解一元二次方程的教学反思
[参考]解一元二次方程的教学反思精选4篇。
做教师应该要考虑课堂氛围的趣味,老师伴随教案里的节奏让学生更沉浸在学习的课堂上。教案能帮助教师有逻辑次序的安排教学活动,什么样的教案值得我们去借鉴呢?也许"解一元二次方程的教学反思"就是你要找的,欢迎阅读,希望你能阅读并收藏。
解一元二次方程的教学反思【篇1】
问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:
1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?
(学生很自然列方程解决)
改换题目条件和问题:
2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?
分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。
于是学生很容易完成下列求解。
解:设该商品定价为x元时,可获得利润为y元
依题意得:y=(x-40)?〔300-10(x-60)〕
=-10x2+1300x-36000
=-10(x-65)2+6250300-10(x-60)≥0
当x=65时,函数有最大值。得x≤90
(40≤x≤90)
即该商品定价65元时,可获得最大利润。
增加难度,即原例题
3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。
解一元二次方程的教学反思【篇2】
一、教学目标:
1、知识与能力:理解配方法,会利用配方法以一元二次式进行配方。通过对比、转化,总结得出配方法的一般过程,提高分析能力。通过对一元二次方程二次项系数是否为1的分类处理,锻炼学生的抽象概括能力。
2、过程与方法:会用配方法解简单的数学系数的一元二次方程。发现不同方程的转化方式,运用已有知识解决新问题。
3、情感态度价值观:通过配方法的探究活动,培养学生勇于探索的良好学习习惯。感觉数学的严谨性以及数学结论的确定性。
二、教学重难点:
1、重点---会利用配方法熟练解一元二次方程。
2、难点---对于二次项系数不为1的一元二次方程通过系数化1进行适当变形后再利用配方法求解。
三、教学过程
(一)活动1:提出问题
要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?设计意图:让学生在解决实际问题中学习一元二次方程的解法。
师生行为:教师引导学生回顾列方程解决实际问题的基本思路,学生讨论分析。
(二)活动2:温故知新
1.填上适当的数,使下列各式成立,并总结其中的规律。(1)x+ 6x+ =(x +3 ) (2) x+8x+ =(x+ )(3)x2-12x+ =(x- )2 (4) x2- 5x+ =(x- )2 (5)a2+2ab+ =(a+ )2 (6)a2-2ab+ =(a- )2 2.用直接开平方法解方程:x2+6x+9=2设计意图:第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣。
1
222
用心
爱心
专心(三)活动2:自主学习
自学课本P31---P32思考下列问题:
1.仔细观察教材问题2,所列出的方程x2+6x-16=0利用直接开平方法能解吗?2.怎样解方程x2+6x-16=0?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流。)
3.讨论:在框图中第二步为什么方程两边加9?加其它数行吗?4.什么叫配方法?配方法的目的是什么?5.配方的关键是什么?交流与点拨:
重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。
注意:9=(),而6是方程一次项系数。所以得出配方的关键是方程两边加上一次项系数一半的平方,从而配成完全平方式。
设计意图:学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程配成完全平方式形式来解方程的思想
(四)活动4:例题学习
例(教材P33例1)解下列方程:(1)x-8x+1=0 (2)2x+1=-3x (3)3x2-6x+4=0教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤。
交流与点拨:用配方法解一元二次方程的一般步骤:
(1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)(2)移项,使方程左边只含有二次项和一次项,右边为常数项。(3)配方,方程两边都加上一次项系数一半的平方。(4)原方程变为( mx+n)2=p的形式。
(5)如果右边是非负数,就可用直接开平方法求取方程的解。设计意图:牢牢把握通过配方将原方程变为(mx+n)2=p的形式方法。
(五)课堂练习:
1.教材P34练习1(做在课本上,学生口答)2.教材P34练习2师生行为:对于第二题根据时间可以分两组完成,学生板演,教师点评。设计意图:通过练习加深学生用配方法解一元二次方程的方法。
四、归纳与小结:
1.理解配方法解方程的含义。
2.要熟练配方法的技巧,来解一元二次方程,
3.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。 4.配方法解一元二次方程的解题思想:“降次”由二次降为一次。
五、布置作业
教材P42习题22.2第3题
---教后反思
通过本节课的学习,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的一种研究思想,其发挥的作用和意义十分重要。从学生的学习情况来看,效果普遍良好,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。
1:学生对这块知识的理解很好,学生自己总结了配方法的具体步骤,即:①化二次项系数为1;②移常数项到方程右边;③方程两边同时配上一次项系数一半的平方;④化方程左边为完全平方式;⑤(若方程右边为非负数)利用直接开平方法解得方程的根。理解起来也很容易,然后再加以练习巩固
2:教学方法上的几点体会:①需要创造性地使用教材,可以根据学生的实际情况对教材内容进行适当调整。②相信学生要为学生提供充分展示自己的机会本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。 3:当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:①二次项系数没有化为1就盲目配方;②不能给方程“两边”同时配方;③配方之后,右边是0,结果方程根书写成x=﹡的形式(应为x1=x2=﹡);④所给方程的未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x。对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第③步,必须依据等式的基本性质给方程两边同时加常数。
4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用配方法来证,这样对有些善于钻研思考的同学来说,在有关配方法的应用和探究方面,为之起到“抛砖引玉”的作用,也为后期部分知识的教学作了一定的铺垫。
5、在我本节课的教学当中,也有如下不妥之处:①对不同层次的学生要求程度不适当;②在提示和启发上有些过度;③为学生提供的思考问题时间较少,导致部分学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。
解一元二次方程的教学反思【篇3】
教学背景:
在《实际问题与一元二次方程》这一单元教学中,师生共同存在一个困惑,这困惑源于九年级数学《教师教学用书》102页测试题第13题:百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元。为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现:如果每件童装降价1元,那么平均每天就多售出2件。要想平均每天销售这种童装盈利1200元,那么童装应降价多少元?
