长方体和正方体课件优选九篇。
在学校,我们看过许多范文,这些范文里面有很多优秀的地方值得我们去学习,阅读范文可以提高人们的观察力,联想力和想象力。优秀的范文更能受到大家的关注,您最近在寻找优秀范文的参考模板吧?为了让您在使用时更加简单方便,下面是小编整理的“长方体和正方体课件优选九篇”,希望对您的工作和生活有所帮助。
长方体和正方体课件【篇1】
本课题教时数:1本教时为第1教时备课日期8月26日
教学目标
1、使学生进一步认识长方体和正方体,进一步掌握长方体、正方体表面积和体积的计算,能比较熟练地进行面积单位、体积单位的换算。
2、使学生进一步认识数的整除,掌握有关概念;进一步掌握分数的一些概念,能应用分数的一些概念进行约分和把分数化成小数。
教学重难点
1、能根据长方体、正方体表面积的有关概念正确的解决生活中的实际问题。
2、掌握整除的有关概念,并能应用有关概念解决实际问题。
教学准备
长方体、正方体的模型
多媒体课件。
教学过程设计
教学内容
师生活动
备注
一、揭题
二、复习长方体和正方体
三、复习数的整除
四、复习分数
1、直接引入:复习长方体和正方体。
复习数的整除及分数的一些概念
1、长方体和正方体的特征
出示长方体和正方体的模型
问:长方体和正方体的特征各是什么?它们之间有什么关系?你能用图形表示出它们之间的关系吗?
2、表面积和体积
问:什么是长方体、正方体的表面积?分别如何计算?什么是长方体、正方体的体积?如何计算?体积和容积又有什么区别?请举例说明何时求一个物体的面积、体积、容积?
3、完成书本练习1、2、3
1、整理概念
问:什么是数的整除?ab=c满足什么条件才能说这个算式整除?说出各部分的名称。
问:什么叫质数?你能说出几个质数吗?
什么是合数?你能说出几个合数吗?
质数、合数与奇数、偶数有什么关系?
如果将自然数按照约数的个数的分类可以怎么分?
问:质数、互质数、质因数有什么区别?
2、做第4题
1、复习分数的意义和基本性质
请你举一个分数,并说一下表示什么意思?
问:分数的基本性质是什么?它有哪些应用?
2、什么是真分数、假分数、带分数?
怎样把分子比分母大的分数化成带分数?
3、做第5、6题
4、复习除法与分数的关系
根据分数与除法的关系,怎样把分数化成小数?怎样的分数能化成有限小数?
5、做第7题
6、作业
说明长方体表面积的两种方法
搞清谁能整除谁?谁能被谁整除?
两种意思
课后感受
学生对于整除的很多概念都遗忘较多,重点可放在概念之间的联系上。
授课日期9月2日
教案(序号2)
课题
复习分数加、减法和应用题
课型
1
本课题教时数:1本教时为第1教时备课日期8月27日
教学目标
1、进一步掌握分数加、减法的计算方法,并能灵活地进行加、减两步以上的简便计算,提高计算能力。
2、进一步理解分数的一些应用题的数量关系和解题方法,提高思维能力。
教学重难点
能灵活地进行加、减两步以上的简便计算,提高计算能力。
理解分数应用题的数量关系和解题方法。
教学准备
教学过程设计
教学内容
师生活动
备注
一、揭题
二、复习分数加、减法
三、复习应用题
四、作业
1、引入:复习分数加、减法及简便计算
复习分数应用题
1、复习计算法则
(1)出示习题
问:分数的加、减法要怎样计算?
(2)做书本练习第8题。
2、复习分数简便计算
问:在什么情况下可以简便计算?
完成书本练习第9题。
3、小结
能用简便方法的计算题尽量用简便方法。
(1)题目:期初复习第11题
学生读题,比较两个问题的不同点,在列式的时候该注意些什么?分别把谁看作除数?
