,只有吃药才能更快的使病好起来。

高中数学完整教案模板 篇3

一、教学目标

1、训练正确划找课文的中心句,领会文章的中心思想。

2、知道语文是基础的基础,增强学好语文的自觉性。

3、认读生字词,理解词语在句子中的意思。

二、重点与难点

重点:正确划出文章中心句,体会课文的中心思想。

难点:划出文章的中心句,增强学好语文的自觉性。

三、教学准备

预习课文,读通课文,读准生字,理解书后第4题的词语大意,划出不懂的地方。

四、教学时间 2课时

五、教学过程:

第1课时

(一)教学目标

1、读通课文,学会生字词。

2、初知大意,理清各自然段意思。

(二)教学过程

1、问题导入。从班级中数学尖子对语文学习不重视造成的问题导入揭题。

2、自学课文。

(1)生字词学习

(2)通读课文,划出问题。

3、初知大意,试划中心句。

初步青写这篇课文主要讲什么?

课文的中心句是哪句?(学生试划有可能不统一,出现好多句,可安排延时反馈。)

复习回顾:

什么叫中心句?为什么要找中心句?

怎样找中心句?第一单元三课的中心句各有什么特点?

(1)出现在开头,如《别了,我爱的中国》。

(2)出现在文章中间,如《一夜的工作》。

(3)出现在文章结尾,如《养花》。

(4)中心句反复出现,如《别了,我爱的中国》。

4、自读课文,概括自然段意思。

5、作业练习。

(1)做书后第4题

(2)摘录书上反问句并改成陈述句。

第2课时

(一)教学目标

1、正确划出中心句,体会中心思想,增强学好语文的自觉性。

2、会用“无论……都……”“非……不可”“不仅……还……”等句式写句子。

(二)教学过程

1、揭题定向。

2、细读讨论。

(1)灯片出示课后第3题句子。

这句讲什么?什么叫“充分认识”它们之间的关系?你认为怎样认识才算充分认识了?如果不充分认识有什么害处?

(2)第2、3自然段举了哪些例子证明没有“充分认识”学习语文和数学关系的害处?苏老是数学家,为什么却讲“若语文不及格,数学再好也不能录取”?你是怎样认识这个关系的?苏老在第4自然段是怎么讲这个关系的?

(3)哪些证明苏老是体会到学好语文的重要的?

(4)苏老从自己的亲身体会,从没学好语文的反面例子讲,讲来讲去目的是什么?

3、重划中心句。

再划中心句,讨论第1课时试划时的分歧,说清为什么应将“我希望大家在学好数学的同时,也要把语文学好,这对青年人的成长一定有好处的。”划出中心句。

在说理中加深对中心句特征的认识,体会文章的中心思想。

4、师生总结。

这课的中心句和哪一课的相类似?在划中心句的两次变化中,有什么新的收获?

用“无论……都……”“非……不可”“不仅……还……”等句式(可用一句,也可用两句连用)说说学好语文的重要性。

5、延时作业。

任选一题作业(写200字左右的片断)。

(1)我吃过语文水平不高的苦头。

(2)苏爷爷,您放心吧!

高中数学完整教案模板 篇4

教材分析:

三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

教案背景:

通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.

教学方法:

以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

教学目标:

借助单位圆探究诱导公式。

能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

教学重点:

诱导公式(三)的推导及应用。

教学难点:

诱导公式的应用。

教学手段:

多媒体。

教学情景设计:

一.复习回顾:

1. 诱导公式(一)(二)。

2. 角 (终边在一条直线上)

3. 思考:下列一组角有什么特征?( )能否用式子来表示?

二.新课:

已知 由

可知

而 (课件演示,学生发现)

所以

于是可得: (三)

设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

由公式(一)(三)可以看出,角 角 相等。即:

.

公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

设计意图:结合学过的公式(一)(二),发现特点,总结公式。

1. 练习

(1)

设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)

三.例题

例3:求下列各三角函数值:

(1)

(2)

(3)

(4)

例4:化简

设计意图:利用公式解决问题。

练习:

(1)

(2) (学生板演,师生点评)

设计意图:观察公式特点,选择公式解决问题。

四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

五.课后作业:课后练习A、B组

六.课后反思与交流

很荣幸大家来听我的课,通过这课,我学习到如下的东西:

1.要认真的研读新课标,对教学的目标,重难点把握要到位

2.注意板书设计,注重细节的东西,语速需要改正

3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作

4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣

5.上课的生动化,形象化需要加强

听课者评价:

1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。

2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。

3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。

4.评议者:引导学生通过网络进行探究。

建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。

( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好

( 2)这样子的'教学可以提高上课效率,让学生更多的时间思考

( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用

( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来

( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少

( 6)让学生多探究,课堂会更热闹

( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习

( 8)教学模式相对简单重复

( 9)思路较为清晰,规范化的推理

高中数学完整教案模板 篇5

教学目标:

1、使学生了解角的形成,理解角的概念掌握角的各种表示法;

2、通过观察、操作培养学生的观察能力和动手操作能力。

3、使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化

4、采用自学与小组合作学习相结合的方法,培养学生主动参与、勇于探究的精神。

教学重点:

理解角的概念,掌握角的三种表示方法

教学难点:

掌握度、分、秒的进位制, ,会作度、分、秒间的单位互化

教学手段:

教具:电脑课件、实物投影、量角器

学具:量角器需测量的角

教学过程:

一、建立角的概念

(一)引入角(利用课件演示)

1、从生活中引入

提问:

A、以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗?

B、在我们的生活当中存在着许许多多的角。一起看一看。谁能从这些常用的物品中找出角?

2、从射线引入

提问:

A、昨天我们认识了射线,想从一点可以引出多少条射线?

B、如果从一点出发任意取两条射线,那出现的是什么图形?

C、哪两条射线可以组成一个角?谁来指一指。

(二)认识角,总结角的定义

3、 过渡:角是怎么形成的呢?一起看

(1)、演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线。

提问:观察从这点引出了几条射线?此时所组成的图形是什么图形?

(2)、判断下列哪些图形是角。

(√) (×) (√) (×) (√)

为何第二幅和第四幅图形不是角?(学生回答)

谁能用自己的话来概括一下怎样组成的图形叫做角?

总结:有公共端点的两条射线所组成的图形叫做角(angle)

角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点0按逆时针方向旋转到OB所形成的我们把OA叫做角的始边,OB叫做角的终边.

B

0 A

4、认识角的各部分名称,明确顶点、边的作用

(1)观看角的图形提问:这个点叫什么?这两条射线叫什么?(学生边说师边标名称)

(2)角可以画在本上、黑板上,那角的.位置是由谁决定的?

(3)顶点可以确定角的位置,从顶点引出的两条边可以组成一个角。

5、学会用符号表示角

提问:那么,角的符号是什么?该怎么写,怎么读的呢?(电脑显示)

(1)可以标上三个大写字母,写作:∠ABC或∠CBA,读作:角ABC或角CBA.

(2)观察这两种方法,有什么特点?(字母B都在中间)

(3)所以,在只有一个角的时候,我们还可以写作: ∠B,读作:角B

(4)为了方便,有时我们还可以标上数字,写作∠1,读作:角1

(5)注:区别 “∠”和“

6、强调角的大小与两边张开的程度有关,与两条边的长短无关。

二、 角的度量

1、学习角的度量

(1)教学生认识量角器

(2) 认识了量角器,那怎样使用它去测量角的度数呢?这部分知识请同学们合作学习。

提出要求:小组合作边学习测量方法边尝试测量

第一个角,想想有几种方法?

1、要求合作学习探究、测量。

2、反馈汇报:学生边演示边复述过程

3、教师利用课件演示正确的操作过程,纠正学生中存在的问题。

4、归纳概括测量方法(两重合一对)

(1)用量角器的中心点与角的顶点重合

(2)零刻度线与角的一边重合(可与内零度刻度线重合;也可与外零度刻度线重合)

(3)另一条边所对的角的度数,就是这个角的度数。

5、小结:同一个角无论是用内刻度量角,还是用外刻度量角,结果都一样。

6、独立练习测量角的度数(书做一做中第一题1,3与第二题)

(1) 独立测量,师注意查看学生中存在的问题。

(2) 课件演示纠正问题

三、度、分、秒的进位制及这些单位间的互化

为了更精细地度量角,我们引入更小的角度单位:分、秒.把1°的角等分成60份,每份叫做1分记作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒记作1″.

1°=60′,1′=60″;

1′=( )°,1″=( )′.

例1 将57.32°用度、分、秒表示.

解:先把0.32°化为分,

0.32°=60′×0.32=19.2′.

再把0.2′化为秒,

0.2′=60″×0.2=12″.

所以 57.32″=57°19′12″.

例2 把10°6′36″用度表示.

解:先把36″化为分,

36″=( )′×36=0.6′

6′+0.6′=6.6′.

再把6.6′化为度,

6.6′=( )°×6.6=0.11°.

所以 10°6′36″=10.11°.

四、巩固练习

课本P122练习

五、总结:请大家回忆一下,今天都学了那些知识,通过学习你想说些什么?

六、作业:课本P123 3、4.(1)(3)、5.(2)(4)

高中数学完整教案模板 篇6

教学目的:

知识目标:

了解在柱坐标系、球坐标系中刻画空间中点的位置的方法

能力目标:

了解柱坐标、球坐标与直角坐标之间的变换公式。

德育目标:

通过观察、探索、发现的创造性过程,培养创新意识。

教学重点:

体会与空间直角坐标系中刻画空间点的位置的方法的区别和联系

教学难点:

利用它们进行简单的数学应用

授课类型:

新授课

教学模式:

启发、诱导发现教学.

教具:

多媒体、实物投影仪

教学过程:

一、复习引入:

情境:我们用三个数据来确定卫星的位置,即卫星到地球中心的距离、经度、纬度。

问题:如何在空间里确定点的位置?有哪些方法?

学生回顾

在空间直角坐标系中刻画点的位置的方法_科_网]

极坐标的意义以及极坐标与直角坐标的互化原理

二、讲解新课:

1、球坐标系

设P是空间任意一点,在oxy平面的射影为Q,连接OP,记|OP|=,OP与OZ轴正向所夹的角为,P在oxy平面的射影为Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为,点P的位置可以用有序数组表示,我们把建立上述对应关系的坐标系叫球坐标系(或空间极坐标系)

有序数组叫做点P的球坐标,其中≥0,0≤≤,0≤<2。

空间点P的直角坐标与球坐标之间的变换关系为:

2、柱坐标系

设P是空间任意一点,在oxy平面的射影为Q,用(ρ,θ)(ρ≥0,0≤θ

平面oxy上的极坐标,点P的位置可用有序数组(ρ,θ,Z)表示把建立上述对应关系的坐标系叫做柱坐标系

有序数组(ρ,θ,Z)叫点P的柱坐标,其中ρ≥0,0≤θ

空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,Z)之间的变换关系为:

3、数学应用

例1建立适当的球坐标系,表示棱长为1的正方体的顶点.

变式训练

建立适当的.柱坐标系,表示棱长为1的正方体的顶点.

例2.将点M的球坐标化为直角坐标.

变式训练

1.将点M的直角坐标化为球坐标.

2.将点M的柱坐标化为直角坐标.

3.在直角坐标系中点>0)的球坐标是什么?

例3.球坐标满足方程r=3的点所构成的图形是什么?并将此方程化为直角坐标方程.

变式训练

标满足方程=2的点所构成的图形是什么?

例4.已知点M的柱坐标为点N的球坐标为求线段MN的长度.

思考:

在球坐标系中,集合表示的图形的体积为多少?

