导航栏

×
范文大全 > 教师范文

高等数学课件

时间:2023-09-18

高等数学课件。

小编特意收集并为您呈上“高等数学课件”相关内容。每个老师为了上好课需要写教案课件,只要我们老师在写的时候认真负责就可以了。 教案课件的准备,是新老师为了让课堂教学更加有趣。建议您收藏此页面以便日后查看!

高等数学课件【篇1】

高等数学课件

高等数学是大学中的一门重要课程,是对初等数学知识的深入拓展和扩展。随着信息技术的发展,现代高等学校中的教学方式不断创新,数字化教学逐渐取代了传统的黑板讲解。因此,针对高等数学的课件设计变得至关重要。本文将介绍高等数学课件的相关内容。

高等数学课件是一种集有声有图、传统理论知识和实例演练于一体的教学工具。它采用计算机软件或多媒体技术来实现直观显示,可以方便地呈现各种图形、表格和数学公式,使学生更好地理解难点知识,提高学习效率。

高等数学课件的设计要求具有系统性、科学性和趣味性。在系统性方面,教师应当将知识点通过各种图形和公式贯穿整个课件,以便学生清晰地掌握概念和技巧。科学性则要求讲解能够严谨地基于数学公理和定理,并通过适当的实例展示其应用。而趣味性则要求课件能够使学生在学习的过程中,不断体验到数学知识的神奇之处,增强其兴趣。

高等数学课件可以按照教学目标、内容和难度进行分类。就教学目标而言,高等数学课件可以分为“概念讲解”、“方法演示”和“综合应用”三种类型。就内容而言,高等数学课件可以分为“微积分”、“线性代数”和“概率论与数理统计”三种类型。根据难度,高等数学课件可以分为“基础入门”、“中级提高”和“高级拓展”三种类型。

根据国内外多年的教育实践,高等数学课件功能应当包括以下方面:一是一二维空间图形显示功能;二是微积分计算和图形展示功能;三是线性代数计算和矩阵运算功能;四是概率论与数理统计计算和分析功能。除此以外,高等数学课件还应该具有自由拖动、缩放、旋转、选择等一系列实用功能。

总之,高等数学课件是一种高效的数字化教学方式,在当今信息化社会中有着广泛的应用前景。它已经成为了高等数学的主要教学工具之一,将在今后的教育发展中发挥越来越重要的作用。

高等数学课件【篇2】

§8 4 多元复合函数的求导法则

设zf(u v) 而u(t) v(t) 如何求dz?

dt

设zf(u v) 而u(x y) v(x y) 如何求z和z?

xy

1 复合函数的中间变量均为一元函数的情形

定理1 如果函数u(t)及v(t)都在点t可导 函数zf(u v)在对应点(u v)具有连续偏导数 则复合函数zf[(t) (t)]在点t可导 且有

dzzduzdv

dtudtvdt

简要证明1 因为zf(u v)具有连续的偏导数 所以它是可微的 即有

dzzduzdv

uv又因为u(t)及v(t)都可导 因而可微 即有

dududt dvdvdt

dtdt代入上式得

dzzdudtzdvdt(zduzdv)dt

udtvdtudtvdt从而

dzzduzdv

dtudtvdt

简要证明2 当t取得增量t时 u、v及z相应地也取得增量u、v及z  由zf(u v)、u(t)及v(t)的可微性 有

zzuzvo()z[duto(t)]z[dvto(t)]o()

uvudtvdt

(zduzdv)t(zz)o(t)o()

udtvdtuvzzduzdv(zz)o(t)o()

tudtvdtuvtt令t0 上式两边取极限 即得

dzzduzdv

dtudtvdto()o()(u)2(v)2注limlim0(du)2(dv)20

tdtdtt0tt0推广 设zf(u v w) u(t) v(t) w(t) 则zf[(t) (t) (t)]对t 的导数为

dzzduzdvzdw

dtudtvdtwdt上述dz称为全导数

dt

2 复合函数的中间变量均为多元函数的情形

定理2 如果函数u(x y) v(x y)都在点(x y)具有对x及y的偏导数 函数zf(u v)在对应点(u v)具有连续偏导数 则复合函数zf [(x y) (x y)]在点(x y)的两个偏导数存在 且有

zzuzv zzuzv

xuxvxyuyvy

推广 设zf(u v w) u(x y) v(x y) w(x y) 则

zzuzvzw

zzuzvzw 

xuxvxwxyuyvywy

讨论

(1)设zf(u v) u(x y) v(y) 则z?z?

yx

提示 zzu zzuzdv

xuxyuyvdyz

(2)设zf(u x y) 且u(x y) 则z??

yxffff

提示 zu zu

xuxxyuyyf这里z与是不同的 z是把复合函数zf[(x y) x y]中的y看作不变而对x的xxxffz偏导数 是把f(u x y)中的u及y看作不变而 对x的偏导数 与也朋类似

yyx的区别

3.复合函数的中间变量既有一元函数 又有多元函数的情形

定理3 如果函数u(x y)在点(x y)具有对x及对y的偏导数 函数v(y)在点y可导 函数zf(u v)在对应点(u v)具有连续偏导数 则复合函数zf[(x y) (y)]在点(x y)的两个偏导数存在 且有

zzuzdv

zzu 

xuxyuyvdy

z

例1 设zeusin v uxy vxy 求z和

xy

解 zzuzv

xuxvx

eusin vyeucos v1

ex y[y sin(xy)cos(xy)]

zzuzv

yuyvy

eusin vxeucos v1

exy[x sin(xy)cos(xy)]

例2 设uf(x,y,z)exff

解 uz

xxzx2y2z2 而zx2siny 求u和u

yx

2xex2y2z22zex2y2z22xsiny

 2x(12x2siny)ex2y2x4si2nyff

uz

yyzy

2yex2y2z22zex2y2z2x2cosy

2(yx4sinycoys)ex2y2x4si2ny

例3 设zuvsin t  而uet vcos t 求全导数dz

dt

解 dzzduzdvz

dtudtvdtt

vetu(sin t)cos t

etcos te tsin tcos t

et(cos tsin t)cos t 

2ww

例4 设wf(xyz xyz) f具有二阶连续偏导数 求及 xzx

解 令uxyz vxyz  则wf(u v)

f(u,v)f(u,v)f22等

引入记号 f1 f12 同理有f2f11uuvwfufvfyzf

2

xuxvx12ff

w(f1yzf2)1yf2yz2

xzzzzxyf12yf2yzf21xy2zf22

f11y(xz)f12yf2xy2zf22

f11f1f1uf1vfffxyf12 22u2vf21xyf22 f11zuzvzzuzvz

例5 设uf(x y)的所有二阶偏导数连续 把下列表达式转换成极坐标系中的形式

注

22u

(1)(u)2(u)2

(2)uxyx2y2解 由直角坐标与极坐标间的关系式得

uf(x y)f(cosθ sinθ)F( θ)

其中xcosθ ysinθ x2y2 arctan应用复合函数求导法则 得

uuxuyuuysincos

uu

xxx2uuyuxuucossin

uu

yyy2y x两式平方后相加 得

(u)2(u)2(u)212(u)2

xy再求二阶偏导数 得

2(u)(u) 

ux2xxxxu)co)sin susins(ucosusin

(co22222uusincosusinu2sincosusin 222

2cos22同理可得 222222uuusincosucosu2sincosucos 22sin2222y两式相加 得

22222uuu11u1u

222222[()u]