(2)看情况补充例题
期初复习第9、12题
分两种情况:
同分母--分子相加、减分母不变。
异分母--通分转化为同分母分数相加、减的情况。
求一个数是另一个数的几分之几,与求一个数是另一个数的几倍一样,都用一个数除以另一个数来计算结果。
课后感受
简便运算仍然是学生一直要做错的题型,说说容易,做做常有问题。
授课日期9月3日
长方体和正方体课件【篇2】
教学目标
1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。
2、能根据有关体积、容积的计算方法,解答实际问题。
教学重点、难点
重难点:
能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。
教具、学具准备
教学过程
备注
一、体积、容积单位之间的化聚、转换练习。
458立方厘米=()立方分米
20.6立方分米=()立方米
7060毫升=()升=()立方分米
130毫升=()立方厘米=()立方分米
800升=()立方分米=()立方米
0.02立方米=()立方分米=()升
二、解决实际问题的应用练习。
1、一个长方体的汽油桶,底面积是18平方分米,高是5分米。如果1升汽油重0.74千克,这个油桶可以装汽油多少千克?
2、一节货车车厢,从里面量长13米,宽2.7米,装的煤高1.2米。如果每立方米煤重1.3吨,这节车厢里装了多少吨煤?(得数保留整数)
3、在一只底面是边长60厘米的正方形,高是80厘米的长方体纸箱内,装棱长是2分米的立方体纸盒。这只纸箱最多可装这样的纸盒多少个?
4、一个长方体蓄水池,长9.6米,宽4.2米,深2.5米。这个蓄水池占地多少平方米?它最多可蓄水多少立方米?
5、一个长方体水箱,从里面量长80厘米,宽40厘米,高60厘米,箱内水面离箱口10厘米。箱内共有水多少升?如果把这些水倒入另一个底面边长40厘米的长方体水箱内,这时水高多少厘米?
(1)学生独立完成
(2)说说解题思路
第一题:185=90(立方分米)90(立方分米)=90升
900.74=66.6(千克)
第二题:132.71.2=42.12(立方米)
42.121.355(吨)
第三题:606080=288000(立方厘米)
2分米=20厘米
20xx20=8000(立方厘米)2880008000=36(个)
教学过程
备注
第四题:9.64.2=40.32(平方米)
9.64.22.5=100.8(立方米)
第五题:8040(60-10)=160000(立方厘米)
160000(立方厘米)=160升
160000(4040)=100(厘米)
(3)重点分析第5题
水面离箱口10厘米,说明水的高度是50厘米。从而求出水的容量。再根据底面边长40厘米的长方体水箱,求得水的高度。
三、思考题
用一张长50厘米,宽40厘米的长方形铁皮,做一个深10厘米的无盖长方体铁皮盒。要使这个长芳褪铁皮盒的容积最大,可以怎样做?
1、学生独立研究
2、小组讨论
3、教师评议
四、学生总结
课后反思:每一节课的教学时间是有限的,在有限的时间内,能不能把尽可能多的时间和空间留给学生学习?再说,今天给学生留有了充足的时间和空间,学生得到了很好的发展,那么,在今后学生就会有更大的收获和发展。欲速则不达,我们现在的教育不就是常常为了急于求成,造成留给学生要记忆的东西不少,学会思维的东西却不多这一大遗憾吗?
长方体和正方体课件【篇3】
教学内容
长方体和正方体的表面积概念,长方体和正方体表面积的计算
教学目标
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重点
掌握长方体和正方体表面积的计算方法。
教学难点
会用求长方体和正方体表面积的方法解决生活中的简单问题
教具运用
长方体、正方体纸盒,剪刀,投影仪
教学过程
一、复习导入
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1.完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
板书设计:
教学内容:
求一些不是完整六个面的长方体、正方体的表面积
教学目标:
1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。
2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲
教学重点:
能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。
教学难点:
求一些不是完整六个面的长方体、正方体的表面积。
教具运用:
课件
教学过程:
一、复习导入
师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)
1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?
2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。
二、新课讲授
1.教材25页第5题
(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?
(2)学生读题,看图,理解题意。
(3) “上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)
(4)学生尝试独立解答。
(5)集体交流反馈。
方法一:10×12×2+6×12×2=240+144=384 (cm2)
方法二:(10×12+6×12)×2=(120+72)×2=384 (cm2)
答:这张商标纸的面积至少需要384平方厘米。
2.教材26页第8题
(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)
(2)学生读题,看图,理解题意。
(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)
(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。
3×3×5=9×5=45 (dm2)
答:制作这个鱼缸时至少需要玻璃45平方分米。
三、课堂作业
完成教材第26页练习六第9、10题。
四、课堂小结
提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获?