三、巩固与练习

四、小 结:本节课学习了以下内容:

1.球坐标系的作用与规则;

2.柱坐标系的作用与规则。

五、课后作业:教材P15页12,13,14,15,16

六、课后反思:本节内容与平面直角坐标和极坐标结合起来,学生容易理解。但以后少用,可能会遗忘很快。需要定期调回学生的记忆。

高中数学完整教案模板 篇7

重点难点教学:

1.正确理解映射的概念;

2.函数相等的两个条件;

3.求函数的定义域和值域。

一.教学过程:

1. 使学生熟练掌握函数的概念和映射的定义;

2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。

二.教学内容:

1.函数的定义

设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:

(),yf_A

其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}f_A?叫值域(range)。显然,值域是集合B的子集。

注意:

① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

2.构成函数的三要素 定义域、对应关系和值域。

3、映射的定义

设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。

4. 区间及写法:

设a、b是两个实数,且a

(1) 满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];

(2) 满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);

5.函数的三种表示方法 ①解析法 ②列表法 ③图像法

高中数学完整教案模板 篇8

第四课时:圆锥曲线参数方程的应用

一、教学目标:

知识与技能:利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题

过程与方法:选择适当的参数方程求最值。

情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:教学重点:选择适当的参数方程求最值。

教学难点:正确使用参数式来求解最值问题

三、教学模式:讲练结合,探析归纳

四、教学过程:

(一)、复习引入:

通过参数简明地表示曲线上任一点坐标将解析几何中以计算问题化为三角问题,从而运用三角性质及变换公式帮助求解诸如最值,参数取值范围等问题。

(二)、讲解新课:

例1、双曲线的两焦点坐标是。

答案:(0,-4),(0,4)。学生练习。

例2、方程(t为参数)的图形是双曲线右支。

学生练习,教师准对问题讲评。反思归纳:判断曲线形状的方法。

例3、设P是椭圆在第一象限部分的弧AB上的一点,求使四边形OAPB的面积最大的点P的坐标。

分析:本题所求的最值可以有几个转化方向,即转化为求的最大值或者求点P到AB的最大距离,或者求四边形OAPB的最大值。

学生练习,教师准对问题讲评。【=时四边形OAPB的最大值=6,此时点P为(3,2)。】

(三)、巩固训练

1、直线与圆相切,那么直线的倾斜角为(A)

A.或B.或C.或D.或

2、椭圆()与轴正向交于点A,若这个椭圆上存在点P,使OP⊥AP,(O为原点),求离心率的范围。

3、抛物线的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三角形的周长。

4、设P为等轴双曲线上的一点,,为两个焦点,证明

5、求直线与圆的交点坐标。

解:把直线的'参数方程代入圆的方程,得(1+t)2+(1-t)2=4,得t=±1,分别代入直线方程,得交点为(0,2)和(2,0)。

(三)、小结:本节课我们利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题,选择适当的参数方程正确使用参数式来求解最值问题,要求理解和掌握求解方法。

(四)、作业:

练习:在抛物线的顶点,引两互相垂直的两条弦OA,OB,求顶点O在AB上射影H的轨迹方程。

五、教学反思:

高中数学完整教案模板 篇9

教学内容:

平行线的认识

教学目标:

1、使学生初步,会判断同一平面上两条直线是否平行。

2、使学生知道两条平行线之间的距离相等,并会测量平行线之间的距离。

3、使学生会用两块三角板或一根直尺、一块三角板正确地画平行线。

教学重点:

认识平行线的特征,会用两块三角板或一根直尺、一块三角板正确地画平行线。教学难点:画平行线。

教学过程

(一)引入新课:

(1)什么叫垂线?相互垂直说明两条直线的位置怎样?

(2)相交的两条直线是不是一定垂直?

(3)二条直线除相交外,还有一种是什么?生活中有哪些可以看成是永不相交?

(4)今天我们来学习这种线。(出示课题:平行线)

(二)分析、讨论,得出结论:

1、从上面的例中,你能知道什么是平行线吗?学生:两条永不相交的直线叫做平行线。

2、这句话中完整吗?谁能提出反对意见?补充:在同一平面内。

3、平行线也可以叫相互平行。怎样用相互平行来描述下面两条线呢?AB

4、刚才我们说火车轨道可以看成平行线,因此要求枕木怎样才能符合要求?为什么一定要求枕木必须长度相等?你看到过平行线吗?请举例说明。

5、根据这个事实,你认为平行线应具有什么特征?结论:两条平行线之间的(距离相等)。

6、大家讨论怎样画一条直线的平行线?

(1)画两条长度一样的垂线,再连接起来。

(2)还有其它方法吗?看书本P63自学这几种方法。

(三)实践应用,形成经验:

(1)判断下列各组线是否是平行线:(图)P64 1

(2)下列各组图中有几组是平行线:P64 2

(3)画平行线

(4)画这些直线的平行线P64 4

(5)过一点画这条直线的平行线:P64 5

(五)总结提高:

1、什么叫平行线。

2、怎样画平行线。

(六)作业:作业本

【教案模板】高中数学教案范本


充分准备一份教案是一名优秀教师的职责所在,我们可以通过教案来进行更好的教学,每一位教师都要慎重考虑教案的设计,你是否在烦恼教案怎么写呢?可以看看本站收集的《【教案模板】高中数学教案范本》,希望能够为您提供参考。

教材分析:

三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

教案背景:

通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.

教学方法:

以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

教学目标:

借助单位圆探究诱导公式。

能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

教学重点:

诱导公式(三)的推导及应用。

教学难点:

诱导公式的应用。

教学手段:

多媒体。

教学情景设计:

一.复习回顾:

1. 诱导公式(一)(二)。

2. 角 (终边在一条直线上)

3. 思考:下列一组角有什么特征?( )能否用式子来表示?

二.新课:

已知 由

可知

而 (课件演示,学生发现)

所以

于是可得: (三)

设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

由公式(一)(三)可以看出,角 角 相等。即:

.

公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

设计意图:结合学过的公式(一)(二),发现特点,总结公式。

1. 练习

(1)

设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)

三.例题

例3:求下列各三角函数值:

(1)

(2)

(3)

(4)

例4:化简

设计意图:利用公式解决问题。

练习:

(1)

(2) (学生板演,师生点评)

设计意图:观察公式特点,选择公式解决问题。

四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

五.课后作业:课后练习A、B组

六.课后反思与交流

很荣幸大家来听我的课,通过这课,我学习到如下的东西:

1.要认真的研读新课标,对教学的目标,重难点把握要到位

2.注意板书设计,注重细节的东西,语速需要改正

3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作

4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣

5.上课的生动化,形象化需要加强

听课者评价:

1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。

2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。

3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。

4.评议者:引导学生通过网络进行探究。

建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。

( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好

( 2)这样子的教学可以提高上课效率,让学生更多的时间思考

( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用

( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来

( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少

( 6)让学生多探究,课堂会更热闹

( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习

( 8)教学模式相对简单重复

( 9)思路较为清晰,规范化的推理

高中教资语文教案集锦


老师会根据课本中的主要教学内容整理成教案课件,需要我们认真写好每一份教案课件。教案是促进学生素质全面提升的有效方式,如何做好教案课件的编写呢?必看的“高中教资语文教案”相关文章让你更了解,相信在本文中您会有深刻的收获和收获!

高中教资语文教案 篇1

《小狗包弟》

一、学习目标

1、阅读文本,理解作者对小狗包弟的感情变化及其原因。

2、品味文本,感悟作者敢讲真话、敢于自责的精神。

【在以往的教学中,我们习惯于把目标叫作“教学目标”。新课程强调教学过程是师生交往、共同学习的互动过程,我们更应关注学生的学。因此,我们把目标表述定位为“学习目标”。】

二、学习方法

自主学习(课外搜集关于“_”的资料,课上自主思考、主动探究、解决问题。)

合作研讨(同学之间、小组之间交流讨论,共同研读文本。)

三、学时安排

1课时

四、学习过程

(一)交流导入

采用交流感染的方法导入新课学习。先让学生结合课前资料的搜集,介绍自己所知道的“_”,在此基础上,教师再带有感情地补充介绍,帮助学生进入情境:

这场运动堪称“十年浩劫”,多少无辜的人惨遭杀害,多少千年古迹毁于一旦。那是一个非人的疯狂的年代,亲友疏远,人情殆尽。作家秦牧曾这样记述“_”期间在广州街头的所见:“人们咬着匕首,抬着尸体_。”“一天早上,当我走回报社的时候,一路看到在树上吊尸的景象。那些尸体,大多是被打破头颅、鲜血迸流的。在一德路到人民中路短短一段路程中,我竟见到八具这样的尸体。”可见,这是一个多么_的年代,人的生命贱如草芥、一钱不值,人性被扭曲变形,就连无辜的对人忠诚亲近的小狗也难逃一劫。让我们一起走进《小狗包弟》,共同感受那段历史,感受作者巴金对往事的反思与追忆。

(出示“学习目标”)

【由于学生对“_”这段历史普遍不甚了解,更缺乏切身的感受,这对于深入理解“包弟”经历和作者感情都有一定影响,因此,让学生在课前进行资料搜集整理。这也是自主学习能力的培养。】

(二)整体感知

1、自由地放声朗读课文,整体感知课文内容,理清作者思想感情变化的线索。

2、小组合作讨论。

(1)小狗包弟有过哪些经历?

(2)随着包弟经历的发展,“我”的思想感情有什么变化?

讨论交流后,请小组代表发言,教师总结明确:

包弟的经历“我”的感情

被转送给“我”高兴

||

与“我们”亲密相处快乐

||

被追杀忧虑

||

被解剖歉疚

(三)主体研读

1、教师导学。

对于一篇文章,在整体感知后,重要的是对其精彩部分进行研读,这样才能对文章所表达的深刻内涵有更深入的体会。

请学生找出自己在阅读中感触最深的一两处文字做圈点批注,给大家谈谈自己的感受,有感情地朗读。

2、自主研读。

3、探讨交流。

【鼓励学生推荐自己喜欢的文段,谈出自己个性化的理解,培养自主探究能力和精神。并在此过程中,注意做好朗读评点,引导学生抓住重点词句进行揣摩,深入研读文本而把握思想。】

示例:

(1)以前看见包弟作揖,我就想笑,这些天我在机关学习后回家,包弟向我作揖讨东西吃,我却暗暗流泪。

(一“笑”一“流泪”,前后形成鲜明对比,更加体现了作者内心的痛苦。朗读时,要体现出无助、痛苦的情感。)

(2)即使在“说谎成风”的时期,人对自己也不会讲假话,何况在今天,我不怕大家嘲笑,我要说:我怀念包弟,我想向它表示歉意。

(作者于质朴简洁的语言中,道出了自己的真情,毫无保留,毫无掩饰。这体现了他勇于解剖自己、敢于讲出真话的精神。朗读时,“不怕”一词要重读,要表现出坚决、无畏的态度;“表示歉意”要读出深深自责的情感。)

……

(四)引导探究

提出问题,组织研讨,感悟作者敢于讲真话抒真情的精神,理解文章主旨。

以小组为单位合作探究,教师参与讨论。

1、你认为巴金是怎样的一个人?

2、作者为什么要以一条小狗来反映“_”的现实?

各小组选派代表发言,教师总结:

“_”中,巴金也是受害者之一,“_”结束后,他勇于反省,对包弟表示深深的歉意和忏悔。他严于解剖自己,敢于讲真话,为人真诚正直,是一个值得人们敬佩的人。

以一条小狗来反映社会现实,这样写一来是提醒我们,小狗虽小,却也是一条生命,善良的生命应该获得生存权。第二,写一条小狗的遭遇,反映连一条狗都不能逃过劫难,更能体现“_”时代任何生命都不能免受侵害的现实。这也体现出了“以小见大”的写作特点。另外,包弟的遭遇和作者的那一段历史是分不开的,写包弟也是为了表现自己的心灵历程。

(五)随机拓展

1、学生提出值得探讨的问题,全班讨论。

【让学生自主质疑,再提出来全班讨论,培养发现问题、解决问题能力。】

2、布置课外阅读巴金《随想录》。

【扩大阅读量,有助于更深入地理解巴金的思想。】

(六)及时反思

1、请同学们谈谈学了这节课后自己有什么收获。

【通过反思,使学生巩固对本节课的认识,也能培养学生积极反思总结的良好学习习惯。

高中教资语文教案 篇2

教学目的:

1.学习本文作者关注社会、倡导文明节约的精神;

2.学习巩固时事评论的写法;

3. 学习巩固概括段意的方法。

教学重点、难点:

1.重点:掌握时事评论的写法。

2.难点: 概括段意的方法。

教学时数:

一课时

教学步骤:

一、字词:

酽酽 yàn (味浓) 阖hé家(全家) 眼花缭乱匪夷所思(指言谈行动超出常情,不是一般人所能想象的。夷:平常)奢shē华(花费大量钱财摆门面) 令人咋zé舌(形容吃惊害怕,说不出话) 不敢问津(不敢探询渡口,比喻不敢探询价格和情况) 流风(正在流行的思潮、流行方式等) 竞豪赛奢(比阔比有钱)

二、课文研讨:

(一)研读课文,全文的中心论点是什么?