2xy

全微分形式不变性

设zf(u v)具有连续偏导数 则有全微分

dzzduzdv

uv如果zf(u v)具有连续偏导数 而u(x y) v(x y)也具有连续偏导数 则

zz

dzdxdy

xyzuzv)dx(zuzv)dy

(uxvxuyvyzuuzvv

(dxdy)(dxdy)

uxyvxy

zduzdv

uv由此可见 无论z 是自变量u、v的函数或中间变量u、v的函数 它的全微分形式是一样的 这个性质叫做全微分形式不变性

例6 设ze usin v ux y vxy 利用全微分形式不变性求全微分

解 dzzduzdv e usin vdu e ucos v dv uv

 e usin v(y dxx dy) e ucos v(dxdy)

(ye usin v e ucos v)dx(xe usin v e ucos v)dy

e xy [y sin(xy)cos(xy)]dx e xy [x sin(xy)cos(xy)]dy 

§8 5

隐函数的求导法则 一、一个方程的情形

隐函数存在定理1

设函数F(x y)在点P(x0 y0)的某一邻域内具有连续偏导数 F(x0 y0)0 Fy(x0 y0)0 则方程F(x y)0在点(x0 y0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数yf(x) 它满足条件y0f(x0) 并有

Fdyx

dxFy

求导公式证明 将yf(x)代入F(x y)0 得恒等式 F(x f(x))0

dy等式两边对x求导得 FF0

xydx由于F y连续 且Fy(x0 y0)0 所以存在(x0 y0)的一个邻域 在这个邻域同Fy 0 于是得 Fdyx

dxFy

例1 验证方程x2y210在点(0 1)的某一邻域内能唯一确定一个有连续导数、当x0时y1的隐函数yf(x) 并求这函数的一阶与二阶导数在x0的值

解 设F(x y)x2y21 则Fx2x Fy2y F(0 1)0 Fy(0 1)20 因此由定理1可知 方程x2y210在点(0 1)的某一邻域内能唯一确定一个有连续导数、当x0时y1的隐函数yf(x)

Fdydyxx 0

dxFyydxx0yx(x)dyyxyyy2x2d2y13; 1

dx2y2y2y3ydx2x0

2隐函数存在定理还可以推广到多元函数 一个二元方程F(x y)0可以确定一个一元隐函数 一个三元方程F(x y z)0可以确定一个二元隐函数

隐函数存在定理2

设函数F(x y z)在点P(x0 y0 z0)的某一邻域内具有连续的偏导数 且F(x0 y0 z0)0 Fz(x0 y0 z0)0  则方程F(x y z)0在点(x0 y0 z0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数zf(x y) 它满足条件z0f(x0 y0) 并有

FF

zx zy

xFzyFz

公式的证明 将zf(x y)代入F(x y z)0 得F(x y f(x y))0

将上式两端分别对x和y求导 得

FxFzz0 FyFzz0 

yx因为F z连续且F z(x0 y0 z0)0 所以存在点(x0 y0 z0)的一个邻域 使F z0 于是得

FF

zx zy

xFzyFz2z

例2.设xyz4z0 求2

x

设F(x y z) x2y2z24z 则Fx2x Fy2z4 222

zFx2xx

xFz2z42z

z(2x)x(x)(2x)x222zx2z(2x)x

x2(2z)2(2z)2(2z)

3二、方程组的情形

在一定条件下 由个方程组F(x y u v)0 G(x y u v)0可以确定一对二元函数uu(x y) vv(x y) 例如方程xuyv0和yuxv1可以确定两个二元函数uyx

v

x2y2x2y2y 事实上

xuyv0 vxuyuxxu1u22 

yyxyyvx222x2

yxyxy

如何根据原方程组求u v的偏导数?

隐函数存在定理设F(x y u v)、G(x y u v)在点P(x0 y0 u0 v0)的某一邻域内具有对各个变量的连续偏导数 又F(x0 y0 u0 v0)0 G(x0 y0 u0 v0)0 且偏导数所组成的函数行列

F(F,G)u式:

J(u,v)GuFv Gv在点P(x0 y0 u0 v0)不等于零 则方程组F(x y u v)0 G(x y u v)0在点P(x0 y0 u0 v0)的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数uu(x y) vv(x y) 它们满足条件u0u(x0 y0) v0v(x0 y0) 并有

FxFvFuFxGGGG(F,G)(F,G)

u1xv

v1ux

xJ(x,v)xJ(u,x)FuFvFuFvGuGvGuGv(F,G)(F,G)

u1

v1

yJ(y,v)yJ(u,y)FuFvFuFvGuGvGuGvFyFvGyGvFuFyGuGy

隐函数的偏导数: 设方程组F(x y u v)0 G(x y u v)0确定一对具有连续偏导数的 二元函数uu(x y) vv(x y) 则

FFuFv0,xuxvxuv 偏导数 由方程组确定

uvxxGxGuGv0.xxFFuFv0,yuyvyuv 偏导数 由方程组确定

uvyyGyGuGv0.yyv 例3 设xuyv0 yuxv1 求u v u和

yxxy 解 两个方程两边分别对x 求偏导 得关于u和v的方程组

xxuxuyv0xx uvyvx0xxyuxvxuyv当x2y2 0时 解之得u22 v22

xxyxxy

两个方程两边分别对x 求偏导 得关于u和v的方程组

yyxuvyv0yy uvuyx0yyxvyuxuyv当x2y2 0时 解之得u22 v22

yxyyxy

另解 将两个方程的两边微分得

udxxduvdyydv0xduydvvdyudx

 即

udyyduvdxxdv0yduxdvudyvdx解之得 duxuyvxvyudxdy

x2y2x2y dvyuxvxuyvdxdy

x2y2x2y2xuyvxvyu于是

u22 u22

xyxyxyyuxvxuyv

v22 v22 xxyyxy

例 设函数xx(u v) yy(u v)在点(u v)的某一领域内连续且有连续偏导数

(x,y)0 (u,v)xx(u,v)

(1)证明方程组

yy(u,v)在点(x y u v)的某一领域内唯一确定一组单值连续且有连续偏导数的反函数uu(x y) vv(x y)

(2)求反函数uu(x y) vv(x y)对x y的偏导数

解(1)将方程组改写成下面的形式

F(x,y,u,v)xx(u,v)0



G(x,y,u,v)yy(u,v)0则按假设

J(F,G)(x,y)0.(u,v)(u,v)由隐函数存在定理3 即得所要证的结论

(2)将方程组(7)所确定的反函数uu(x y)vv(x y)代入(7) 即得

xx[u(x,y),v(x,y)]



yy[u(x,y),v(x,y)]将上述恒等式两边分别对x求偏导数得

1xuxv

uxvx

yy0uvuxvx由于J0 故可解得

yy

u1 v1

JuxJvx

同理 可得

u1xv1x

 

yJvyJu

§8 6

多元函数微分学的几何应用

一

空间曲线的切线与法平面

设空间曲线的参数方程为

x(t) y(t) z(t)这里假定(t) (t) (t)都在[ ]上可导

在曲线上取对应于tt0的一点M0(x0 y0 z0)及对应于tt0t的邻近一点M(x0+x y0+y z0+z) 作曲线的割线MM0 其方程为

xx0yy0zz0 xyz当点M沿着趋于点M0时割线MM0的极限位置就是曲线在点M0处的切线 考虑 xx0yy0zz0

 xyzttt当MM0 即t0时 得曲线在点M0处的切线方程为

xx0yy0zz0 (t0)(t0)(t0)