五、课后作业
完成练习册中本课时练习。
板书设计:
长方体和正方体课件【篇4】
第一课时:长方体和正方体的表面积
教具学具:
师:长方体表面积展开教具。生:用附1、附2做成的长方体、正方体盒子、剪刀、尺。
教学内容:P33~34页的内容及例1
教学过程:
一、复习引入
1、说出长方形面积的计算公式。
2、看图回答。(图略,长4厘米,宽2厘米,高3厘米)
这个长方体的长、宽、高各是多少?
哪些面的的面积相等?
这个长方体上、下两个面的长是(),宽是()。
左、右两个面的长是(),宽是()。
前、后两个在的长是(),宽是()。
二、自主探索
1、分组操作,
探索长方体或正方体表面积的含义、并建立它们的联系。
同学们,你们知道长方体或正方体纸盒展开后是什么形状吗?现在就请大家利用课前准备的长方体、剪刀,看看把一个长方体纸盒展开是什么形状?
组织学生展示不同的展开图。
大家知道展开前长方体的每个面在展开后是哪个面吗?现在大家在没剪的那个盒子上分别用上、下、前、后、左、右标明6个面,然后与剪开的那个作个对比,在展开图上标出6个面。
哪些面的面积相等?
每个面的长和宽与长方体的长、宽、高有什么关系?
观察展开的正方体图,回答:剪开后的每个面是什么形状?有几个相等的面?
师:长方全或正方体6个面的总面积叫做它的表面积。[板书课题]
2、探索长方体表面积的计算
过渡语:其实,计算长方体或正方体的表面积在日常生活中应用很广泛,如果已知长方体的长、宽、高,能不能计算出它的表面积呢?
出示例1,问:要求至少用多少平方米的硬纸板,实际上就是求这个长方体包装箱的什么?
看教材上的立体图形思考后填书,全班展示不同结果。
方法一:0.7*0.5*2+0.7*0.4*2+0.5*0.4*2=1.66(平方厘米)
方法二:(0.7*0.5+0.7*0.4+0.5*0.4)*2=1.66(平方厘米)
比较上面两种解法有什么不同?它们之间有什么联系?
师:两种方法都是正确的,利用乘法分配律可以把第一种列式变成第二种,第二种方法可以命名大会计算简便些。
三、巩固练习
1、P36第1题。只列式,不计算。
2、P34做一做。
师:在实际生活中,有时不需要计算长方体6个面的总面积,只需要计算出其中几个面的面积。究竟要计算哪几个面的面积,需要根据具体情况而定。
出示做一做后问:要给简易衣柜做布置,要算哪几个面的总面积?少的那个面面积怎样求?
学生独立列式,集体订正。
3、P36第2题
方法指导:先确定一个面做下底面,写下下,然后想象折叠的过程,折叠一面确定一个出它是哪面,就在此面标上相应的文字,如果定为是右面,就在此面标上右。最后如果能不重复不遗漏的在六个面上分别标上上、下、前、后、左、右,那么这个展示图就能折成正方体,否则就不能。如果学生想像判断困难,可让学生在纸上画出这些展开图,再剪下来,动手折一折。
四、作业:P36第2题
板书设计:
长方体表面积的计算
上、下面=长*宽
例1(1)0.7*0.5*2+0.7*0.4*2+0.5*0.4*2=1.66(平方厘米)
前、后面=长*高
(2)(0.7*0.5+0.7*0.4+0.5*0.4)*2=1.66(平方厘米)
左、右面=宽*高
答;至少要用1.66平方厘米的硬纸板。
教学目的:
1、使学生理解长方体表面积的意义,
理解并掌握长方体表面积的计算方法,能够正确地进行计算,
并能运用所学知识解决一些实际问题。
2.在探索学习中建立初步的空间观念,发展初步合情推理能力量。
3.
培养学生的动手操作能力和共同研究问题的习惯。
4.
通过亲身参与探索实践活动,
去获得积极的成功的情感体验。
5.