——即标题:月饼消费要讲文明。

(二)分析作者是怎样围绕中心论点展开论述的? (给全文划分层次,并概括层次大意)

——第一部分(1-4自然段): 摆出月饼消费中种种不文明的现象(②分层归纳法)

第二部分: 分析这一现象,论证它不能看作是正常的消费。(④缩句法)

第三部分:结论。强调要进行勤俭持家和勤俭建国的教育及其意义。(②分层归纳法)

(三)课文的逻辑思路是什么?(练习一)

提出问题(第一部分:摆出月饼消费中种种不文明的现象)──分析问题(“第二部分: 论证它的错误性──解决问题 (第三部分:结论,指出怎样去作)

(四)第一部分中摆出月饼消费中哪些不文明的现象?

——包装上,形式大于内容,而且造成浪费;用途上,偏离了人们一般的礼尚往来,成为一些人拉关系的“敲门砖”。

(五)学生概括本文的中心思想:

——本文对月饼消费中种种不文明的现象提出批评,指出应勤俭节约,要进行勤俭持家和勤俭建国的教育,这样我们民族才能拥有远大前程。

(六)这篇课文在论据的搜集和使用上有哪些特点?(练习三)

1、围绕一个月饼消费问题,搜集社会上的大量材料,增强了说服力。

2、集中在第一部分分类使用,更显得问题严重。

三、活动练习:

1、抄写生字词。

2、按第2页的《活动指引》开展活动,写大作文。

【教学总结】

1、要关注社会,关注生活,进行原发性的生活思考,敏锐地捕捉话题;

2、围绕论点展开论述,要灵活运用各种论证方法,如摆事实(要准备典型、新颖、有说服力的论据),讲道理,做到以理服人;

3、要安排好文章的结构,让读者读的时候能够理出一个明确的框架。

五.作业:

针对学生当中的考试作弊现象,参照课文写法,写一篇600字以上的时评。

提示:先提出自己的论点:“反对作弊”,

然后具体分析:“作弊的表现、危害、实质”,

最后解决问题:“怎样克服作弊现象”。

高中教资语文教案 篇3

【教学目的】

体会诗歌创造的朦胧迷离,低回动人的意境。

【教学设想】

把握中心意象,深入体会诗歌情感。

【教学步骤】

一、导入:

今年夏天有一个很明显的天气特征,是什么?

生答:“多雨!”

一到阴雨的天气,天是湿漉漉的,地是湿漉漉的,让我们的心情不由得也有几分湿漉漉的。雨总是带给我们一些莫名的忧郁、无可名状的哀伤,但这种微妙的情绪又很难准确把握,用语言传神地表达,“雨巷诗人”戴望舒非常成功地做到了这一点,下面,就让我们共同走进>。

二、作者简介

“雨巷诗人”的大名我们早已听过,有谁知道作者的基本情况?

根据学生回答总结:戴望舒生于杭州,望舒是他给自己起的笔名,出自屈原的《离骚》:”前望舒使先驱兮,后飞廉使奔属。”望舒是神话传说中替月亮驾车的天神,纯洁而温柔,多情又潇洒。

戴望舒出生于3月5日,照西方星象学的说法,属于双鱼座。双鱼座的人浪漫柔情,以爱情为生命的养分,意志薄弱,喜好幻想,逃避现实,优柔寡断。戴望舒就是典型的双鱼座性格。

三,诗歌赏析:

1、有这样温柔多情的笔名,又有这样浪漫柔和的性情,戴望舒笔下流淌出来的诗句也必然是细腻多情的,下面就让我们共同欣赏这首《雨巷》。

师配乐朗诵。

2、欣赏完了这首诗,我们不约而同地感受到了《雨巷》的魅力,那麽,你们觉得这首诗美在何处?

有好几个男生脱口而出”丁香一样的姑娘美!”(生笑)

这个姑娘美在何处?她长什麽模样,穿什麽衣服?(生安静)

无从知道,那何以见得这姑娘的美?

3、从文本中,我们只知道她是一个”丁香一样的姑娘”。(板书:丁香)丁香是什麽样的呢,有同学见过吗(展示丁香图片)?

丁香,又名紫丁香。春季开花,花紫色,密集成圆锥花序。有淡雅细沉的香气。因为它的高洁与冷艳,文人墨客把它作为哀婉、愁怨、惆怅的象征反复吟咏,古来已久。唐代诗人李商隐有诗曰:“芭蕉不展丁香结,同向春风各自愁。”唐中主李璟词曰:“青鸟不传云外信,丁香空结雨中愁。”可见,丁香在古典文学当中是个“愁品”,是柔弱和哀愁的象征物。那麽,丁香一样的姑娘会是个什麽样子的姑娘呢?

生1:应该是一个纤弱的、优雅的、楚楚动人的、惹人爱怜的小家碧玉。

生2:应该是忧郁的,你只要多看一眼就忍不住被吸引的姑娘。

同学的描述很形象生动,这样一个动人的姑娘,我们忍不住都想看一看她那俏丽的脸庞,看一看她到底长什麽模样呢?

我们看不到,就连诗中的我也看不到。因为,姑娘打着一把油纸伞。我想请同学们注意这把油纸伞。(板书:油纸伞)大家最早听说油纸伞是在哪个故事里?

生齐答:《白蛇传》。

油纸伞出现在白娘子初遇许仙的旖旎传说里,出现在丹青绘就的江南烟雨中,出现在少女玲珑的舞蹈中,也出现在歌曲动听的旋律中,不知不觉当中,油纸伞已经定格为美的背景、美的点缀。现在,这把油纸伞出现在丁香姑娘的肩头,我们单只看到伞,已经觉得它很美,那麽它点缀的姑娘呢?

生:肯定更美!

油纸伞的出现是有条件的,这个条件就是雨——春雨。大家熟悉的朱自清先生的《春》中是怎样描绘春雨的?

生:象牛毛、象花针、象细丝,细细的、密密的。

宋人秦观又在词中这样描绘春雨:“自在飞花轻似梦,无边丝雨细如愁。”春雨也是一个惹人闲愁几许的经典意象。(板书:春雨)而《雨巷》则把文人对雨的喜爱推向了极至:象一幅微微泛黄的旧水墨画,自在飞花、无边丝雨之中,一个长发披肩的女子,从雨巷中袅袅走来,携着一缕花的幽香,载着一怀嫣然极致的心事,有叹息,但不哀伤,有顾盼,但不凄然。

4、至此,丁香姑娘已经成为抒情主人公和我们读者共同的期盼和向往,那麽,我们是不是可以说,这个美好的令人向往的姑娘就是诗人爱情向往的象征?

生回答,师归纳总结:既是又不是。丁香姑娘可能是诗人渴望而终未能得的爱情,可能是青年时未酬的壮志,可能是年少时青涩的一个愿望,也可能只是对曾经偶遇的少女倩影的空自怀恋,所以,丁香姑娘是一切转瞬即逝的美好事物的象征,美好回忆的寄托。

诗人只是通过她来表达这种对于美好事物的飘忽短暂、转瞬即逝的痛惜和追忆,念念不忘却又无从把握,只剩下淅沥春雨中的深深追忆,只剩下物是人非之后的无可奈何。尽管全诗没有一句直白的情语,但情语却已洇染在委婉的景语之中了。同学们总结一下,诗歌表达了怎样的情感?

生回答,师归纳总结:对丁香姑娘的期盼,对眼前现状的迷茫和对往昔之美的深深追忆。

四、延伸拓展:

其实,对美的追忆和留恋是人类共同的情结,古今中外,概莫如此。同学们能否联系一下自己的阅读和欣赏的经验,谈谈自己的理解?

学生踊跃发言:

生1:李商隐的《锦瑟》中有“此情可待成追忆,只是当时已惘然。”(教师点拨)这段感情早已经逝去了,只剩下当事人面对着多少年后的物是人非来深深的怀恋,然而无论心里有多少痛惜,曾有的深情却也无可挽回了。当初怎麽就不知道珍惜呢?

生2:王菲的歌曲《沧海蝴蝶》中有一句歌词特别动人,“给我一刹那,对你宠爱;给我一辈子,送你离开。”(教师点拨)两个人的交会只有一刹那,于是两个人的相互温暖也只在一刹那。短暂的宠爱过后,用漫长漫长的一生来回味这一刹那,珍藏这一刹那,于是,刹那即永恒。

五、布置作业:

1、熟读成诵,在反复诵读中深入体会作者的感情。

2、联系自己的情感体验,写一篇随笔,写下自己对某件往事、某人某物的回忆。

高中教资语文教案 篇4

※ 教学目的:

1.学习调查报告的写法;

2.学习调查问卷的设计;

3.形成正确的青少年消费观。

※教学重点、难点:

1.重点: 调查报告的写法。

2.难点: 调查问卷的设计。

※教学时数:

2课时

※教学步骤:

一、字词

实惠(实际的好处) 认同度(对某一问题认识相同的比率) 攒zǎn钱(积聚钱) 弘hóng扬(发扬光大)

二、课文研讨:

(一)分组集体朗读课文。

(二)自学第20页《调查的开始和报告的写作》,结合本课回答下列问题:

1、调查与报告之间有何关系?

——《调查报告》是“七分调查,三分报告”。“调查”是基础,没 有调查就没有发言权;“报告”是反映“调查”成果的“发言形式”。

2、本课的调查背景如何?

——见第15页注释①

3、调查有哪些方式?各有何特点?本课采取了哪种方式?

——调查有表格调查、问卷调查、访问调查、电话调查、文案调查、实地调查等。表格调查和问卷调查较为便捷,访问调查真实可信,电话调查省时省力,文案调查易于操作,实地调查现场感强。

本课是问卷调查。

4、对调查的选题有何要求?本课是否符合这一要求?

——应以对当前社会生活和社会发展造成影响的某些问题作为选题。本课选题既有社会意义,又有时代气氛,符合要求。

5、设计调查对象有何要求?本课设计是否合理?(参阅《调查问卷的设计》一文第4自然段)

——见该文第4自然段。

6、本课是如何对资料信息进行整理分析的?

——见第21页第5自然段。

7、调查报告的双行标题中的正标题和副标题各点明什么:①内容;②对象;③主题;④人物。

——正标题点明了③主题;副标题点明了①内容。

8、调查报告的结构形式有哪些?本课采用了什么形式?