曲线的切向量 切线的方向向量称为曲线的切向量 向量

T((t0) (t0) (t0))就是曲线在点M0处的一个切向量

法平面 通过点M0而与切线垂直的平面称为曲线在点M0 处的法平面 其法平面方程为

(t0)(xx0)(t0)(yy0)(t0)(zz0)0

例1 求曲线xt yt2 zt3在点(1 1 1)处的切线及法平面方程

因为xt1 yt2t zt3t2 而点(1 1 1)所对应的参数t1 所以

T (1 2 3)

于是 切线方程为

x1y1z 

123法平面方程为

(x1)2(y1)3(z1)0 即x2y3z6

讨论

1 若曲线的方程为

y(x) z(x)

问其切线和法平面方程是什么形式

提示 曲线方程可看作参数方程 xx y(x) z(x) 切向量为T(1 (x) (x))

2 若曲线的方程为

F(x y z)0 G(x y z)0

问其切线和法平面方程又是什么形式

提示 两方程确定了两个隐函数

y(x) z(x) 曲线的参数方程为

xx y(x) z(x) dydz0FFFxyzdydzdxdx由方程组可解得和 dydzdxdxGxGyGz0dxdxdydz,) dxdx

例2 求曲线x2y2z26 xyz0在点(1 2 1)处的切线及法平面方程 

dydz02x2y2zdxdx

解 为求切向量 将所给方程的两边对x求导数 得dy1dz0dxdx切向量为T(1, 解方程组得dyzxdzxy  dxyzdxyzdy0 dz1 dxdx从而T (1 0 1)

所求切线方程为

x1y2z1

101法平面方程为

(x1)0(y2)(z1)0 即xz0

在点(1 2 1)处

二 曲面的切平面与法线

设曲面的方程为

F(x y z)0

M0(x0 y0 z0)是曲面上的一点

并设函数F(x y z)的偏导数在该点连续且不同时为零 在曲面上 通过点M0任意引一条曲线 假定曲线的参数方程式为

x(t) y(t) z(t) tt0对应于点M0(x0 y0 z0) 且(t0) (t0) (t0)不全为零 曲线在点的切向量为

T ((t0) (t0) (t0))

考虑曲面方程F(x y z)0两端在tt0的全导数

Fx(x0 y0 z0)(t0)Fy(x0 y0 z0)(t0)Fz(x0 y0 z0)(t0)0

引入向量

n(Fx(x0 y0 z0) Fy(x0 y0 z0) Fz(x0 y0 z0))

易见T与n是垂直的 因为曲线是曲面上通过点M0的任意一条曲线 它们在点M0的切线都与同一向量n垂直 所以曲面上通过点M0的一切曲线在点M0的切线都在同一个平面上 这个平面称为曲面在点M0的切平面 这切平面的方程式是

Fx(x0 y0 z0)(xx0)Fy(x0 y0 z0)(yy0)Fz(x0 y0 z0)(zz0)0

曲面的法线 通过点M0(x0 y0 z0)而垂直于切平面的直线称为曲面在该点的法线 法线方程为

xx0yy0zz0

Fx(x0, y0, z0)Fy(x0, y0, z0)Fz(x0, y0, z0)

曲面的法向量 垂直于曲面上切平面的向量称为曲面的法向量 向量

n(Fx(x0 y0 z0) Fy(x0 y0 z0) Fz(x0 y0 z0))就是曲面在点M0处的一个法向量

例3 求球面x2y2z214在点(1 2 3)处的切平面及法线方程式

F(x y z) x2y2z214

Fx2x Fy2y  Fz2z 

Fx(1 2 3)2 Fy(1 2 3)4 Fz(1 2 3)6

法向量为n(2 4 6) 或n(1 2 3)

所求切平面方程为

2(x1)4(y2)6(z3)0 即x2y3z140

y2z3法线方程为x1

3讨论 若曲面方程为zf(x y) 问曲面的切平面及法线方程式是什么形式

提示

此时F(x y z)f(x y)z 

n(fx(x0 y0) fy(x0 y0) 1)

例4 求旋转抛物面zx2y21在点(2 1 4)处的切平面及法线方程

f(x y)x2y21

n(fx fy 1)(2x 2y 1)

n|(2 1 4)(4 2 1)

所以在点(2 1 4)处的切平面方程为

4(x2)2(y1)(z4)0 即4x2yz60

x2y1z4法线方程为 

421§8 7

方向导数与梯度

一、方向导数

现在我们来讨论函数zf(x y)在一点P沿某一方向的变化率问题

设l是xOy平面上以P0(x0 y0)为始点的一条射线 el(cos  cos )是与l同方向的单位向量 射线l的参数方程为

xx0t cos  yy0t cos (t0)

设函数zf(x y)在点P0(x0 y0)的某一邻域U(P0)内有定义 P(x0t cos  y0t cos )为l上另一点 且PU(P0) 如果函数增量f(x0t cos  y0t cos )f(x0 y0)与P到P0的距离|PP0|t的比值

f(x0tcos, y0tcos)f(x0,y0)

t当P沿着l趋于P0(即tt0)时的极限存在

则称此极限为函数f(x y)在点P0沿方向l的方向导数 记作fl(x0,y0) 即

fl(x0,y0)limt0f(x0tcos, y0tcos)f(x0,y0)

t

从方向导数的定义可知 方向导数

fl(x0,y0)就是函数f(x y)在点P0(x0 y0)处沿方向l的变化率

方向导数的计算

定理

如果函数zf(x y)在点P0(x0 y0)可微分 那么函数在该点沿任一方向l 的方向导数都存在 且有

fl(x0,y0)fx(x0,y0)cosfy(x0,y0)cos

其中cos  cos 是方向l 的方向余弦

简要证明 设xt cos  yt cos  则

f(x0tcos y0tcos)f(x0 y0)f x(x0 y0)tcosf y(x0 y0)tcoso(t)

所以

f(x0tcos, y0tcos)f(x0,y0)

limfx(x0,y0)cosfy(x0,y0)sin

tt0这就证明了方向导数的存在 且其值为

fl(x0,y0)fx(x0,y0)cosfy(x0,y0)cos提示 f(x0x,y0y)f(x0,y0)fx(x0,y0)xfy(x0,y0)yo((x)2(y)2)

xt cos  yt cos (x)2(y)2t

讨论 函数zf(x y)在点P 沿x轴正向和负向

沿y轴正向和负向的方向导数如何? 提示

ff

沿x轴正向时 cos cos0

lxff 沿x轴负向时 cos1 cos0  

lx2y

例1 求函数zxe在点P(1 0)沿从点P(1 0)到点Q(2 1)的方向的方向导数

解 这里方向l即向量PQ(1, 1)的方向 与l同向的单位向量为

el(1, 1)

22 因为函数可微分 且zx所以所求方向导数为

(1,0)e2y1 z(1,0)y(1,0)2xe2y(1,0)2

z112(1)2

l(1,0)22

2对于三元函数f(x y z)来说 它在空间一点P0(x0 y0 z0)沿el(cos  cos  cos )的方向导数为

fl(x0,y0,z0)limt0f(x0tcos, y0tcos,z0tcos)f(x0,y0,z0)

t

如果函数f(x y z)在点(x0 y0 z0)可微分 则函数在该点沿着方向el(cos  cos  cos 的方向导数为

fl(x0,y0,z0)fx(x0 y0 z0)cosfy(x0 y0 z0)cosfz(x0 y0 z0)cos

例2求f(x y z)xyyzzx在点(1 1 2)沿方向l的方向导数 其中l的方向角分别为60 45 60

解 与l同向的单位向量为

el(cos60 cos 45 cos60(1, 2, 1)

