导航栏

×
范文大全 > 教案

等差数列教案

时间:2023-09-03 等差数列教案

等差数列教案。

教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。教案是提高师生互动质量的有效手段,教案教案会包含哪些部分?这是一篇非常优秀的“等差数列教案”网络文章大家一定要看看,本报告仅供参考不代表实际情况一定如此!

等差数列教案 篇1

A、知识目标:

掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:

(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生“大众教学”的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

等差数列教案 篇2

等差数列教材(教案) 课  题:等差数列 教  材:(苏教版数学第二册)§子1.2  等差数列 课  型:新授课 教学目标: 1、知识目标:(1)明确等差数列的定义,掌握等差数列的通项公式 (2)会解决知道an,a1,d,n中的三个,求另外一个的问题 2、能力目标:培养学生具有良好的观察能力、归纳能力、应用能力和创新解题能力 3、情感目标:培养学生具有良好的协作精神和探索精神 教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 教学方法:发现法、观察法、讨论法、讲解法及其组合 教  具:多媒体 内容分析:前面学习了数列的定义及表示数列的几种方法――列举法、通项公式、递推公式等,这些方法从不同的角度反映了数列的.特点,具备这些知识后,为本节课探索等差数列的定义、通项公式等创造了条件。 教学过程: 一、创设情境 教师活动 学生活动 设计意图 1、小明昨天背记了1个英文单词,从今天开始,他背记的单词量逐日增加,依次为:6,11,16,21,……请同学们仔细观察一下,以上数列有什么特点? 学生独立思考后口答 问题是数学的心脏,数学来源于生活 2、提出问题:多少天后他背记的单词量达到301? 表明自己观点 让学生大胆猜想,引发思考,引出新课 二、探索活动 教师活动 学生活动 设计意图 1、交流与发现:(1)等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差都等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。注意 ①公差d一定是由后项减前项所得,而不能用前项减后项来求 ②对于数列{an},若an-an-1=d(与n无关的数或字母),n≥2,n∈N+,则此数列是等差数列,d为公差。 (2)等差数列的通项公式:an=a1+(n-1)d 学生与同桌交流后回答           探索、研究等差数列的定义及通项公式       2、例题讲解 (1)求等差数列8,5,2……的第20项 (2)-401是不是等差数列-5,-9,-13……的项?如果是,是第几项? 解:(1)由a1=8,d=5-8=2-5=-3 N=20,得a20=8+(20-1)×(-3)=-49 (2)由a1=-5,d=-9-(-5)=-4 得数列通项公式为:an=-5-4(n-1) 由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之得n=100,既-401是这个数列的第100项。 在等差数列{an}中,已知a5=10,a12=31,求a1,d,a20,an 解法一:∵a5=10,a12=31,则     a1+4d=10  a1=-2   a1+11d=31 d=3 ∴an=a1+(n-1)d=3n-5 a20=a1+19d=55 解法二:a12=a5+7d 31=10+7d d=3 ∴a20=a12+8d=55 小结:第二通项公式an=am+(n-m)d 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。 解:设{an}表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知:a1=33,a12=10,n=12 ∴a12=a1+(12-1)d,即110=33+11d 解得:d=7 因此,a2=33+7=40,a3=40+7=47,a4=54,a5=61, a6=68,a7=75,a8=82,a9=89,a10=96,a11=103, 答;梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm。   先让学生发表观点,后喊两名中等生板书     学生小组讨论后发表观点并积极上黑板板书               发挥学生优势,画出图形,讨论先求什么   会用通项公式,学会用方程思想解题     做好“条件”转化:学会列方程组解决     培养学生一题多解的能力   学会应用,培养数学建模能力与应用能力   三、巩固练习教师活动 学生活动 设计意图 练习: 1、(1)求等差数列3,7,11,……的第4项与第10项。   (2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。           2、在等差数列{an}中,(1)已知a4=10,a7=9,求a1与d; (2)已知a3=9,a9=3,求a12。   a1+3d=10  a1+6d=19     点拨:(1)由题意得:  (2)解法一:由题意可得: a1+2d=9 a1=11 a1+8d=3 d=-1 ∴该数列的通项公式为:an=11+(n-1)×(-1)=12-n, ∴a12=0 解法二:由已知得:a9=a3+6d, 即:3=9+6d, ∴d=-1 又∵a12=a9+3d, ∴a12=3+3×(-1)=0   喊4名中等学生板书   喊2名中等学生板书: 令7n-5=100,解得:n=15, ∴100是这个数列的第15项     喊2名中等学生板书       喊2名中等学生板书,注意对照   会用通项公式     会判断一数是否为某一数列的其中一项,注意解题步骤的规范性与准确性                   会由an,a1,d,n中的三个,求另外一个,培养发散性思维,培养一题多解能力与创新解题能力 四、反思总结 教师活动 学生活动 设计意图 通过本节课的学习,你有什么体会和收获?本课涉及哪些数学知识、思想、方法? 培养学生总结、归纳能力 及时总结,授之以渔 教学反思: 本节课的教学体现了“自主探索与合作交流”的教学理念,学生在探索中获得了数学的“思想、方法、能力、素质”。 一、情境创设,自然有效。 实践证明,通过问题发现问题,符合职业中学学生的认知特点,自然有效。 二、自主探索,惊喜不断。 本课从多层面开展课堂活动,既有民主和谐的师生互动式活动,更有学生的独立思考、演练、小组讨论、观察,发现,总结交流等学习活动,学生在探索过程中学得灵活、踏实、轻松、愉快,体验学习数学的成功和快乐。 三、夯实基础,提高效益。 本课以课本例题、练习为原型,创造性地使用教材,层层推进,激发学生学习潜能,培养学生具有良好的思维特性,渗透基本的数学思想和方法,培养学生数学建模能力,培养学生创新解题能力和应用能力,极大的提高了数学课堂教学效益。 四、新的思考。 1、要注意an=am+(n-m)d和an=pn-q(p、q是常数)的理解与应用; 2、在等差数列通项公式的应用中,应突出它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么两项可以决定一个等差数列。