体验数学问题的探索性、感受数学思考过程的合理性,
并从中体验数学活动充满着探索与创造。
教学重点:长方体表面积计算的基本思路和方法。
教学难点:
根据长方体的长、宽、高,
确定每个面的长、宽是多少。
长方体和正方体课件【篇5】
教学目的:
通过观察和比较,使学生正确理解体积的意义,认识常用的体积单位立方米、立方分米、立方厘米,培养学生的空间观念。
教具、学具准备:
1、教师准备:
①盛有红色水的大玻璃杯一个,用绳子捆着的石头一块,沙土一堆;
②长方体、立方体积木各一块;
③体积是1立方分米、1立方厘米的正方体木块各12块;
④用木条制成的1立方米的棱架一个;
⑤投影仪。
2、学生准备:12个1立方厘米的小正方体(如白色的奎逊耐木块)。
教学过程:
一、导入新课
教师:我们已经认识了长方体和正方体,掌握了长方体和正方体表面积的计算方法。下面我们来学习长方体、正方体的体积和体积单位。(板书:体积和体积单位)
二、新课
1、教学体积概念。
教师:我们已经知道什么叫周长,什么叫面积,那么什么叫体积呢?让我们先来做一个实验,大家要注意观察看谁观察得仔细,能发现新知识。
教师拿出盛有半杯红色水的玻璃杯和用绳子捆着的石头一块,用手提绳子将石头浸人玻璃杯的水中。
教师:注意观察放入石头后水面有什么变化。
教师将石头提起,再放入水中一次。然后让学生说一说观察的结果。
学生:放入石头,水面上升。
教师:把石头放入水里后,水面为什么会上升呢?
请几名学生回答后,教师指出:石头占有一定的空间,放入水里后,使得石头和水所占的空间变大了,所以水面就上升了。
教师:我们再做一个实验,大家还要仔细观察,动脑筋思考。
教师把玻璃杯里的水倒掉,装入满满一杯沙子。然后把沙子倒出,放入一块长方体积木,请一位同学来再将沙子装入玻璃杯,然后让学生说出实验的结果。
学生:沙子多出来了。
教师:大家想一想,为什么沙子会多出来呢?
让几名学生说一说自己的想法。在学生发言的基础上教师概括。
教师:因为这块积木占有一定的空间,积木放到杯子里就占据了杯子的一部分空间,所以沙土就装不下了。
让学生理解了上述的话以后,教师再进一步讲解。
教师:所有的物体都占有一定的空间,比如教室占据了一个较大的空间,课桌、讲台又占据了教室里的一部分空间;课本、文具盒占据了书包里的一部分空间;等等。
教师用投影仪出示教科书第11页中间的图:一个墨水盒,一个电冰箱和一只水果盒。
教师:观察这幅图,哪一个物体所占的空间大一些?哪一个物体所占的空间小一些?
指名让学生回答后,教师指出:物体所占空间的大小叫做物体的体积。那么,这幅图里的三个物体,哪个物体的体积最大?哪个物体的体积最小?
让学生回答后,教师进一步要求:你能说出身边的哪些物体的体积比较大,哪些物体的体积比较小吗?让几名学生说一说。
然后教师总结:物体所占的空间越大,它的体积就越大。这两堆木块的每一块都是同样大的,因此哪一堆的木块多,哪一堆占的空间就大,体积也就大。因此我们说,物体所占空间的大小叫做物体的体积。
2、教学体积的单位。
教师:我们知道了什么叫做物体的体积,那么怎样计量体积呢?用什么计量单位呢?我们学习过计量长度要用长度单位,计量面积要用面积单位。谁能说一说常用的长度单位和面积单位各有哪些?