——见第22页表格。本课的结构形式是:

背景材料(注释①)——结论——调查结果及分析——总结。

三、运用:

本课调查结果及分析有四部分内容,全班分四组各根据一个部分的内容绘成图表。然后派代表在黑板上画出来。(结合学习《调查问卷的设计》一文)

四、活动练习:

1、抄写生字词。

2、大作文:对过去所做研究性学习课题的调查报告,进行整理,写成一份调查报告。

【教学总结】

诗人为少男少女们歌唱,这里的少男少女,其实不是实指,而是代表着一种新的生活、新的希望和新的力量,所以诗人实际上是为新世界歌唱。为此,诗的第一节就连用四个“歌唱”,“早晨”、“希望”、“未来的事物”和“正在生长的力量”,正是对于“少男少女”含义的注脚。所以,也可以理解为“少男少女”就是“早晨”、“希望”、“未来的事物”和“正在生长的力量”,这四种事物都有一个共同的特点:积极向上,给人希望。这首诗以丰富的想像,新奇的比喻,表达诗人热爱青少年,热爱新生活,勇于塑造新我的思想感情;语言精炼生动、刚健清新;节奏感强,押韵讲究,既有第一节一气贯注的排比,也有第二、三节的整散兼顾的诗行。这是一首艺术性很高的好诗。

高中教资语文教案 篇5

教学目标

1.了解沈从文描绘的湘西风土人情。

2.感受沈从文小说的语言特色。

3.走进作者构筑的善与美的理想世界,体会人性之美。

重、难点

情景交融的环境描写和细致含蓄的心理刻画。

课时安排2课时

教学过程

一、导入新课

1.简介作者沈从文

沈从文一生共出版了《石子船》、《从文子集》等30多种短集小说集和《边城》,《长河》等6部中长篇小说,沈从文是具有特殊意义的乡村世界的主要表现者和反思者,他认为“美在生命”,虽身处于虚伪、自私和冷漠的都市,却醉心于人性之美,他说:“这世界或有在沙基或水面上建造崇楼杰阁的人,那可不是我,我只想造希腊小庙。选小地作基础,用坚硬石头堆砌它。精致,结实、对称,形体虽小而不纤巧,是我理想的建筑,这庙供奉的是“人性”(《习作选集代序》)。

沈从文的创作风格趋向浪漫主义,他要求小说的诗意效果,融写实、纪梦、象征于一体,语言格调古朴,句式简峭、主干凸出,单纯而又厚实,朴纳而又传神,具有浓郁的地方色彩,凸现出乡村人性特有的风韵与神彩。整个作品充满了对人生的隐忧和对生生命的哲学思考,如他那实在而又顽强的生命,给人教益和启示。

沈从文创作的小说主要有两类,一种是以湘西生活为题材,一种是以都市生活为题材,前者通过描写湘西人原始,自然的生命形式,赞美人性美;后者通过都市生活的腐化堕落,揭示都市自然人性的丧失。其笔下的乡村世界是在与都市社会对立互参的总体格局中获得表现的,而都市题材下的上流社会“人性的扭曲”他是在“人与自然契合”的人生理想的烛照下获得显现,正是他这种独特的价值尺度和内涵的哲学思辨,构起了沈从文笔下的都市人生与乡村世界的桥梁,也正由于这种对以金钱为核心的“现代文学”的批判,以及对理想浪漫主义的追求,使得沈从文写出了《边城》这样的理想生命之歌。

中篇小说《边城》是他的代表作,寄寓着沈从文“美”与“爱”的美学理想,是他表现人性美最突出的作品,通过湘西儿女翠翠恋人傩送的爱情悲剧,反映出湘西在“自然”、“人事”面前不能把握自己的命运,一代又一代重复着悲涂的人生,寄托了作者民族的和个人的隐痛。

2.《边城》情节

在湘西风光秀丽、人情质朴的边远小城,生活着靠摆渡为生的祖孙二人,外公年逾七十,仍很健壮,孙女翠翠十五岁,情窦初开。他们热情助人,纯朴善良。两年前在端午节赛龙舟的盛会上,翠翠邂逅当地船总的二少爷傩送,从此种下情苗。傩送的哥哥天保喜欢上美丽_的翠翠,托人向翠翠的外公求亲,而地方上的王团总也看上了傩送,情愿以碾坊作陪嫁把女儿嫁给傩送。傩送不要碾坊,想娶翠翠为妻,宁愿作个摆渡人。于是兄弟俩相约唱歌求婚,让翠翠选择。天保知道翠翠喜欢傩送,为了成全弟弟,外出闯滩,遇意外而死。傩送觉得己对哥哥的死负有责任,抛下翠翠出走他乡。外公因翠翠的婚事操心担忧,在风雨之夜去世。留下翠翠孤独地守着渡船,痴心地等着傩送归来,“这个人也许永远不回来了,也许明天回来!”

3.人物可爱,是沈从文先生小说的一大特征。他的作品所有人物全都可爱善良,可又为什么能从中感到悲哀的分量呢?请读课文。

二、理清小说的情节结构,主要抓住翠翠心理,理解课文。

翠翠心中的凄凉——翠翠的父亲、母亲——翠翠的梦——爷爷上城——爷孙谈“唱歌”——翠翠爱听“歌”

以翠翠的心理活动为主线,师生讨论下列问题:

1.第一段中,翠翠为什么会感到“薄薄的凄凉”?

明确:忙碌一天的世界要休息了,翠翠也闲坐下来。看着天上的红云,嗅着空气中残留着的白天热闹的气息。不觉寂寞惆怅涌上心来,看世上万物都那么生机勃勃,而自己的生活却“太平凡”了,觉得“好像缺少什么”。内心_动不安的爱情,却不能像雀子、杜鹃、泥土、草木、甲虫那样,热烈勃发。和周围的景物相比,不由得感到“薄薄的凄凉”。

2.第二段中,翠翠为何要“胡思乱想”?翠翠和祖父之间有着浓得化不开的亲情,无论是他们二人,还是读者,对此都不会怀疑。但是为什么翠翠会产生“惩罚”爷爷的念头?(是爷爷不知道女大不中留,不理解翠翠的感情需要吗?不是,爷爷早就在操持这件事了。是翠翠不知道爷爷的操持吗?不,翠翠明白,爷爷永远会满足她的任何一个要求和心愿。)

明确:翠翠感到日子有点痛苦,“好像缺少了点什么”,她觉得委屈,自然地迁怒到可以向之撒娇的祖父,她并不当真地胡思乱想着自己出走以后带给爷爷的惩罚。注意,翠翠的“惩罚”手段仍然是建立在两人亲情深厚的基础上,她深知祖父爱她,所以让他尝尝失去她的痛苦。

更感人的是后面,只是这样一个念头,就吓坏了翠翠,她不敢想像没有祖父的生活,竟不顾爷爷正忙着摇船,一次又一次叫爷爷回家,仿佛晚一点他们真会分开。

其实,翠翠此时心里并没有一个明确的要求或一件具体的事情,她就是那么“莫名其妙”地感到日子空虚心情郁闷,这是一种无法言说的不安或不快,但又是一种确确实实的存在。因为无法言说,所以没人能帮助你;因为确实存在,所以它总在折磨你。这就是孤独感。

翠翠这清醒的白日梦,把一个少女单纯而隐秘的内心情感托现给读者:因情感生活得不到满足而产生的哀怨的心理。

3.翠翠坐在溪边,为什么就“忽然哭起来了”?为什么无来由地多次地“哭”?

明确:翠翠怀着满腔心事,无人能诉说。渡船上人们悠闲地过渡,又有谁能了解她的心事呢?船上的人的安闲和翠翠内心的波动,形成动与静的对比,表现出翠翠那看似无来由的哭的深意。

翠翠无来由地哭,一要注意翠翠情窦初开的朦胧感情,一要注意湘西这样闭塞但人情质朴的环境,翠翠的心理肯定不会和生活在城市中的少女一样。

4.外公给翠翠讲父母的往事,注意引导学生把握此时翠翠心理的微妙变化。

5.翠翠的梦,有什么深刻含义?为什么平时攀折不到的虎尾草轻而易举摘到了?翠翠不知道“把这个东西交给谁去了”又说明了什么?

明确:翠翠的梦写了翠翠渴望得到幸福生活的躁动心理。翠翠情窦初开,听到外公讲父亲和母亲浪漫的爱情故事,不由得联想到自己的感情。因此梦见自己上山崖摘虎尾草。“平时攀折不到手”的虎尾草,她很容易地摘到了。她内心里以前对傩送朦胧的感情,现在明确起来了。“不知道把这个东西交给谁去了”又表现出她内心的忐忑不安。

6.当祖父把实情告诉翠翠的时候,注意此时翠翠的心理变化。“翠翠不敢生祖父的气”,这句话该如何理解?她可能生谁的气呢?

明确:一个思春少女的感情。

7.翠翠在月光下吹着芦管,为什么“觉吹得不好”?老船夫长长的曲子,为什么“翠翠的心被吹柔软了”?

明确:月光如水,等待的人却没有来。“一片草虫的清音复奏”,更使翠翠的心乱,连芦管也吹得不好了。祖父吹了长长的曲子,婉转的曲调使“翠翠的心被吹柔了”,心像月光般清澈温柔起来。

8.最后,祖父唱了十个歌,翠翠为什么自言自语说:“我又摘了一把虎尾草了”?

明确:翠翠最后听祖父唱歌,就是傩送昨晚唱的歌,心里踏实了,她知道傩送也像自己爱他一样,爱着自己。她说:“我又摘了一把虎尾草了。”这时她已经知道虎尾草要交给谁了。

9.关于翠翠这个人物形象:

明确:翠翠天真善良,温柔_。她和外公相依为命,对外公关心备至。因为外公不理解她的心事,她就幻想出逃外公去寻她,可是想到外公找不到她时的无奈,又为外公担心起来,为自己的想法的后果害怕自责。她情窦初开,爱上了傩送,感情纯洁真挚。而节选部分以后傩送远去,她又矢志不渝地箸着心上人的归来,表现她爱的执著。

三、分析讨论作品人物间的亲情关系和爱情关系,感受湘西民间独具的风俗美风情美。

1.翠翠和祖父的祖孙情:

明确:这是作品中最主要的两个人物。相隔着中间一代人,祖孙俩组成的家庭是残破的,所以在悠长的岁月中,祖孙二人不仅生活上相依为命,也在感情上相濡以沫。可重点分析第13章(课文前部分)翠翠的“负罪”和“赎罪”。再让学生找表现祖孙亲情的文段,让他们意识到这真挚亲情是植根于纯朴民风中的。

2.翠翠和天保兄弟的爱情:

明确:爱情的美好很重要的原因是它对物欲的排斥,爱情愈纯洁,其中包含的物欲成分就愈少。

课文节选的三章没有直接写到几个青年男女相爱的动机,但却写到了他们表达爱情的方式,最动人的当然是傩送的歌声和翠翠梦里的虎尾草。傩送用整夜的歌声表达对心上人的爱慕,让人不由想起《诗经》《乐府》里咏叹爱情的美丽诗章,这是湘西古风犹存的明证,更是这里的人把爱情视作圣洁感情的表现。同样,翠翠在睡梦中受到歌声召唤,她摘取了一捧虎尾草,准备送给意中人,一个少女纤尘未染的心豁然眼前,让人感动。

可作补充的是翠翠父母的爱情,他们在对歌中相爱,在绝望中殉情。爷爷对翠翠说:“最重要的事情,就是这种歌唱出了你”,原来,翠翠就是纯洁爱情的结晶。

3.天保和傩送的手足情

明确:天保和傩送突然发现两人爱上的竟是同一个姑娘,眼看兄弟要变成情敌,他们没有反目成仇,也没有像流行小说写的那样,其中一个慷慨“出让”,他们懂得,姑娘不是财产,感情没有价格,你必须接受姑娘的选择,而不能代替姑娘做出选择。于是他们公平地、正大光明地做了竞争,哥哥走了车路占了先,就一定让弟弟走马路先开口,结果一唱定乾坤,这里没有裁判,没有评委,没有公证人,只有良心和道德,再加上血浓于水的手足深情。为了成全弟弟,哥哥带着失恋的忧伤远走他乡……

分析中让学生感受悲剧中的人性美。

作者深情地歌咏亲情爱情的美丽,意图何在,这可能是个复杂问题,可不必在教学中深究。沈从文先生在内地看到了许多现代文明对传统美德的锈蚀和破坏,这触痛了他,这部小说可能反映着他对重建人与自然和谐关系、恢复人与人之间的善意和坦诚的思考和愿望,他把这些美好的愿望交给了家乡湘西的乡亲,所谓“礼失求诸野”吧。

四、开放讨论题:小说中人物孤独感的分析。

五、教师总结

六、课后训练:

要求学生找出文中描写环境的内容,并思考:这些景物描写有何共同特点?又有何作用?(提示:文中集中描写的有四处——景情结合、烘托)

本教案以介绍沈从文和《边城》情节导入,抓住翠翠的心理活动,重点分析人物形象和人物情感,感受边城的人性美。教学中应以学生品读讨论为主,教师适当点拔。

高中教资语文教案 篇6

教学目的:

1.学习本文作者关注社会、反特权、倡导平等民主意识的精神;

2.学习掌握时事评论的写法;

3. 学习掌握概括段意的方法。

教学重点、难点:

1.重点:理解掌握时事评论的写法。

2.难点: 概括段意的方法。

教学时数:

一课时

教学步骤:

一、字词

摆谱 (摆门面或摆架子) 习以为常(常常作某件事,成了习惯) 烙lào印 鸣锣开道(封建官吏出行时,前面有人敲锣要行人让路。现比喻为某事物的出现制造舆论) 肃静回避(严肃寂静,闲人避开) 渊源 (比喻事情的本原) 一视同仁(同一看待)