等差数列教案 篇3

等差数列是《普通高中课程标准实验教科书?数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,?数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。

2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。

3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

②等差数列的通项公式的推导过程及应用。

难点:

①理解等差数列“等差”的特点及通项公式的含义。

普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识经验已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

结合本节课的特点,我设计了从教法、学法两种方法对等差数列的通项公式进行推导,让学生更好的理解。通过引入实例来启发学生,挺高学生的学习兴趣,是学生更加形象、愉快的去学习这堂课。下面是我教学设计:

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更 给,问各得金几何,及未到三人复应得金几何“。 这个问题该怎样解决呢?

由学生观察分析并得出答案: 在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,?

水库的管理人员为了保证优质鱼 类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位 为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5

思考:同学们观察一下上面的这两个数列: 0,5,10,15,20, ① 18,15.5,13,10.5,8,5.5 ② 看这些数列有什么共同特点呢?

倾听和观察分析,发表各自的意见。

对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,-2.5。

提问:如果在a与b中间插入一个数A,使a,A,b成等差数列数列,那么A应满足什么条件?

由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b

的等差中项。

不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13?中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,

等差数列教案 篇4

数学是思维的体操,是培养学生分析问题、解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能在让教学脱离学生的内心感受,必须让学生追求过程的体验。基于以上认识,在设计本节课时,教师所考虑的不是简单告诉学生等差数列的定义和通项公式,而是创造一些数学情境,让学生自己去发现、证明。在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激发了学生的学习兴趣,也提高了他们提出问题解决问题的能力,培养了他们的创造力。这正是新课程所倡导的数学理念。

本节课借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

高中数学必修五第二章第二节,等差数列,两课时内容,本节是第一课时。研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。通过本节课的学习要求理解等差数列的概念,掌握等差数列的通项公式,并且了解等差数列与一次函数的关系。

