作为一名优秀负责的幼儿园教师,说课稿是我们工作上课需要准备的东西,为了提升学生的学习兴趣,我们一般会事先准备好说课稿,提前准备好说课稿可以有效的提高课堂的教学效率。在幼儿园说课稿的准备过程中,我们需要注意哪些方面呢?为此,你可能需要看看“小班数学《认识三角形》说课稿”,或许你能从中找到需要的内容。
一、说教材
认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。根据本班幼儿的年龄特点,我制定了以下目标一、
二、说目标:
1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。
2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。
3、发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。
围绕教学目标根据小班幼儿的认知特点,我认为本节课的重点是认识三角形的特征,难点是三角形的特征有三条边、三个角。
三、说活动准备。
经验准备:3以内的点数
材料准备:1、圆形、三角形娃娃各一个。2、图形拼图、3、彩笔(长的)
四、说教学方法。
为了让幼儿更好的掌握知识,充分发挥教与学的互动作用,更好地完成教学任务,我将采用游戏法和启发探究法,体现教师为主导,幼儿为主体的师生双边活动。
五、说教学方法
为了学习过程中更好地突出重点,突破难点取得较好的教学效果,我准备分以下几个步骤完成教学任务:
1、复习3的数数
设计这一环节的的是为了在下步学习三角形特征时幼儿能更好地学习掌握,能准确感知图形特征这一环节,采用体态动作一集体复习的形式进行。
2、学习三角形特征:这一环节是本节课的重点难点所在,我准备分以下几步完成,以突出重点、突破难点。
⑴引导幼儿观察比较圆形娃娃和三角形娃娃的不同,提供幼儿每人一三角形,通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
⑵引导幼儿观察几个不同形状、不同大小的三角形,通过验证得出三角形都有三条边、三个角,有三条边、三个角的图形都是三角形。
3、复习巩固三角形的特征。在幼儿初步掌握三角形特征的基础上只有通过各种形式的练习才能得以巩固,准备分三步完成这一环节。
⑴给图形娃娃找朋友:目的是幼儿排除干扰从众多几何图形卡片中找出三角形。
⑵看图拼图找三角形:
图形拼图能进一步激发幼儿的学习兴趣通过让幼儿观察:
这些拼图像什么?哪些部分是用三角形拼成的?用了几个三角形?
⑶请小朋友想一想,在哪里还见过三角形呢?
六、说活动延伸:
小朋友都有自己的彩笔,请小朋友回到家跟爸爸妈妈拼个三角形吧!告诉他们三角形有几条边,几个角。
活动目标:
1、通过观察、触摸,让幼儿认识三角形,掌握三角形的主要特征,并找出生活中的有关物体。
2、培养幼儿的观察、思维及操作能力。
活动准备:
画有图像的大三角形,圆形、正方形、三角形若干。
活动过程:
一、找出相同的图形。
1、出示大三角形:请小朋友看看你的桌面上有没有和老师一样的图形,把它找出来。鼓励找得又快又对的幼儿。
二、认识三角形。
1、请幼儿仔细观察手中的三角形,触摸三角形的边和角,引导幼儿说出三角形有三条边、三个角。
2、教师小结三角形的特征:有三条边,三个角的封闭图形叫三角形。
三、给三角形娃娃照相。
1、出示大三角形:三角形妈妈有很多娃娃,她想请小朋友给她的娃娃们照相,如果别的图形照进来,其它图形的妈妈可要生气的。
2、依次出示各种不同的三角形及其它图形,如果是三角形让幼儿作照相的姿势照相,嘴里发出“咔嚓”的声音,如果不是就不照,照了相的图形就放在大三角形下。
3、游戏结束,请幼儿检查这些图形是否都是三角形妈妈的娃娃。
四、说说生活中的三角形。
请幼儿说说教室里有哪些物品是三角形的,日常生活中还见过哪些三角形的物品。
活动目标:
1、正确区分圆形、三角形、正方形。
2、初步尝试进行分类游戏。
活动准备:
红、蓝、绿色三色图形(圆形、三角形、正方形)项链、红色、绿色和蓝色呼啦圈。
活动重点:
正确区分圆形、三角形、正方形。
活动难点:
初步尝试进行分类游戏。
活动过程:
1、送礼物:
——“这里有许多漂亮的项链,快选一根戴起来!”
看看、说说自己选的项链是什么形状,什么颜色的。
幼儿选择,佩戴。
2、找家:
按颜色分类
——“我们戴着漂亮的项链,回家去吧,猜猜你住在哪间房间里?”
(出示红、绿、蓝呼啦圈)引导幼儿发现项链的颜色与呼啦圈颜色比较的关系。
按图形分类(用粉笔在地上画出三种图形)
——“现在回到你和项链形状一样的家里吧!”
活动背景:
不同形状的三角形,使得幼儿很感兴趣。通过动手操,将3根一样长或不一样长的小棍,拼做三角形,使幼儿进一步认识到了有三个角,三条边的就是三角形。
活动目标:
1、认识三角形,知道三角开有三条边,三个角,复习手口一致点数。
2、培养幼儿的观察和比较能力。
3、激发幼儿学习图形的兴趣。
4、体会数学的生活化,体验数学游戏的乐趣。
5、能与同伴合作,并尝试记录结果。
教学重点、难点:
1、认识三角形,并知道三角形有许多形状
2、区分三角形与正方形
活动准备:
PPT课件、教具实物(三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。够每个幼儿做1-2个三角形的小棍(长短不同),正方形彩纸一张)
活动过程:
小班数学教案详案及教学反思《认识三角形》含PPT课件
教师小结:
正方形有四条边,三角形有三条边,正方形的四条边一样长,三角形的三条边不一样长;正方形有四个角,三角形有三个角;正方形的四个角一样大,三角形的三个角可以不一样大。(教师边说边演示)
4、它们都是三角形吗?
教师PPT出示各种三角形,请幼儿说说它们是不是三角形,为什么?(幼儿只要答出“是三角形,因为它们都有三条边,三个角”就可以了。
教师小结:
①、三角形有三条边,三个角
②、三角形有许多兄弟,它们虽然长得不一样,可是它们都有三条边,三个角
③、三角形的三条边可以不一样长,三个角可以不一样大
④、只要一个图形有三条边,三个角,它们就是三角形
5、让幼儿寻找常见实物中有什么东西像三角形(出示PPT)
6、幼儿操作。
将许多长短不同的小棍发给幼儿,让幼儿数3根小棍做三角形(可以找一样长的小棍也可以找不一样长的;做得快的可以做第二个,第三个)。
教学反思:
我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了:
1、三角形有三个角、三条边
2、三角形的三条边可以不一样长,三个角可以不一样大。
【活动目标】
1、通过观察、操作认识三角形的特征并能找出和三角形相似的物体。
2、培养观察能力和操作能力。
3、培养对图形的兴趣和数学活动常规。
4、了解数字在日常生活中的应用,初步理解数字与人们生活的关系。
5、培养幼儿相互合作,有序操作的良好操作习惯。
【活动准备】
1、趣味练习:找相同形状1—17
2、ppt图形
【活动过程】
一、导入
教师游戏口吻引出三角形:有个图形宝宝来我们班做客,你们想知道是什么图形宝宝吗?
二、展开
1。趣味练习:找相同形状
采用游戏法引导幼儿在众物品中寻找三角形的物品。
(三角铁)
2。引导幼儿观察三种三角形的共同特征,发现三角形有三条边、三个角。
3。通过动手操作进一步掌握三角形的特征。
(1)引导幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌握三角形特征。
(2)引导幼儿观察并说出三角形像什么。
4。通过游戏进一步巩固所学内容。
(1)游戏“猜猜我是谁”?
组织幼儿根据图形渐渐露出部分猜测出图形,进一步巩固幼儿对图形特征的认识。
(2)ppt图形
幼儿从各种食物中找出三角形食物。(三明治,比萨。)
5。引导幼儿观察并找出活动室中那些物品像三角形。
三、活动延伸
教师小结后,请幼儿到生活环境中进一步寻找三角形的踪迹。
教学反思:
数学活动对于小朋友来说是个很愉快的课程,因为整节活动中游戏的时间多,而且小朋友动手操作的机会比较多,但是要让孩子们能真正的理解这节教学活动的内容,并做到熟练掌握、灵活运用却不是那么容易。
活动目标:
1.通过观察、操作认识三角形的特征。
2.培养幼儿的观察能力和操作能力。
活动准备:
1.三角形图形、画点的底图、水笔、三角形组合的挂图、教室周围布置三角形的实物。
2.正方形的蜡光纸、剪刀、胶水、图画纸。
活动过程:
1.导入:有个图形宝宝来我们班做客,你们想知道是什么图形宝宝吗?
2.出示三角形,让幼儿说出三角形的名称,然后让幼儿找出教室周围与三角形相似的实物。
3.提出问题:你怎么知道它们是和三角形宝宝一样的图形?引导幼儿用手摸摸三角形的角和边,体会三角形的外形三个角,三条边。
4.出示三角形组合的挂图:
1)引导幼儿找出挂图的图案都是三角形组成的。
2)请幼儿说说怎么知道是三角形组成的。
5.出示左图,请幼儿用直线与点连接起来成三角形。
6、老师与小朋友一起讲评连接三角形的情况。
7、剪贴花:
1)出示范例:引导幼儿观察老师的花是用什么图形粘贴的。
2)提出问题:没有三角形的蜡光纸怎么办?(引导幼儿用正方形折剪成三角形进行粘贴。
活动目标
1、初步感知三角形的特征,学习观察并找寻三角形、圆形和方形。
2、愿意观察、比较,体验发现的快乐。
3、培养幼儿与他人分享合作的社会品质及关心他人的情感。
4、探索、发现生活中的多样性及特征。
活动准备
1、经验准备:幼儿已认识了圆形、方形。(事先了解过,幼儿已具备认识这两种形状的经验)
2、材料准备:黑板、每人三根长度不一的小棒;小的圆形、方形、三角形卡片若干;大的圆形、方形、三角形卡片各一张。
指导要点
1、活动重点:初步感知三角形的特征。
2、活动难点:能按要求操作,根据图形特征进行匹配。
3、指导要点:引导幼儿通过摆弄、观察、比较感知三角形的特征。
活动过程
1、操作探索,初步感知三角形的特征。
(1)三点连线变三角形。
在黑板上画不在同一直线上的三个点,老师扮魔术师:“我是神奇的魔术师,我能变出很多很多的东西,看我变变变。”将三个点用直线连起来:”看我变出一个图形。’
(2)摆图形
师:给你们每人三根小棒,看看能不能变出像魔术师一样的图形。幼儿自由摆弄、操作。
问题:大部分的幼儿并不能拼出三角形,面对三根小棒更多的茫然,需要老师帮忙才能拼出来,并且三根棒子的长度是一致的。
(3)数一数。
让幼儿数一数摆出来的图形有几个角,并总结:有三个角的图形叫三角形
问题:个别幼儿对角的概念还不能理解。
2、感知三角形在生活中的应用。
师:请你仔细看看,哪些东西是三角形的?请你指出来。
用幻灯片的形式将日常生活中见到的、用过的三角形状的东西展示出来:如屋顶、彩旗、圣诞帽、三角形蛋糕等。
在这个环节,幼儿比较感兴趣,并且运用到自己生活经验说出了他们看到的三角形物品,但由于年龄尚小,经验不足中大班丰富,因此回答的也比较有限。
师:你从哪里可以看出这是三角形?
小结:有三个角的图形叫三角形。
3、根据图形特征进行匹配。
游戏1:看到图形,幼儿进入相应的圈中。
师:小朋友,看看地上有哪些图形?(圆形、方形、三角形)现在请看看老师手上是哪个图形,你们就进入它一样的图形中去,好吗?
评价:幼儿在认识这三种形状的基础上去玩这个游戏,才能玩得开心,幼儿的情绪很投入,能够很快的反应老师的指令跑到相应的圈中。
游戏2:听口令找图形
师:我的本领可大了,还能变出其他的图形,看我变变变。逐一出示大的圆形、方形、三角形。
将小的圆形、方形、三角形图卡四散放在地上,幼儿听指令取图卡。
小结:这个环节,幼儿的秩序有些混乱,很多幼儿没有听清楚老师的指令,就去取图卡,为了速度,随手乱抓。
游戏小结:(1)引导幼儿说说自己是怎么将图形送回家的?
(2)启发幼儿说出圆形是圆的;方形是方的;三角形是三个角的。
评价要素
1、幼儿是否能在活动感知到三角形的特征。
2、从幼儿找出圆形、方形、三角形的途径和方法上进行评价。
活动建议
在活动区投放圆形、三角形、方形所组成的物品。
活动反思:
本节活动的`主要目的是要让孩子认识三角形了解三角形的特征,并能分辨吃圆形、方形、三角形。
幼儿在课前对圆形、方形两种图形已经有认识的经验,因而分辨三种图形的能力还是比较好的。在游戏环节,显然孩子体现了天性,玩得很开心,并且在游戏中巩固了对图形的认识了解。同时,活动也存在着以下不足:
1、摆图形环节,教师给幼儿提供的教具没有难度。教师要求幼儿用三根长度不一的棒子拼出三角形,但实际上提供的棒子长度都是一样的,这对能力强的幼儿来说不具难度。
2、让孩子认识生活中的三角形,缺乏实物,这样孩子就不能进一步感知三角形。
3、游戏环节的顺序不合理,游戏一,是让孩子根据指令跑到相应图形的圈圈里。游戏二是让孩子找图形宝宝,游戏一的活动量很大,幼儿玩得满身大汗,游戏二幼儿耗费的体力小,需要孩子很高的注意力,因而,幼儿玩完游戏一处在很亢奋的状态,很难有心去完成游戏二。
解决策略
1、在活动前要根据本班各个幼儿的情况准备教具,因材施教,做到各个水平的幼儿都能得到发展。
2、在认识图形的活动中,可以让幼儿收集三角形的物品带到班上让幼儿能直接感知,
3、设计游戏时,要根据幼儿的身心发展规律设计游戏内容,注意游戏的循序渐进性和合理性。
在学校和工作中,都无法避免被要求写文档,看看范文可以提高我们的效率,优秀的范文可以使学习效率倍增,你肯定在找范文的优秀模板吧!相信你应该喜欢编辑整理的小班数学认识三角形反思,请阅读后分享你的朋友!
活动设计背景
活动目标
1、通过对比让幼儿感知图形的基本特征,创设愉悦的游戏情节。
2、运用多种感官来调动幼儿的思维想象能力的观察力,激发幼儿的探索能力。
3、引导幼儿积极与材料互动,体验数学活动的乐趣。
4、引发幼儿学习图形的兴趣。
5、发展幼儿逻辑思维能力。
教学重点、难点
圆形三角形和方形的认识和区别
活动准备
小动物的图片,几何图形组成的图画和三种几何图形卡片若干。
活动过程
一、1.小朋友老师今天带你们拼拼图,你们愿不愿意图
2.提问;这么多好看的图形你们知道它们使用什么图形组成的吗
3.幼儿回答完我会根据小朋友的回答用儿歌的形式把三种图形的特点和名称说给小朋友们听。
二、用游戏的形式让幼儿认识三种图形。
1.游戏;摸一摸。用摸得形式让小朋友体会这三种图形的不同之处,并说出图形的名称。
2.游戏;谁的本领大。出示由图形拼成的各种图案让小朋友找出是由什么图形组成的。
3.游戏;小动物找家。出示小动物图片,我会告诉小朋友它们哭了,原因是找不到自己的家了,请小朋友帮帮它找找它们的家。例如;我会扮演小动物说说自己的房子是什么形状的,请小朋友来帮忙。
4.游戏;找图形宝宝。在教室地板上摆放三个图形宝宝,我喊口令小朋友找图形站好看谁找的快又好。
三、结束。今天我们玩得很开心,小朋友们能告诉老师你们都认识了什么图形,它们都有什么特点
四、放排排队的歌,带小朋友去卫生间。
教学反思
当我进行实际教学过程时,我从孩子们身上看到了这样的现象:1.幼儿对各种图形非常感兴趣,幼儿对身边的事物有着敏锐的观察力,有渴望了解图形宝宝的欲望2.在活动中,幼儿的情绪很活跃,能把自己发现的主动地告诉老师和周边的小伙伴,使幼儿的表达能力、反应能力和观察能力都得到了发展。我还从孩子们的操作中,1.在这次活动中孩子乐于参与,积极发现。2.孩子们兴致浓厚,也愿意主动去探索,主动去参与。我觉得我原来的设计可以这样的调整:幼儿自我操作时间不足,没有创设幼儿合作交流的机会,语言还要精炼等,在以后组织活动的过程中我应加以改进,为幼儿传递良好的语感,培养幼儿善于表达的能力。
【活动目标】
1、通过观察、操作认识三角形的特征并能找出和三角形相似的物体。
2、培养观察能力和操作能力。
3、培养对图形的兴趣和数学活动常规。
4、知道按事物不同的特征进行排序会有不同的结果,初步了解排序的可逆性。
5、让幼儿体验数学活动的乐趣。
【活动准备】
1、趣味练习—找各种形状的物品2.展示ppt【活动过程】
一、导入教师游戏口吻引出三角形:有个图形宝宝来我们班做客,你们想知道是什么图形宝宝吗?
二、展开1.趣味练习--找相同形状采用游戏法引导幼儿在众物品中寻找三角形的物品。
(三角铁)2.引导幼儿观察三种三角形的共同特征,发现三角形有三条边、三个角。
3.通过动手操作进一步掌握三角形的特征。
(1)引导幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌握三角形特征。
(2)引导幼儿观察并说出三角形像什么。
4.通过游戏进一步巩固所学内容。
(1)游戏“猜猜我是谁”?