222因为函数可微分且

fx(1 1 2)(yz)|(1 1 2)3

fy(1 1 2)(xz)|(1 1 2)3

fz(1 1 2)(yx)|(1 1 2)2 所以

fl3132211(532)

2222(1,1,2)

二 梯度

设函数zf(x y)在平面区域D内具有一阶连续偏导数 则对于每一点P0(x0 y0)D 都可确定一个向量

fx(x0 y0)ify(x0 y0)j

这向量称为函数f(x y)在点P0(x0 y0)的梯度 记作grad f(x0 y0) 即

grad f(x0 y0) fx(x0 y0)ify(x0 y0)j

梯度与方向导数 

如果函数f(x y)在点P0(x0 y0)可微分 el(cos  cos )是与方向l同方向的单位向量 则

fl(x0,y0)fx(x0,y0)cosfy(x0,y0)cos

 grad f(x0 y0)el

| grad f(x0 y0)|cos(grad f(x0 y0)^ el)

这一关系式表明了函数在一点的梯度与函数在这点的方向导数间的关系 特别 当向量el与grad f(x0 y0)的夹角0 即沿梯度方向时 方向导数

fl取得

(x0,y0)最大值 这个最大值就是梯度的模|grad f(x0 y0)| 这就是说 函数在一点的梯度是个向量 它的方向是函数在这点的方向导数取得最大值的方向 它的模就等于方向导数的最大值

f

讨论 的最大值

l

结论 函数在某点的梯度是这样一个向量 它的方向与取得最大方向导数的方向一致 而它的模为方向导数的最大值

我们知道 一般说来二元函数zf(x y)在几何上表示一个曲面 这曲面被平面zc(c是常数)所截得的曲线L的方程为

zf(x,y)



zc这条曲线L在xOy面上的投影是一条平面曲线L* 它在xOy平面上的方程为

f(x y)c

对于曲线L*上的一切点 已给函数的函数值都是c 所以我们称平面曲线L*为函数zf(x y)的等值线

若f x f y不同时为零 则等值线f(x y)c上任一点P0(x0 y0)处的一个单位法向量为

n1(fx(x0,y0),fy(x0,y0))

22fx(x0,y0)fy(x0,y0)这表明梯度grad f(x0 y0)的方向与等值线上这点的一个法线方向相同 而沿这个方f向的方向导数就等于|grad f(x0 y0)| 于是

nf

grafd(x0,y0)n

n

这一关系式表明了函数在一点的梯度与过这点的等值线、方向导数间的关系 这说是说 函数在一点的梯度方向与等值线在这点的一个法线方向相同 它的指向为从数值较低的等值线指向数值较高的等值线 梯度的模就等于函数在这个法线方向的方向导数

梯度概念可以推广到三元函数的情形 设函数f(x y z)在空间区域G内具有一阶连续偏导数 则对于每一点P0(x0 y0 z0)G 都可定出一个向量

fx(x0 y0 z0)ify(x0 y0 z0)jfz(x0 y0 z0)k

这向量称为函数f(x y z)在点P0(x0 y0 z0)的梯度 记为grad f(x0 y0 z0) 即

grad f(x0 y0 z0)fx(x0 y0 z0)ify(x0 y0 z0)jfz(x0 y0 z0)k

结论 三元函数的梯度也是这样一个向量 它的方向与取得最大方向导数的方向一致 而它的模为方向导数的最大值

如果引进曲面

f(x y z)c

为函数的等量面的概念 则可得函数f(x y z)在点P0(x0 y0 z0)的梯度的方向与过点P0的等量面 f(x y z)c在这点的法线的一个方向相同 且从数值较低的等量面指向数值较高的等量面 而梯度的模等于函数在这个法线方向的方向导数

1

x2y2 解 这里f(x,y)212

xy 例3 求grad

因为 ff2y22x22 222

xy(xy)(xy)2y所以

gra d21222x22i222j

xy(xy)(xy)

例4 设f(x y z)x2y2z2 求grad f(1 1 2)

解 grad f(fx fy fz)(2x 2y 2z)

于是

grad f(1 1 2)(2 2 4)

数量场与向量场 如果对于空间区域G内的任一点M 都有一个确定的数量f(M) 则称在这空间区域G内确定了一个数量场(例如温度场、密度场等) 一个数量场可用一个数量函数f(M)来确定 如果与点M相对应的是一个向量F(M) 则称在这空间区域G内确定了一个向量场(例如力场、速度场等) 一个向量场可用一个向量函数F(M)来确定 而

F(M)P(M)iQ(M)jR(M)k

其中P(M) Q(M) R(M)是点M的数量函数

利用场的概念 我们可以说向量函数grad f(M)确定了一个向量场——梯度场 它是由数量场f(M)产生的 通常称函数f(M)为这个向量场的势 而这个向量场又称为势场 必须注意 任意一个向量场不一定是势场 因为它不一定是某个数量函数的梯度场

例5 试求数量场m所产生的梯度场 其中常数m>0

rrx2y2z2为原点O与点M(x y z)间的距离 rmx

解 (m)mxrr2xr3my同理

(m)3 (m)mz 3yrrzrrxiyjzk) 从而

gramdm(rrr2rryzx记erijk 它是与OM同方向的单位向量 则gradmme

rrrrr2r

上式右端在力学上可解释为 位于原点O 而质量为m 质点对位于点M而质量为l的质点的引力 这引力的大小与两质点的质量的乘积成正比、而与它们的距平方成反比 这引力的方向由点M指向原点 因此数量场m的势场即梯度场

rgradm称为引力场 而函数m称为引力势

r

r§88

多元函数的极值及其求法

一、多元函数的极值及最大值、最小值

定义

设函数zf(x y)在点(x0 y0)的某个邻域内有定义 如果对于该邻域内任何异于(x0 y0)的点(x y) 都有

f(x y)f(x0 y0))

则称函数在点(x0 y0)有极大值(或极小值)f(x0 y0)

极大值、极小值统称为极值 使函数取得极值的点称为极值点

例1 函数z3x24y2在点(0 0)处有极小值

当(x y)(0 0)时 z0 而当(x y)(0 0)时 z0 因此z0是函数的极小值

例2 函数zx2y2在点(0 0)处有极大值

当(x y)(0 0)时 z0 而当(x y)(0 0)时 z0 因此z0是函数的极大值

例3 函数zxy在点(0 0)处既不取得极大值也不取得极小值

因为在点(0 0)处的函数值为零 而在点(0 0)的任一邻域内 总有使函数值为正的点 也有使函数值为负的点

以上关于二元函数的极值概念 可推广到n元函数

设n元函数uf(P)在点P0的某一邻域内有定义 如果对于该邻域内任何异于P0的点P 都有

f(P)f(P 0))

则称函数f(P)在点P0有极大值(或极小值)f(P0)