二、课文研讨:

(一)研读课文,回答:本课关注了什么社会现象?(练习一)

——“两会”车队以前可以一路绿灯,现在跟社会车辆一视同仁。

(二)全文的中心论点在哪里?请在书上找出。

——北京对“两会”车队与社会车辆一视同仁,谁遇红灯谁让道,事情虽小意义深远,体现的是交通法规面前无特权。

(三)请用提纲形式梳理出作者分析这一现象的思路。(练习一。做这题首先要给全文划分层次,并概括层次大意)

——1、教给学生概括层次大意的方法。

概括段意,就是从段落的具体表象中抽象出事物的本质特征,达到对事物本质和规律性的认识。其思维步骤是:首先弄清全文的内容;再读懂各自然段的内容,在正确地理解句与句、层与层之间关系的基础上,区别主次;最后用明确、完整、简要的语句表述。

常见的基本方法有:

①摘录归纳法。就是从段落中摘录现成句子作为段意。这是最简便的概括段意的方法。

②分层归纳法。用多层归纳的方法概括段落大意,要先分好一个段落的层次,再弄清每层的意思,然后归纳这个段落的大意。

③归纳中心句。有许多段落往往找不到中心句。其实,没有中心句的段落,仍然有个中心,它融合在字里行间。这就必须把中心归纳总结出来。

④缩句法。这种方法就是将段落的句子加以压缩,即压缩句子的次要意思。采用这种方法有时可以添加或改写个别词语。

——2、划分层次,概括层次大意

第一部分: 摆出新现象:今年北京对“两会”车队与社会车辆一视同仁。(③归纳中心句)

第二部分: 逐层分析这一现象,论证它的正确性。(②分层归纳法)

1、“两会”车队以前一路绿灯,让市民生活受到干扰,是搞特殊化。(④缩句法)

2、开好“两会”并不是非得以影响市民的正常生活为代价的。(①摘录归纳法)

3、让“两会”车队一路绿灯的惯例,带上了特权、特殊化的烙印。(④缩句法)

4、在法律和规则面前人人平等,人人必须遵守。(④缩句法)

第三部分:结论。强调中心论点,并说明这样做的好处。(③归纳中心句)

——3、本文总思路:

提出问题(第一部分:摆出新现象)──分析问题“第二部分: 逐层论证它的正确性──解决问题 (第三部分:结论)

(四)学生概括本文的中心思想:

——本文对今年北京对“两会”车队与社会车辆一视同仁的新现象作出评论,指出它反特权、倡导平等民主意识的重大意义。

(五)这篇课文在论据的搜集和使用上有哪些特点?(练习三)

1、来源广泛,4个论据来自古今中外,支撑论点更有力。

2、穿插使用,有简(大家熟悉的)有繁(大家不熟悉的)。

三、活动练习:

1、抄写生字词。

2、学习第16页知识短文《评事论理表见解》。

高中教资语文教案 篇7

教学目的:

1.学习本文作者关注社会、倡导文明节约的精神;

2.学习巩固时事评论的写法;

3. 学习巩固概括段意的'方法。

教学重点、难点:

1.重点:掌握时事评论的写法。

2.难点: 概括段意的方法。

教学时数:

一课时

教学步骤:

一、字词:

酽酽 yàn (味浓) 阖hé家(全家) 眼花缭乱匪夷所思(指言谈行动超出常情,不是一般人所能想象的。夷:平常)奢shē华(花费大量钱财摆门面) 令人咋zé舌(形容吃惊害怕,说不出话) 不敢问津(不敢探询渡口,比喻不敢探询价格和情况) 流风(正在流行的思潮、流行方式等) 竞豪赛奢(比阔比有钱)

二、课文研讨:

(一)研读课文,全文的中心论点是什么?

——即标题:月饼消费要讲文明。

(二)分析作者是怎样围绕中心论点展开论述的? (给全文划分层次,并概括层次大意)

——第一部分(1-4自然段): 摆出月饼消费中种种不文明的现象(②分层归纳法)

第二部分: 分析这一现象,论证它不能看作是正常的消费。(④缩句法)

第三部分:结论。强调要进行勤俭持家和勤俭建国的教育及其意义。(②分层归纳法)

(三)课文的逻辑思路是什么?(练习一)

提出问题(第一部分:摆出月饼消费中种种不文明的现象)──分析问题(“第二部分: 论证它的错误性──解决问题 (第三部分:结论,指出怎样去作)

(四)第一部分中摆出月饼消费中哪些不文明的现象?

——包装上,形式大于内容,而且造成浪费;用途上,偏离了人们一般的礼尚往来,成为一些人拉关系的“敲门砖”。

(五)学生概括本文的中心思想:

——本文对月饼消费中种种不文明的现象提出批评,指出应勤俭节约,要进行勤俭持家和勤俭建国的教育,这样我们民族才能拥有远大前程。

(六)这篇课文在论据的搜集和使用上有哪些特点?(练习三)

1、围绕一个月饼消费问题,搜集社会上的大量材料,增强了说服力。

2、集中在第一部分分类使用,更显得问题严重。

三、活动练习:

1、抄写生字词。

2、按第2页的《活动指引》开展活动,写大作文。

【教学总结】

1、要关注社会,关注生活,进行原发性的生活思考,敏锐地捕捉话题;

2、围绕论点展开论述,要灵活运用各种论证方法,如摆事实(要准备典型、新颖、有说服力的论据),讲道理,做到以理服人;

3、要安排好文章的结构,让读者读的时候能够理出一个明确的框架。

五.作业:

针对学生当中的考试作弊现象,参照课文写法,写一篇600字以上的时评。

提示:先提出自己的论点:“反对作弊”,

然后具体分析:“作弊的表现、危害、实质”,

最后解决问题:“怎样克服作弊现象”。

高中教资语文教案 篇8

教学目标

体会诗歌主旨的多样性。

重点难点

本诗的画面感和抒情性的结合是教学中的重点。

教学过程

一、作者与写作背景

裴多菲是19世纪的匈牙利爱国诗人。他当过兵,作过流浪艺人。1849年7月在职和沙皇军队的一次战斗中英勇牺牲,年仅26岁。在他短短的一生中,写下了许多优美的爱情诗。尤其是在1846年爱上森德莱尤丽亚以后,写了不少优美的爱情诗。1847年裴多裴与心爱的人结成伉俪。这首诗的创作可以看出爱情的表达。

《自由》:生命诚可贵,爱情价更高,若为自由故,二者皆可抛。

二、内容大意

全诗共五节,采用的都是“我愿意……”开头的格式。诗人把自己说成是“激流”“荒林”“废墟”“云朵”“破旗”。把爱人比作小鱼小鸟长春藤火焰夕阳构成五个有层次的充满活力的艺术画面,蕴含了深刻的思想内容。

三、鉴赏要点

1、多样解读

首先将其看作一首爱情诗,它抒发了对爱人深挚的恋情,歌颂了纯洁而高尚的爱情;其次看作一首政治抒情诗,它委婉地表现出19世纪40年代匈牙利人民的解放斗争事业。歌颂了为民族解放事业献身的精神和执着追求理想的精神。诗中的“我”可能指诗人自己,也可能指革命战士们;“爱人”可以是诗人的爱侣,也可以是诗人追求的革命理想。可以根据自己的生活体验感悟。

2、意象的独特性排列:

本诗没有空泛的说教,而是通过一系列鲜活意象的排列,递进,营造了一个情感流动的回旋天地,层层递进,使诗人情感富于变化,呈现出多侧面多层次,产生强烈的艺术感染力。

板书

我愿是我的爱人是

急流(崎岖)小鱼(鱼水之情,是你的生命之源)

荒林(狂风)小鸟(是你的可爱家园)

废墟(荒凉)常春藤(是你的一生依靠)

草屋(打击)火焰(是你的抒情小屋)

云朵(破旗)夕阳(是你的,相依伙伴)

在我的怀抱中接受我的关爱与呵护,我们相依相伴,我愿为你奉献一切。

注意修饰词语的暗色调,可体现:

1、生活的艰难

2、男人的勇敢

3、也可能是革命斗争的艰难

《篱笆那边》

自读导言

1.理解本诗中“草莓”和“上帝”指代的具体内容及诗歌蕴涵的寓意。

2.扩展阅读:赏析芒克的诗《阳光中的向日葵》,理解诗中蕴涵的寓意。

(解说:这是一首蕴涵着深刻寓意的哲理诗,理解诗歌的寓意是学习本诗的重点,也是难点。)

自读程序

一、总体把握,理清思路

讨论:这首诗从表层意象看,写了哪几个层面?

明确:两个。一是小孩想摘草莓而又有所顾忌,另一个是上帝如果也是小孩,也会爬过篱笆去摘草莓。

二、研读全诗,讨论以下问题

1.诗中的草莓指代什么。

明确:草莓指代世间美好的事物。思考这一问题应从草莓的特点入手。草莓色泽鲜艳,圆润可爱,在外形上给人以美感;味道酸甜可口,是人们所喜爱的一种水果。

2.“我”想不想爬过篱笆?为什么?

明确:想。因为那儿“有草莓一棵”,而且“草莓,真甜!”

3.“我”能不能爬过?为什么?

明确:能。因为“如果我愿/我可以爬过”。

4.那么,“我”愿不愿爬过?为什么?

明确:不愿。因为“脏了围裙/上帝一定要骂我!”

5.上帝又指代什么?

明确:上帝号令一切,具有至高无上的权力,他是权威的代表,又是正统思想的化身。思考这一问题应从上帝特殊的身份入手。

6.如何理解“我”“想爬过”、“能爬过”却又因为怕脏了围裙挨上帝的骂而不愿爬过?联系生活实际,谈谈你的感受。

明确:“想爬过”“能爬过”,是“我”有追求美好事物的愿望和能力,而怕脏了围裙挨骂则说明“我”在追求美好事物的过程中有种种顾虑,担心会遭受责备。归根到底,这一切是“上帝”的行为约束、思想禁锢造成的。

联系实际示例:

孩子本是纯真无邪的,他们活泼好动,对一切美好的事物抱有强烈的好奇心,这其中蕴藏着多少创造的萌芽啊。但我们现存的教育制度,不允许孩子有任何不合常规的行为,用很多清规戒律来束缚他们的思想,压制他们的个性,从而扼杀了他们的创新能力。

(解说:以上提供的只是示例,并非惟一的标准的答案。教学中可以让学生联系生活实际,深入思考讨论,只要言之成理,教者即应加以肯定,答案不强求一致。)

7.作者安排“上帝”这个形象有什么深刻的寓意?