组织幼儿根据图形渐渐露出部分猜测出图形,进一步巩固幼儿对图形特征的认识。
(2)ppt图形幼儿从各种食物中找出三角形食物。(三明治,比萨。)5.引导幼儿观察并找出活动室中那些物品像三角形。
三、活动延伸教师小结后,请幼儿到生活环境中进一步寻找三角形的踪迹。
教学反思:
数学活动对于小朋友来说是个很愉快的课程,因为整节活动中游戏的时间多,而且小朋友动手操作的机会比较多,但是要让孩子们能真正的理解这节教学活动的内容,并做到熟练掌握、灵活运用却不是那么容易。
活动设计背景
幼儿的天性是好动,观察能力、模仿能力特别强。利用生活中的图形来激发幼儿的好奇心和学习兴趣。还培养幼儿的动手能力。
活动目标
1、通过幼儿亲自动手操作活动认识圆形、三角形。
2、培养幼儿的动手能力,发展幼儿的观察力和积极思维的能力。
3、培养幼儿的语言能力,丰富幼儿的词汇,锻炼幼儿的胆量。
4、引发幼儿学习图形的兴趣。
5、发展幼儿逻辑思维能力。
教学重点
培养幼儿的动手能力,发展幼儿的思维,提高幼儿的口语表达能力
活动准备
1每人一只小盒子 、四颗大小不同的纽扣,三根火柴棒,
2大头针若干、泡沫板一块、绒线或铜丝若干。
3圆形、三角形卡片、雪花玩具。
活动过程
一、开始部分:
1、出示球、魔方、饼干、盆碗、纽扣让幼儿观察它们都是什么形状。如果知道告诉老师,小朋友认识那些图形。
2、小朋友喜欢这些图形吗?
3、今天我们就和这些图形做朋友。
二、基本部分
1、玩纽扣吧,请小朋友把自己手中的纽扣从大到小地排列并数数有几颗纽扣?(4)。问这些纽扣都是什么形状的?并请小朋友把最大的纽扣拿出来,摸一摸,看一看。
2、找圆形;纽扣是圆形,还有什么是圆形的?让幼儿在教室里找圆形,找到后告诉老师,要大声回答问题,(表、桶、球、水杯)。
3、连三角形:请小朋友用三根大头针随便分开插在泡沫板上。教师用一根绒线把大头针连起来后让小朋友说出是一个什么图形?(三角形).。比一比三角形与圆形有什么不一样?(三角形有三条边三个角)。
4、让幼儿自己动手,拼三角形:请每个幼儿用三根火柴棒拼成一个三角形。
三、结束部分
1、发给每个幼儿一根铜丝,让幼儿发挥想象任意摆出自己喜欢的图形,而且还要说出自己的想法,锻炼幼儿的手脑并用,语言表达能力。
2、给雪花玩具归类:圆形的放在圆盒子里,三角形的放在的三角形盒子里。
3、卡片;发给每个幼儿一套图形卡片,让他们有创意的摆出各种组合图形。
4、欣赏图形,让幼儿自己来评价一下小朋友的作品。
5、教师总结在课堂上全体小朋友的表现。
教学反思
我利用幼儿的好动好学的天性,让幼儿自己边学边边动手、边观察,在生活中找出各种图形,而且,锻炼幼儿说话、要大声说话,不仅要在科学常识方面学习,还要丰富幼儿的口语表达能力,并且利用幼儿动拼图形时,发展了幼儿思维能力,要想像出他所喜欢的图形才能拼出各种图形,幼儿特别喜欢用铜丝和图形卡片来拼图。就像变魔术一样。一会变成圆形、一会变成三角形又变成正方形,幼儿还用卡片组合拼图,用圆形和三角形组合成一只小鸟,三角形圆形正方向组成大象。幼儿特别有成就感。非常激动学习兴趣特别浓。本节课幼儿的注意力特别集中,就连胆小幼儿都能拼出简单的图形。这说明幼儿很聪明,只要给他们搭建平台,他们就有机会展示自己,课堂上积极配合老师。如果,这节课从上的话,我要给幼儿一支笔,要让动手他们画出自己喜欢的图形,比如、电视、洗衣机、冰箱、球、车轮、等等。
活动背景:
本次活动是在幼儿能够正确感之圆形、三角形、正方形的图形特征的基础上设计的。以幼儿喜欢的“小鸭”形象进入角色、以幼儿生活中最熟悉的饼干为材料。重点在引导幼儿通过观察、比较、操作、学习以图形的某些特征来分类,并将分类的标准分层分配到各个游戏中,使活动层层递进、环环相扣。
活动目标:
1、通过游戏,巩固幼儿对三角形,正方形,圆形的认识。
2、初步培养幼儿对数学活动的兴趣。
3、在活动中,让幼儿体验与同伴共游戏的快乐,乐意与同伴一起游戏。
4、使小朋友们感到快乐、好玩,在不知不觉中应经学习了知识。
5、发展幼儿思维和口语表达能力。
活动准备:
1、活动场地。
2、录音机,录好各种声音的磁带。
3、各种图形以及各种图形饼干(形状分圆形、三角形、正方形,颜色分红与绿),篮子若干。
4、请一位老师当猫妈妈,小鸭头饰若干,鸭妈妈头饰一个。
活动过程:
1、教师演鸭妈妈,幼儿演小鸭,引起幼儿的兴趣。
(1)、带领小鸭子们在教室睡觉。
师:“小鸭子们醒来吧!”
幼:“哦!妈妈我睡的多香呀!”
(2)、引导幼儿跟着音乐,刷牙,洗脸,梳头,做早操,做游戏。
早操内容:
今天空气真真好,我们大家来做操。伸伸臂,伸伸臂,弯弯腰,弯弯腰,踢踢脚,踢踢脚,咕噜咕噜喝口水,游游泳,游游泳,再来把屁股扭一扭,扭一扭,扭漂亮一点。
游戏内容:
发给幼儿每人一个图形娃娃,帮图形娃娃找家。
图形娃娃的家在山洞里面,按不同的图形穿不同的山洞,把图形娃娃送回家。
(评析:教师以鸭妈妈的身份交代游戏任务,幼儿以小鸭的身份马上就进入了角色,激发了幼儿活动的兴趣。)
2、幼儿进行送饼干游戏
(1)、接到电话引起幼儿兴趣。
教师用语参考:“猫妈妈打电话过来,说她的猫咪食品店的工作太忙了,想请我们小鸭子帮她到食品厂去领饼干,好不好呀?”
(2)、带领幼儿去食品厂领饼干。 幼儿跟着音乐学小鸭走去食品厂。
(3)、把饼干送到猫咪食品店处,巩固对三角形,正方形,圆形的认识。
①与猫妈妈问好。
②帮猫妈妈把饼干送入盒中,对三角形,正方形,圆形进行分类。
③与猫妈妈再见。猫妈妈送饼干给幼儿,提醒幼儿说:“谢谢猫妈妈。”
(评析:这个环节是本活动的重点,教师注重启发幼儿操作探索,主动讲述分类方法,让幼儿充分得到锻炼和发挥,并且在游戏最后以猫妈妈送饼干给幼儿作为奖励,巧妙的为下一个环节的游戏作好铺垫。)
(4)、把饼干发给幼儿,幼儿学说:“我拿到了什么形状的饼干。”
(5)、娃娃哭了,肚子饿,鼓励幼儿把饼干送给娃娃吃。
分三次送。问娃娃要吃什么形状什么颜色的饼干,就请拿什么形状的其颜色的饼干的幼儿送饼干。同时对幼儿进行德育教育:“娃娃太挑剔了,可她人还小,我们就满足她的要求吧!我们可不要学她哦!”
(评析:最后以送给娃娃吃饼干的游戏结束,并将分类要求再次提高,使整个活动一气呵成,结局完整,取得良好效果。
3、结束部分:
教师用语参考:“今天,小鸭子们表现真好,为猫咪送饼干,而且还把饼干让给小娃娃吃,妈妈真是要好好夸奖夸奖你,送你们一个大拇指,现在妈妈带你们到外面去玩好不好?” 带幼儿跟着音乐离开教室,结束活动。
活动反思:
运用游戏的形式开展数学活动,符合小班幼儿的年龄特点,在整个活动中,幼儿始终沉浸在游戏的欢乐中,兴趣极高,幼儿在不知不觉中对圆形、三角形、正方形的图形特征有了进一步的巩固认识,真正体现了幼儿的主体性,动手能力,语言表达能力,都有了很大的提高。
活动目标:
1、复习圆、三角形、正方形,知道这三种图形的基本特征。
2、引发幼儿学习图形的兴趣。
3、培养幼儿比较和判断的能力。
4、引导幼儿积极与材料互动,体验数学活动的乐趣。
5、引发幼儿学习的兴趣。
活动准备:
地上画圆、三角形、正方形,每种图形都有4种不同的尺寸,分别标1―4个点,图形标上几个点,图形内就可以站几个人。作业卡。
活动过程:
1、幼儿分成3组,每组分别站进圆、正方形、三角形内。音乐响起,游戏开始,幼儿在场内自由活动。一声令下,幼儿迅速站进自己的图形里,动作又快又准确的组为优胜组。各组互相轮换,再做三次,使每人都有机会站到不同的图形里。
2、指导幼儿做练习:
(1)将图形分类计数,并将数量用圆点表示出来。
(2)将图形分类计数,并比较多少,找出最多和最少的图形,并分别涂上不同的颜色。
(3)启发幼儿动脑筋,想办法,用所给图形拼成适当的图案。
活动反思:
小班幼儿的思维具有具体性、形象性的特点,认识过程中,注意较易转移,如何在有限的时间里,科学、有效地完成教育任务、实现教育目标,是小班教学活动组织的难点。本活动设计尝试以趣味性、直观形象的游戏情境贯穿全程,使幼儿在轻松、愉快、自主的状态下,通过操作实践与周围的物质环境发生作用,动手动脑掌握数学知识。
不为明天做好准备的人是没有未来的,作为一幼儿园的老师,我们需要让小朋友们学到知识,为了防止学生抓不住重点,教案就显得非常重要,教案可以让同学们很容易的听懂所讲的内容。幼儿园教案的内容要写些什么更好呢?由此,小编为你收集并整理了小班数学教学设计三角形1000字仅供参考,欢迎阅读。
一、说教材
认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。根据本班幼儿的年龄特点,我制定了以下目标一、
二、说目标:
1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。
2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。
3、发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。
围绕教学目标根据小班幼儿的认知特点,我认为本节课的重点是认识三角形的特征,难点是三角形的特征有三条边、三个角。
三、说活动准备。
经验准备:3以内的点数
材料准备:1、圆形、三角形娃娃各一个。2、图形拼图、3、彩笔(长的)
四、说教学方法。
为了让幼儿更好的掌握知识,充分发挥教与学的互动作用,更好地完成教学任务,我将采用游戏法和启发探究法,体现教师为主导,幼儿为主体的师生双边活动。
五、说教学方法
为了学习过程中更好地突出重点,突破难点取得较好的教学效果,我准备分以下几个步骤完成教学任务:
1、复习3的数数
设计这一环节的的是为了在下步学习三角形特征时幼儿能更好地学习掌握,能准确感知图形特征这一环节,采用体态动作一集体复习的形式进行。
2、学习三角形特征:这一环节是本节课的重点难点所在,我准备分以下几步完成,以突出重点、突破难点。
⑴引导幼儿观察比较圆形娃娃和三角形娃娃的不同,提供幼儿每人一三角形,通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
⑵引导幼儿观察几个不同形状、不同大小的三角形,通过验证得出三角形都有三条边、三个角,有三条边、三个角的图形都是三角形。
3、复习巩固三角形的特征。在幼儿初步掌握三角形特征的基础上只有通过各种形式的练习才能得以巩固,准备分三步完成这一环节。
⑴给图形娃娃找朋友:目的是幼儿排除干扰从众多几何图形卡片中找出三角形。
⑵看图拼图找三角形:
图形拼图能进一步激发幼儿的学习兴趣通过让幼儿观察:
这些拼图像什么?哪些部分是用三角形拼成的?用了几个三角形?
⑶请小朋友想一想,在哪里还见过三角形呢?
六、说活动延伸:
小朋友都有自己的彩笔,请小朋友回到家跟爸爸妈妈拼个三角形吧!告诉他们三角形有几条边,几个角。
每个老师在上课前会带上自己教案课件,而现在又到了写课件的时候了。教案编写需要灵活性和适应性。给大家推荐一篇具有阅读价值的文章题目为“小学数学三角形教案”,欢迎浏览我们的网页了解更多信息!
一题多解的解,若当作解法,即为一道题有多种解法,但数学中把解又当作结果,所以也可理解为一道题有多种结果.通常人们是以第一种解释为多,这里笔者想借此谈点教学解斜三角形时的一些新想法.
解斜三角形,就是利用三角形的已知元素,求出未知元素的过程.其原理是正弦定理.条件必须满足3个,就是在斜三角形三角三边个元素中,必须已知其中的三个,而已知三个角时,三角形不确定,所以三个条件中至少要有一条边.这样我们可以把已知条件分为三种类型:1、已知三边.由定理可知,要用余弦定理开解;2、已知两角一边.因为三角形的三个内角和是180,所以实际是已知三角一边,由定理可知,不管是已知夹边还是对边,用正弦定理都可以解;3、已知两边一角.这种类型要注意.由定理可知,若是已知夹角要用余弦定理来解.经过这样的分析,我们可以进行总结并归纳为口诀:三边必定用余弦,还有两边夹一角;正弦两边一对角,双角必定用正弦.
有了定理,有了口诀,只是初步掌握.请看例一:在△ABC中,已知A=45,a=2,b=2,求B.简解为:。例二:在中,已知求,简解为:且或。以上两例,同样是正弦定理,却存在着一解或两解的问题,按照大边对大角,小边对小角的原则,例一是已知大边对大角,求小边的对角,只能有一解,而例二是已知小边对小角,求大边的对角,则有锐角和钝角两种结果.这种一题多解的问题因该特别小心,不能出现漏解或是增解的情况.在斜三角中,已知三边,已知两角一边和已知两边一夹角时,三角形都是唯一确定的;一有已知两边一对角时,才有可能出现一解、两解或是无解的情况.这里大边对大角的原则起着决定性的作用.
有了定理,有了口诀,有了原则,还要能灵活运用各种不同的解法,以求达到一题多解.请看例三:在△ABC中,已知A=30求c。简解为:由正弦定理得:且或。当,则,当则所以,。这是已知两边一对角的情形,按口诀应该用正弦定理如上所解,但是用余弦定理也是可行的.简解为:由公式,代入得,化简,,所以,或=8或=4,此法不仅简洁且不会漏解,值得重视.
小学数学四年级苏教版《认识平行》教学设计
[教学目标]
1.使学生联系实际生活情景,体验直线的相交与不相交关系;
2.使学生认识两条直线互相平行,能判断两条直线的平行关系。
3.使学生能根据直线平行的意义,在老师的指导下探索和掌握用直尺、三角板画平行线的步骤和方法,能正确地画出已知直线的平行线。
4.使学生通过观察、操作,形成平行线的`表象,发展空间观念;初步了解生活里的平行现象,产生学习图形位置关系的兴趣。
[教学重点]
1.使学生联系实际生活情景,体验直线的相交与不相交关系;
2.学生在老师的指导下探索和掌握用直尺、三角板画平行线的步骤和方法,能正确地画出已知直线的平行线。
[教学准备]游戏棒、A4纸、记号笔
[教学过程]
一、情境导入
1、同学们,看(拿出一根游戏棒),这根游戏棒,你能想象出这根游戏棒所在的直线吗?可以向两端无限延长。
2、今天这节课,我们就要借助游戏棒来学习一个新知识。
3、怎么玩游戏棒呢?请大家听清要求:同桌合作,一人撒小棒,一人把这两根小棒所在的直线画在白纸上,注意,每张白纸上只画一种情况,画的时候要用直尺和黑色水笔。可以多撒几次,画出不同的情况。
4、学生动手活动,教师参与活动。
【教学内容】
新人教版义务教育课程四年级数学下册第五单元《三角形的分类》。
【教材分析】
“三角形分类”是在学生认识了直角、钝角、锐角和三角形的特征基础上展开学习的,教材分为两个层次:一是三角形按角分类,分为锐角三角形、钝角三角形和直角三角形,并通过集合图形象地揭示三角形按角分得的三种三角形之间的关系,并体现分类的不重复和不遗漏原则;二是三角形按边分类,不等边三角形和等腰三角形,等腰三角形里又包含等边三角形。按边分类较难一些,教材不强调分成几类,着重引导学生认识等腰三角形、等边三角形边和角的特征。
【教学目标】
1、通过动手操作,会根据三角形的边、角的特点给三角形分类,认识各种三角形。
2、经历动手操作、分析思考的过程,感悟分类的数学思想。
3、培养学生动手、动口、动脑及分析推理能力
【教学重点】
学会从不同角度给三角形分类,掌握各类三角形的特征。
【教学难点】
会按边的特征给三角形进行分类。
【教具准备】
多媒体课件、三角形、量角器
【教学过程】
一、设疑自探
今天老师带大家去一个神秘的王国,你们想去吗?进入这个神秘王国的密码是一个谜语。大家请看:
1、猜谜语,激发学习情趣。
“形状似座山,稳定性能坚;三竿手尾连,学问不简单。”打一几何图形(课件出示谜语)
大家真聪明!现在,这个王国派了代表迎接我们。
2、出示课件:四个三角形
师:这四位代表,就像孪生兄弟,你们能找出它们的共同点吗?