本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。

学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。同时思维的严密性还有待加强。

1.知识目标:理解等差数列概念,掌握等差数列的通项公式,了解等差数列与一次函数的关系。

2.能力目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。

3.情感目标:体验从特殊到一般,又到特殊的认知规律,提高数学猜想、归纳的能力。

教学难点:对等差数列概念的理解及学会通项公式的推导及应用。

数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程,结合学生的实际情况,及本节内容的特点,我采用的是“问题教学法”,其主导思想是以探究式教学思想为主导,由教师提出一系列精心设计的问题,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。

教学手段:多媒体计算机和传统黑板相结合。通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。而保留使用黑板则能让学生更好的经历整个教学过程。

设计意图:希望学生能通过日常生活中的实际问题的分析对比,建立等差数列模型,体验数学发现和创造的过程。

师—把上面的数列各项依次记为 ,填空:

师—上面这个规律还有其他形式吗?

师—你能用普通语言概括上面的规律吗?

学生—自由发言,选择最恰当的语言。

上面的数列已找出这一特殊规律,下面再观察一些数列并也找出它们的规律。

(1)20北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):

(2)水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)

(3)我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:

时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%, 那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)

学生—(1) , ,

(2) , ,

(3) , ,

师 —满足这种特征的数列很多,我们有必要为这样的数列取一个名字?

师—给出文字叙述的定义(学生叙述,板书定义):

一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首项。

对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。

师—这样的数列在生活中的例子,谁能再举几个?

52,50,48,46,44,42,40,38.

21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25

1,2,4,6,8,10,12,……

0,1,2,3,4,5,6,……

3,3,3,3,3,3,3……

2,4,7,11,16,……

-8,-6,-4,0,2,4,……

3,0,-3,-6,-9,……

设计意图:概括等差中项的概念。总结等差中项公式,用于发现等差数列的性质。

师生活动:

师—想一想,一个等差数列最少有几项?它们之间有什么关系?

学生思考后回答,至少三项,然后老师引导学生概括等差中项的概念。

设三个数 成等差数列,则A叫a与b的等差中项。同时有A-a=b-A,

(2)等差数列中的任意连续三项都构成等差数列 ,反之亦成立。

设计意图:通过具体数列的通项公式,总结一般等差数列的通项公式,体会特殊到一般的数学思想方法。

师生活动:

师—对于一个数列,我们最关心的是每一项,而这就要求我们能知道它的通项公式。下面一起来研究等差数列的通项公式。

先写出上面引例中等差数列的通项公式。再推导一般等差数列的通项公式。

师—若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?

启发学生:(归纳、猜想)可用首项与公差表示数列中任意一项。

学生—第二项,所以n≥2。

师—n=1时呢?

师—很好!

等差数列教案 篇5

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

4。 1,2,3,2,3,4,……;×

5。 1,0,1,0,1,……×

在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d,

则据其定义可得:

进而归纳出等差数列的通项公式:

此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法――――――迭加法:

将这(n―1)个等式左右两边分别相加,就可以得到 anC a1= (n―1) d即 an= a1+(n―1) d (1)

当n=1时,(1)也成立,

因此它就是等差数列{an}的通项公式。

在迭加法的证明过程中,我采用启发式教学方法。

利用等差数列概念启发学生写出n―1个等式。

对照已归纳出的通项公式启发学生想出将n―1个等式相加。证出通项公式。

在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求

接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n―1)×2 , 即an=2n―1 以此来巩固等差数列通项公式运用

同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项JK251.COm

(2)―401是不是等差数列―5,―9,―13,…的项?如果是,是第几项?

在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an

例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。

建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5。8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?