定理1(必要条件)设函数zf(x y)在点(x0 y0)具有偏导数 且在点(x0 y0)处有极值 则有

fx(x0 y0)0 fy(x0 y0)0

证明 不妨设zf(x y)在点(x0 y0)处有极大值 依极大值的定义 对于点(x0 y0)的某邻域内异于(x0 y0)的点(x y) 都有不等式

f(x y)特殊地 在该邻域内取yy0而xx0的点 也应有不等式f(x y0)这表明一元函数f(x y0)在xx0处取得极大值 因而必有fx(x0 y0)0类似地可证fy(x0 y0)0从几何上看 这时如果曲面zf(x y)在点(x0 y0 z0)处有切平面 则切平面zz0fx(x0 y0)(xx0) fy(x0 y0)(yy0)成为平行于xOy坐标面的平面zz0类似地可推得 如果三元函数uf(x y z)在点(x0 y0 z0)具有偏导数 则它在点(x0 y0 z0)具有极值的必要条件为fx(x0 y0 z0)0 fy(x0 y0 z0)0 fz(x0 y0 z0)0仿照一元函数 凡是能使fx(x y)0 fy(x y)0同时成立的点(x0 y0)称为函数zf(x y)的驻点从定理1可知 具有偏导数的函数的极值点必定是驻点 但函数的驻点不一定是极值点例如 函数zxy在点(0 0)处的两个偏导数都是零 函数在(0 0)既不取得极大值也不取得极小值定理2(充分条件)设函数zf(x y)在点(x0 y0)的某邻域内连续且有一阶及二阶连续偏导数 又fx(x0 y0)0 fy(x0 y0)0 令fxx(x0 y0)A fxy(x0 y0)B fyy(x0 y0)C则f(x y)在(x0 y0)处是否取得极值的条件如下(1)ACB2>0时具有极值 且当A0时有极小值(2)ACB20 则函数具有极值 且当fxx0时有极小值极值的求法第一步 解方程组fx(x y)0 fy(x y)0求得一切实数解 即可得一切驻点第二步 对于每一个驻点(x0 y0) 求出二阶偏导数的值A、B和C第三步 定出ACB2的符号 按定理2的结论判定f(x0 y0)是否是极值、是极大值 还是极小值例4 求函数f(x y)x3y33x23y29x 的极值fx(x,y)3x26x90 解 解方程组2f(x,y)3y6y0y求得x1 3 y0 2 于是得驻点为(1 0)、(1 2)、(3 0)、(3 2)再求出二阶偏导数fxx(x y)6x6 fxy(x y)0 fyy(x y)6y6在点(1 0)处 ACB2126>0 又A>0 所以函数在(1 0)处有极小值f(1 0)5在点(1 2)处 ACB212(6)0 又A0 y>0}内取得 因为函数A在D内只有一个驻点 所以 此驻点一定是A的最小值点 即当水箱的长为2m、宽为2m、高为82m时 水箱所用的材料最省22 因此A在D内的唯一驻点(2 2)处取得最小值 即长为2m、宽为2m、高为82m时 所用材料最省 2从这个例子还可看出在体积一定的长方体中 以立方体的表面积为最小例6 有一宽为24cm的长方形铁板 把它两边折起来做成一断面为等腰梯形的水槽 问怎样折法才能使断面的面积最大?解 设折起来的边长为xcm 倾角为 那末梯形断面的下底长为242x 上底长为242xcos 高为xsin 所以断面面积A1(242x2xcos242x)xsin2即A24xsin2x2sinx2sin cos(0可见断面面积A是x和的二元函数 这就是目标函数 面求使这函数取得最大值的点(x )令Ax24sin4xsin2xsin cos0A24xcos2x2 cosx2(cos2sin2)0由于sin 0 x0 上述方程组可化为122xxcos02224cos2xcosx(cossin)0解这方程组 得60 x8cm根据题意可知断面面积的最大值一定存在 并且在D{(x y)|0二、条件极值拉格朗日乘数法对自变量有附加条件的极值称为条件极值例如 求表面积为a2而体积为最大的长方体的体积问题 设长方体的三棱的长为x y z 则体积Vxyz 又因假定表面积为a2 所以自变量x y z还必须满足附加条件2(xyyzxz)a2这个问题就是求函数Vxyz在条件2(xyyzxz)a2下的最大值问题 这是一个条件极值问题对于有些实际问题 可以把条件极值问题化为无条件极值问题例如上述问题 由条件2(xyyzxz)a2 解得za2xy 于是得2(xy)2Vxy(a2xy)2(xy)只需求V的无条件极值问题在很多情形下 将条件极值化为无条件极值并不容易 需要另一种求条件极值的专用方法 这就是拉格朗日乘数法现在我们来寻求函数zf(x y)在条件(x y)0下取得极值的必要条件如果函数zf(x y)在(x0 y0)取得所求的极值 那么有(x0 y0)0假定在(x0 y0)的某一邻域内f(x y)与(x y)均有连续的一阶偏导数 而y(x0 y0)0由隐函数存在定理 由方程(x y)0确定一个连续且具有连续导数的函数y(x) 将其代入目标函数zf(x y) 得一元函数zf [x (x)]于是xx0是一元函数zf [x (x)]的极值点 由取得极值的必要条件 有dy0dzxx0fx(x0,y0)fy(x0,y0)dxdxxx0即fx(x0,y0)fy(x0,y0)x(x0,y0)0y(x0,y0)从而函数zf(x y)在条件(x y)0下在(x0 y0)取得极值的必要条件是fx(x0,y0)fy(x0,y0)x(x0,y0)0与(x0 y0)0同时成立y(x0,y0)fy(x0,y0)设 上述必要条件变为y(x0,y0)fx(x0,y0)x(x0,y0)0fy(x0,y0)y(x0,y0)0(x0,y0)0拉格朗日乘数法 要找函数zf(x y)在条件(x y)0下的可能极值点 可以先构成辅助函数F(x y)f(x y)(x y)其中为某一常数然后解方程组Fx(x,y)fx(x,y)x(x,y)0Fy(x,y)fy(x,y)y(x,y)0(x,y)0由这方程组解出x y及 则其中(x y)就是所要求的可能的极值点这种方法可以推广到自变量多于两个而条件多于一个的情形至于如何确定所求的点是否是极值点 在实际问题中往往可根据问题本身的性质来判定例7 求表面积为a2而体积为最大的长方体的体积解 设长方体的三棱的长为x y z 则问题就是在条件2(xyyzxz)a2下求函数Vxyz的最大值构成辅助函数F(x y z)xyz(2xy 2yz 2xz a2)解方程组Fx(x,y,z)yz2(yz)0Fy(x,y,z)xz2(xz)0F(x,y,z)xy2(yx)0z22xy2yz2xza得xyz6a6这是唯一可能的极值点因为由问题本身可知最大值一定存在 所以最大值就在这个可能的值点处取得 此时V6a3

高等数学课件【篇3】

高等数学课件

高等数学是数学学科中的一种,通常是指大学本科阶段的高级数学,包括微积分、线性代数、常微分方程、偏微积分等分支。因其抽象性和复杂性,学生们往往感到难以理解。为了帮助学生更好地掌握高等数学知识,教师们制作了许多高等数学课件,让学生在视觉和听觉上更好地理解数学知识。

一、微积分课件

微积分是高等数学中的重要内容,它有着广泛的应用,包括物理、工程、经济学等领域。微积分课件主要涵盖微积分的基本概念、导数、微分、积分和微分方程等内容。通过课件演示,学生可以更直观地理解微积分的概念和应用,掌握微积分的基本技能以及解决实际问题的方法。

二、线性代数课件

线性代数是高等数学中的另一个重要内容,它有着广泛的应用,包括物理、计算机科学、工程、经济学等领域。线性代数课件主要涵盖线性代数的基础知识、矩阵的运算、行列式、特征值和特征向量、向量空间等内容。通过课件演示,学生可以更直观地理解线性代数的概念和应用,掌握线性代数的基本技能以及解决实际问题的方法。