学生说三角形的特征:
都有3条边,3个顶点……三角形任意两边之和都大于第三边等等。
同学们在四位代表的带领下进入了这个神秘的王国,放眼望去,到处都是三角形,这些三角形都有刚才我们说的的共同点,但仔细一瞧还是有区别的,同学们能不能给它们分分类呢。这节课我们就学习《三角形的分类》。板书课题《三角形的分类》
3、看到这个课题你想知道什么问题?
问题预设:三角形可以分为哪几类?
可以按照什么标准分类?
4、教师根据学生提出的问题,经过整理归纳形成自探内容。
学生自学63-64页的内容并思考以下问题:
(1)、观察每个三角形.可以动手量一量,小组合作。根据你发现的特点将三角形分类。给三角形分类有几种分法?
小组合作要求:小组长从课前下发的信封中取出三角形,分好工,每个同学负责测量一个三角形的相关数据。把测量的数据记录在三角形对应的位置上。各小组按照你们讨论的方法去进行分类,并在桌子上分一分。
(2)、三角形按角分可以分哪几种呢?各是什么?
(3)、三角形按边分可以分哪几种呢?各是什么?
(4)、三角形的关系可以用一个什么样的图表示呢?
(5)在直角三角形中,请同学们量一量它的直角边和斜边,再比一比,你发现了什么?
(6)、自己画一个等腰三角形和一个等边三角形。并量一量等腰三角形和等边三角形的各个角。你发现了什么?
(7)、从红领巾、三角板、慢行标志中找一找哪里有这两种特殊的三角形?
二、解疑合探
(一)、小组交流自探提示的问题,尤其是自己不明白的问题。
(二)、全班汇报自探效果:让学生汇报自探结果。差生汇报,中等生补充,优等生评判。反馈。
(1)按角分类
1、每个小组的成员带上你们的三角形把小组合作的成果进行展示。(请同学们认真观察,看看你们小组的分法是否和他们的一样)
2、请小组长汇报为什么这样分?
一个直角,两个锐角 一个钝角,两个锐角 三个锐角(板书)
3、有没有哪个小组也是这样分类的?需要补充吗?
4、你能给这三类三角形分别取个名字吗?
直角三角形 钝角三角形 锐角三角形 (板书)
5、像这样的三类三角形我们是按什么方法分类的呢?按角分(板书)
6、三角形按角分成了这三类,下面我们用图来表示这三类三角形的关系,你们觉得可以怎样来表示呢?
7、课件概括三类三角形的概念。
8、在直角三角形中,请同学们量一量它的直角边和斜边,再比一比,你发现了什么?(直角三角形的斜边大于任意一条直角边)
(2)按边分类
1、刚才那一组是从角的角度进行分类,其他小组有没有用不同的方法进行分类的呢?(小组成员进行成果展示)
2、请你说一说你们为什么会这样分类呢?
三条边都不等 两条边相等 三条边相等
3、有没有哪个小组也是这样分类的?需要补充吗?
4、分别给它们取个名字。
不等边三角形 等腰三角形 等边三角形
5、我们来看看等腰三角形和等边三角形之间是否存在一定的关系。等边三角形是否具备等腰三角形的特征呢?(教师引导分析)这就说明等腰三角形包含等边三角形,那我们通常把等边三角形归为等腰三角形这一类。
6、在小组内找出等腰三角形和等边三角形,看看它们各个角的度数分别是多少,你有什么发现呢?(等腰三角形有两个角相等,等边三角形有三个角相等)
7、下面我们来认识等腰三角形和等边三角形的各部分名称,请同学们看书上第64页的内容。
8、课件出示各部名称。(学生回答后再逐一出示)
9、总结等腰三角形和等边三角形的特征。
10、想一想,在我们的身边有哪些物品的外表形状是等腰三角形或等边三角形的。学生交流后教师课件出示:
慢
(等腰三角形)(等腰三角形)(等边三角形)
11、你还有什么疑问?
三、质疑再探
通过本节课的学习你有哪些疑问或不明白的地方提出来我们共同研究解决。
问题预设:
思考:三角形中能有两个直角吗?为什么?
三角形中能有两个钝角吗?为什么?
四、拓展运用
五、课堂总结
同学们,这节课你们学得愉快吗?为什么?
六、布置作业
第65页练习十五,第4题;
第66页练习十五,第10题。
1、知识技能:
(1)掌握等腰三角形的性质。
(2)运用等腰三角形的性质进行证明和计算。
2、数学思考:
(1)观察等腰三角形的对称性,发展形象思维。
(2)经历等腰三角形性质的探究过程,在实验操作、观察猜想、推理论证的过程中发展学生合情推理和演绎推理能力。
3、问题解决:
(1)通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。
(2)通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力,发展学生的应用意识、创新意识、反思意识。
4、情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
重点是等腰三角形的性质及应用。
人类的聪明智慧让我们看到了一个又一个令人惊叹的奇迹,下面请同学们观察这几幅图片,看看这些伟大的人类建筑中都含有一个什么样的基本图形?
师1:同学们,这几张图片中共同存在的基本图形是什么?
等腰三角形以它那对称、和谐、庄重、典雅之美成为我们数学殿堂的一枚瑰宝,可现实生活中为什么这些建筑要设计成等腰三角形的形式呢?等腰三角形有什么特殊的性质吗?今天就让我们一同来走进这个美妙的图形。(板书)12.3.1等腰三角形
师1:在小学时我们就知道两条边相等的三角形叫做等腰三角形。
下面我们利用剪纸的方法将手中的矩形纸片变变形。请大家跟着老师一起做:先将纸片向下对折,再把角斜向下折叠,沿折痕剪下,打开就得到一个等腰三角形。
观察这个等腰三角形,我们称相等的边叫做――腰,那么另一边叫做――底边,两腰的夹角叫做――顶角,腰和底边的夹角叫做――底角。
师1:接下来,我们再度观察手中的等腰三角形,它是轴对称图形吗?为什么?
师2:仔细观察:将等腰三角形ABC沿折痕对折,请大家找出其中重合的线段和角。哪位同学可以发表一下自己的看法?
师3:这些线段是互相重合的,它们存在什么数量关系?重合的角呢?
师4:通过刚才的分析,由这些重合的线段和角,你能发现等腰三角形的性质吗?说一说你的猜想。
(板书)猜想①等腰三角形的两个底角相等。
猜想②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
师1:请同学们用心观察等腰三角形ABC:随着等腰三角形的形状变化,观察两个底角是否永远相等?这说明什么?
师2:请同学们再认真观察,随着等腰三角形的形状变化,AD是否永远是顶角的平分线、底边上的中线、底边上的高?这又能说明什么?
师1:来看猜想1等腰三角形的两个底角相等。将这个命题改写成“如果―那么―”的形式,该如何叙述?
今天大家从不同角度添加辅助线,将等腰三角形问题转化成全等三角形问题,进而证明出等腰三角形的性质1,接下来,请大家将性质1齐读1遍。性质1简称:等边对等角。下面我们用符号语言描述性质的因果关系。同学们一定要注意,在应用“等边对等角”时必须是在同一个三角形中。
师5:由性质1的证明过程,你能不能证明出猜想2呢?下面让我们一同观察性质1的证明过程,在作出等腰三角形顶角平分线的基础上,由三角形全等,我们还能得到什么结论?
师6:类比这种证明方法,当我们作出等腰三角形底边上的中线时,又能得到什么结论呢?
经过证明它平分顶角并平分底边。通过刚才的证明,我们得到三个结论,这三个结论我们能否用一句话概括?也就证明出了性质2。接下来,我们来看一组填空题,这就是性质2的数学符号表述。仔细观察这三组符号语言,在等腰三角形的前提下,我们只要知道顶角平分线、底边上的中线、底边上的高这三个条件中的任意一条,即可推出其余两个是成立的。
等腰三角形的性质为我们今后证明两条线段相等、两个角相等提供了重要依据。
3.辩证思考等腰三角形的性质:
我们再来看性质2“等腰三角形的顶角平分线、底边上的中线、底边上的'高互相重合”,那么底角的平分线,腰上的中线和高是否互相重合?请大家动手折叠来说明。
所以等腰三角形的性质2必须强调的是顶角平分线、底边上的中线、底边上的高互相重合。
利用我们今天所学的主要内容:等腰三角形的性质,能解决什么样的具体问题?请看例1,独立思考第(1)、(2)问,有答案,请举手。
师1:请大家观察∠BDC是等腰△ABD的外角,思考∠BDC与∠A有何数量关系?
师2:思考第(3)问,如何求各角的度数?请同学们在练习本上求解第(3)问。
这道题目我们结合图形,利用方程进行求解,可以使我们的表述更加清晰。
下面请大家再看一个例题,齐读例2,有思路,请举手回答。
下面,我们进行两组小练习,看看谁的速度快?
师1:通过这两个题目,你有什么发现?我们发现在等腰三角形中,若已知角为锐角,则它既可以作为顶角,也可以作为底角,需要分情况讨论;若已知角为钝角,则它只能作为顶角。
通过今天的数学学习,你有哪些收获?
(六)划分层次,布置作业。
(A)P56 1,4。
(B)P56 1,4,6。
教学目标:
1、让学生经历猜想、操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,推导出三角形面积公式。
2、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣,发展学生的空间观念,培养学生的创新精神与实践能力。
3、能运用三角形的面积计算公式解决简单的实际问题,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
教学重、难点:
探究三角形面积公式的推导过程。
教学准备:
课件,2个完全一样的钝角、锐角、直角三角形,剪刀。
教学方法:合作探究
教学过程:
一、谈话导入、揭示课题
同学们穿着统一的校服,戴着鲜艳的红领巾,真精神。做这样一条红领巾需要多少布料呢?需要我们计算红领巾的什么?
我们已经学过哪些图形的面积?
红领巾是什么形状的?
会求三角形的面积吗?这节课我们就学习三角形的面积。
二、合作探究、汇报交流
1、猜测:
你想用什么方法求三角形的面积?
平行四边形能转化成学过的图形求面积,三角形能转化成学过的图形求面积吗?
用桌子上的材料(每人一个钝角三角形、每组一把剪刀)试试吧。
转化成学过的图形了吗?有难度吧。我们能不能换个思路、换种方法用两个三角形来拼呢?
2、同桌合作动手操作。
用两个同样的钝角三角形拼一拼。展示作品。
3、小组合作。
锐角三角形、直角三角形能拼成学过的图形吗?
同学们想试试吗?根据提示板上的提示研究吧。
提示:
做一做:想办法把三角形转化成学过的图形。
找一找:转化成的图形和原来的图形有什么关系。
想一想:三角形的面积该怎么求呢?
4、学生汇报。
5、归纳小结。
转化后的图形用一个名字概括,哪个比较合适?
三、推导公式
1、回顾
课件演示:两个同样的三角形旋转、平移拼成了平行四边形。
每个三角形与拼成的平行四边形有什么关系?
三角形的底和高与拼成的平行四边形的底和高有什么关系?
2、得出结论
三角形的面积该怎样计算?
为什么要除以2?
三角形的面积计算公式用字母该怎样计算?
3、小结方法
刚才我们的研究过程正好体现了数学上常用的一种方法——转化法。
4、拓展延伸
介绍刘徽用一个三角形推导出了面积公式。
四、运用公式解决问题
1、解决红领巾的.问题。
2、解决底是8厘米、10厘米,高是6厘米的三角形的面积。
体会底和高的对应性。
3、三角形的面积是25平方厘米,底是10厘米,高是多少厘米?
五、全课总结
同学们,通过这节课的学习,你有收获吗?一起来分享吧!
追问:
三角形的面积为什么要除以2?
怎样推导出三角形的面积计算公式的?
只要大家勤动手、勤思考,就一定能学到更多的数学知识。
板书设计:
三角形的面积
三角形的面积=平行四边形的面积÷2
=底×高÷2
S=ah÷2
设计思路
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180,引发学生的猜想:其它三角形的内角和也是180吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180或接近180(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180的结论。这一系列活动潜移默化地向学生渗透了转化数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着学贵在思,思源于疑的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
教学目标
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透转化数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教材分析
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。
教学重点
让学生经历三角形内角和是180这一知识的形成、发展和应用的全过程。
教学准备
多媒体课件、学具。
教学过程
一、激趣引入
(一)认识三角形内角
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?
生1:三角形是由三条线段围成的图形。
生2:三角形有三个角,
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍内角。)
(二)设疑,激发学生探究新知的心理
师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)
生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师:有谁画出来啦?
生1:不能画。
生2:只能画两个直角。
生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
生:想。
师:那就让我们一起来研究吧!
(揭示矛盾,巧妙引入新知的探究)
二、动手操作,探究新知
(一)研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90、60、30。(课件演示:由三角板抽象出三角形)
师:也就是这个三角形各角的度数。它们的和怎样?
生:是180。
师:你是怎样知道的?
生:90+60+30=180。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90+45+45=180。
师:从刚才两个三角形内角和的计算中,你发现什么?
生1:这两个三角形的内角和都是180。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形内角和
1.猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
生1:180。
生2:不一定。
2.操作、验证一般三角形内角和是180。
(1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!
师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
(2)小组汇报结果。
师:请各小组汇报探究结果。
生1:180。
生2:175。
生3:182。
(三)继续探究
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢?
生:把它们剪下来放在一起。
1.用拼合的方法验证。
师:很好,请用不同的三角形来验证。
师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。
2.汇报验证结果。
师:先验证锐角三角形,我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180。
生2:直角三角形的内角和也是180。
生3:钝角三角形的内角和还是180。
3.课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:我们可以得出一个怎样的结论?
生:三角形的内角和是180。
(教师板书:三角形的内角和是180学生齐读一遍。)
师:为什么用测量计算的方法不能得到统一的结果呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180,在一个三角形中如果有两个直角,它的内角和就大于180。
师:在一个三角形中,有没有可能有两个钝角呢?
生:不可能。
师:为什么?
生:因为两个锐角和已经超过了180。
师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2.按要求计算。(数学信息较为隐藏和生活中的实际问题)
3.游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。
五、全课总结。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?
教学反思
这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。
在学习活动的过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。但还受课本资源的限制,不能大胆突破教材,充分利用生活资源。例如:可以出示一块被打烂了的三角形玻璃板(如图:),向学生提出挑战性的问题:老师今天不小心把这块三角形的玻璃板打烂了,要重新买与原来同样大的一块,可老师不知道尺寸,怎么办呢?谁能帮老师解决这个问题呢?让学生利用学过的知识解决生活中常出现的问题,更能使学生体会到数学不仅来源于生活,学习数学的目的更是为了解决生活中的问题,体会到学习数学的重要意义。
人教版小学四年级下册数学教学设计:四则运算
(一)教学目标
1.使学生掌握含有两级运算的运算顺序,正确计算三步式题。
2.让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两三步计算的方法解决一些实际问题。
3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
(二)教材说明和教学建议
教材说明
1.本单元的内容结构及其地位作用。
本单元主要教学并梳理混合运算的顺序。混合运算前面学生已经学会按从左往右的顺序计算两步式题,并且知道小括号的作用,这里主要教学含有两级运算的运算顺序,并对所学的混合运算的顺序进行整理。主要内容有:整理同级运算的顺序,教学并整理含两级运算的顺序及含有小括号的运算顺序、有关0的运算。具体安排如下:
2.本单元教材的编写特点。
(1)解决问题与四则混合运算顺序的梳理有机结合起来。
本单元在整理混合运算顺序时,是结合解决问题进行的。目的是使学生在解决一个个实际问题的过程中,进一步掌握分析解决问题的策略和方法,同时体会运算顺序规定的必要性,从而系统地掌握混合运算的顺序。
(2)为学生提供自主探索与合作交流的情境和空间。
本单元是从解决问题的角度教学整理四则混合运算的顺序,其中的问题是需要两三步计算解决的问题。教材创设了热闹的滑雪场情境,由此生出一系列的情境串,引出相应的4个例题。每个例题都呈现了学生交流不同的解题思路,以及整理混合运算的画面,以鼓励学生在已有的知识基础上,积极思考,主动解决问题。
教学建议
1.将探求解题思路过程与理解运算顺序有机结合起来。
本单元是让学生在经历解决问题的过程中,感受混合运算顺序规定的必要性,掌握混合运算的顺序。因此,教学时,要充分利用教材提供的生动情境,放手让学生独立思考,自主探索,并在合作交流的基础上形成解决问题的步骤和方法,先求什么?用什么方法计算?再求什么?又用什么方法计算?最后求什么?用什么方法计算?使解题的步骤与运算的顺序结合起来。当学生列出综合算式后,还要追问每步算式列出的依据及表示的实际意义,促进学生正确地概括出混合运算的运算顺序。
2.帮助学生逐步掌握解决问题的步骤和策略。
本单元混合运算的顺序是结合解决问题进行的,其中解决问题的步骤和策略又是重点和难点之一。教学时,要注意加强数量关系的分析,在叙述解题思路时,要引导学生透过数看到量,用量的关系来描述解题思路。如,可引导学生这样描述思路“先算出每天接待多少人,再计算6天接待多少人”。不要停留在“先用987÷3,再乘6”的描述方式上。可能开始时学生不习惯,但要逐步培养这种分析方法。
3.本单元内容可以用6课时进行教学。
(三)具体内容的说明和教学建议
(第2~16页)
1.主题图。
编写意图
主题图“冰雪天地”为学生展示了雪地里活动的场景。从活动区域指示牌上可以看出滑雪区、滑冰区和冰雕区,场景图中还给出了三条信息:滑冰区有72人,滑雪区有26人,冰雕区有180人。给学生提问题提供了数据。
教学建议
教学时出示主题图后,可以开展以下两项活动:
(1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?
(2)根据图中提供的信息,你能提出哪些问题,怎么解决?