明确:由上面分析可知,“上帝”是权威的代表,是正统思想的化身,是别人思想的禁锢者;其实“上帝”又何尝不是禁锢者呢?只要他愿意并且有决心抛开一切束缚,走下神坛,重新捡拾起纯真,他也会按自己的本性自主行事,去追求心目中美好的东西。

(解说:这一层次的理解是这首诗的深刻之处,学生不容易理解,如“上帝”也是被禁锢者这一点,教者要作适当的提示。)

高中教资语文教案 篇9

一、教学目标

1.了解韩愈关于尊师重道的论述和本文的思想意义。

2.体会“说”这种体裁笔锋犀利的特点,学习借鉴本文正反对比的论证方法。

3.积累文言知识,掌握实词“传、师、从”,虚词“以、也、则、于、乎、所以”等词语的意义和用法,区别古今异义词语。

4.树立尊师重教的思想,培养谦虚好学的风气。

二、教学重点

1.了解文章的整体思路。

第一层(开头两句)提出师道长期失传的问题。

第二层(“古之圣人”到“官盛则近谀”)分析问题产生的原因:“耻学于师”的坏风气存在。

可分三小层:①总提:今之众人“耻学于师”②分提一:“小学而大遗”③分提二:士大夫之族讥笑从师而学者)

第三层(“呜呼”到结尾)归纳本段主旨。

2.本文写作特点:

(1)语言上,多用整句,对句,便议论更生动,说理更深刻。

例如,“生乎吾前……”,“生乎吾后……”,“古之圣人”,“今之众人”等。

(2)论证上有破有立。

例如:第1段,教师职责,择师标准。(立)第2段,师道不传的原因。(破)

第3段,推知“弟子不必不如师,师不必贤于弟子”论断。(立)

(3)对比论证。

三、教学难点

1.积累掌握“传”“师”“道”“受”“固”“从”“也”“则”“于”“乎”“所以”等词的用法。

2.本文第2段既是教学重点,又是教学难点。从全篇布局来看,作者先“立”(第1段)后“破”(第2段)。这一段笔锋犀利,汪洋恣肆,充分体现了“说”这种体裁“炜晔而谲诳”(陆机《文赋》)的特点。

四、教学方法

1.讲授法、提问法。传统的教学方式,教师在教学中讲授重难点,提出问题引导学生思考。2.诵读法。用来熟悉课文语句,领悟作者的思路。

3.讨论法。学生课前、课上自由讨论,回答问题。

4.学习拓展。提供有关的图片、文字拓宽学生视野,加深对文章的理解。

五、教具准备多媒体、黑板

六、课时安排3课时七、预习提纲

目的:让学生熟悉课文,作好积累。

具体步骤:

1.学生自读课文,看书__注释,

2.初步理解文章含义,不清楚的地方作出标记。

3.初步揣摩关键词语,尝试完成课后练习,列出预习中发现的问题。

高中教资语文教案 篇10

《短新闻两篇》

教学目标

一、知识教育目标

1.了解新闻报道的一般特征和结构方式;

2.了解香港近百年的发展史。

二、能力训练目标

1.培养阅读新闻作品的能力;

2.培养在阅读中筛选信息的能力;

3.学习两篇文章短小精悍、语言简练、概括力强的特点。

三、德育渗透目标

1.通过学习第一篇文章,激发学生的民族自豪感;

2.引导学生认识法西斯的暴行,激发学生热爱和平的美好情感。

教学设想

一、播放有关香港回归的纪录片和反映纳粹暴行的影片,设定好情境,引导学生进入课文。

二、通过介绍香港近百年的发展史激发学生的民族自豪感;引导学生讨论纳粹暴行(扩展至南京_)对于我们人类的戕害,以及我们应该从中吸取什么样的教训。课外查找一些香港历史和纳粹暴行的背景材料,以辅助阅读。

三、分别找一些香港回归和奥斯维辛集中营的新闻报道,比较一下写法的不同。

重点、难点

重点:新闻报道的一般特征和结构方式;培养阅读新闻作品的能力。

难点:新闻报道如何既报道事实,又抒发感情。

教学时数2课时。

第一课时

教学步骤

一、导入新课

生活在信息社会里,每天都会从报纸、广播、电视中接触大量的新闻报道,那么,如何从新闻报道中及时而准确地筛选信息,成为当今社会人的一项重要能力。而要提高这种能力,就必须了解新闻报道的特点,下面我们就来学习两篇典型的短新闻。(板书课题)

二、明确目标

1.了解新闻报道的结构方式;

2.筛选两篇新闻报道的基本信息。

二、整体感知

(一)《别了,“不列颠尼亚”》

在众多关于香港回归的报道中,《别了,“不列颠尼亚”》是最别致的一篇,作者没有写交接仪式现场多么庄严,也没有写欢庆回归的人们多么激动,而是选择了英方撤离这样一个角度,并且把末代港督乘英国皇家游艇“不列颠尼亚”号撤离香港这一事件放在一个历史的背景中,更加突出了这一事件的历史意义。

消息一般由导语和主体两部分组成。导语放在开头,由最新鲜、最主要的事实或者依托新闻事实的精辟议论组成;而主体则具体展开新闻事实的叙述。本文就是以这样一种结构组织材料的。

第1段是导语部分。它告诉我们,香港末任港督乘“不列颠尼亚”号离开香港,这标志着长达150年的英国统治的终结。

下面的主体部分按照时间顺序。具体叙述了英国殖民者的告别仪式。文章共有10段,有8段写的是现实的场景,分别是:末任港督的降旗仪式,彭定秉离开港督府,英国告别仪式,降旗仪式,香港交接仪式上的易帜,“不列颠尼亚”号离开香港。这些仪式的叙述都很简洁,作者突出仪式本身的涵义,这表现在介绍了每一种仪式之后,作者总要引用一些背景材料,使得每一个仪式都显示出历史的跨度,有着历史的意义。作者并不直接出面发表议论,但是情感和评论都暗含其中。比如:

港督降旗仪式,作者说“但这一次不同:永远都不会有另一面港督旗帜从这里升起”。作者巧妙地运用了对比手法,强调这次降旗不再是以往港督换任的重复,它是具有标志意义的最后一次。

对于在驻港英军总部附近举行的告别仪式,作者也只是提了一句,但作者随后捕捉到了一个典型的镜头:“停泊在港湾中的皇家游轮‘不列颠尼亚’号和邻近大厦上悬挂的巨幅紫荆花图案,恰好构成这个‘日落仪式’的背景。”象征英国统治的“不列颠尼亚”号,与象征香港回归祖国的特别行政区区旗,构成了鲜明的对比,启示人们发现这一仪式的深厚内涵。

7时45分的第二次降旗仪式,也只是一笔带过,但作者把这一事件放在历史今昔的对比上,有一种历史沧桑变化的感觉,使得曾经的坎坷,在人们脑海中“积淀成了神圣而执著的理性”,也使得“今夜的喜悦变得更加凝重”。

另外还有两段,一个是第4段,交待的是有关港督府的一些背景材料:一个是最后一段,作者又一次把历史的今昔放在一起相互对照,深化了主题。

(二)《奥斯维辛没有什么新闻》

奥斯维辛集中营是纳粹德国在第二次世界大战期间建立的的集中营,被称为二战期间纳粹德国的“_工厂”,据统计报道有400万人在这里遭到了杀害。这篇消息是美国记者罗森塔尔战后访问奥斯维辛集中营博物馆之后采写的,发表之后,各大报纸争相转载,并获得了美国普利策新闻奖,成了新闻的佳作。这主要得益于他独辟蹊径,突破了“客观报道”“零度写作”(即记者在新闻中毫不掺杂个人情感的写法)的框框,把自己和其他参观者在奥斯维辛访问时的感受当做文章的主要内容来写,字里行间灌注着个人的情感。

文章一上来的议论就有震撼人心的效果。作者无一句正面控诉,却强烈表达出自己的愤懑,字字句句敲打着读者的心,让读者感到一种莫名的压抑。

接下来,作者引入了一些背景材料,介绍了里斯维辛集中营可怕的历史。作者说,那些“惨状被人们讲过了很多次”。所有的事情都已经是旧闻了,奥斯维辛也不再有“可供报道的新闻”了。但是到这里访问,作者却感到“一种非写不可的使命感”,这是记者的良心在催促他,“如果不说些什么或写些什么就离开,那就对不起在这里遇难的人们。”这里指出了作者写作此文的原因和心境。

后面的部分,作者随着参观者的脚步,把读者带进了集中营,从毒气室、焚尸炉、女监房、试验室、纪念墙一直写到绞刑室。作者并没有详细描写这些地方多么的阴森恐怖,他的目光始终盯在参观者身上,通过参观者的行动、神态传达他们内心的感受?以此感染读者,引起读者的共鸣。

有一些细节很耐人寻味。比如,“在德国人撤退时炸毁的布热金卡毒气室和焚尸炉废墟上,雏菊花在怒放”。一边是戕害生命的毒气室和焚尸炉,一边是生机勃勃的生命,两种反差极大的事物摆在一起,这样的景象的确让人难忘。也许是讽刺,任纳粹刑罚多么_,终归阻止不了生命的进程;也许是控诉,生命的绽放是人世间最美好的事情,对生命的戕害是最恶劣的罪行。还有,那个照片中的姑娘,临刑前她在想什么?这不仅是作者的疑问,也是绐读者提出的问题。

除此之外,作者还有一些很精辟的议论值得琢磨。比如作者说“在奥斯维辛,没有可以作祷告的地方”。做祷告,或者是为了求得上帝的谅解,或者是为了求得上帝的保佑。但是在奥斯维辛,做祷告的地方是没有的,因为刽子手丧失了人性,双手沾满了无辜者的鲜血,他们是不可能向上帝祷告忏悔自己的罪行的;而无辜的人们成为刽子手刀俎上的肉,无计可逃,他们也没有办法求得上帝的保佑。

最后一段,与标题和首段遥相呼应,突出了文章的主题,也显得文章首尾相贯,浑然一体。

三、总结两篇短新闻的结构特点。

布置作业

完成“研讨与练习一”。

第二课时

教学步骤

一、明确目标

1.学习两篇文章短小精悍、语言简练、概括力强的特点;

2.学习两篇短新闻既报道事实、又抒发感情的特点;

3.通过学习第一篇文章,激发学生的民族自豪感;引导学生认识法西斯的暴行,激发学生热爱和平的美好情感。

二、重点、难点的学习与目标完成过程

1.【提问】如何理解“别了,‘不列颠尼亚’”标题的含义?

【明确】标题有两层意思。从字面上看,参加完交接仪式的查尔斯王子和末任港督彭定康乘坐英国皇家游轮“不列颠尼亚”号离开香港,消失在茫茫的南海夜幕中,这是现实的场景。另一方面,“不列颠尼亚”号的离去,象征着英国殖民统治在香港的终结,中华民族的一段耻辱终告洗刷。

2.【提问】《别了,“不列颠尼亚”》一文中,现实的场景和背景材料是如何有机地融合在一起的?

【明确】现实的场景是文章的主要内容,是文章的纲,每一则背景材料的引人都对应于一个现实的场景,依靠一些关键词衔接在一起,比如提到彭定康离开港督府,就引入一些关于港督府历史的背景材料;而降旗的仪式,则让人联想起156年前,英国殖民者踏上香港的首次升旗。自然的衔接,使得这些背景材料看上去并不是杂乱无章的,它们靠现实的场景串在一起,与之融为一体。另外,背景材料的引入也使得现实的场景有历史的纵深感,让人更加体会出仪式本身的现实内涵。

3.【提问】为什么说英国的告别仪式是“日落仪式”?

【明确】英国曾经占领了非常广大的殖民地,被称为“日不落帝国”,喻指在它的领土上,永远都有阳光照耀。香港作为英国在东方的最后一块殖民地,于1997年脱离英国的统治,回归祖国,可以说在中国香港的土地上,英殖民统治的太阳落了。所以把英国告别的仪式称为“日落仪式”。

4.【提问】《奥斯维辛没有什么新闻》里有很多否定句,应该怎么理解?

【明确】本文用了一连串的否定句,像一条线串起了全篇文章,使文章具有统一的风格,同时把奥斯维辛这个被纳粹颠倒了的世界展现在读者面前。每个句子都具有深刻的内涵,值得细细体会。比如:

标题就是一个典型的否定句,类似的句子文章中又出现了两次:一次是介绍完背景材料之后,作者说“今天,在奥斯维辛,并没有可供报道的新闻”。这句话承上启下,一方面奥斯维辛太出名了,人们已经了解了它很多东西,的确没有什么新闻可以报道了;另一方面,即使没有新闻,作者还是要写一写,因为他感到“一种非写不可的使命感”。第二次是结尾“在奥斯维辛,没有新鲜东西可供报道”。除了呼应前文之外,还突出了文章主题。意思是说,奥斯维辛没有什么新鲜东西了,每一个参观者都看到同样的东西,也都有同样的感受,那就是震惊,甚至窒息。看到这些遗留的东西,就有这样的感觉,如果看到那些真实的场景,又会有怎样的感觉呢?这样,虽然话语貌似平静,却表现出对纳粹罪恶的深刻揭露。

5.【提问】《奥斯维辛没有什么新闻》这篇消息与我们常见的消息有什么不同?