三、常微分方程课件

常微分方程是高等数学中的另一个重要内容,它有着广泛的应用,包括物理、工程、生物学等领域。常微分方程课件主要涵盖常微分方程的基本概念、一阶常微分方程、二阶常微分方程、解的存在唯一性定理等内容。通过课件演示,学生可以更直观地理解常微分方程的概念和应用,掌握常微分方程的基本技能以及解决实际问题的方法。

总之,高等数学课件的制作为学生们更直观地理解和掌握高等数学知识提供了有力的帮助。在今后的学习和工作中,学生们需要继续努力学习高等数学知识,将其应用到实际的问题中。

高等数学课件【篇4】

高等数学课件

概述

高等数学课件是高等数学教学中的重要工具,它既可以为学生提供优质的教学资源,又可以方便教师在课堂上进行讲解和演示。本文将从高等数学课件的重要性、设计原则、优化方法等多个方面探讨高等数学课件的相关主题。

一、高等数学课件的重要性

随着新科技新媒体的不断发展,高等数学教学方式也在不断更新和改变。在这种转变的过程中,高等数学课件作为数字教学的一种重要形式,为高等数学教学注入了新的思路和动力。高等数学课件是教学内容和方式中不可或缺的一部分。有以下几个方面的重要性:

1. 丰富了教学形式。高等数学课件在创新教学方式、提升教学效果上发挥了重要作用,丰富了教学形式,激发和鼓励学生的学习兴趣和积极性,帮助学生更好地理解和掌握知识。

2. 增强了教学效果。优质的高等数学课件不仅可以帮助学生把握重点难点,而且能够提高学生的数学素养,方便学生自主学习。

3. 提高了教学效率。在利用高等数学课件辅助教学过程中,教师可以通过多种手段进行教学,比如具体实例、图表、动画展示等,这些手段可以帮助学生更好地认知、理解知识,以及提高学习的效率和速度。

二、高等数学课件的设计原则

高等数学课件的设计初衷是为了提供清晰、明确、系统、连贯、易懂的知识体系,让学生能够在短时间内准确地理解和掌握知识点。因此在设计过程中要考虑以下原则:

1. 突出主题,精细化呈现。高等数学课件的细节处理控制在一个较高的水平上,每个细节都与主题息息相关。这样可以让学生在教学内容的把握上更加轻松自如。

2. 列举实例,举一反三。在高等数学课件中,适当添加实例可以帮助学生理解更抽象的概念,而举一反三可以帮助学生迅速将知识点推广到其他学科或问题上。

3. 注重感性体验。高等数学是一个抽象的概念体系,因此在高等数学课件中,引入视觉、听觉、触觉的感性元素是很重要的。

4. 应用到实践中。高等数学学科充满了实际应用和探究,因此在高等数学课件中注入实际应用和解决实际问题的思想是必要的。

三、高等数学课件的优化方法

高等数学课件的优化可以从多个方面入手,以下为具体方法:

1.优化课件框架结构。将课件内容由片段连接成为整体,分层次组织,有助于学生对知识体系有更全面、更深刻的认识。

2.优化教学手段。引入多媒体等新手段与学生互动,使得教学过程捕捉到学生的兴趣点,激发学习热情。

3.优化课件配色和排版。科学选取配色方案、字体等,好的课件界面可以让学生感受更强烈的视觉冲击力,更加吸引人眼球。

4.优化教学策略。教学策略的优化应该注重把与学生思想相融合在一起,使得理论和实践能够相辅相成,提高学生的综合能力。

总之,高等数学课件作为一种新型的数字教育资源,可以帮助学生从认知的角度快速学习和理解高等数学知识,具有课程教学的辅助功能,可以为高等数学的教学和学习提供更便捷、更高效的支持和辅助。

高等数学课件【篇5】

高等数学教案

定积分的应用

教学目的 第六章

定积分的应用

1、理解元素法的基本思想;

2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。

3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点:

1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。

2、计算变力所做的功、引力、压力和函数的平均值等。教学难点:

1、截面面积为已知的立体体积。

2、引力。

§6 1 定积分的元素法

回忆曲边梯形的面积

设yf(x)0(x[a b]) 如果说积分

Aaf(x)dx

b是以[a b]为底的曲边梯形的面积 则积分上限函数

A(x)af(t)dt

x就是以[a x]为底的曲边梯形的面积 而微分dA(x)f(x)dx 表示点x处以dx为宽的小曲边梯形面积的近似值Af(x)dxf(x)dx称为曲边梯形的面积元素

以[a b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式 以 [a b]为积分区间的定积分

Aaf(x)dx 

b

一般情况下 为求某一量U 先将此量分布在某一区间[a b]上 分布在[a x]上的量用函数U(x)表示 再求这一量的元素dU(x) 设dU(x)u(x)dx 然后以u(x)dx为被积表达式 以[a b]为积分区间求定积分即得

Uaf(x)dx

bM.JK251.COM

用这一方法求一量的值的方法称为微元法(或元素法)

三峡大学高等数学课程建设组

高等数学教案

定积分的应用

§6 2 定积分在几何上的应用

一、平面图形的面积

1.直角坐标情形

设平面图形由上下两条曲线yf上(x)与yf下(x)及左右两条直线xa与xb所围成 则面积元素为[f上(x) f下(x)]dx 于是平面图形的面积为

Sa[f上(x)f下(x)]dx 

类似地由左右两条曲线x左(y)与x右(y)及上下两条直线yd与yc所围成设平面图形的面积为

Sc[右(y)左(y)]dy

例1 计算抛物线y2x、yx2所围成的图形的面积

解(1)画图

(2)确定在x轴上的投影区间: [0 1](3)确定上下曲线f上(x)x, f下(x)x2

(4)计算积分 db1

S(xx)dx[2x21x3]10033321

3例2 计算抛物线y22x与直线yx4所围成的图形的面积

解(1)画图

(2)确定在y轴上的投影区间: [2 4](3)确定左右曲线左(y)1y2, 右(y)y4

2(4)计算积分418

S2(y41y2)dy[1y24y1y3]426222y 例3 求椭圆x221所围成的图形的面积

ab 解 设整个椭圆的面积是椭圆在第一象限部分的四倍 椭圆在第一象限部分在x 轴上的投影区间为[0 a] 因为面积元素为ydx

所以 2S40ydx a椭圆的参数方程为: xa cos t  yb sin t 

于是

S40ydx4bsintd(acost)