学生提出的问题可以先在小组里交流,然后在班上交流。交流时,学生可能只说出问题,丢掉相关的条件,这时教师要引导学生完整地表述条件和问题,让学生感受数学问题的整体性。另外,学生提出的问题可能用一步计算解决的,也可能用两步或两步以上计算解决的,只要合理,教师都要给予肯定。在学生广泛提出问题的基础上,再引出例1。
2.例1。
编写意图
(1)例1通过应用加减法知识解决两步计算的实际问题,来明确加减混合运算的顺序。
(2)教材以主题图“冰雪天地”的“滑冰区”为背景,提供了一天上、下午滑冰人数的变化信息,提出“现在有多少人在滑冰”的问题。由于学生积累了较为丰富的解决此类问题的生活经验和知识经验,教材中呈现了两个学生的解决方法,一个是分步列式解答的,另一个是列综合算式解答的,通过计算使学生理解加减混合运算顺序,是按从左到右的顺序进行计算。
教学建议
(1)出示例1后,可以放手让学生独立思考、尝试解答,并能与同伴说说自己是怎样想的?
(2)组织反馈,并在全班交流,主要交流自己的解题思路,根据是什么?每步算式表示什么意义?然后从思路上对比分步列式和综合算式,使学生明确它们都是用加减法两步运算解决问题,并进一步明确加减混合运算要按从左往右的顺序计算。
(3)以小组合作的方式,让学生根据自己日常生活经验,编出一些类似例1的实际问题,如乘公交车时的“上车下车”,学校图书室的“借书还书”等等,使学生在用加减两步运算解决问题的过程中,巩固加减混合运算的运算顺序。
3.例2及“做一做”。
编写意图
(1)教材以“冰雪天地”接待游人的信息为素材,通过解决“6天预计接待多少人?”引导学生观察所列混合算式,明确乘除混合运算的顺序。在例1、例2的基础上,教材总结出:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要按从左往右的顺序计算。
(2)解决“6天预计接待多少人?”教材呈现了学生的两种不同解法,一种是先求出平均每天接待的人数,再求6天一共接待的人数;另一种是先算出6天里有几个3天,再用算出的结果去乘3天接待的人数。这样编排目的是鼓励学生积极思考独立解决问题。
(3)“做一做”的第2题是配合例2的练习,其中解决问题所需的一个条件“12瓶”隐含图中的箱子上。
教学建议
(1)在学生读题后,让学生尝试说一说自己是怎样理解“照这样计算”一句话的含义。同桌的相互说一说,再组织在班上交流,使每个学生明白“照这样计算”的意思是每天接待的人数,按“3天接待987人”计算。
(2)引导学生画线段图表示相应的数量关系。由于学生已有一些画线段图的基础,教学时可以提出以下问题:①3天接待987人怎样用线段图表示出来?②6天里接待多少人?又怎样用线段图表示?让学生尝试画一画,并组织交流。对画图有困难的学生教师要给予指导,然后让学生把自己的线段图画在黑板上,引导学生评价,特别是评价表示6天接待人数的线段的长短。因为它直观形象地表示出第二种解法的数量关系,在画图的基础上让学生探索解决问题的方法。
(3)要重视解题过程的反思。当学生独立尝试解决后,要让学生说说解题思路和每一步计算结果所表示的实际意义,如987÷3=329表示平均每天接待的人数,6÷3=2表示6天里含有两个3天即两个987人,等等。
(4)在比较例1与例2的基础上,让学生总结出在没有括号的算式里只有加减法或只有乘除法的运算顺序。
4.例3及“做一做”。
编写意图
(1)例3通过解决需用三步计算的实际问题,教学“积商之和(差)的混合运算”。
(2)教材以星期天玲玲一家三口去“冰雪天地”游玩购买门票为解决问题的现实背景。
先通过解决“购门票需要花多少钱”,来总结“在没有括号的算式里,既有加减法又有乘除法的混合运算”的顺序。
然后再提出“你还能解决其他数学问题吗?”鼓励学生根据情境中给出的门票信息,提出问题并加以解答。同时根据上面总结出的混合运算的运算顺序尝试列综合算式进行解答,以进一步掌握混合运算的顺序。
(3)“做一做”第1题有三组题,每组题中上、下两题参与运算的数和排列顺序都相同,只是运算符号不同,有的是同级运算,有的是两级运算,让学生通过判断其运算顺序是否相同巩固混合运算的运算顺序,逐步养成认真审题的习惯。
教学建议
(1)像例3这样一家三口购票一共要用多少钱的问题,数量关系不难理解且学生也已接触过,教学时可以让学生独立思考,自主解答。如有学生对“半价”不理解,教师可加以说明。一般学生分步解答并不困难,但对如何列综合算式解答可能会有一定困难,教师要引导学生想办法把分步算式合并成一个算式,在合并时,结合解答过程说明运算的顺序:“在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。”
(2)学生解答完“购门票需要花多少钱”后,可以让学生根据情境呈现的信息,提出其他问题,进行交流。学生根据自己的生活经验可能提出各种各样的问题,如“爸爸付出100元,应找回多少钱?”“买1张成人票,3张儿童票,一共要付多少钱?”等,在学生充分交流的基础上,再让学生解答教材上的问题:“买3张成人票,付100元,应找回多少钱?”在这一环节中,教师要注意两点:第一,学生提出的问题不管是几步计算解决的,只要能作出合理解释的,都应给予鼓励;第二,对于两步以上解答的,可引导学生列综合算式解答,在此过程中巩固上面总结的混合运算的顺序。
(3)“做一做”第2题,让学生独立解答第一问,再组织提问题练习,如果学生提出一步计算的问题,教师也应肯定。
5.关于练习一中一些习题的说明和教学建议。
第1题,是同级运算的练习。通过口算让学生进一步理解没有括号的乘除混算与加减混算顺序一样,都是按从左到右的顺序进行。练习时,可以直接将结果填在书上,再组织订正。
第2题,是例1的巩固练习。学生根据自己的生活经验,弄清“便宜”与“贵”的含义后,独立进行解答。
第3题,是例2的巩固练习。解决问题的信息比较隐蔽:六边形有6条边隐含在图中,一共有多少根小棒需要先算出,正方形有4条边需要学生明确。教学时,可让学生独立解答,以提高学生寻找信息理解信息的能力。订正时,要注意学生所列的综合算式是否正确。
第4题,用统计表给出某路口1小时通过的三种汽车数。让学生先估算再笔算这个路口1小时一共通过的汽车辆数,以培养学生的估算意识。学生估算的结果可能不同,只要合理都要鼓励。
第5题,是有两级运算的练习,先让学生说说运算顺序,再脱式计算,要提醒学生脱式计算时能口算的尽量口算。
第6、7题,是例3的巩固练习。在审题的基础上,先独立完成,再交流。第6题是两问,后问是求两积之差。第7题是求两商之差,且路程160千米被用了两次,练习后要引导学生比较,感受到它们都是应用路程、速度和时间三者关系解决的实际问题。
第9题,先让学生说一说自己是怎样理解“养鸭的只数是鸡的一半”这一条件的,然后独立解答。为使一题多用,教师也可以提出:如果条件不变,你还能提出什么问题?怎样解答?还可以加一个条件,提出:“养鹅的只数与鸡同样多”其他条件不变,问题改成“李伯伯家一共养鸡、鸭和鹅多少只?”怎样解答?
第10*题,解题思路有:①先求上、下两层相差多少本,再求上、下层各有多少本;②先求上、下两层现在各有多少本,再求原来两层各有多少本。
练习一后面的思考题,通过选择适当的.运算符号或填加小括号使等式成立。使学生进一步看到,由于选择的运算符号和小括号的位置不同,得数就不同,从而加深对运算符号和小括号的作用的理解。每小题的答案不唯一,现介绍一些。
①3-(3-3÷3)=13÷3-(3-3)=1
②3÷3+3÷3=2(3×3-3)÷3=2
③3×3-3-3=33+(3-3)×3=3
④3+3+3÷3=73+(3÷3)+3=7
⑤3×3-3÷3=8
⑥3×3÷(3÷3)=93×3÷3×3=9
6.例4。
编写意图
(1)例4通过解决实际问题,来总结含有小括号的混合运算的运算顺序。
(2)例4是既可以用三步计算解决,也可以用两步计算解决的实际问题。它以冰雕区的活动场景为题材,完全用文字提供了一个实际问题的全貌,含有三条数学信息:上午有游人180位,下午有270位,每30位游人派一位保洁员。问题是:下午比上午多派几位保洁员?教材在学生分析思考的基础上呈现了两个学生不同的解题方法:第一种方法是先求上午要派几位保洁员,再求下午要派几位保洁员,最后求下午比上午多派几位保洁员;第二种方法是先求下午游人比上午多多少位?再求下午比上午多派几位保洁员。在分步解决的基础上,再将上面的两种解法分别列成一个算式,并进行计算,最后得出含有括号的算式的运算顺序:先算括号里的。
教学建议
教学时,应注意以下几点:
(1)引导学生认真解读题意。解读“每30位游人需要派一位保洁员”时,需要明白两点:一是游人数与保洁员人数之间的关系,游人越多,派出的保洁员越多;二是上午与下午派保洁员的标准一样,都是按每30位游人派一位保洁员。为帮助学生更好地理解这句话,教师可以问:60位游人要派几位保洁员?90位游人呢?有多少游人要派5位保洁员呢?学生回答后要让学生说出自己是怎么想的?根据什么?通过以上的解读活动,为学生分析数量关系,寻找解题思路做好铺垫。
(2)让学生尝试分析数量关系时,教师要引导学生按照:要求下午比上午多派几位保洁员,先要求什么?再要求什么?……的思路去独立思考,并尝试解答,教师要巡视是否出现不同的解法。
(3)注重交流解题思路。当学生尝试解答后,要组织学生在全班交流不同的思考方法,如果学生想不出第二种方法,教师要给予适当启发:下午游人比上午多多少位?每多派一位保洁员,就得多多少位游人?怎样求出下午比上午多派几位保洁员?逐步引导学生列出算式,计算时,要使学生明白为什么先算括号里的,体会小括号的作用。
(4)要重视两种不同解决方法的对比。教学时引导学生从思路上、方法上和解题步数上进行比较,体会到解决问题的思路不同,解决方法也不同,计算的步数也不一样,有些实际问题用三步计算解决也可以用两步计算来解决。
(5)例4后的“做一做”是一道图文结合的实际问题。由于贴近生活,学生会用两种方法解决,100-54-6,100-(54+6),要让学生说思路和方法,为什么要使用小括号。
7.例5。
编写意图
(1)例1~例4都是以主题图“冰天雪地”为题材编排的实际问题。学生经历了解决实际问题的过程,不仅逐步掌握了解决实际问题的策略和方法,而且理解了四则混合运算顺序的必要性,掌握了四则运算的运算顺序。例5就是在以上基础上安排的。
(2)例5引导学生结合具体四则混合运算式题,总结四则混合运算的顺序。
教材首先让学生独立计算例5中的两小题,探讨为什么参与运算的数、排列顺序及运算符号都相同,而计算结果却不一样,使学生再一次认识小括号的作用,进一步掌握混合运算的顺序。
在此基础上,教材让学生结合具体式题,总结四则混合运算的顺序。
教学建议
(1)由于学生对四则混合运算中,先算什么,再算什么,最后算什么,已经积累了一些经验,因此教学例5时,可以采用自主探究和小组合作相结合的学习方式开展学习活动。例5中的两小题出示后可分三步进行:第一步,让学生在书上的算式里标出运算顺序号,如:
同桌互评后独立计算,把计算过程填写在书上,然后互相核对结果。第二步,分小组讨论,再派代表在全班交流。讨论交流的问题是:例5中的两小题有什么相同的地方?有什么不同的地方?两题的计算结果为什么不一样?第三步,引导学生用术语和、差、积、商来表述运算过程,如例5中的第(1)题可以这样说,首先求差,然后求积,最后求和。
在学生明确了加法、减法、乘法和除法统称四则运算后,再以小组合作的形式总结四则运算的运算顺序,在整理的基础上教师可以做如下板书:
(2)例5后面的“做一做”,第1题先让学生用术语和、差、积、商说说运算顺序,然后计算。其中,第(2)小题学生练习后,教师可指出:算式里含有两个小括号的,可以同时脱式。第2题要求学生列综合算式解答。
8.例6。
编写意图
(1)在第一学段,学生刚开始学习加减法,就认识了0,掌握了有关0的加、减法计算,明白了这些加减法的含义,随着知识的不断扩展,在学习乘、除法时,又认识了0在乘除运算中的特性,之后学生又经历了许许多多的实际计算,进一步掌握了0在四则运算中的特性,体会到0在四则运算中的地位和作用。为了把分散学习的有关0的运算这部分知识系统化,提高学生计算的正确率和整理概括知识的能力,教材编排了例6。
(2)例6首先提出:“想一想,你知道哪些有关0的运算。应该注意些什么?”接着又以一幅小组合作学习的画面,生动地展示了同学们讨论交流的情境,对0在四则运算中的特性作了比较系统精练的总结。这样安排的问题和学习形式,能充分调动学生的积极性。
(3)教材通过“注意”,特别说明0不能作除数及0为什么不能作除数的道理。0为什么不能作除数这部分知识很重要,也很难理解,以后学习分数、比等知识要用到。为了帮助学生突破难点,教材中联系除法的意义举例作了说明:先举5÷0,说明不可能找到商,再举0÷0,说明不可能得到一个确定的商。
教学建议
教学时,应注意以下几点:
(1)要给学生留有充分的时间,让他们回忆、整理和概括有关0在四则运算中的特性。教学时,可以采用小组合作形式,大家在组内畅所欲言,并派一人记录,然后在全班交流。教师根据学生交流的内容,有针对性分加、减、乘、除法板书出实例,再引导学生分类概括出结语。学生总结出的话可能没有书上那样精练,但只要意思相似,教师都应鼓励,并让学生看看书上的小朋友是怎样说的。如果学生以结语的形式表达有关0的运算,可让他再举例说明。总之,教学时教师只能适当引导,让学生充分发表意见和看法,不要包办代替。
(2)0为什么不能作除数是个难点,教学时要引导学生通过举例来说明,比如让学生举出除数是0的除法的例子,5÷0=□0÷0=□,问:如果用0作除数结果会怎样?引导学生分两种情况分析:①5÷0=□表示一个非零的数除以0,从除法的意义上说是什么意思,商是多少,引导学生说出积是5,一个因数是0,求另一个因数,要想0和几相乘得5呢?因为一个数和0相乘仍得0,所以5÷0不可能得到商。②0÷0,从除法意义上说是什么意思,商是多少,引导学生说出积是0,一个因数是0,求另一个因数,要想0和几相乘得0,然后问:能找到这样的数吗?能,因为0和任何数相乘都得0,这时指出0÷0得不到一个确定的商,所以不研究,最后得出0不能作除数的结论。
(3)例6后面安排了一个数学游戏,明确题意后分小组活动,把和为340的算式记下来,便于交流和评价。
9.关于练习二中一些习题的说明和教学建议。
第1题,先口算,再竖着比上下三题的异同点,从中体会运算顺序的重要性。
第2题,是含有小括号的两三步计算的式题,让同桌的同学相互说说运算顺序后独立练习,教师指出算式中有两个小括号的,可以同时脱式。
第3题,要求学生用综合算式解答,并说出小括号里的算式表示的实际意义,体会小括号的作用。
第4题,学生做完后,可以引导学生竖着比较上下三小题的相同处和不同处,学生的回答可能比较“乱”,只要说对的都要鼓励,并在此基础上整理成:上下三题中参加运算的数、运算符号以及排列顺序都相同,但是由于加了小括号,改变了运算的顺序,导致计算结果不同,所以在计算混合式题之前,要审题,根据运算顺序来确定怎样算,然后再计算,养成良好的计算习惯。
第5题,是以统计表的形式提供了数据信息,先让学生估计平均每组做的个数,再计算精确数,通过估算与笔算结果比较,培养学生的估算意识
第6题,在学生用一个算式解答后,要引导学生将具体情况与除法意义联系起来,说说为什么两步都用除法解答,使学生进一步体会“倍”的含义。
第7题,可以用三步计算也可以用两步解决的实际问题,审题后可让学生尝试用两种方法解答,然后用自己的语言表达解题思路,体会解决问题策略的多样性,又为今后学习乘法分配律做些孕伏。
第8题,是一道填表练习,让学生经历“填表—说思考过程—观察比较表中数据变化”这一过程,加深对路程、速度、时间三者之间关系的理解,体会两个变量之间的依存关系和变化规律。
第9题,通过“凑24”游戏,复习四则混合运算。4张牌上的点数代表4个数,要求经过适当的四则运算使这四个数变成24。练习时首先让学生读懂题意,明确要求,然后独立解答。对少数学困生要进行辅导,当多数学生写出三四个不同算式后,组织交流、评价。最后归纳出在凑数过程中主要运用8×3、4×6、12×2等基本算式。下面是几个参考算式:
6×2+4×3(6+4-2)×36×4÷(3-2)6×3+2+4
(6-3)×4×2(6÷2+3)×4(6×2-4)×36×4×(3-2)
第10题,以选择一日游购票方案为题材,给出了多个信息,启发学生利用生活经验理解问题情节,通过计算与比较获得合理的购票方案。练习时应让学生在独立思考的基础上交流各自的想法,感受数学与生活的联系,增强数学应用意识。
第11题,是运用加减、乘除之间关系进行推理的练习题。练习时,先要明白图形表示的是什么数,再独立思考,作出正误判断,最后组织全班交流思考过程及依据,并归纳出
第12、13题,先让学生独立练习,再交流自己的思考过程,从中感悟解决问题的基本思路。第12题,有两问且不互相联系,避免一问结果是解决二问的条件的干扰,教育学生审题的重要性。第13题,是“倍”的含义在生活中的应用,引导学生着重弄清有关“倍”的不同应用,加深对“倍”的含义的理解。
第14*题,实际上是把三个一步算式合并成一个三步算式。练习时先引导学生明白不同的图形代表不同的数,弄清图形之间的数量关系,再启发学生用代换方法进行思考,这种练习既能培养学生的分析综合能力,又为今后学习用字母表示数打下基础。
思考题,是一道逆推的问题。密码是个四位数,百位和个位上数字一样,千位和十位数字一样,启发学生用逆推的方法确定○与□各是多少。通过练习,既加深学生对四则运算中各部分之间关系的理解,又培养了学生逆向推理能力。
(四)参考教案
课题:用三步计算方法解决问题
教学内容:教科书第6页例3及“做一做”,练习一中的第5题~7题。
教学目标:
1.让学生从实际问题的解决过程中感受“先乘除后加减”的道理。
2.掌握含有两级运算(没有括号)的运算顺序,并能正确计算。
3.培养学生完整地叙述问题的能力。
4.培养学生养成良好的学习习惯,提高学生的计算能力。
教具准备:例3课件(教学挂图)。
教学过程:
一、复习导入
出示下表:
这是“冰雪天地”游乐场接待人数的统计表
提问:根据表中提供的数据,你能提出哪些数学问题?