指名让学生回答,教师把长度单位和面积单位分别板书在黑板的左侧,并分别标上长度单位、面积单位。
教师:同样,计量体积时要用体积单位。常用的体积单位有:立方厘米、立方分米、立方米。
教师一边叙述,一边把体积单位板书在黑板的右侧,与长度单位、面积单位对应处,并标上体积单位。
教师:我们来看看这些体积单位的大小是怎样的。
教师让学生每人拿出一个1立方厘米的小正方体,用直尺量出它的棱长是多少。教师也举起一个1立方厘米的正方体。
教师:大家手里拿着的都是棱长1厘米的正方体,它的体积是1立方厘米。我们的手指头尖的体积大约是1立方厘米。
教师要求学生用自己手指比试一下1立方厘米的实际大小。
接着,教师出示棱长是1分米的正方体教具。
教师:这是棱长是1分米的正方体,谁知道它的体积是多少?(1立方分米。)棱长是1分米的正方体,它的体积是1立方分米。粉笔盒的体积接近1立方分米。(用1立方分米教具与粉笔盒比较。)
教师让学生用手势比试1立方分米的实际大小。(用两手空抱拳,取1分米高度,其体积大约是1立方分米。)
教师拿出1立方米的棱架教具。
教师:这是棱长1米的正方体,它的体积是多少?(1立方米。)对!棱长是1米的正方体,它的体积是1立方米。
教师把棱架放到教室的一角,让学生看一看1立方米的体积有多大。
教师:1立方米的空间大约可以容纳8名小学生。
教师请8名学生钻进架子里,半蹲着,充满棱架。让全班同学体会1立方米的实际大小。
教师小结:常用的体积单位有立方厘米、立方分米和立方米。立方米是较大的体积单位,立方厘米是较小的体积单位。
教师:我们知道了常用的体积单位。计量一个物体的体积,就要看这个物体含有多少个体积单位。
教师用投影仪出示右图:
教师:右图中的长方体是由4个1立方厘米的小正方体拼成的,它的体积是多少?
指名让学生回答。
教师用投影仪出示教科书第31页做一做第2题的图。
教师:这两个图形都是用棱长1厘米的小正方体拼成的。谁能说出它们的体积各是多少?
让学生分别说出每个图形的体积是多少。
三、巩固练习
1.做练一练的第5题。
让学生拿出24个棱长是1厘米的小正方体,摆长方体。摆完以后,请几名摆的长方体形状不同的同学说一说,自己所摆出的长方体的长、宽、高各是多少。然后教师提问。
教师:他们摆的长方体的长、宽、高一样吗?他们摆的长方体的体积是相同的吗?
(启发学生发现大家所摆出的长方体的形状不同,长、宽、高也就不同,但是体积都是相同的。)
教师再提问:这是为什么?(因为这些不同形状的长方体所含有的体积单位是一样的。)
四、小结(略)
五、作业
长方体和正方体课件【篇6】
目标
通过总复习中最后几道题的综合复习,检查学生综合运用知识。解决问题的能力。
复习内容和过程
教学札记
一、复习解方程
1、完成教材第134页期末复习第28题。
(1)独立完成。
(2)集体订正,说说解方程的依据。
2、解下列方程
x--=x++=
二.复习长方体和正方体
1、完成课本第134页期末复习第29题。
(1)独立完成
(2)集体订正,说说你是怎样想的。
2、练一练:
一块长方形铁皮,长28厘米,宽22厘米,在这块铁皮的四个角各剪去一个边长为2厘米的正方形,然后折成一个无盖的长方体铁盒,这个铁盒的容积是多少立方厘米?
三、复习分数的加法和减法
1、完成教材第123页期末复习第30题。
(1)独立完成
(2)集体订正,说说的解题思路,如有错解,则分析错误原因。
2、练一练:
修路队第一天修路4/5千米,比第二天多修了2/15千米,两天一共修路多少千米?
四、作业:
教材第134页期末复习第31题。
长方体和正方体课件【篇7】
教学过程:
一、复习检查:
如何计算长正方体的体积?及字母公式
长方体的体积=长宽高正方体体积=棱长棱长棱长
二、新授:
长方体或正方体底面的面积叫做底面积。
长方体和正方体的底面积怎样求呢?
长方体的体积=长宽高正方体体积=棱长棱长棱长
底面积底面积
所以长正方体的体积也可以这样来计算:长正方体的体积=底面积高
V=sh
三、巩固练习:
1、长方体的底面积是24平方厘米,高是5厘米。它的体积是多少?
V=sh245=120(立方厘米)
2、一根长方体木料,长5厘米,横截面的面积是0.06平方厘米。这根木料的体积是多少?