2a0三峡大学高等数学课程建设组

高等数学教案

定积分的应用

4absintdt2ab02(1cos2t)dt2abab

2202

2.极坐标情形

曲边扇形及曲边扇形的面积元素

由曲线()及射线   围成的图形称为曲边扇形 曲边扇形的面积元素为 dS1[()]2d 2曲边扇形的面积为

S1[()]2d 2

例4.计算阿基米德螺线a(a >0)上相应于从0变到2 的一段弧与极轴所围成的图形的面积

224a23

解: S01(a)2d1a2[13]02332

例5.计算心形线a(1cos)(a>0)所围成的图形的面积

 解: S201[a(1cos]2da20(12cos1cos2)d

22232

a2[32sin1sin2]0a

242

二、体 积

1.旋转体的体积

旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体 这直线叫做旋转轴

常见的旋转体 圆柱、圆锥、圆台、球体

旋转体都可以看作是由连续曲线yf(x)、直线xa、ab 及x轴所围成的曲边梯形绕x轴旋转一周而成的立体

设过区间[a b]内点x 且垂直于x轴的平面左侧的旋转体的体积为V(x) 当平面左右平移dx后 体积的增量近似为V[f(x)]2dx 

于是体积元素为

dV  [f(x)]2dx 

旋转体的体积为

Va[f(x)]2dx

1连接坐标原点O及点P(h r)的直线、直线xh 及x 轴围成一个直角三角形 将它绕x轴旋转构成一个底半径为r、高为h的圆锥体 计算这圆锥体的体积

解: 直角三角形斜边的直线方程为yrx

h

所求圆锥体的体积为

三峡大学高等数学课程建设组

b高等数学教案

定积分的应用

22hrr1hr2

V0(x)dx2[1x3]0h3h32y2x 例2 计算由椭圆221所成的图形绕x轴旋转而成的旋转体(旋转椭球体)的体积

ab

解: 这个旋转椭球体也可以看作是由半个椭圆 h

yba2x2

a及x轴围成的图形绕x轴旋转而成的立体 体积元素为dV  y 2dx 

于是所求旋转椭球体的体积为

22a2 Vb2(a2x2)dxb2[a2x1x3]aaab

a33aa

例3 计算由摆线xa(tsin t) ya(1cos t)的一拱 直线y0所围成的图形分别绕x轴、y轴旋转而成的旋转体的体积

所给图形绕x轴旋转而成的旋转体的体积为

Vx0y2dx0a2(1cost)2a(1cost)dt

a30(13cost3cos2tcos3t)dt

5 2a 3

所给图形绕y轴旋转而成的旋转体的体积是两个旋转体体积的差 设曲线左半边为x=x1(y)、右半边为x=x2(y) 则

22(y)dy0x1(y)dy

Vy0x22a2a22a2

2a2(tsint)2asintdt0a2(tsint)2asintdt

a30(tsint)2sintdt6 3a 3 

2.平行截面面积为已知的立体的体积

设立体在x轴的投影区间为[a b] 过点x 且垂直于x轴的平面与立体相截 截面面积为A(x) 则体积元素为A(x)dx  立体的体积为

VaA(x)dx

例4 一平面经过半径为R的圆柱体的底圆中心 并与底面交成角 计算这平面截圆柱所得立体的体积

解 取这平面与圆柱体的底面的交线为x轴 底面上过圆中心、且垂直于x轴的直线为y轴 那么底圆的方程为x 2 y 2R 2 立体中过点x且垂直于x轴的截面是一个直角三角形 两个直角边分别为R2x2及R2x2tan 因而截面积为

三峡大学高等数学课程建设组

b2高等数学教案

定积分的应用

A(x)1(R2x2)tan 于是所求的立体体积为

2RR2R3tan

VR1(R2x2)tandx1tan[R2x1x3]R223

3例5 求以半径为R的圆为底、平行且等于底圆直径的线段为顶、高为h的正劈锥体的体积

解: 取底圆所在的平面为x O y平面 圆心为原点 并使x轴与正劈锥的顶平行 底圆的方程为x 2 y 2R 2 过x轴上的点x(RA(x)hyhR2x2于是所求正劈锥体的体积为VRhR2x2dx2R2h2co2sd1R2h02R三、平面曲线的弧长设A B 是曲线弧上的两个端点 在弧AB上任取分点AM0 M1 M2     Mi1 Mi    Mn1 MnB  并依次连接相邻的分点得一内接折线 当分点的数目无限增加且每个小段Mi1Mi都缩向一点时 如果此折线的长|Mi1Mi|的极限存在 则称此极限为曲线弧AB的弧长 并称此曲线i1n弧AB是可求长的定理光滑曲线弧是可求长的1.直角坐标情形设曲线弧由直角坐标方程yf(x)(axb)给出 其中f(x)在区间[a b]上具有一阶连续导数 现在来计算这曲线弧的长度取横坐标x为积分变量 它的变化区间为[a b] 曲线yf(x)上相应于[a b]上任一小区间[x xdx]的一段弧的长度 可以用该曲线在点(x f(x))处的切线上相应的一小段的长度来近似代替 而切线上这相应的小段的长度为(dx)2(dy)21y2dx从而得弧长元素(即弧微分)ds1y2dx以1y2dx为被积表达式 在闭区间[a b]上作定积分 便得所求的弧长为sa1y2dx三峡大学高等数学课程建设组b高等数学教案定积分的应用在曲率一节中 我们已经知道弧微分的表达式为ds1y2dx这也就是弧长元素因此例1 计算曲线y2x2上相应于x从a到b的一段弧的长度3解 yx2 从而弧长元素 13ds1y2dx1xdx因此 所求弧长为sab2221xdx[2(1x)2]ba[(1b)(1a)]33333例2 计算悬链线ycchx上介于xb与xb之间一段弧的长度c解 yshx 从而弧长元素为cds1sh2xdxchxdxcc因此 所求弧长为bbbsbchxdx20chxdx2c[shxdx]b02cshcccc2.参数方程情形设曲线弧由参数方程x(t)、y(t)(t)给出 其中(t)、(t)在[ ]上具有连续导数dy(t)因为 dx(t)d t  所以弧长元素为 dx(t)2(t)ds12(t)dt2(t)2(t)dt(t)所求弧长为s2(t)2(t)dt例3 计算摆线xa(sin) ya(1cos)的一拱(0  2)的长度解 弧长元素为dsa2(1cos)2a2sin2da2(1cos)d2asind2所求弧长为2s02asind2a[2cos]08a222三峡大学高等数学课程建设组高等数学教案定积分的应用3.极坐标情形设曲线弧由极坐标方程()(    )给出 其中r()在[ ]上具有连续导数 由直角坐标与极坐标的关系可得x()cosy()sin(   ) 于是得弧长元素为dsx2()y2()d2()2()d从而所求弧长为s2()2()d例4求阿基米德螺线a(a>0)相应于 从0到2 一段的弧长解弧长元素为dsa22a2da12d于是所求弧长为2s0a12da[2142ln(2142)]作业:P284:2(2)(4),3,4,5(1),10,12,15(2),18,22,23,29,30三峡大学高等数学课程建设组高等数学教案定积分的应用§6 3 功水压力和引力一、变力沿直线所作的功例1把一个带q电量的点电荷放在r轴上坐标原点O处 它产生一个电场 这个电场对周围的电荷有作用力 由物理学知道 如果有一个单位正电荷放在这个电场中距离原点O为r的地方 那么电场对它的作用力的大小为Fkq(k是常数)r2当这个单位正电荷在电场中从ra处沿r轴移动到rb(a解: 在r轴上 当单位正电荷从r移动到r+dr时电场力对它所作的功近似为k即功元素为dWk于是所求的功为 qdrr2qdrr2bkq2Wa11drkq[1]bakq()rabr例2在底面积为S的圆柱形容器中盛有一定量的气体 在等温条件下 由于气体的膨胀把容器中的一个活塞(面积为S)从点a处推移到点b处 计算在移动过程中 气体压力所作的功解 取坐标系如图 活塞的位置可以用坐标x来表示 由物理学知道 一定量的气体在等温条件下 压强p与体积V的乘积是常数k  即pVk 或pkV在点x处 因为VxS 所以作在活塞上的力为FpSkSkxSx当活塞从x移动到xdx时 变力所作的功近似为kdx x即功元素为dWkdxx于是所求的功为bbWakdxk[lnx]baklnxa例3 一圆柱形的贮水桶高为5m 底圆半径为3m 桶内盛满了水 试问要把桶内的水全部吸出需作多少功?解 作x轴如图 取深度x 为积分变量 它的变化区间为[0 5] 相应于[0 5]上任小区间[x xdx]的一薄层水的高度为dx 水的比重为98kN/m3 因此如x的单位为m 这薄层水的重力为9832dx 这薄层水吸出桶外需作的功近似地为三峡大学高等数学课程建设组高等数学教案定积分的应用dW882xdx此即功元素 于是所求的功为225(kj)xW088.2xdx88.2[]5088.2225二、水压力从物理学知道 在水深为h处的压强为ph  这里  是水的比重 如果有一面积为A 的平板水平地放置在水深为h处 那么平板一侧所受的水压力为PpA如果这个平板铅直放置在水中 那么 由于水深不同的点处压强p不相等 所以平板所受水的压力就不能用上述方法计算例4 一个横放着的圆柱形水桶 桶内盛有半桶水 设桶的底半径为R 水的比重为  计算桶的一个端面上所受的压力解 桶的一个端面是圆片 与水接触的是下半圆 取坐标系如图在水深x处于圆片上取一窄条 其宽为dx  得压力元素为dP2xR2x2dx所求压力为P02  xRxdx(R03R2rR3[2(R2x2)2]033R22R2122x)d(R2x2)三、引力从物理学知道 质量分别为m1、m 2 相距为r的两质点间的引力的大小为FGm1m2r2其中G为引力系数 引力的方向沿着两质点连线方向如果要计算一根细棒对一个质点的引力 那么 由于细棒上各点与该质点的距离是变化的 且各点对该质点的引力的方向也是变化的 就不能用上述公式来计算例5 设有一长度为l、线密度为的均匀细直棒 在其中垂线上距棒a单位处有一质量为m的质点M 试计算该棒对质点M的引力解 取坐标系如图 使棒位于y轴上 质点M位于x轴上 棒的中点为原点O 由对称性知 引力在垂直方向上的分量为零 所以只需求引力在水平方向的分量 取y为积分变量 它的变化区间为[l, l] 在[l, l]上y点取长为dy 的一小段 其质量为dy 与M相距ra2y2 于2222是在水平方向上 引力元素为dFxGmdyamdyaGa2y2a2y2(a2y2)3/2三峡大学高等数学课程建设组高等数学教案定积分的应用引力在水平方向的分量为Fx2lG2l2Gmlamdy1223/222a(ay)4al作业:P292:3(2),6三峡大学高等数学课程建设组