根据学生回答,出示:
3天一共接待987人,照这样计算,一周预计接待多少人?
学生列式解答。并说说计算顺序。
导入新课:
师:星期天,爸爸妈妈带玲玲去“冰雪天地”游玩。
课件出示情境图,引导学生看图。提问:从图中你看到了什么?
二、探究新知
1.教学例3。
(1) 学生分组讨论,在组内交流获取的信息,小组汇报。
师:谁能用语言完整地叙述问题?
师引导,学生回答,教师课件出示:星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩。成人票每张24元,儿童票半价。购门票需要花多少钱?
提问:成人票每张多少元?半价是什么意思?儿童票每张多少元?要买几张成人票?几张儿童票?要解决什么问题?
提问:要求购门票一共需要花多少钱,必须先求什么,再求什么,最后求什么?
(2) 列式解答。
生1:24+24+24÷2
生2:24×2+24÷2
师板书,提问:它们之间有什么联系?
24×2表示什么意思?24÷2表示什么意思?
让学生独立解答。
(3) 引导学生进行比较。
复习题的算式与例3的算式有什么不同?
揭示课题:这就是我们今天这节课要学习的内容。(板书课题:混合运算)
提问:在没有括号的算式里,有乘、除法和加、减法,要先算什么?
生回答,师小结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。
2.提问:你还能提出其他问题吗?小组讨论并交流。
学生可能提出:买1张成人票,3张儿童票,一共要付多少钱?
买3张成人票,付100元,应找回多少钱?
……
学生独立列综合算式解答,并说出计算顺序。
3.比较:这些算式与例题算式有什么异同?
学生回答,教师归纳并小结,深化运算顺序。
4.反馈练习:第7页“做一做”第1题。
三、练习
1.说出下面各题的运算顺序,再计算。
203-134÷228+120×8
97-12×6+4326×4-125÷5
2.同学们植树,四年级140人,每人植树2棵;五年级120人,每人植树3棵。这两个年级一共植树多少棵?
3.果园里有苹果树48棵,桃树的棵数是苹果树的2倍,梨树的棵数比苹果树和桃树的总数多12棵。果园里有梨树多少棵?
4.三、四年级学生进行体操比赛,其中三年级有240人,四年级有300人。每12人站成一排,四年级比三年级多站几排?
四、总结
教师引导学生总结:今天这节课你学习了哪些知识?有什么收获?
五、布置作业
练习一第6、7题。
教学目标:
1.通过实际操作对三角形进行分类,认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每类三角形特点,分辨各类三角形。
2.在活动中渗透分类的数学思想,培养学生的归纳概括能力。
3.在操作、思考中逐步发展学生的空间想象能力。
教学重点:
能够通过思考和动手操作准确地按照不同分类标准给三角形分类
教学难点:
能够区别掌握各种三角形的特征以及区分各类三角形之间的关系
教具、学具准备:
课件、三角板、量角器、不同类型的三角形、剪刀、正方形纸
教学过程:
一、创设情境,激趣导入
师:请看大屏幕,这些都是什么图形?
生:三角形
师:三角形有哪些基本特征?
生:都有三个角,三条边,三个顶点。(师随学生的回答板书:角、边)
师:仔细观察,它们的长相有不一样的地方吗?哪里不一样?
生:三角形的角有大有小,边有长有短。
师:无论是从角的大小来看,还是从边的长短来看,都各有特色。你能给这些三角形分分类吗?这节课我们就来共同学习三角形的分类(板书课题:三角形的分类)。
二、自主探究,创建数学模型
(一)根据提示,引发思考
师:分类首先要确定?标准
你想根据什么来给这些三角形分类呢?
师:有的同学已经有了自己的想法。先让学生说一说,有的按角的大小分,有的按边的长短分,我们先看一下要求(出示:温馨提示)
温馨提示:
1.同桌两人讨论,确定好分类标准;
2.分一分;
3.议一议,找出各类图形的共同特点。
看明白了吗?好,开始!看哪个小组分的既快又准。
(二)动手操作,小组合作分类
学生以小组为单位进行分类,教师参与到学生的分类活动中。当老师发现有的小组很快就分好时,适机指出:“老师发现有的小组同学很快就分好了,你们还能再尝试用别的方法来分类吗?”学生尝试按照不同的分类方法进行分类。
分完的同学用你们的坐姿告诉老师。
(三)全班讨论、汇报交流
师:按角的大小分类的请举手,哪个小组愿意先来汇报你们的想法?
师:把你们的想法展示在黑板上。
我们先来看一下,他们分的第一类三角形的三个角分别是什么角?
生:有一个角是直角,另两个角是锐角(教师板书)
师:你能给这样的三角形起个名字吗?
生:直角三角形。(板书:直角三角形)
师:大家同意吗?
师:再来看一看第二类三角形,它们的三个角有什么特点?
生:有一个角是钝角,另两个角是锐角(板书)
师:应该叫什么三角形呢?
生:叫钝角三角形(板书:钝角三角形)
师:再看第三类三角形,它们的三个角呢?
师:我们就叫它--------
生:锐角三角形(板书:锐角三角形)
(四)游戏激趣:
大家学累了吧,我们一起来做个小游戏,放松一下,好吗?(出示:猜猜我是谁)
师:纸袋里面有一些三角形,如果只露出一个角,你能猜出它是哪种三角形吗?
(露出一个直角)
生:我猜是直角三角形。
师:你确定吗?
生:确定
师:其他同学呢?
生:点头说是。
师:我们一起来看一下,(拿出三角形)真是这样啊!
师:一个三角形中会有两个直角吗?如果有两个直角会是什么样子呢?我们一起来看看。(投影出示:两个角是直角的演示图)
师:你发现了什么?
生:它不是三角形。
师:既然不可能有两个直角,有可能一个是直角一个是钝角吗?(教师投影出示第二个角是钝角演示图。)
生:不可能。
师:(拿出一个直角三角形)直角三角形中有一个角是直角,大家说另外两个角一定是什么角?
生:锐角。
师:现在你能用自己的话说一说什么是直角三角形吗?
生:有一个角是直角的三角形就是直角三角形。(还有必要再加上两个角是锐角吗?)
师:一起来说说什么是直角三角形?
师:还想猜吗?(露出一个钝角)这次谁来接受挑战?
生1:我觉得是锐角三角形。其他学生纷纷举手表示反对。
生2:我认为是钝角三角形。
师:为什么?
生2:它露出来的是个钝角,不可能再出来第二个钝角啊!
师:我们来看一看到底是不是钝角三角形?(拿出钝角三角形)掌声鼓励。现在你能概括一下什么是钝角三角形吗?
生:有一个角是钝角的三角形就是钝角三角形。
师:还想接受挑战吗?(只露出一个锐角)
生1:是锐角三角形。生2:直角三角形。生3:钝角三角形。生4:都有可能。
师:为什么会有不同答案呢?
生:因为所有的三角形都会有锐角,只露出一个锐角并不能确定另外两个角分别是什么角。
你能在脑中分别想象出这些三角形的样子吗?(闭上眼睛想一想,出示三种三角形)
师:这三种三角形有什么共同特点?
生:每一个三角形中都至少有2个锐角。
师:你是怎么理解至少的?
生:最少2个,最多3个。
师:那要是露出两个锐角你能猜出这个三角形是什么形状吗?
生继续摇头:还是不能。
师:为什么不能?
生:因为每一类三角形都有两个锐角,另一个角不一定是锐角,还有可能是直角或钝角!
师:你认为怎样才能判定出一个三角形是锐角三角形?
生1:得告诉三个角的度数
生2:还有一个可能就是三个角都露出来。
师:三个角都是锐角才可以判定出是锐角三角形。(教师投影出示:三个角都是锐角的三角形是锐角三角形)
师:请大家任意画一个三角形。并说一说你画的是什么三角形?为什么?有没有属于这三类之外的?
(随学生的回答,教师总结:看来按角分类只能分为这三类)
师:如果用大的集合圈表示三角形,你能把这个集合圈补充完整吗?(找学生完成)
(五)研究按边的分类的三角形
按边分类学生小组请举手。哪个小组愿意来给大家展示你们的想法?
师:你们的想法和他们一样吗?
师:我们一起看一下,第一类三角形的三条边有什么特点?
生:三条边都不相等。
师:像这样的三角形我们就叫做不等边三角形。(板书:不等边三角形)
师:我们再来看一下,第二类三角形的三条边有什么特点?
生:有两条边相等。
师:(出示:等腰三角形)如果我们把这两条相等的边叫做腰,你能个这类三角形起个名字吗?
生:等腰三角形(板书:等腰三角形)
师:你认为什么样的三角形是等腰三角形?
生:有两条边相等的三角形叫等腰三角形。
师:下面我们一起来看一下等腰三角形各部分的名称。(出示:图形)
师:等腰三角形的两腰的长度什么关系?
生:相等。
师:等腰三角形的两个底角呢?
生:相等
师:怎么验证呢?
(利用手中的等腰三角形纸片)
生1:折一折。
生2:量一量。
师:我们再来看一下余下的这个三角形,它是等腰三角形吗?(学生意见不统一,有说是有说不是的)
生1:我觉得不是,因为等腰三角形有两条边相等,而这个三角形三条边都相等。
生2:我反对,因为这个三角形三条边都相等了,肯定满足两条边相等。
师:理由非常充分!掌声送给他!
师:等腰三角形只要满足有两条边相等就可以了。所以说这个三角形也是等腰三角形。(标注集合圈)
师:这个三角形与刚才的几个等腰三角形相比,有什么特殊的地方?
生:三条边都相等。
师:我们把三条边相等的三角形叫做?
等边三角形(板书)
师:它还有一个非常好听的名字叫:正三角形
为了加深大家的印象,我们再看一下大屏幕
(先播放2条边相等,说明它是等腰三角形,再补充),说明等边三角形的三条边都相等。并且三个角也相等。
仔细观察集合图,你能说一说,等腰三角形与等边三角形有什么关系吗?
生1:等腰三角形包括等边三角形。
生2:等边三角形是特殊的等腰三角形。
师:如果用一个大的集合圈表示三角形,你能把这个集合圈补充完整吗?
同学们真了不起,能分别按照角和边两种不同标准来给三角形分类。
5.综合判断,渗透本质特征
出示;两个等腰三角形(一个锐角的,一个钝角的)
师:你认为第一个是什么三角形?
生1:等腰三角形,因为它有两条边相等。
生2:锐角三角形,因为它的三个角都是锐角。
师:第一个图形既是等腰三角形又是锐角三角形。说它是等腰三角形是按边的长短来分的,说它是锐角三角形是按角的大小来分的。
师:第二个图形呢?
生:既是等腰三角形又是钝角三角形
师:等腰三角形还有可能是什么三角形呢?
生:还有可能是直角三角形。我们来看一下(出示等腰直角三角形)
师:大家看,它是什么三角形:
生:按角分是直角三角形,按边分是等腰三角形。
师:这是我们以后会经常遇到的一类特殊的三角形叫等腰直角三角形。
师:所以,我们判断一个三角形的形状时,既可以根据角的大小来判断,也可以根据边的长短来判断。
(六)游戏升华,培养综合能力
出示:连一连
以AB为三角形的一条固定的线段,想一想,和哪个点连接起来能组成直角三角形?
和哪个点连起来组成锐角三角形?和另一个点连起来能组成什么三角形?
C点非常调皮,跑到了点子图的外面,大家思考:当点C跑到哪个位置时,能与线段AB组成直角。我移动,如果到了合适的位置,大家就喊停,好吗?
第一次,可以吗?现在组成的是什么图形?
第二次,可以吗?现在组成的是什么图形?・・・・・・
三、全课小结
回顾本节课的内容,我们主要学习了什么内容?
写说课稿首先必须明确什么叫说课,所谓说课,就是教师备课之后讲课之前(或者在讲课之后)把教材、教法、学法、授课程序等方面的思路、教学设计、|板书设计及其依据面对面地对同行(同学科教师)或其他听众作全面讲述的一项教研活动或交流活动。以下是小学数学第八册《三角形的特性》说课稿范文,希望大家喜欢!
小学数学第八册《三角形的特性》说课稿
一、说教材
(一)教材分析
《三角形的特性》是人教课标版小学数学第八册第五单元的内容,三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导有关的性质。因此,三角形的认识是学习平面图形知识的起点,也为学习平面几何、立体几何打下基础。
本节课是在学生已经学习了线段、角和直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。
(二)教学目标
根据本节课在教材中的地位和作用,依据新课程标准的.基本理念和学生的认知水平,我拟定了以下教学目标:
1、知识目标:理解三角形的定义,掌握三角形特征和特性,并会给三角形画高。
2、能力目标:学会通过观察、操作、分析和概括去获得的学习方法,体验数学与生活的联系,培养学生的观察、分析、操作的能力,进一步发展空间观念。
3、情感目标:在小组合作、探究与交流的过程中,增强学生创新意识和团结协助的精神。
(三)教学重点、难点
教学重点:理解三角形的定义,掌握三角形的特征和特性。
教学难点:给三角形确定高和画高。
(四)教具准备:三角板、课件、数学用具盒、幻灯片
(五)学具准备:三角尺、数学用具盒、图纸。
二、说教法、学法
1、说教法
本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。先创设情境激发学生的学习兴趣,然后让学生自学课 本,独立探索,再让学生操作实践,合作交流,从而达到概念的自主建构;在整个教学过程中充分体现了以学生为主体,教师为主导的教学思想,让学生在活动中感 受数学之美。
2、说学法
根据本节课的教学目标和教法,我主要采用独立探索、合作交流、实践操作相结合的学习方法,让学生通过动脑、动口、动手来亲身经历“做数学”的过程,真正理解和掌握基本的数学知识和技能,获得广泛的数学活动经验,建立学习成就感和信心,使学生成为数学学习的主人。
三、说教学过程
这节课的教学过程,我是秉着新课标的精神,在整个教学流程设计上力求充分体现“以学生为主体”、“以学生发展为本”的教育理念,我将教学思路拟定为“创设 情境、诱发兴趣——合作交流、探索新知——深化训练,拓展延伸——质疑反思,总结评价”,努力构建探索型的和谐课堂教学模式。
等腰三角形是一种特殊的三角形,它除了具备有一般三角形的所有性质外,还有许多特殊的性质,由于它的这些特殊的性质,使它比一般的三角形应用更广泛,而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,它也是证明两个角相等,两条线段相等,两条直线互相垂直的方法,学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要。根据本班学生的特点我确定如下:
能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质
2、过程与方法:
经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。
3、情感态度与价值观:
等腰三角形性质的探索和应用是本节课的重点。由于初二学生的几何知识有限,而本节课性质的证明又添加了辅助线,所以等腰三角形性质的验探究是本节课的难点。
本节课中我遵循教师为主导,学生为主体的原则,针对当前学生的厌学情绪,我运用课件,实物演示等多种教学手段激发学生的学习兴趣,让学生感到容易学,采用创设情景、实验法来分散难点让学生感到愿意学,并设置适当的追问、探究,让学生来主宰课堂,成为学习的主人。
好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习和解题方法,并且通过自己动手操作、动脑思考、动口表述,培养学生的观察、猜想、概括、表述论证的能力
首先我用一个三角形测平架,测量黑板的下边是否水平,并让学生猜想其中的道理和奥妙,这样的引入既明确了本节课的主要内容,也激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
教育学中有句谚语:“告诉我我会忘记,做给我看我会记得,让我去做我才会懂”,由此可见实验法在教学中具有重要的作用。因此我设计了一个动手操作的环节,让学生按要求剪出一个三角形,为下面折纸操作作好铺垫,结合剪出的等腰三角形学习相关的概念加深印象,并指明等腰三角形是轴对称图形。
在这个环节我安排了两个探究,通过折纸的方法猜想并归纳。首先通过折纸让学生猜想∠B和∠C有什么关系?鼓励学生用多种方法来验证他们的猜想,并归纳出等腰三角形的第一条性质。这个地方我设计一个疑问,来强调等边对等角有一个前提条件就必须是在同一个三角形中,为了保证学生思维的连贯性,在这里我是这样引入探究二的,“从刚才辅助线的作法中,你发现了什么?”让学生感觉到这三条辅助线好像是一条线段,然后在通过折纸归纳出性质二。
学生在长时间的`学习和探究中大脑已感到疲劳,随即引出课前设置的疑问,再次激发学生的学习热情。由于“三线合一”的性质在描述上经常出错,所以我设置了一个辨析,然后用填空的形式规范“三线合一”的符号表示形式,让学生理解性质的内涵。
我用两个练习巩固等腰三角形的性质并让学生体验分类讨论的思想在解题中的应用。由于本节课的例题较难,因此我对它进行了改编,先让学生解决“等腰三角形一个底角的外角是108°时,三个内角分别是多少度?”然后再延长CD,得到一个新的等腰三角形,运用性质一就可以解决这两个问题,然后今天的例题就可以迎刃而解了,同时也要强调此题图形的特殊性,只有顶角是36°的等腰三角形才能满足这样的性质。
二是注重教学过程、重视方法;
三就是注重概括总结。
首先我让学生回想一下本节课的内容,“通过本节课的学习,你对等腰三角形有什么新的认识吗?”然后教师肯定学生的积极性。
通常老师在上课之前会带上教案课件,通常老师都会认真负责去设计好。教案是教学过程的有机组成部分。如果您需要符合您需求的“全等三角形教案”相关推荐,请把这个链接放入收藏夹以便您查看!