这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型――――――等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用展示实际楼梯图以化解难点)

设置此题的目的:

1。加强同学们对应用题的综合分析能力,

2。通过数学实际问题引出等差数列问题,激发了学生的兴趣;

3。再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法

1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

2、书上例3)梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

3、若数例{an} 是等差数列,若 bn = an ,(为常数)试证明:数列{bn}是等差数列

此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

1。等差数列的概念及数学表达式.

选做题:已知等差数列{an}的首项a1= ―24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

等差数列教案 篇6

我说课的课题是等差数列的前n项和,本节内容选自江苏教育出版社中职数学第二册第11章第2节,下面我将从说教材、说教法学法、说教学过程、说板书设计以及说教学反思几个方面对本节课加以说明。

中职数学是中等职业学校各类专业学生必修的主要文化基础课,学好这门课程对提高学生数学素养具有十分重要的意义。数列这一章是中职数学的重要内容之一。它不仅是函数知识的延伸,而且还有着非常广泛的实际应用;同时数列还是培养学生数学思维能力的良好题材。

《等差数列的前n项和》是本章的第二节,它为后继学习提供了知识基础,对提高学生分析、猜想、概括、归纳的能力有着重要的作用。

《等差数列》作为《数列》这一章中两个最重要的数列之一,具有承上启下的作用,它的研究和解决集中体现了研究《数列》问题的思想和方法。学习《等差数列的前n项和》对提高学生分析、猜想、概括、归纳的能力有着重要的作用。

2、教学目标根据教学大纲的要求和教学内容的结构特征,并结合学生学习的实际情况,我将本节课的教学目标确定为以下三个方面

能力目标:1、培养学生观察、归纳、类比、联想等发现规律的一般方法。

2、让学生在问题中感受学习的乐趣;

3、教学重点和难点。根据本节课的内容以及学生已掌握的知识情况我将

教法教学有法但教无定法,教学方法要与学生学习的实际情况相结合。

中职学生的生源质量逐年下降,大部分中职生基础薄弱、理解接受能力较差,大多数学生不爱学习,不会学习。学生认为数学难,枯燥理解不了。对数学学习提不起兴趣,因此在教学中我注重激发学生学习的兴趣。本节课通过具体的实例引入,采用了问题、类比、发现、归纳的探究式教学方法。引导学生积极主动的去学习。在课堂教学中强调以学生为主体,注重精讲多练。同时也注重学生非智力因素的培养,增强学生的自信心和成就感。为学习营造宽松和谐的氛围。另外在教学中使用多媒体教学手段等,提高教学质量和教学效果。

学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。倡导学生主动参与、乐于探究,培养学生发现问题、分析问题和解决问题的能力。根据学生的认知水平,我设计了①创设情境—引入问题②分析归纳—解决问题③例题研究—运用新知④分组训练—巩固新知⑤总结归纳—提高认识⑥课后作业-自主探究六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。

接下来,我再具体谈一谈这堂课的教学过程。

我经常在想:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

由生活中的实例一招聘信息引入:A公司月薪20xx元;B公司第一个月800元,以后逐月递加200元。你愿意到哪家公司上班?为什么?在A、B公司一年各共领多少钱?五年呢?以此来激发学生的学习兴趣。再给学生讲数学家高斯的故事

1+2+3+…+100=

同学们,如果你是小高斯,你会怎么向老师解释算法呢?

让学生在在教师的启发引导下,由被动地听讲变为主动参与,敢于发表自己独特的见解,并学会倾听、尊重他人的意见。教师引导学生概括总结出本课新的知识点。

类似m+n=s+t am+an=as+at m,n,s,t∈N+

——让学生利用刚学的知识解决当前的问题,让学生明白学以致用。

例1、(1)求正奇数前100项之和;

(2)求第101个正奇数到第150个正奇数之和;

(3)等差数列的通项公式为an=100-3n,求其前65项之和;

例2、某长跑运动员7天每天的训练量(单位:m)分别是7500,8000,8500,9000,9500,10000,10500,他在7天内共跑了多少米?