高等数学课件【篇6】

高等数学是大学本科数学课程中的一门重要的基础课程,也是学习其他计算领域的必备课程。高等数学的主要内容包括微积分、线性代数、概率与数理统计等,这些内容涉及到了大量的数学知识和技能。本文就高等数学这一主题,结合相关课件,进行一番探究和分析,为大家深入了解高等数学打下基础。

一、微积分

微积分是高等数学课程中最为核心的内容之一,主要涉及到函数、极限、微分和积分等内容。微积分作为数学的一门重要分支,具有广泛的应用领域,如物理学、工程学、经济学等。本课程中,我们将学到极限的概念、连续函数的性质、导数的计算方法、微分方程和积分的定义和计算方法等。我们可以用微积分来描述物理学问题,如速度、加速度和运动。这门课程需要具备较强的基础数学知识和一定的数学推理能力,学习难度较大,但是掌握了微积分,就可以更好地理解和分析问题。

二、线性代数

线性代数作为高等数学中的另一门重要课程,主要涉及到线性方程组、矩阵和行列式等内容。线性代数是数学中最为基础、最为广泛应用的学科之一,它是现代数学中不可或缺的重要组成部分。线性代数在自然科学、人文科学、社会科学、经济学、金融学、计算机科学等领域都有着广泛的应用。在本课程中,我们将学习线性代数的基本概念和方法,包括线性方程组的求解方法、矩阵的基本运算、行列式的定义和计算方法、特征值和特征向量等内容。学好线性代数,可以提高我们对各种复杂问题的分析和解决能力。

三、概率与数理统计

概率与数理统计是高等数学课程中的另外一个重要组成部分,主要涉及到概率计算、统计学习、数据分析和模型预测等方面。概率论和数理统计是两个相互关联、互为基础的数学分支,是一种对不确定性进行发掘和利用的数学工具。本课程中,我们将学习基本概率论和数理统计的概念和方法,包括概率的基本公理、条件概率、期望、方差、假设检验等内容。掌握概率与数理统计,可以为我们提供科学的分析思路和实现方法,使我们能够更好地理解和解决实际问题。

综上所述,高等数学是一门基础而极其重要的学科,其中微积分、线性代数、概率与数理统计等方面都是不可或缺的内容。学习高等数学需要投入较大的精力和时间,掌握这门学科需要多次思考和实践,但只要投入足够的努力和时间,我们一定可以在学习中取得良好的成绩。

高等数学课件【篇7】

高等数学课件

高等数学在大学阶段是一门重要的基础课程,也是学生进入理工科专业的必备课程。作为一门涉及到多种数学知识体系的学科,它的难度与广度都远超过中学数学。因此,在课程学习期间,教学工具的运用显得格外重要。高等数学课件是一种应用广泛、形式多样、功能强大的教学工具,为教师与学生提供了更加广阔的教学空间。

高等数学课件的优点

一、形式多样:

高等数学的知识内容对于难度和抽象程度都较大,采用不同的教学模式能够加深学生的理解和记忆。高等数学课件具有多样的形式,可以通过文字、图片、视频等多元素的形式展示数学知识,使学生更加直观的理解相关内容。

二、互动性强:

高等数学课件中的互动功能强大,学生可以通过课件进行操作、答题、模拟等等,促进学生的自我探究和激发兴趣。

三、容易更新:

高等数学是一门生动的,不断发展的学科,每年都会有新的研究结果。传统的教材需要经过一定时期的编写和审核后才能发布,而高等数学课件则可以根据新的研究成果及时更新。这样,教师能够及时将最新的研究内容带到课堂上,为学生提供最前沿的知识。

四、提高效率:

高等数学的知识内容较为繁杂,采用高等数学课件能够有效提高教学效率,使教与学更加顺畅,学生能够在更短的时间内掌握更多的知识。

高等数学课件的设计

设计高等数学课件需要注意以下几点:

一、以理解为核心:

高等数学课件的设计应该将理解作为核心,从学生的角度出发,设计内容结构,以能够让学生理解为主要宗旨。课件所呈现的每一个概念都应该注明其含义和实际意义,让学生能够更加直观地理解。

二、结合实际:

高等数学的知识内容大多会存在于生活、工程、自然等多种实际问题中,因此设计高等数学课件时,要将其与实际相结合。通过生动的实例,让学生更好地掌握相关的数学知识,从而更好地应用于实际问题中。

三、突出重点:

高等数学的知识点较多,设计课件时必须重点突出,将关键知识相应突出,让学生重点拿捏,提高学习效率。

四、操作性强:

高等数学的知识性和操作性并存,因此在设计课件时必须突出其操作性。设计相应的练习、操作,让学生通过练习加深记忆,掌握操作技巧。

总之,高等数学课件在高等数学的教学中起到了不可替代的作用,其优点和设计方面需要多方面的关注和探究,更为有效地推动高等数学教学的发展。

本文网址:http://m.jk251.com/jiaoshifanwen/114448.html

相关文章
最新更新

热门标签