理解横截面积的含义,体会长方体不同放置,说法各不相同。
出示另一种计算方法:长方体体积=横截面积长
3、家具厂订购500根方木,每根方木横截面的面积是24平方分米,长3米。这根木料一共是多少平方米?
理解面积单位和长度单位要一致。但不可能相同。
5、练一练:用方程法。
(1)、一块长方体的木板,体积是90立方分米。这块木板的长是60分米,宽是3分米。这块木板的厚度是多少分米?
(2)、一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少?(选择方法解答)
1、学校要修长50米,宽42米,的长方形操场。先铺10厘米的三合土,再铺5厘米的煤渣。需要三合土和煤渣各多少立方米?
2、有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。
3、用15根规格完全相同的木板堆成一个体积是3.6立方米的长方体。已知每根木板宽0.3米,厚0.2米,求每根木板的长。
四、小结:今天,我们又学了哪些知识?你有什么收获?
五、作业:
教学目标:
1、在理解了长正方体体积公式,能运用公式进行计算的基础上,进一步研究求长正方体体积的其它计算公式。
2、进一步培养学生空间观念和空间想象能力。
教学重点:
1、计算长正方体体积的其它公式。
2、逆向思维的题可以用方程方法解。
教学难点:
几何知识与一般应用题的综合题。
长方体和正方体课件【篇8】
教学目标:
1、经历观察、交流、归纳等认识长方体和正方体特征的过程。
2、知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。
3、积极主动参与数学活动,在总结和归纳长方体、正方体特征及关系的过程中,获得积极的学习体验。
教学重点:
长方体、正方体的特征
教学难点:
长方体和正方体的关系。
教学准备:
课前每个学生准备一个正方体和一个长方体的物体(或是两个长方体纸盒)、尺子。
教学过程:
一、谈话引入
1、出示实物图。让学生找出图中的长方体和正方体物体。
师:同学们请看,这些物体你们认识吗?你能从中找出形状是长方体或正方体的实物吗?
生:墨水瓶的形状是长方体的。
生汇报,教师进行分类。
说出生活中见到的长方体和正方体物体。
师:生活中你还见过哪些物体的形状是长方体或正方体?
生:牙膏盒的形状是长方体,骰子的形状是正方体的。
生:
指名发言要更多倾向于学困生。
二、自主探究。
1、认识面、顶点、棱的特征。
指出面、棱和顶点。
师:生活中这样的物体有很多,拿出你准备的长方体,像老师这样摸一摸你有什么感觉?
生:上面有平平的面,还有边和尖尖的角。
师:这个平平的面我们就叫做长方体的面、面与面之间的边叫做棱,三条棱相交的点叫做顶点。(也可以试着让学生说一说他们的名称)教师板书。
拿出正方体物体:你们指出面、棱和顶点吗?(学生没有的可让学生看老师的到前面来指)
再让学生指一指长方体的。
面的特征。
师:数一数长方体有几个面?正方体有几个面?
生:长方体有6个面、正方体有6个面。
师:你是怎么数的?这些面有多少特征
(让学生按照一定的规律来数)
生:相对的面的面积相等。
师:你用什么办法验证你的猜测呢?(可以在小组内说一说)
生用一定的方法验证相对的面的面积相等。
生:我用算的方法来验证
生:我用剪的方法验证,是这样做的
生:我用画的方法
顶点、棱的特征。
师:观察用细棒和珠子做成的正方体和长方体。
师:长方体和正方体分别用了多少根小棒、多少颗珠子?(珠子也就是长方体和正方体的顶点,所用的小棒就相当于棱。)
生:正方体用了8颗珠子12根小棒,证明正方体有8个顶点,12条棱。
生:
师:说说你的怎么数的?它们的棱各有什么特点呢?
让学生按照一定的顺序来数。
整理特征。
师:刚才我们通过观察找到了长方体和正方体的特征,你能把它们的特征整理在表格中吗?
名称面顶点棱
正方体6个面,所有的面完全相等。8个顶点12条棱,所有的棱的长度都相等。
长方体6个面,相对的面完全相等。8个顶点12条棱,可以分成3组,每组4条棱的长度相等。
学生先自己整理然后在小组内交流。
2、探究长方体和正方体的关系。
师:仔细观察表格,正方体和长方体有哪些相同的地方?哪些不同的地方呢?