【明确】不同之处就在于记者在文章中的参与程度不同。记者对于所报道的事件有三种参与的情况:一种是记者作为旁观者身份出现,只是纯客观记叙,不掺杂自己的感情和判断,只是由事实本身说话;另一种是记者作为旁观者出现,但会在叙述事实的同时表达自己的看法或者渗透自己的感情;还有一种,记者作为事件的参与者.文章直接描写他的所闻所感。我们平时读报纸所看到的消息大都是第一种和第二种情况,主要还是一种客观叙述为主的写法;而本文有所不同,把作者自己参观集中营的感受当成了主要的内容来写,是一种纯主观性的报道。

总结、扩展

《别了,“不列颠尼亚”》选取了英国撤离香巷的一系列场景,并把它们放在一个历史的背景中,使香港回归这一历史事件有了历史的纵深感;《奥斯维辛没有什么新闻》打破客观报道的传统,直接叙述自己的感受。它们和同类题材的新闻选取的角度有很大的不同。要求学生阅读“背景材料”中的新闻报道《奥斯维辛,历史不会忘记》,比较一下和两篇课文的写法的不同。

布置作业

完成“研讨与练习二、三、四”。

高中数学教案


经过小编反复的打磨和修改,我们隆重推出最新的“高中数学教案”。做好教案课件是老师上好课的必要前提,每一位老师都要认真撰写教案课件。教案是提升学校教育教学水平的重要支柱,希望本文对您有所启发和帮助!

高中数学教案【篇1】

【考纲要求】

了解双曲线的定义,几何图形和标准方程,知道它的简单性质。

【自学质疑】

1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 ,

渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。

2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是

3.经过两点 的双曲线的标准方程是 。

4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。

5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为

【例题精讲】

1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。

2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。

3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。

【矫正巩固】

1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。

2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。

3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是

4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。

【迁移应用】

1. 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率

2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。

3. 双曲线 的焦距为

4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则

5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .

6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为

高中数学教案【篇2】

一、教材分析

教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

高中数学教案【篇3】

高中数学趣味竞赛题(共10题)

1 、撒谎的有几人

5个高中生有,她们面对学校的新闻采访说了如下的话:

爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”

玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”

千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?

2、她们到底是谁

有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。

穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?

3、半只小猫

听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。

“一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?

4、被虫子吃掉的算式

一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。

那么,请问原来的算式是什么样子的呢?

5、巧动火柴

用16根火柴摆成5个正方形。请移动2根火柴,

使

正形变成4。

6、折过来的角

把正三角形的纸如图那样折过来时,角?的度数是多少度?

7、星形角之和

求星形尖端的角度之和。

8、啊!双胞胎?

丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。

结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?

9、赠送和降价哪个更好?

1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?

10、折成15度

用折纸做成45度很简单是吧。那么,请折成15度,你会吗?

高中数学教案【篇4】

一、自我介绍

我姓x,是你们的数学老师,因为是数学老师所以在自我介绍的时候喜欢给出自己的数字特征,也是希望通过这些方式能拓宽与大家交流的平台,希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者。

二、相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。

(一)为什么要学习数学

相信高一的第一节课是各位科任老师各显神通的时候,通过各种有趣的方式来突出每门课的重要性,作为数学老师我表达上不如文科老师迂回婉转和风趣幽默,我们更喜欢用数字说明问题。大家知道北大最的院系是什么系吗?早在蔡元培先生任北大校长时,就列数学系为北大第一系,这种传统一直保持到现在。为什么数学系在高校中有如此重要的地位?课本主编寄语是这样描述的:数学是有用的,数学有助于提高能力。

数学家华罗庚在《人民日报》精彩描述了数学在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁"等方面无处不有重要贡献。

问题1:大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的?

海王星的发现是在数学计算过程中发现的,天文望远镜的观测只是验证了人们的推论。

1812年,法国人布瓦德在计算天王星的运动轨道时,发现理论计算值同观测资料发生了一系列误差。这使许多天文学家纷纷致力这个问题的研究,进而发现天王星的脱轨与一个未知的引力的存在相关。也就是说有一个未知的天体作用于天王星。1846年9月23日。柏林天文台收到来自法国巴黎的'一封快信。发信人就是勒威耶。信中,勒威耶预告了一颗以往没有发现的新星:在摩羯座8星东约5度的地方,有一颗8等小星,每天退行69角秒。当夜,柏林天文台的加勒把巨大的天文望远镜对准摩羯座,果真在那里发现了一颗新的8等星。又过了-天,再次找到了这颗8等星,它的位置比前一天后退了70角秒。这与勒威耶预告的相差甚微。全世界都震动了。人们依照勒威耶的建议,按天文学惯例,用神话里的名字把这颗星命名为"海王星"。

1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测和计算,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,"冥王星是大行星"早已被写入教科书,以后也就将错就错了。经过多年的争论,国际天文学联合会通过投票表决做出最终决定,取消冥王星的行星资格。8月24日据国际天文学联合会宣布,冥王星将被排除在行星行列之外,从而太阳系行星的数量将由九颗减为八颗。事实上,位居太阳系九大行星末席70多年的冥王星,自发现之日起地位就备受争议。

马克思说:"一种科学只有在成功运用数学时,才算达到了真正完善的地步。"正因为数学是日常生活和进一步学习必不可少的基础和工具,一切科学到了最后都归结为数学问题。

其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。

问题2:徒认为上帝是万能的。你们认为呢?如何来证明你的结论呢?(让同学发言)

我的观点:上帝不是万能的。为什么呢?仔细听我讲来。

证明:(反证法)假如上帝是万能的

那么他能够制作出一块无论什么力量都搬不动的石头

根据假设,既然上帝是万能的,那么他一定能够搬的动他自己制造的那石头

这与"无论什么力量都搬不动的石头"相矛盾

所以假设不成立

所以上帝不是万能的。问题3:抓阄对个人来说公平吗?5张票中有一张奖票,那么先抽还是后抽对个人还说公平吗?

当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:"读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明…",也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。

故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,"我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,……如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。"国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。

人们通常凭借自己掌握的数学知识耍些小聪明,使问题妙不可言。

数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。

数学思想:退到最简单、最特殊的地方。

故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展-圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就德育不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?

渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。

学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造……

(二)如何学好数学

高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你发展的前途。同时要注意以下几点:

第一:对数学学科特点有清楚的认识

主编寄语里是这样描述数学的特征的:数学是自然的。数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是"想当然"的话,那就学不下去了。

第二:要改变一个观念。

有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。过去的几年里我分别带过五十一中和一中的学生,两边学生的课堂感觉差不多,应该说接受能力不相上下,有的时候我会选择在五十一中开公开课,因为课堂气氛活跃、轻松,但是成绩差异却是很大,原因在于我们同学外课自主时间的投入太少,学习习惯不太好。

第三:学数学要摸索自己的学习方法

学习、掌握并能灵活应用数学的途径有千万条,每个人都可以有与众不同的数学学习方法。做习题、用数学解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。此外,还要发挥问题的作用,学会提问,热心帮助别人解决问题,用自己的问题和别人的问题带动自己的学习。同时,注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。

第四:养成良好的学习习惯(与一中学生相比较)

㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。

㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。

㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。我的办公室在二楼二号,欢迎大家前来交流

㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。

好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。

高中数学教案【篇5】

教学目标

1.掌握等差数列前 项和的公式,并能运用公式解决简单的问题.

(1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式;

(2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

(3)会利用等差数列通项公式与前 项和的公式研究 的最值.

2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

教学建议

(1)知识结构

本节内容是等差数列前 项和公式的推导和应用,首先通过具体的例子给出了求等差数列前 项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

(2)重点、难点分析

教学重点是等差数列前 项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前 项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前 项和公式与通项公式的综合运用体现了方程(组)思想.

高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

(3)教法建议

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前 项和公式综合运用.

②前 项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.

④补充等差数列前 项和的值、最小值问题.

⑤用梯形面积公式记忆等差数列前 项和公式.

等差数列的前项和公式教学设计示例

教学目标

1.通过教学使学生理解等差数列的前 项和公式的推导过程,并能用公式解决简单的问题.

2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.

教学重点,难点

教学重点是等差数列的前 项和公式的推导和应用,难点是获得推导公式的思路.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

讲授法.

教学过程

一.新课引入

提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?(课件设计见课件展示)

问题就是(板书)“ ”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

二.讲解新课

(板书)等差数列前 项和公式

1.公式推导(板书)

问题(幻灯片):设等差数列 的首项为 ,公差为 , 由学生讨论,研究高斯算法对一般等差数列求和的指导意义.

思路一:运用基本量思想,将各项用 和 表示,得

,有以下等式

,问题是一共有多少个 ,似乎与 的奇偶有关.这个思路似乎进行不下去了.

思路二:

上面的等式其实就是 ,为回避个数问题,做一个改写 , ,两式左右分别相加,得

于是有: .这就是倒序相加法.

思路三:受思路二的启发,重新调整思路一,可得 ,于是 .

于是得到了两个公式(投影片): 和 .

2.公式记忆

用梯形面积公式记忆等差数列前 项和公式,这里对图形进行了割、补两种处理,对应着等差数列前 项和的两个公式.

3.公式的应用

公式中含有四个量,运用方程的思想,知三求一.

例1.求和:(1) ;

(2) (结果用 表示)

解题的关键是数清项数,小结数项数的方法.

例2.等差数列 中前多少项的和是9900?

本题实质是反用公式,解一个关于 的一元二次函数,注意得到的项数 必须是正整数.

三.小结

1.推导等差数列前 项和公式的思路;

2.公式的应用中的数学思想.

四.板书设计

高中数学教案【篇6】

理解任意角的概念(包括正角、负角、零角) 与区间角的概念.

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

1. 提高学生的推理能力;

终边相同角的集合的表示;区间角的集合的书写.

①角的第一种定义是有公共端点的两条射线组成的图形叫做角.

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

④注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

终边相同的角的表示:

所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +

k·360° ,

k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z

⑵ α是任一角;

⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差

360°的整数倍;

⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.

⑴-120°;

⑵640°;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

④终边相同的角的表示法.

②教材P5练习第1-5题;

③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,

? k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°<

各是第几象限角?

<k·180°+135°(k∈Z) .

<n·360°+135°(n∈Z) ,

当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,

<n·360°+315°(n∈Z) ,

当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时,

理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.

能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题

通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点

一、复习角度制:

初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.

由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?

我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.

3.思考:

(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?

③正角的弧度数是一个正数.

④负角的弧度数是一个负数.

⑤零角的弧度数是零.

⑥角α的弧度数的绝对值|α|= .

① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.

② 弧度与角度不能混用.

弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

例1.把67°30’化成弧度.

例2.把? rad化成度.

(2)tan1.5.

②教材P9练习第1、2、3、6题;

③教材P10面7、8题及B2、3题.

高中数学教案【篇7】

我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.

教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.

本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.

根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.

1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.

2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.

3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.

4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.

(1)分数指数幂和根式概念的理解.

(2)掌握并运用分数指数幂的运算性质.

(3)运用有理指数幂的性质进行化简、求值.

(1)分数指数幂及根式概念的理解.

思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.

思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.

(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?

(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?

(3)根据上面的结论我们能得到一般性的结论吗?

(4)可否用一个式子表达呢?

活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.

讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.

(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.

(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.

(4)用一个式子表达是,若xn=a,则x叫a的n次方根.

教师板书n次方根的意义:

一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整数集.

可以看出数的平方根、立方根的概念是n次方根的概念的特例.

(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).

①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.

(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质 的数,有什么特点?

(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?

(4)任何一个数a的偶次方根是否存在呢?

活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的 特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.

讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所 以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.

(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.

(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.

(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.

类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:

①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

③负数没有偶次方根;0的任何次方根都是零.

上面的文字语言可用下面的式子表示:

a为正数:n为奇数, a的n次方根有一个为na,n为偶数, a的n次方根有两个为±na.

a为负数:n为奇数, a的n次方根只有一个为na,n为偶数, a的n次方根不存在.

零的n次方根为零,记为n0=0.

可以看出数的平方根、立方根的性质是n次方根的性质的特例.

根据n次方根的性质能否举例说明上述几种情况?

活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.

解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等.其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式.

根式的概念:

式子na叫做根式,其中a叫做被开方数,n叫做根指数.

nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?

活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.

〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕.

n为偶数,nan=|a|=a,-a,a≥0,a

因此我们得到n次方根的运算性质:

①(na)n=a.先开方,再乘方(同次),结果为被开方数.

②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数.

n为偶数,nan=|a|=a,-a,a≥0,a

例 求下列各式的值:

(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).

活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.

(2)(-10)2=10;

(3)4(3-π)4=π-3;

(4)(a-b)2=a-b(a>b).