今天我说课的题目是《全等三角形》,内容选自沪科版数学教材八年级(上)第十四章第一节。
我设计的说课共分四个方面:
一、教材的分析与处理
1、教材的地位与作用
从本课开始,将向学生重点渗透图形变换的数学思想,使学生初步掌握推理论证的方法,有利于培养学生逻辑推理能力。教材通过一个思考活动,使学生体会将一个三角形进行变换后形成的新图形与原图形是全等形。我将此内容进行了加深和拓展
2、教学目标
知识与技能: 了解全等三角形的相关概念,性质,能够准确地辨认全等三角形中的对应元素,提高学生的识图能力。
过程与方法: 经历图形的平移,翻折,旋转等变换的过程,体会探索问题的方法。
情感态度与价值观:通过合作交流,增强团队意识,体验成功的喜悦。
3、教学重点与难点
重点:全等三角形相关概念,性质及全等三角形对应元素的寻找。
难点:能够准确地辨认全等三角形中的对应元素
二,教学方法与教学手段
教学方法:本节课主要采用探究体验式创新教学法。
教学手段:采用多媒体辅助教学,促进学生自主学习,提高效率。
三,教学过程设计
环节一 激情 引趣
拼图游戏:
通过动手拼图,学生能够发现这几组图形能够完全重合,从而得到全等形的定义。此环节的设计,利用学生原有知识经验,展开数学教学,激发了学生的学习兴趣,提高了学生观察,分析,抽象,概括的能力。
环节二 实践 感悟
活动一
打开你手中的材料袋,找出其中的全等形,并说明理由。要求 同桌合作完成学生亲身体验两个图形完全重合的过程,能够发现①与⑩,②与⑥,⑦与⒁⑿与⒀分别能够完全重合,而对于④与⑥,⑧与⒀教师留给学生充分的时间验证,通过再次验证,能够发现④与⑥,⑧与⒀是分别不能完全重合。
通过动手实践,使学生更加明确了全等形的判别条件, 培养了学生严谨求实的学习态度。
在此基础上,自然引出全等三角形,从而引出课题。
并通过观察两个三角形的变换过程,了解全等三角形的对应元素,并由教师介绍全等三角形的表示方法。
进一步提出:这两个全等三角形的对应边和对应角分别存在怎样的数量关系呢
由此得到全等三角形的性质,接着由师生共同得出全等三角形性质的符号语言:
∵△ABC≌△DEF
∴ AB= DE, BC=EF, AC= DF
∠A=∠D, ∠B=∠E , ∠C=∠F
此问题的设计,让学生在做中发现,做中感悟,做中理解,做中解决,使学生经历,感受,体验知识的形成过程,培养了学生乐于动手,勤于动手的意识和习惯,切实提高了学生的动手能力和实践能力。
环节三 探究 说理
活动二
利用两个全等三角形学具,先保持完全重合状态,再使一个三角形不动,将另一个三角形进行平移,翻折 ,旋转,探究以下图形的形成过程。
要求 四人为一小组合作交流的形式进行。
在讨论过程中,教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并给予适当点拨。
各个小组在黑板上演示图形的形成过程。
有以下几种:
个别学生发现第三个图形有另一种形成过程,此时教师尊重学生的富有个性的学习表现,及时捕捉问题的症结所在,进行巧妙地引导,鼓励,问疑,由此教学变得更加生动与鲜活,获得了更大的教学生成效果学生在汇报的过程中,展示不同的形成过程。接着用微机再现图形形成的过程,并使学生了解利用两个全等三角形学具还可以形成一些其他的图形,拓拓宽学生的视野,有利于学生认识数学的本质与作用,并从中体会到数学的美,这样设计,学生能够体验和感悟图形之间的联系和运动变换的过程中所体现的美,并为寻找全等三角形的对应元素作好准备,接着利用这几组图形寻找全等三角形的对应元素, 并体会寻找对应元素的方法。
学生从运动变化的角度发现:
重合的边是对应边,重合的角是对应角。例:
也会从边,角的特点来找:
如:全等三角形中 例:
有公共边的,公共边是对应边;
有公共角的,公共角是对应角;
有对顶角的,对顶角是对应角。
一对最长(短)的边是对应边;
一对最大(小)的角是对应角。
对应边所夹的角是对应角;
对应角所对的边是对应边。
无论从哪个角度,教师都对学生的成果给与充分的肯定,为将学生的认识由感性上升到理性,使学生对全等三角形对应元素的方法进行分类和总结,从而得到特殊图形寻找对应元素的方法。
此难点的突破,力求发挥自主学习的优越性,放手让学生去探索,在生生互动氛围中使学生思维的灵活性和创造性得到发展。
环节四 应用 拓展
为了使学生能够结合基本图形,灵活地运用本节课所学知识解决问题, 我设计了一组不同层次的习题,力争让不同的学生在数学上得到不同的发展。
1、△ABC≌△ADC,AB和AD,BC和DC是对应边,则______。(填数量关系)
2、△ABC≌△EDC,B和D,A和E是对应点,则_____。(填数量关系)
3、△ABC≌△EFD,∠ACB和∠EDF是对应角,AB与EF是对应边,则图中相等的边有_______。
学生能够叙述发现的结论,总结解决问题的方法, 从中体会到理解和掌握全等三角形性质是证明角相等,线段相等的主要途径,通过以上问题的解决,使学生抓住问题的实质,从而达到巩固双基,举一反三的目的。
环节五 体验 收获
此环节采用师生互动,共同反思,总结,补充的方式进行。小结如下:
学习方式 自主,探究,合作学习
探索流程图
环节六 拓展 延伸
为让学生更好的体会"学数学,用数学"的理念,布置了研究性作业,利用两个全等三角形,进行平移,翻折,旋转,结合得到特殊位置的图形,尝试寻找对应元素。
四、教法特点以及预期效果分析
1、教法特点
本节课采用研究体验式创新教学法,辅之以其它教学法,在探索新知过程中设计两个实践活动,有利于学生主动地进行观察,猜想,验证,推理,交流等数学活动,促使学生在自主探索的过程中形成自己的认知体系,在与人交流的过程中逐渐完善已有的认知体系。
2、预期效果分析
在学生体会全等形的定义时,学生可能说的不够准确,对于这些说法,教师不急于评价,而是用具有启发性的语言进行引导,由学生相互订正,补充得出:形状大小完全相同;
在学生表述全等三角形对应元素的寻找方法时, 可能有表达的不是很准确的地方,此时由学生相互补充,完善,教师给予适当的点拨。考虑到已有的知识经验,对学生的要求不要过高,要充分地尊重学生,增强学生探究的欲望,为学生提供合作交流的平台;在学生汇报图形形成的过程中, 对于复杂图形的形成过程,学生可能有表达不准或理解有误的地方, 此时通过生生质疑的方式加以解决,如果学生解决不了,此时我将利用微机或教具演示来消除学生的各种思维障碍。
本节课为学生提供观察,尝试,探索和发现的机会,从而形成学生主动参与。
【课前准备】
1.定义:能够的两个三角形叫全等三角形。
2.全等三角形的性质,全等三角形的判定方法见下表。
【例题讲解】
一.挖掘“隐含条件”判全等
如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)
1.如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由.
变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD
2.如图点D在AB上,点E在AC上,CD与BE相交于点O,
且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。
3.如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。
变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD
二.添条件判全等
1.如图,已知AD平分∠BAC,要使△ABD≌△ACD,
根据“SAS”需要添加条件;
根据“ASA”需要添加条件;
根据“AAS”需要添加条件.
2.已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是.
三.熟练转化“间接条件”判全等
1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?
为什么?
2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?
3.“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明.
巩固练习:如图,在中,,沿过点B的一条直线BE
折叠,使点C恰好落在AB变的中点D处,则∠A的度数.
4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D
【当堂反馈】
1.(20xx攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为全等三角形是△≌△
2.如图,已知AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE
3.如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC
4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的垂线,垂足分别为M、N
(1)你能找到一对三角形的全等吗?并说明.
(2)BM,CN,MN之间有何关系?
若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?
【课后作业】
1.如图,要用“SAS”说明ΔABC≌ΔADC,若AB=AD,则需要添加的条件是.
要用“ASA”说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是.
2..如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,AD.CE交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.
(第3题)
(第4题)(第5题)(第6题)
3.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()
A..2对B.3对C.4对D.5对
4.如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()
A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对
5.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).
6.如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?
7:如图11-9在△ABC中.⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.
试说明:①CE=BG;②CE⊥BG;
⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.
试说明:①CD=BE;②求CD和BE所成的锐角的度数.
【拓展延伸】
如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
【教学目标】:
1、知识与技能:
1.三角形全等的条件:角边角、角角边.
2.三角形全等条件小结.
3.掌握三角形全等的“角边角”“角角边”条件.
4.能运用全等三角形的条件,解决简单的推理证明问题.
2、过程与方法:
1.经历探究全等三角形条件的过程,进一步体会操作、?归纳获得数学规律的过程.
2.掌握三角形全等的“角边角”“角角边”条件.
3.能运用全等三角形的条件,解决简单的推理证明问题.
3、情感态度与价值观:
通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神
【教学情景导入】:
提出问题,创设情境
复习:
(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边.
(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
三种:
①定义;
②SSS;
③SAS.
2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?
导入新课
[师]三角形中已知两角一边有几种可能?
[生]1.两角和它们的夹边.
2.两角和其中一角的对边.
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,?你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
学生活动:自己动手操作,然后与同伴交流,发现规律.
教师活动:检查指导,帮助有困难的同学.
活动结果展示:
以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.
提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
[师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,?能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?
[生]能.
学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.
[生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.
②画线段A′B′,使A′B′=AB.
③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.
④射线A′D与B′E交于一点,记为C′ 即可得到△A′B′C′.
将△A′B′C′与△ABC重叠,发现两三角形全等.
[师]
于是我们发现规律:
两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).
这又是一个判定三角形全等的条件. [生]在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?
[师]你提出的问题很好.温故而知新嘛,请同学们来验证这种想法.
【教学过程设计】:
如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?
证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°
∠A=∠D,∠B=∠E
∴∠A+∠B=∠D+∠E
∴∠C=∠F
在△ABC和△DEF中
∴△ABC≌△DEF(ASA).
于是得规律:
两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).
[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.
求证:AD=AE.
[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.
学生写出证明过程.
证明:在△ADC和△AEB中
所以△ADC≌△AEB(ASA)
所以AD=AE.
[师]到此为止,在三角形中已知三个条件探索三角形全等问题已全部结束.请同学们把三角形全等的判定方法做一个小结.
学生活动:自我回忆总结,然后小组讨论交流、补充.
有五种判定三角形全等的条件.
1.全等三角形的定义
2.边边边(SSS)
3.边角边(SAS)
4.角边角(ASA)
5.角角边(AAS)
推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.
练习:图中的两个三角形全等吗?请说明理由.
答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.
【课堂作业】 1.如图,BO=OC,AO=DO,则△AOB与△DOC全等吗?
小亮的思考过程如下.
△AOB≌△DOC
2、已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C?′全等的是( )
A.AB=A′B′ AC=A′C′ BC=B′C′
B.∠A=∠A′ ∠B=∠B′ AC=A′C′
C.AB=A′B′ AC=A′C′ ∠A=∠A′
D.AB=A′B′ BC=B′C′ ∠C=∠C′
3、要说明△ABC和△A′B′C′全等,已知条件为AB=A′B′,∠A=∠A′,不需要的条件为( )
A.∠B=∠B′ B.∠C=∠C′; C.AC=A′C′ D.BC=B′C′
4、要说明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,则不需要的条件是( A.∠C=∠C′ B.AB=A′B′; C.AC=A′C′ D.BC=B′C′
5、两个三角形全等,那么下列说法错误的是( )
A.对应边上的三条高分别相等; B.对应边的三条中线分别相等
C.两个三角形的面积相等; D.两个三角形的任何线段相等
6、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.
全等三角形的对应边相等.
全等三角形的对应角相等.
(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?
归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.
归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.
a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.
b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
c.平移法:沿某一方向推移使两三角形重合来找对应元素.
a.有公共边的,公共边是对应边;
b.有公共角的,公共角是对应角;
c.有对顶角的,对顶角是对应角;
d.两个全等三角形最大的边是对应边,最小的边也是对应边;
e.两个全等三角形最大的角是对应角,最小的角也是对应角;
练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,
你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?
⑴写出图中相等的线段,相等的角;
1.这节课你学会了什么?有哪些收获?有什么感受?
2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.
苏教版全等三角形教案(一)
【教学目标】
知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“SAS”条件,了解三角形的稳定性.能运用“SAS”证明简单的三角形全等问题.
过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.
情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.
教学重点:三角形全等的条件.
教学难点:寻求三角形全等的条件.
教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。
学情分析:这节课是学了全等三角形的边边边后的一节课、將中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。
课前准备 全等三角形纸片、三角板、【教学过程】:
一、创设情境,导入新课
[师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?
[生]三内角、三条边、两边一内角、两内角一边.
[师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.
(一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?
[生]两种.
1.两边及其夹角.
2.两边及一边的对角.
[师]按照上节方法,我们有两个问题需要探究.
(二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB= A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等).把画好的三角形A/B/C/剪下,放到△ABC上,它们全等吗?
探究2:先画一个任意△ABC,再画出△A/B/C/,使AB= A/B/、AC= A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等).把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?
学生活动:
1.学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果.
2.作好图后,与同伴交流作图心得,讨论发现什么样的规律.
教师活动:
教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程.
二 、探究
操作结果展示:
对于探究1:
画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.
1.画∠DA/E=∠A;
2.在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC;
3.连结B/C/.
将△A/B/C/剪下,发现△ABC与△A/B/C/全等.这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”).
小结 : 两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“SAS”.
如图,在△ABC和△DEF中,
对于探究2:
学生画出的图形各式各样,有的说全等,有的说不全等.教师在此可引导学生总结画图方法:
1.画∠DB/E=∠B;
2.在射线B/D上截取B/A/=BA;
3.以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的.
也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件.
归纳总结:
“两边及一内角”中的两种情况只有一种情况能判定三角形全等.即:
两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)
三、应用举例
[例]如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长就是A、B的距离.为什么?
[师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE.
在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了.而∠1和∠2是对顶角,所以它们相等.
证明:在△ABC和△DEC中
所以△ABC≌△DEC(SAS)
所以AB=DE.
1.填空:
(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).
(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).
四、练习
1. 已知: AD∥BC,AD= CB(图3).
求证:△ADC≌△CBA.
2.已知:AB=AC、AD=AE、∠1=∠2(图4).
求证:△ABD≌△ACE.
五、课堂小结
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.
2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.
六、布置作业
必做题:课本P43——44页习题12.2中的第3,选做题:第4题题
七、板书设计
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
[难点]
能用全等三角形的性质解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解。
活动4观察两个平移的三角形所做的变化(课件演示)及动手剪两个全等的三角形。
观察、发现生活中图形的形状和大小相同的图形获得全等形的体验。
利用两个形状和大小相同的图形通过平移、翻折、旋转的实验,得出全等形的概念。
及自己动手作比较得出全等形三角形的概念。
通过图形的变换,形成对应的概念,获得全等形三角形的性质。
(1)观察下列图案(电脑显示不同的图案及教科书的图案),学生指出这些图案的形状和大小是否相同?
(2)你能再举出生活中的一些实际例子吗?
(3)按照教科书的要求,将一块三角形样板在纸板上,画下图形,照图形裁下纸板。观察裁下的纸板的形状、大小是否完全一样,能否完全重合?
教师演示课件,提出问题,学生思考、交流。
学生思考发表见解。
学生举出生活中的实例,教师对有创意的例子给予表扬及鼓励。
教师给出全等形的概念。
教师提出要求,学生动手操作,并做观察、回答问题。
学生观察、发现全等形的能力,举出的离子是否是局限于某一范围,是否有新意;
(2)学生是否能够按要求裁下纸板,准确地重合纸板,并认真地进行观察。
运用贴近学生生活的图案激发学生探究的兴趣。
通过问题(1),引导学生从图形的形状与大小的角度去观察图形。
图形全等形、在生活中大量存在,创设这样的问题情境,引导学生有意注意,激发学生主动思考和联想;引导学生进一步联系生活,激发探究欲望。
通过动手实践,获得全等形的体验。
[活动2]
观察下列图形经过平移、翻折、旋转前后的形状和大小是否有所改变?
教师提出要求。
学生体会到图形的位置变化了,但经过平移、翻折、旋转依然全等。
培养学生对图形的识别能力。
[活动3]
对全等形知识的练习。
教师提问。
学生思考回答问题。
△
ABC的位子上,试一试:
观察△ABC在平移、翻折、旋转是否发生了改变?在图中的两个三角形全等吗?