解:设平均每件童装应降价X元,由题意得:
(40—X)(20+2X)=1200
解之得 X1=10 , X2=20
X1=10 ,X2=20均达到了扩大销售量,增加盈利,减少库存的目的,所以都满足题意。
答:要想平均每天销售这种童装盈利1200元,那么每件童装应降价10元或20元。
对于我的解题思路,善于动脑筋的学生提出不同的质疑:(1)降价20元,薄利多销,更能减少库存,应选最优的方案。所以只选取X=20。(2)降价10元,每天销售40件,同样能盈利1200元。库存部 分还可继续盈利,这样在减少库存的基础上能进一步增加盈利,所以只取X=10。学生的不同见解,说明学生善于动脑思考,我及时给予了鼓励;要敢于向教材挑战、敢于向老师质疑。而对于这道题最合理的解法,我们师生共同关注、共同探讨。
课后,我与同行交流、查阅资料,并利用星期天到新华书店、新奇书店、教育书店翻阅教辅资料。经过一星期的查阅搜集,我筛选了一组类型题,课前印发给同学们,在课堂上进行专题学习,师生带着困惑共同去探究。
教学目标:
1、进一步培养学生运用一元二次方程分析和解决实际问题的能力,再次学习数学建模思想。 2、将同类题对比探究,培养学生分析、鉴别的能力。
教学重点:
培养运用一元二次方程分析和解决实际问题的能力,学习数学建模思想。
教学难点:
将类同题对比探究,培养学生分析、鉴别的能力。
教学内容:
第1题选自九年级数学《教师教学用书》102页测试题第13题(见上)。
第2题:选自九年级数学《学苑新报》第4期第15题。某市场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元, 为了扩大销售,增加利润,尽量减少库存,市场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
第3题:选自九年级数学《新课标点拨》270页第27题。某商场销售一批儿童玩具,若每天卖20件每件可盈利40元 ,为了扩大销售,尽快减少存库,商场决定采取适当的降价措施,调查发现,若每件玩具每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,那么每件玩具应降价多少元?
第4题:选自阶段性教学质量评估检测第4页第七题。西瓜经营户以2元/千克的价格出售。每天可售出200千克,为了促销,该经营户决定降价出售,经调查发现,这种小型西瓜降价0.1元/千克,每天可多售出40千克,另外,每天的房租和固定成本共24元,该经营户要想每天盈利240元,应将小型西瓜每千克售价降低多少元? 课堂上学生积极参与探究、分析对比得出:第(1)、(4)两题的两个答案都满足题意。第(2)、(3)两题为尽快减少库存,只选取降价多的那个答案(这与资料中的答案相吻合)。学生进一步总结、归纳得出:若题中强调尽量减少库存或尽快减少库存,应只选取降价多的那个答案。若题中没有特殊要求,那么两个答案都满足题意。
解一元二次方程的教学反思【篇4】
从本节课开始授一元二次方程的概念、解法及其应用。其中本堂课关于一元二次方程概念的介绍,其一般形式的写法是后续内容的基础,虽然简单但非常重要。
关于一元二次方程的概念的引入。我对课本做了两点变动:一是增加一例趣味性故事,引出数学问题,从而列出方程;二是将课本上关于生产总值的例子改成中考升学考上重点中学人数问题。以上变动主要是基于以下考虑:一是创设情境,激发学生的学习兴趣,又能学习从实际问题中归纳出数学模型;二是课本上的生产总值问题感觉离学生比较遥远。反思本节课的教学,我觉得有以下不足:
引入概念时的例子太多,有点难,在解应用题方面花费了一些时间,有点“喧宾夺主”,课前的例子应尽可能的简单,只要让学生能列出一元二次方程即可。
对于一元二次方程的一般形式,二次项系数、一次项系数、常数项这些内容,我觉得时间还比较少,应多加练习,特别是对后进生,如果一元二次方程已经写成一般形式,他们找二次项系数、一次项系数、常数项没有困难。如果需要进一步化简整理成一般形式,他们开始出错。问题出在他们基础没打好,化简整理过程中出现诸如移项时项的符号出错的问题,应多加练习指导。
- 解一元二次方程02-15
- [荐]学校校长年度工作述职11篇03-06
- [荐]小班老师工作计划怎么写模板03-06
- [参考]高二历史教学工作计划个人通用03-06
- 大学生支教实习心得体会1000字03-06
- 小学三年级安全工作计划模板汇总03-06
- 最新寒假社会实践心得体会合集4篇03-06
- 食堂工作报告怎么写模板03-06
- 最新总结: 二次函数知识点回顾03-02
- 幼儿园中班年度教学计划模板03-06
- 酒店管理毕业生自我鉴定范文(8篇)03-06