点评:不注意n的奇偶性对式子nan的值的影响 ,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.

(2)3(3a-3)3(a≤1);

(2)3(3a-3)3(a≤1)=3a-3,

(3)4(3a-3)4=

点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解.

活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.

解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错.

(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错.

(3)a0=1是有条件的,即a≠0,故C项也错.

(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确.所以答案选D.

点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.

例2 3+22+3-22=__________.

活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.

解析:因为3+22=1+22+(2)2=(1+2)2=2+1,

3-22=(2)2-22+1=(2-1)2=2-1,

点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式.

上面的例2还有别的解法吗?

活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.

两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.

若a2-2a+1=a-1,求a的取值范围.

解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

即a-1≥0,

所以a≥1.

点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.

2.化简下列各式:

(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|.

3.计算7+40+7-40=__________.

问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明.

活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义.

通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下.再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论.

解:(1)(na)n=a(n>1,n∈N).

如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立.

(2)nan=a,|a|,当n为奇数,当n为偶数.

当n为奇数时,a∈R,nan=a恒成立.

当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a

即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的.

点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解.

学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.

1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集.用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数.

(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

(3)负数没有偶次方根.0的任何次方根都是零.

2.掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a

课本习题2.1A组 1.

(1)681;(2)15-32;(3)6a2b4.

(2)15-32=-1525=-32;

(3)6a2b4=6(|a|?b2)2=3|a|?b2.

3.5+26+5-26=__________.

解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,

不难看出5+26=(3+2)2=3+2.

同理5-26=(3-2)2=3-2.

学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a

思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.

思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂.

(1)整数指数幂的运算性质是什么?

②a8=(a4)2=a4= ,;

③4a12=4(a3)4=a3= ;

④2a10=2(a5)2=a5= .

(3)利用(2)的规律,你能表示下列式子吗?

, , , (x>0,m,n∈正整数集,且n>1).

(4)你能用方根的意义来解释(3)的式子吗?

(5)你能推广到一般的情形吗?

活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.

讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;

a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①5a10= ,②a8= ,③4a12= ,④2a10= 结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变.

根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).

(3)利用(2)的规律,453= ,375= ,5a7= ,nxm= .

(4)53的四次方根是 ,75的三次方根是 ,a7的五次方根是 ,xm的n次方根是 .

结果表明方根的结果和分数指数幂是相通的.

(5)如果a>0,那么am的n次方根可表示为nam= ,即 =nam(a>0,m,n∈正整数集,n>1).

综上所述,我们得到正数的正分数指数幂的意义,教师板书:

规定:正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1).

(1)负整数指数幂的意义是怎样规定的?

(2)你能得出负分数指数幂的意义吗?

(3)你认为应怎样规定零的分数指数幂的意义?

(4)综合上述,如何规定分数指数幂的意义?

(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?

(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?

活动:学生回想初中学习的情形,结合 自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价.

(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.

规定:正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈=N+,n>1).

(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.

(4)教师板书分数指数幂的意义.分数指数幂的意义就是:

正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.

(5)若没有a>0这个条件会怎样呢?

如 =3-1=-1, =6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2= ,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.

(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.

有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q).

我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题.

例1 求值:(1) ;(2) ;(3)12-5;(4) .

活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来.

(2) =5-1=15;

(3)12-5=(2-1)-5=2-1×(-5)=32;

(4) =23-3=278.

点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如 =382=364=4.

例2 用分数指数幂的形式表示下列各式.

a3?a;a2?3a2;a3a(a>0).

活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结.

a2?3a2=a2? = ;

a3a= .

点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数 幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.

例3 计算下列各式(式中字母都是正数).

(1) ;

(2) .

活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.

解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

(2) =m2n-3=m2n3.

点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了.

本例主要是指数幂的运算法则的综合考查和应用.

(2)627m3125n64.

(2)627m3125n64= =9m225n4=925m2n-4.

例4 计算下列各式:

(1)(325-125)÷425;

(2)a2a?3a2(a>0).

活动:先由学生观察以上两个式子的特 征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答.

= =65-5;

教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.

(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是( )

(4)把根式-25(a-b)-2改写成分数指数幂的形式为( )

A. B.

2.计算:(1) --17-2+ -3-1+(2-1)0=__________.

(2)设5x=4,5y=2,则52x-y=__________.

3.已知x+y=12,xy=9且x答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.又因为x活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:x-1= -13= ;x+1= +13= ;.构建解题思路教师适时启发提示.=a-b,=a± +b,=a±b.2.已知 ,探究下列各式的值的求法.(1)a+a-1;(2)a2+a-2;(3) .解:(1)将 ,两边平方,得a+a-1+2=9,即a+a-1=7;(2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+ a-2=47;(3)由于 ,所以有 =a+a-1+1=8.点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:(1)分数指数幂的意义就是:正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.(3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:①ar?as=ar+s(a>0,r,s∈Q),②(ar)s=ars(a>0,r,s∈Q),③(a?b)r=arbr(a>0,b>0,r∈Q).(4)说明两点:①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用 =am来计算.本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务.思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是无理数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂.思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题.(1)我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?(2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?… …(3)你能给上述思想起个名字吗?(4)一个正数的无理数次幂到底是一个什么性质的数呢?如 ,根据你学过的知识,能作出判断并合理地解释吗?(5)借助上面的结论你能说出一般性的结论吗?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.问题(3)上述方法实际上是无限接近,最后是逼近.问题(4)对问题给予大胆猜测,从数轴的观点加以解释.问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般.讨论结果:(1)1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值.(2)第一个表:从大于2的方向逼近2时, 就从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向逼近.第二个表:从小于2的方向逼近2时, 就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向逼近.从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面 从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向接近,而另一方面 从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向接近,可以说从两个方向无限地接近,即逼近,所以 是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.414 3,51.414 22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示 的点靠近,但这个点一定在数轴上,由此我们可得到的结论是 一定是一个实数,即51.40,α是无理数)是一个确定的实数.也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂.(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢?(3)你能给出实数指数幂的运算法则吗?活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳.对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通.对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱.(2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则:①ar?as=ar+s(a>0,r,s都是无理数).②(ar)s=ars(a>0,r,s都是无理数).③(a?b)r=arbr(a>0,b>0,r是无理数).(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂.实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质:①ar?as=ar+s(a>0,r,s∈R).②(ar)s=ars(a>0,r,s∈R).③(a?b)r=arbr(a>0,b>0,r∈R).(1)0.32.1;(2)3.14-3;(3) ;(4) .活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值;对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可;对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可;对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按 键,再按3,最后按=键.有时也可按2ndf或shift键,使用键上面的功能去运算.学生可以相互交流,挖掘计算器的用途.解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可.例2 求值或化简.(1)a-4b23ab2(a>0,b>0);(2) (a>0,b>0);(3)5-26+7-43-6-42.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律.解:(1)a-4b23ab2= =3b46a11 .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.==425a0b0=425.点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.=3-2+2-3-2+2=0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.例3 已知 ,n∈正整数集,求(x+1+x2)n的值.活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性, 与 具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.= .这时应看到1+x2= ,这样先算出1+x2,再算出1+x2,代入即可.所以(x+1+x2)n=== =5.点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.课本习题2.1A组 3.C. D.解析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形.因为 ,所以原式的分子分母同乘以 .2.计算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.=53+100+916-3+13+716=100.3.计算a+2a-1+a-2a-1(a≥1).解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a>0, ,则(x+1+x2)n的值为__________.这样先算出1+x2,再算出1+x2,将 代入1+x2,得1+x2= .所以(x+1+x2)n=参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂 的意义.活动:教师引导学生回顾无理数指数幂 的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算 的过剩近似值和不足近似值,利用逼近思想,“逼出” 的意义,学生合作交流,在投影仪上展示自己的探究结果.解:3=1.732 050 80…,取它的过剩近似值和不足近似值如下表.1.8 3.482 202 253 1.7 3.249 009 5851.74 3.340 351 678 1.73 3.317 278 1831.733 3.324 183 446 1.731 3.319 578 3421.732 1 3.322 110 36 1.731 9 3.321 649 8491.732 06 3.322 018 252 1.732 04 3.321 972 21.732 051 3.321 997 529 1.732 049 3.321 992 9231.732 050 9 3.321 997 298 1.732 050 7 3.321 996 8381.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045… … … …我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数21.7,21.72,21.731,21.731 9,…,同样把用2作底数,3的过剩近似值作指数的各个幂排成从大到小的一列数:21.8,21.74,21.733,21.732 1,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为 ,即21.70,α是无理数) 是一个确定的实数.(2)实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质:①ar?as=ar+s(a>0,r,s∈R).②(ar)s=ars(a>0,r,s∈R).③(a?b)r=arbr(a>0,b>0,r∈R).无理数指数是指数概念的又一次扩充, 教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力.要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.若x≥2,则式子x-2x-1=x-2x-1成立.故选D.方法二:对A,式子x-2x-1≥0连式子成立也保证不了,尤其x-2≤0,x-10,∴x-1=0,即x=1.∴32+5+32-5=1.

高中数学教案【篇8】

一、内容和内容解析

本节课是北师大版高中数学必修5中第三章第4节的内容。主要是二元均值不等式。它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的`数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。

就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。

二、教学目标和目标解析

教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。

在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。

学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。

进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。

通过应用问题的解决,明确解决应用题的一般过程。这是一个过程性目标。借助例1,引导学生尝试用基本不等式解决简单的最值问题,体会和与积的相互转化,进一步通过例2,引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,并用几何画板展示函数图形,进一步深化数形结合的思想。结合变式训练完善对基本不等式结构的理解,提升解决问题的能力,体会方法与策略。

三、教学问题诊断

在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识。但是,倘若教师不加以引导,学生并不能自觉地通过已有的知识、记忆去发展和构建几何图形中的相等或不等关系,这就需要教师逐步地引导,并选用合理的手段去激活学生的思维,增强数形结合的思想意识。

另外,尽可能引领学生充分理解两个基本不等式等号成立的条件,为利用基本不等式解决简单的最值问题做好铺垫。在用基本不等式解决最值时,学生往往容易忽视基本不等式,使用的前提条件a,b>0同时又要注意区别基本不等式的使用条件为,因此,在教学过程中,借助例题落实学生领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用。而对于“一正二定三相等”的进一步强化和应用,将放于下一个课时的内容。

四、教学支持条件分析

为了能很好地展示几何图形,体会基本不等式的几何背景,教学中需要有具体的图形来帮助学生理解基本不等式的生成,感受数形结合的数学思想,所以,借助于几何画板软件来加强几何直观十分必要,同时演示动画帮助学生验证基本不等式等号取到的情况,并用电脑3D技术展示基本不等式的又一几何背景,加深对基本不等式的理解,增强教学效果。

五、教学设计流程图

教学过程的设计从实际的问题情境出发,以基本不等式的几何背景为着手点,以探究活动为主线,探求基本不等式的结构形式,并进一步给出几何解释,深化对基本不等式的理解。通过典型例题的讲解,明确利用基本不等式解决简单最值问题的应用价值。数形结合的思想贯穿于整个教学过程,并时刻体现在教学活动之中。

六、教法和预期效果分析

本节课通过6个教学环节,强调过程教学,在教师的引导下,启动观察、分析、感知、归纳、探究等思维活动,从各个层面认识基本不等式,并理解其几何背景。课堂教学以学生为主体,基本不等式为主线,在学生原有的认知基本上,充分展示基本不等式这一知识的发生、发展及再创造的过程。

同时,以多媒体课件作为教学辅助手段,赋予学生直观感受,便于观察,从而把一个生疏的、内在的知识,变成一个可认知的、可交流的对象,提高了课堂效率。

通过这节课的学习,引领学生多角度、多方位地认识基本不等式,并了解它的几何意义充分渗透数形结合的思想;能在教师的引导下,主动探索并了解基本不等式的证明过程,强化证明的各类方法;

会用基本不等式解决简单的(小)值问题并注意等号取到的条件。在教学过程中始终围绕教学目标进行评价,师生互动,在教学过程的不同环节中及时获取教学反馈信息,以学生为主体,及时调节教学措施,完成教学目标,从而达到较为理想的教学效果。

本文网址://m.jk251.com/jiaoan/159145.html

相关文章
最新更新

热门标签