教师用课件展示。
学生猜测,发表意见得出全等三角形的概念。
是否能体会三角形的位置变化了,但经过平移、翻折、旋转后两个图形依然全等。
学生动手实践、分析,总结出图形变换的本质,加深对图形变换的理解。
将两个三角形完全重合,观察并指出重合的顶点、边和角。
观察两个三角形找出对应边、对应角。
(4)观察重合的两个三角形对应边、对应角的关系。
教师课件演示提出问题。
学生实践交流得出结论。
教师给出对应顶点、对应边、对应角的概念并板书。
学生观察并回答问题。教师引导学生归纳总结得出三角形的性质并板书。
全等三角形性质的理解。
在教师演示课件的过程中,学生建立对应的概念。
学生学会掌握全等三角形的'表达方式,会使用全等符号。
练一练:
如图,已知ΔOCA≌ΔOBD,
(3)拓广探索:
如下图,矩形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,DM=5cm, ∠DAM=39°,则AN=___cm, NM=___cm, ∠NAB=___.
教师提出问题。
学生分组探究。
观察学生能否快速找出对应的边与角。
教师利用课件演示提问。
学生再一次对对应边与角的掌握。
教师提问。
学生独立思考回答并说出解题过程。
教师给出解题答案。
同学之间的交流与活动参与程度。
进一步培养学生对图形的识别能力,加深学生对全等三角形性质的理解与掌握。
运用全等三角形的性质对较复杂图形进行探索,初步培养学生综合运用全等三角形性质的能力。
教科书92页习题1。
学生分组总结。
教师布置作业,学生课后独立完成。
学生对全等三角形的情感认识。
加深学生对知识的理解,促进学生对课堂的反思。
巩固、提高、反思。使学生对知识的掌握。
一、教学目标
【知识与技能】
掌握三角??形全等的“角角边”条件,会把“角边角”转化成“角角边”。能运用全等三角形的条件,解决简单的推理证明问题。
【过程与方法】
经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
【情感、态度与价值观】
在探索归纳论证的过程中,体会数学的严谨性,体验成功的快乐。
二、教学重难点
【教学重点】
“角角边”三角形全等的探究。
【教学难点】
将三角形“角边角”全等条件转化成“角角边”全等条件。
三、教学过程
(一)引入新课
利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)
(四)小结作业
提问:今天有什么收获?还有什么疑问?
课后作业:书后相关练习题。
一、教学内容分析
本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析
学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想
我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。遵循启发式教学原则,采用引探式教学方法。用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标
1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
3.情感与态度价值观目标:通过探索活动,体验数学知识在现实生活中的广泛应用,培养学生勇于探索、敢于创新的精神。
五、教学重点和难点
重点:三角形全等条件的探索过程和三角形全等的“边边边”条件。
难点:三角形全等条件的探索中的分类思想的渗透。
六、教学过程设计
具体设计的教学过程描述如下:
(一)创设情境,提出问题
1.出示多媒体:
大家来看一个问题:这是一块三角形玻璃窗,里面的玻璃“啪”地一声损坏了,现在要打电话给玻璃店的老板配一块与损坏的玻璃大小相等形状相同的三角形玻璃,至少要报给玻璃店的老板(这块破裂三角形玻璃)几个数据呢?
[学情预设]学生考虑情况和条件多,大多围绕角和边进行分析。
[设计意图]通过问题情境的创设,不但引入了本课的课题,而且激发了学生的好奇心和求知欲,调动了学生的学习积极性,使他们体会探索的过程是为了解决问题的实际需要。联系生活,充分调动学生的积极性(让学生动起来)。
(二)探索发现,合作交流
1.一个条件
按照三角形“边、角”元素进行分类,师生共同归纳得出:
一个条件: 一边,一角;
再按以上分类顺序动脑、动手操作验证。
2.验证过程可采取以下方式:
画一画:按照下面给出的一个条件各画出一个三角形。
①三角形的一条边长是8cm;
②三角形的一个角为 60°。
剪一剪:把所画的三角形分别剪下来。
比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。
对只给一个条件画三角形,画出的三角形一定全等吗?
同组同学互相比较,观察得出结果。小组代表说明本小组的结论。
再结合展示幻灯片。以便强化结论。
教师收集学生的作品,加以比较,得出结论:只给出一个条件时,不能保证所画出的三角形一定全等。
3.二个条件
继续探索二个条件的情况,师生共同归纳得出:
两个条件: 二边,一边一角,二角;
[教师活动]教师积极帮助学生分析、归纳,对学生在分类中出现的问题,教师予以有序的引导。重点抓住“边”按“边”由多到少的顺序给出。
[设计意图]因为初一学生缺乏思维的严谨性,不能对问题做出全面、正确的分析,并对各种情况进行讨论,所以教师设计上述问题,逐步引导学生归纳出三种情况,分别进行研究,向学生渗透分类讨论的思想。从一个,两个到三个条件。培养学生思维的主动性和广阔性。很自然的突破难点。
4.画一画:按照下面给出的两个条件各画出一个三角形。
①三角形的两条边分别是:8cm,10cm;
②三角形一条边为7cm,一个角为 30°;
③三角形的两个角分别是:30°,50°。
剪一剪:把所画的三角形分别剪下来。
比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。
[学情预设]学生按条件画三角形,然后将所画的三角形分别剪下来,把同一条件下画出的三角形与其他同学画的比一比。
[教师活动]在此教师给学生留出充分的时间画图、观察、比较、交流,然后教师收集学生的作品,加以比较,为学生顺利探索出结论创造条件。
5.学生展示本小组的结论
[设计意图]培养学生的合作意识调动学生的主观能动性,使学生积极主动地参与教学活动,使学生对只有两个条件得不到三角形全等有更直观的认识。
[知识链接]这一知识点既是对后续归纳总结起到实验性证明。
6.教师同时展示幻灯片,加以比较说明,得出结论:只给出两个条件时,不能保证所画出的三角形一定全等。
[设计意图]从实践操作中,引发总结,将前面画图的结果升华成理论,让学生学会思考,善于思考。参与构建对知识的形成和体验。
7. 继续探索三个条件的情况,师生共同归纳得出:
三个条件: 三边,两边一角,一边两角,三角
再继续探索三个条件中的三条边的情况。
8. 画一画:在硬纸板上画出三条边分别是 10cm,12cm,14cm 的三角形。
(对画图有困难的同学提示:用长度分别为10cm、12cm、14cm小棒拼一个三角形并在硬纸板上画出)
剪一剪:用剪刀剪下画出的三角形,与周围同学比较一下,你们所剪下的三角形是否都全等。
比一比:作出的三角形与其他同学作的比一比,是否全等。
9.全班几十个三角形摞在讲台上,形成一个高高的三棱柱模型。学生看着讲台上的三棱柱,心中充满了自豪。
[学情预设] 全班几十个三角形摞在讲台上,形成了一个高高的三棱柱。学生看着讲台上的三棱柱,心中充满了自豪。
[设计意图]培养学生的合作意识、创造性思维,合理猜想,为得出SSS来进行三角形全等的验证作了铺垫。深入探索使学生积极主动地参与教学活动,使学生更利于理解SSS。很自然的突出重点。
(三)、归纳结论,解决问题
1.从上面的活动中,我们总结出:
三边对应相等的两个三角形全等,简写为“边边边”或“SSS”
学生由理解上升到口述出原理,以便以后更好的运用到实践中去。
[学情预设]学生口述,从口头表达上升到书面表达。对学生的回答是否正确全面,都要给予肯定和鼓励,更好的促进他们学习的积极性。
2.成功的解决了上面提出的玻璃问题。
我们只要报给玻璃店的老板三条边长就可以配一块与损坏的玻璃大小相等形状相同的三角形玻璃。
(三条边就可以做出一模一样的三角形玻璃)为学生继续探索三个条件的其他情况,铺下了好的问题情境。(对于两边一角,一边两角和三个角,我们将下一节课研究)
[设计意图]学以致用,发现问题解决问题。
教案课件是老师工作当中的一部分,每个老师对于写教案课件都不陌生。教案是实施教育目标的重要工具。教师范文大全为您精心准备了关于“三角形优秀教案”的相关资讯,下面的内容只是提供参考请大家详细阅读!
教学内容:
人教版义务教育课程标准试验教科书数学五年级上册第84-86页。
教学目标:
1.知识与技能:
(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:理解并掌握三角形面积的计算公式
教学难点:理解三角形面积计算公式的推导过程
教学准备:教具:多媒体课件、红领巾实物。学具:剪刀、各种不同类型的三角形等。
教学过程:
创设情境,引入课题
一、创设情境,引入探索
1、出示红领巾,问:会计算它的面积吗?
2、学生交流 (课件演示)揭题
二、自主合作,探究新知
1、请看大屏幕说一说你看到了什么?课件出示不同的三角形 {学生口述)
2、三角形面积公式的推导
活动一:
请同学们拿出准备的三角形, 用推导平行四边形面积的方法,试着拼一拼,摆一摆,看能不能推导出三角形的面积公式。动手前,注意老师提出的这几个问题:
你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)
(1)学生分小组进行操作实践活动
(2)汇报交流操作结果(请学生将自己的拼图贴于黑板上,对照拼图进行汇报交流,不完整的地方,小组内其他同学补充。
拼法一:用两个完全一样的直角三角形拼成一个长方形,三角形的一条直角边(底)相当于长方形的长,另一条直角边(高)相当于长方形的宽,长方形的面积相当于三角形面积的两倍,因为长方形的面积=长×宽,所以,三角形的面积=底×高÷2。
拼法二:两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形的2倍,平行四边形的面积=底×高,所以三角形的面积=底×高÷2。
拼法三:两个完全一样的钝角三角形拼成一个平行四边形。
拼法四:两个完全一样的直角三角形还可拼成一个平行四边形。
拼法五:两个完全一样的。等腰直角三角形可拼成一个正方形。
教师概括:通过动手我们发现,两个完全一样的三角形都可以拼成一个平行四边形(或长方形或正方形)这个平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以,推出:
教学内容:
三角形面积公式的推导和面积的计算。课本P47--P49。练习十1-3题。
教学目标:
1、使学生理解三角形的面积正好是它等底等高的平行四边形面积的一半,引导学生推导出三角形面积计算公式。
2、使学生掌握三角形面积的计算公式,并能结合实际正确选择条件,应用公式计算三角形面积。
3、通过图形的割补、剪拼,渗透图形变化的数学思考方法,并培养学生的动手操作能力。
教学准备:
多媒体课件。学生准备剪拼的还有平行四边形、长方形等三个图形与三对三角形、剪刀等。
教学过程:
一、复习旧知,建立基础。
昨天我们学习了平行四边形的面积计算,请同学们回忆一下平行四边形的面积公式我们是怎样推导出来的?
学生回答,教师小结。平行四边形的面积公式我们是通过沿高剪割、平移的方法把平行四边形转化成了长方形后推导出来的。(演示推导过程)这样我们就把要学习的新知识转化成了已会的旧知识。(板书:转化)
我们今天也要应用这个思想来学习新知识。
二、导入新课,揭示课题
师:,这堂课我们学习"三角形面积的计算"(板书)。
三、三角形面积公式的推导
1、用数方格的方法求三角形的面积
多媒体屏幕出示3个三角形。放在边长为1厘米的正方形方格图中。每个小方格就是多少面积?
(1)、分别说说这三个三角形是什么三角形?
(2)、请你用数方格的方法求出这3个三角形的面积各是多少平方厘米(不满一个的,都按半格计算,小组里分一下工,每人数一种。看哪个小组数的最快)
边数边思考:
(1)。如果以水平方向的边为它的底,那么高在哪里?底和高分别是多少?
(2)。并且请你根据所得的结果猜一猜三角形的面积可能与什么有关?有怎样的关系呢?
思考题交流。
师:那么三角形能不能转化成我们学过的图形来推导出它的面积计算公式呢?你想转化成怎样的图形?
1、尝试操作
每个学生放有九个图形,其中六个三角形。请你剪一剪,或者拼一拼。看看三角形与我们以前学过的图形有没有关系?有怎样的关系?
要求:每个人做一次剪的实验、做一次拼的实验,小组长进行一下分工。
交流:通过剪一剪,或者拼一拼,你发现了什么?汇报剪的情况。
(1) 请学生把自己剪的图展示在投影仪上。说说你是怎样剪的?发现了什么?
根据剪的情况,谁能用一句话来概括一下?
(2)交流拼的情况,说说你是怎样拼的?通过拼一拼,你又发现了什么?
展示在投影仪上。根据拼的情况,谁能用一句话来概括一下?
【学习目标】
1. 知识技能
利用平行四边形的性质和判定证明出三角形的中位线定理,并会用定理进行计算或证明.
2.数学思考
通过猜想、验证、推理、交流等数学活动,发展我们的动手操作能力、合情推理能力以及应用数学能力.
3.解决问题
通过三角形中位线定理的探索过程,丰富我们从事数学活动的经验与体验,感受数学思考过程的条理性及解决问题策略的多样性.
4.情感态度
(1)在观察、分析过程中发展我们主动探索、质疑和独立思考的习惯.
(2)经历合作探究的过程,培养我们合作交流意识和探索精神.
【学习重难点】
1.教学重点:理解和掌握三角形中位线定理,并能熟练运用.
2.教学难点:利用平行四边形的性质与判定证明三角形的中位线定理,以及复杂图形中通过作辅助线应用三角形中位线定理.
课前延伸
各人准备一张三角形纸片,记作△ABC,分别取AB、AC边中点D、E,用直尺分别测量DE、BC的长,比较DE、BC的大小关系,并猜想DE、BC之间存在怎样的数量关系.还能借助量角器测量有关角的大小,并猜想出DE、BC之间的位置关系吗?
课内探究
一.上面猜想进行理论证明.
已知:D、E分别平分AB、AC,
求证:_______________________
二.总结归纳.
三角形的中位线定义:
三角形的中位线定理:
三.三角形的中位线和中线区别:
三角形中位线定理的符号语言:
四.随堂练习、巩固深化
1.D、E分别平分AB、AC,若BC=10cm,则DE=______;
若DE= cm,则BC=______.
2.已知 中, ,且 cm,D、E、F分别是AB、BC、CA的中点,则 的周长是_________cm.
3.如图, 内有一点P,EF是 的中位线,MN是 的中位线,
求证:四边形MNFE是平行四边形.
4.判断任意一个四边形各边中点连接所形成四边形的形状,并证明你的结论.
已知:E、F、G、H分别为四边形ABCD中点,
求证:四边形EFGH为平行四边形.
5.实际应用:
想知道一池塘边缘宽度AB,且AB不可直接测量,怎么办?
提醒:池塘旁取一点C,C与A、B之间可以直接到达.
五.当场训练反馈:
1.如图,任意四边形ABCD各边中点分别为E、F、G、H,若对角线AC、BD的长都为10 cm,则四边形EFGH的周长是( )
A.40cm B.20cm C.10cm D.5cm
2.以三角形的三个顶点及三边中点为顶点的平行四边形共有( )
A.1个 B.2个 C.3个 D.4个
课后提升
1.已知一个三角形的周长为a,它的三条中线组成的第二个三角形周长为_________,
第二个三角形的三条中线又组成第三个三角形,其周长为_________,以此类推,
第2010个三角形的周长为_________.
2.如图,已知△ABC的中线BD、CE相交于点O,F、G分别是BO、CO的中点,
试猜想EF、DG之间的关系,并证明你的结论.
一、导入新课:
上节课我们去参观了王伯伯的养虾池,认识了平行四边形,学习了怎样计算平行四边形的面积,那平行四边形的面积公式是怎样的呢?(学生回答:平行四边形的面积=底×高)。谁能回顾一下,我们是怎样推导出平行四边形的面积公式的呢?(学生回答,教师总结)。今天我们再去参观一下张爷爷家的养蟹池吧。(课件出示情景图),根据这幅图,你能提出什么问题?(1号蟹池的面积是多少?……)一号蟹池的形状是一个什么图形?(三角形)那怎样求三角形的面积呢?下面我们就来研究一下。板书:三角形的面积
二、探究新知:
(一)操作引入
1、提问:怎样求三角形的面积呢?我们能不能像推导平行四边形的面积那样也设法把三角形转化成我们已经学过的图形呢?老师为大家准备了很多三角形,请大家以小组为单位研究一下,试着把三角形转化成我们学过的图形。(生小组讨论,师巡视指导)。
2、汇报交流:不同方法的小组到前面演示,边拼边讲。(师选择三种图形贴到黑板上)。
(二)公式推导
1、咱班同学真了不起,小小的三角形竟然拼出了这么多的图形。那接下来我们一起来研究一下,这两个三角形拼成了一个什么图形呢?(长方形)。那长方形的面积怎样计算?(长×宽)。师在黑板上所贴长方形下面板书:长方形的面积=长×宽。
2、黄颜色三角形的面积与这个长方形的面积有什么关系呢?(三角形面积是长方形面积的一半)。
3、长方形的长与这个三角形的底是什么关系?板书
4、长方形的'宽与这个三角形的高是什么关系?板书
5、那这个三角形的面积该怎样计算呢?(生答,师在长方形面积公式下板书——三角形的面积=底×高÷2)。
6、是不是所有等底等高的三角形面积都是它所拼成图形的一半呢?