生:正方体和长方体都有,不同的地方是
学生汇报得出:正方体是特殊的长方体。
认识长、宽、高。
师:相交于一个顶点有三条棱,这三条棱的长度谁知道叫什么名字呢?你是怎么知道的?
生:
师:拿出你准备的长方体,这样放着谁能说出它的长、宽、高?如果这样放呢?(变换不同的方向说出)
师:你们看图说出每个长方体的长宽高分别是多少吗?
师:你能测量长方体的长、宽、高吗?
完成练一练第一题。
师:正方体的棱长有什么特点?那正方体每条棱的长度都叫做正方体的棱长。
练一练第二题。
课堂小结。
这节课你学到了什么内容?
三、巩固新知。
练一练的第三题。
师:看练一练的第三题,谁能把题读一读,然后回答。
生:
师:前面的面积是多少平方厘米呢?
生:
板书设计:
名称面顶点棱
正方体6个面,所有的面完全相等。8个顶点12条棱,所有的棱的长度都相等。
长方体6个面,相对的面完全相等。8个顶点12条棱,可以分成3组,每组4条棱的长度相等。
长方体和正方体课件【篇9】
教学目标
使学生能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。
教学重点、难点
重难点:
能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。
教具、学具准备
教学过程
备注
一、基本练习
运用长方体和立方体的体积计算公式,计算长方体和立方体的体积。
1、计算长方体和立方体的体积。
(1)长8米,宽6米,高5米。
(2)棱长40厘米。
学生独立完成,反馈。
V=abhV=a3
865=240(立方米)404040=64000(立方厘米)
2、一根长方体木料,长2米,宽1.5分米,厚2分米。这根木料的体积是多少?
提醒学生注意单位名称的统一,请学生说说厚的意思。
学生独立完成,反馈。
2米=20分米
201.52=60(立方分米)
3、一块立方体石料,棱长50厘米。这块石料的体积是多少立方厘米?
学生独立完成,反馈。
4、一个底面是长方形的沙坑,底面积是24平方米,深0.5米。需要多少立方米的黄沙才能填满这个沙坑?
学生独立完成,反馈时交流解题思路。
240.5=12(立方米)
二、综合练习
1、先求体积,再求质量的练习。
一块立方体钢的棱长是2分米,如果1立方分米钢重7.8千克,这块钢重多少千克?
学生独立完成,反馈时交流解题思路。
222=8(立方分米)
7.88=62.4(千克)
教学过程
备注
2、已知体积、长、宽、或底面积,求高的练习。
(1)一个长方体的木箱,长8分米,宽6分米,体积是240立方分米。这个木箱的高是多少分米?
(2)一块立方体石料的体积是512立方厘米,底面积是64平方厘米,这块石料的高是多少厘米?
学生独立完成,反馈时交流解题思路。
24086=5(分米)
51264=8(厘米)
3、小结
三、思考题
把一个立方体的六个面都涂上油漆,如果按面上的线将它分割成27个小立方体,那么,
三面涂油漆的小立方体有()个,
两面涂油漆的小立方体有()个,
一面涂油漆的小立方体有()个,
没有涂油漆的小立方体有()个。
1、弄清题意
2、看立体图想象
3、反馈交流
4、用实物验证
四、学生总结
课后反思:
在教学时,为了使学生透彻理解长方体所占空间的大小是由它的长、宽、高所决定的,其体积公式的推导,可让学生动手操作,通过摆、看、想、推、说进行。这样,通过动手操作引发思维和用数学语言表达,不仅加深了对公式的来源及公式的运用的理解,还可以检查学生掌握新知识的情况,同时也培养发展了学生的逻辑思维能力。
下一篇:订金协议书8篇
- 普通金毛和纯种金毛对比02-03
- 局长述职报告财政局分享02-08
- 描写下雪了作文02-08
- 我和中国元素的故事(4篇)12-11
- 幼儿夏天的教案02-08
- 见习述职报告怎么写(精选九篇)02-08
- 《钢铁是怎样炼成的》读后感合集5篇02-08
- 竞选的述职报告02-08
- 辅导员工作总结(热门13篇)02-08
- 小学一年级的阅读教案15篇02-08
- 植树活动总结14篇02-08