7、操作验证(学生小组完成)
结论:等腰直角三角形的面积是拼成的正方形面积的一半。
钝角三角形的面积是拼成的平行四边形面积的一半。
8、推导公式:生答:通过实验我们知道,等底等高的三角形是它所拼成图形面积的一半,所以三角形的面积=底×高÷2。
三、拓展练习
刚才大家的表现非常棒,自己就总结出了三角形的面积公式,那么根据公式,谁来说一下,要求三角形的面积,必须知道哪几个条件?(底和高)。
1、下面我们就将1号蟹池的面积计算一下吧。课件。(生解答,交流)
2、比一比,看谁算的又快又准确。课件。生独立解答,全班交流。
3、课件出示:一个没有标出底和高的三角形,怎样求出它的面积。(测量底和高),做书上第31页练习2。
4、课件出示:火眼金睛辨对错。生用手势判断,并说明理由。
5、聪明小屋:平行线中的三个三角形,哪个面积大?生讨论交流,说明理由。(一样大,因为它们等底等高)。
四、课堂小结
出示学习材料,学生阅读后谈感想。体会祖国的古代科学家得了不起,2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?
1、你从这节课学到了哪些知识?
2、你认为计算三角形面积需要注意什么?
三、板书设计
三角形的面积
长方形面积=长×宽正方形面积=边长×边长平行四边形面积=底×高
三角形面积=底×高÷2三角形面积=底×高÷2三角形面积=底×高÷2
教学目标:
1 。知识与技能:
(1 )探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2 )培养学生应用已有知识解决新问题的能力。
2 。过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3 。情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的推导过程。
教学关键:让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。
教具准备:红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。
教学过程:
一、创设情境,揭示课题
师:今天老师有什么不同? 老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗?(把红领巾展开贴在黑板上)
教师提出问题:
⑴ 红领巾是什么形状的?(三角形)。
⑵ 你会算三角形的面积吗?
师:这节课我们一起来学习探索三角形面积的计算方法。板书:三角形的面积
[ 设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“ 教学活动” 转化为“ 学习活动” 。]
3 。讨论与归纳公式
(1 )讨论:(小黑板出示问题)
①三角形的底和高与平行四边形的底和高有什么关系?
②怎样求三角形的面积?
③你能归纳出三角形的面积计算公式吗?
[ 设计意图: 借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]
二、应用新知,解决问题
师:现在同学们能帮老师解决问题了吗?
1 。计算一条红领巾的面积。
师:你能估算出这条红领巾的底和高各是多少吗?
师:这条红领巾的底是100cm, 高是33cm ,你能计算出它的面积是多少吗?
学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。
师:计算三角形的面积,应注意什么地方?(强调“÷2” 和“ 底和高要对应” 这两个重点、难点。)
2 。独立完成P85 做一做。
学生板演,教师点评。
[设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]
三、深化理解、应用拓展
课本86 页的练习第1 题。(课件出示)
师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?
(让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)
[ 设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]
四、总结
师:今天这节课,我们主要学习了什么知识?你有什么收获?
(小出示)让学生说一说图意:
师:很好!今天我们通过分“ 四人小组” 动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的平行四边形推导出了三角形面积的计算公式,这种“ 转化” 的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。
[ 设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]
五、课外作业
课本第87 页“ 练习十六” 第5 、6 、7 题。
教学反思:
本节内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来 “ 教学活动” 转化为“ 学习活动”, 引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。
1、小组结合动手操作
在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。
2、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“ 除以2” 是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“ 除以2” 的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。
3、应用公式解决生活中的问题
新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识, 从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。
【教材分析】
这一节课主要学习等腰三角形“等边对等角”及“底边上的高、底边上的中线、顶角的平分线互相重合”的性质。本节内容既是前面知识的深化和应用,又是下节学习等腰三角形和等边三角形判别的预备知识,还是证明角相等、线段相等及两条直线互相垂直的'依据。学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要,起着承前启后的作用。
【学情分析】
在此之前,学生已学习了轴对称图形,这为过渡到本节的学习起着铺垫作用。初二学生心理和认知发展规律要求在教学中要充分调动他们的激情,他们不喜欢鼓噪无味的数学课堂。根据认知理论和心理学的基本原理,学生对所学知识的掌握是通过感知阶段、理解阶段、巩固(记忆)阶段、应用(迁移)阶段的发展实现的,知识的掌握如此,思维能力的培养也是如此,也应遵循认知迁移的规律,逐极展开。
【教学目标】
1、知识和技能目标:
能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质。
2.过程和方法目标:
经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。
3.情感和价值目标:
培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心。
【教学重点和难点】
1.教学重点
等腰三角形的性质及应用
2.教学难点
等腰三角形性质的建立
教学过程
教学目标:
1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。
3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4.体验数学与生活的联系,培养学生学习数学的兴趣。
教具准备:师准备木条(或硬纸条)钉成的三角形、学习卡
教学过程:
一、联系生活,情境导入
1、谈话导入,板书课题。
2、课件展示课本第80页情境图,让学生指出图上的三角形。
3、让学生讨论说一说:生活中还有哪些物体上有三角形。
二、实验解疑,探索特性
1、三角形在生活中有这么广泛的运用,究竟它有什么特点?下面我们来变个小魔术。
2、生上台前拉教具:拉一拉,你有什么发现?
3、实验结果:三角形具有稳定性。
4、请学生举出生活中应用三角形稳定性的例子。(如:自行车三角架、交通警示牌等)
5、出示教材第81页插图:图中哪儿有三角形?它具有什么作用?
三、操作感知,理解概念
1、4人为小组画三角形,理解含义。
2、展示学生画的三角形,组织交流:三角形有什么特点?
3、生板演完成习题:三角形有()条边,()个角,()个顶点。(生齐读)
4、概括定义:大家对三角形的特征有了一定的认识,能不能用自己的话说一说什么样的图形叫三角形?(指名说)
5、辨一辨:(出示幻灯片)它是三角形吗?说说你的理由。
6、师小结:由三条线段围成的图形叫三角形。
四、画三角形的底和高。
1、出示图形:看这是老师课前画的三角形,大家仔细观察老师画的与你们画的有什么不同。
2、生观察指出,师引导出高和底的概念,以及三角形的字母表示形式。
3、学生分组讨论练习画三角形的高。
4、展示学生作品:说说你是如何画的。
5、幻灯片演示画高过程。
6、学生板演画高。
五、总结
1、师:通过这节课的学习,我们懂得了三角形具有——稳定性,还知道了怎样画三角形的——高。
2、巩固练习。(课件演示学生修椅子:说说为什么要这样修?)
本节课重点要让学生通过实践、交流、猜想、论证,得出等腰三角形"两个底角相等"、"三线合一"的性质。
“等腰三角形”是学生小学学过的、生活中常见的一类平面图形,今天讲的一定要是有别于以往的、又对旧知识做一个补充和印证的。因此我给它定位是“轴对称图形”的典型代表。从这点出发结合“探究1”让学生用不同的方法得到等腰三角形,继而复习它的相关概念,由“探究2”让学生自主探究等腰三角形的性质。实践、交流、归纳出等腰三角形的2点性质:"两个底角相等"、"三线合一"。要论证猜想的正确性,除了小学里的等腰三角形翻折的直观印证外,就要用到之前的'“证明三角形全等”这一常见方法了。在此,将猜想的命题转化成符号语言是一个初步的训练。而此命题证明的关键是“添加辅助线”,有前面两个“探究”,如何添加辅助线也就水到渠成了。这条辅助线就是图形的对称轴。结合课本76页证明过程,进一步提出:将“作底边BC的中线AD”改为“过A作底边BC的高线AD”或者“作∠BAC的平分线AD交BC于D”性质1、2是不是同样得到证明?证明过程中有什么异同?在此要给学生强调:性质2实际上包含了三个命题,需要一一证明。这点在辅助线的添加处加以说明:作中线,证高线,证平分线;作高线,证中线,证平分线或作角平分线,证高线,证中线。
性质2不容易引起学生的重视,但它的应用十分广泛,所以我在此补充了例题让学生加以巩固。
等腰三角形的2条性质对今后证明线段相等或角相等方面有很多的应用,限于课堂时间有限,没有加以补充,今后具体问题时再予总结。
它山之石可以攻玉,以上就是范文为大家整理的9篇《初中数学等腰三角形的性质教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在范文。
活动目标:
1、引导幼儿在探索操作活动中,初步感知三角形,知道其名称和形状特征,认识三角形的多样性;
2、能不受其他图形干扰找出三角形;
3、培养幼儿的动手操作能力,发展思维的灵活性。
活动准备:
教具:
1、各种不同的三角形;数字卡;
2、星星、正方形、菱形各1。
学具:
1、3条长度不同的纸条(幼儿每人一套);
2、各种图形:圆形、正方形、长方形、三角形若干;
3、图形拼图;
4、胶垫人手一块
活动过程:
一、探索操作:
1、请幼儿拿3条不同长度的纸条拼摆图形。幼儿探索活动,教师指导。
2、幼儿展示自己的图形,教师集体说说,摆了什么样的图形,用了几条纸条,有几个角;
二、认识三角形的特征
1、小朋友真棒!现在我们请出今天的图形客人。出示三角形引导幼儿数数三角形的角与边各有多少?(教案出自:教案网)(教师根据幼儿数出的角、边,在三角形上标上数字)2、出示星星、正方形、菱形、让幼儿分辨它们是否三角形?
2、出示各种图形,让幼儿把三角形归类放到一边。(二次操作,巩固对三角形特征的认识)
3、操作:幼儿人手一图形拼画,请幼儿找出画中的三角形,涂色。
4、向爸爸妈妈展示自己的画。
三、活动结束。
教学目标:
知识技能
了解等腰三角形的性质,掌握等腰三角形的性质定理及推论,会用定理及推论解决简单问题。
数学思考
培养学生探究思维、逻辑思维能力,探索引辅助线的规律。
情感态度与价值观:
渗透"实践--理论--实践"的辩证唯物主义思想,培养探究分析数学知识方法的兴趣,养成踏实细致、严谨科学的学习习惯。
教学重点与难点
重点:理解等腰三角形的性质定理、推论,并能用它们解决简单的问题。
难点:引辅助线证明定理和推论1的应用。
教学过程与流程设计
引导性材料:
1. 学生把等腰三角形的两腰叠在一起,发现它的两个底角重合,这说明等腰三角形具有什么性质?(等腰三角形的两个底角相等)(演示叠合过程)
2. 教师用等腰三角形纸片演示两腰叠合,再把纸片展开。
提问:你能发现等腰三角形还有什么特性吗?
(引入课题,明确目标)(显示教学目标)
教学设计:
问题1:怎样来证明“等腰三角形的两个底角相等”呢?
已知:如图,△abc中,ab=ac.
求证:∠b=∠c.
(方法1)证明:作顶角的平分线ad.
在△bad和△cad中。
ab=ac (已知)
∠1=∠2 (辅助线作法)
ad=ad (公共边)
∴△bad≌△cad(sas)
∴∠b=∠c(全等三角形的对应角相等)
问题2:上述命题还有哪些证法?
方法2:作底边bc上的高ad. (证明过程由学生口述)
方法3:作底边bc上的中线ad.(证明过程由学生口述)
(演示):等腰三角形的性质定理 等腰三角形的两个底角相等
(简写成“等边对等角”)
观察上述三种方法,思考如下问题:
(1) 在等腰△abc中,如果ad是顶角的平分线,那么ad是否平分底边?是否垂直于底边?
(2) 在等腰△abc中,如果ad是底边上的高,那么ad是否平分顶角?是否平分底边?
(3) 在等腰△abc中,如果ad是底边上的中线,那么ad是否平分顶角?是否垂直于底边?
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边。
(等腰三角形的顶角平分线、底边上中线、底边上的高互相重合。)
练习:填空,在△abc中,
(1) ∵ab=ac,ad⊥bc,
∴∠=∠, = .
(2) ∵ab=ac,ad是中线,
∴⊥,∠=∠.
(3) ∵ab=ac,ad是角平分线,
∴⊥, = .
问题2:等边三角形是特殊的等腰三角形,除具有等腰三角形的性质外,还有特殊的性质吗?
推论2:等边三角形的各角都相等,并且每一个角都等于60°.(学生完成证明)
已知:如图,△abc中,ab=ac=bc.
求证:∠a=∠b=∠c=60°
证明:∵ ab=ac,
∴∠b=∠c(等边对等角),
∵ac=bc,
∴∠a=∠b(等边对等角),
∴∠a=∠b=∠c,
∵∠a+∠b+∠c=180°(三角形内角和定理),
∴∠a=∠b=∠c=60°
例题解析:
例1:填空,1.在△abc中,ab=ac.
(1) 若∠a=50°,则∠b= °,∠c= °;
(2) 若∠b=45°,则∠a= °,∠c= °;
(3) 若∠b=∠a,则∠a= °,∠c= °;
(4) 若∠b=2∠a,则∠a= °,∠c= °.
2.等腰三角形的一个角是40°,则它的底角是 .
3.等腰三角形的一个角是120°,则它的底角是 .
例2:已知,如图(6),房顶的顶角∠bac=100°,过屋顶a的立柱ad⊥bc,屋椽ab=ac,求顶架上∠b、∠c、∠bad、∠cad的度数。
解:在△abc中,
∵ab=ac(已知),
∴∠b=∠c (等底对等角),
∴∠b=∠c=(180°-∠bac)=40°,
(三角形内角和定理),
又∵ad⊥bc(已知),
∴∠bad=∠cad(等腰三角形顶角的平分线与底边上的高互相重合),
∵∠bac=100°,
(7) ∴
课堂练习:
已知:如图(7)中的三角形测平架中,ab=ac,在bc的中点挂一个重锤,自然下垂,调整架身,使点恰好在重锤线上。
求证:(1)ad⊥bc;
(2)这时bc处于水平位置,为什么?
课堂小结:
1. 等腰三角形的性质定理:“等边对等角”,揭示了同一个三角形中边与角之间的关系;
2. 等腰三角形性质定理的推论1、推论2;
3. 由推论1知,等腰三角形“底边上的三条主要线段互相重合”,这条线段具有三种不同的“身份”,因此,它是推证两条线段相等、角相等以及两条直线互相垂直必须关注的“热线”。
4. 掌握证明几何命题的完整过程,以及不同辅助线的添法,从中体验数学知识的美妙。
作业:习题14.3 第6、7题(作业本),其他课本
数学三角形的面积练习题
一、填空。
1、一个三角形的面积是25平方厘米,和它等底等高的平行四边形的面积是平方厘米。
2、一个平行四边形的底是6厘米,高是14厘米,它的面积是()平方厘米,与它等底等高的三角形面积是()平方厘米。
3、一个三角形的面积是20平方厘米,它的高是8厘米,底是()厘米。
4、直角三角形的两条直角边长分别为3厘米和4厘米,斜边为5厘米,这个直角三角形面积是()平方厘米。
5、一个三角形与一个平行四边形的底和面积都相等,平行四边形的高是16厘米,三角形的高是( )厘米。
6、一个等腰直角三角形的直角边是10厘米,它的面积是( )平方厘米。
二、判断题。
1、平行四边形面积等于长方形面积。()
2、等底等高的三角形可拼成一个平行四边形。()
3、如果两个三角形面积相等,那么它们一定等底等高。()
三、选择题。将正确答案的序号填在括号里。
1、将一个长方形拉成一个平行四边形(四条边长度不变),它的。面积()。
A.比原来小B.比原来大C.与原来相等
2、平行四边形的面积是44cm2,与它等底等高的三角形的面积是()cm2
A、44B、22C、88
四、解决问题。
1、一块三角形的地的面积是360平方米,底是50米,高是多少?
2、一种直角三角形的小旗,一条直角边长15厘米,另一条直角边长24厘米,做150面这样的小旗,至少要用红布多少平方米?
3、三角形广告牌,底25分米,高20分米。如果每平方米刷漆2千克,那么将这个广告牌正反两面刷漆,购买18千克油漆够不够?
4、大白菜地的形状是三角形,底80米,高60米,如果每棵大白菜占0.2平方米,这地可种大白菜多少棵?
教学内容:
教材第62页的内容及第66页练习十五的第68题。
教学目标:
1、知道两点间距离的意义,明白两点之间线段最短的道理。
2、通过操作、观察,发现三角形三边之间的关系:三角形任意两边之和大于第三边。
3、掌握判断三条线段是否构成一个三角形的方法,并能解决有关的问题。
4、提高学生逻辑思维能力,以及培养学生猜想验证总结的学习习惯。
教学重点:
知道两点间距离的意义,明白两点之间线段最短的道理。
教学难点:
通过操作、观察,发现三角形三边之间的关系:三角形任意两边之和大于第三边。
教具学具:
多媒体课件、剪刀、白纸。
教学过程:
一、情境导入
课件出示教材第62页例3.
师:老师给大家介绍一位新朋友小明。他正从家里出发去学校。观察情景图说一说,从小明家到学校有几条路线?分别是怎么走的?
生:从小明家到学校有3条路可走。
第一条:家邮局学校第二条:家学校
第三条:家商店学校
师:哪条路最近?
生:家学校的路最近。
师:为什么家学校的路最近?
二、自主探究
1、体验两点间的距离的意义。
师:为什么大家认为中间这条路最近?
生1:因为第一条和第三条路线拐弯了,绕远路,所以中间这条最近。
生2:我生活中这样走过,中间的这条路线最短。
生3:我在课本的图中通过测量得出中间的这条路线最近。
师:家、邮局、学校,我们可以看作三个点,你能发现它们构成了一个什么图形吗?
生:观察情境图我们可以发现家邮局学校可以看成一个三角形,其中家到邮局的距离+邮局到学校的距离>家到学校的距离。
师:家商店学校呢?
生:家商店学校也可以看成一个三角形,家到商店的距离+商店到学校的距离>家到学校的距离。
师:通过上面的观察,你能得出什么结论?
本文网址://m.jk251.com/jiaoan/56166.html
下一篇:小班音乐教案《龟兔赛跑》2篇