例3、设等差数列{an}的公差d=,,前n项之和Sn=。求a1及n

课堂上让学生用两种公式解题,有利于提高思维的灵活性,通过板演调动学生的积极性,也掌握本节课的重点和难点。

教学设想,例题过后,我特地设计了一组检测题,

1、等差数列求和公式Sn=

2、等差数列{an}中,(1)a1=2,d=-1则Sn=

3、2c+4c+6c+…+2nc=

4、一堆圆木,每层总比上一层多一根,顶层4根,最底层21根,这堆木料有多少根?

5、一只挂钟,遇整点就敲响,钟响的次数是该点的时间数,从1点到12点共响几次?

通过游戏比赛的形式,活跃课堂气氛,提高学生的学习兴趣。来巩固新知识。

让学生通过所学内容的小结,对知识的发生发展有一个清晰的线索,把课堂所学知识构建起新的知识体系。同时养成良好的学习习惯。

学生经过以上五个环节的学习,已经初步掌握了等差数列的前n项的求和,并解决了一些实际问题。

根据学生在课堂上知识掌握的情况有针对性布置课后作业。提高学生应用知识的能力。

我将这节课的板书设计为三列,一列为本节课的基本知识点,一列为例题,一列为讲解。条理清晰,一目了然。

我认为板书设计在课堂教学中也很重要,好的板书就是一份微型教案,向学生展现了所学知识的框架,突出重点难点,清晰直观地将授课内容传递给学生,便于学生理解掌握。

根据课堂教学情况,课后及时总结,不断改进,精益求精,努力提高课堂教学效果。

结束:以上是我说课的内容,不当之处希望各位评委老师提出宝贵意见。

等差数列教案 篇7

教学目标

1。通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2。利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

3。通过参与编题解题,激发学生学习的兴趣。

教学重点,难点

教学重点是通项公式的认识;教学难点是对公式的灵活运用.

教学用具

实物投影仪,多媒体软件,电脑。

教学方法

研探式。

教学过程

一。复习提问

前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。

二。主体设计

通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 )。找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。

1。方程思想的运用

(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项。

(2)已知等差数列 中,首项 , 则公差

(3)已知等差数列 中,公差 , 则首项

这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。

2。基本量方法的使用

(1)已知等差数列 中, ,求 的值。

(2)已知等差数列 中, , 求 。

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于 和 的`二元方程组,以求得 和 , 和 称作基本量。

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。

如:已知等差数列 中, …

由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

(3)已知等差数列 中, 求 ; ; ; ;…。

类似的还有

(4)已知等差数列 中, 求 的值。

以上属于对数列的项进行定量的研究,有无定性的判断?引出

3。研究等差数列的单调性

,考察 随项数 的变化规律。着重考虑 的情况。 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果。这个结果与考察相邻两项的差所得结果是一致的。

4。研究项的符号

这是为研究等差数列前 项和的最值所做的准备工作。可配备的题目如

(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

(2)等差数列 从第________项起以后每项均为负数。

三。小结

1。 用方程思想认识等差数列通项公式;

2。 用函数思想解决等差数列问题。

四。板书设计

等差数列通项公式

1。 方程思想的运用

2。 基本量方法的使用

3。 研究等差数列的单调性

4。 研究项的符号

等差数列教案 篇8

第一方面:教材分析

本节知识的学习既能加深对数列概念的理解,又为后面学习数列有关知识提供研究的方法,具有承上启下的重要作用。而且等差数列求和在现实中有着广泛的应用,同时本节课的学习还蕴涵着倒序相加、数形结合、方程思想等深刻的数学思想方法。

第二方面:学情分析

知识基础:学生已掌握了函数、数列等有关基础知识,并且在小学和初中已了解特殊的数列求和。

能力基础:高二学生已初步具备逻辑思维能力,能在教师的引导下解决问题,但处理抽象问题的能力还有待进一步提高。

第三方面:学习目标

依据课标,以及学生现有知识和本节教学内容,制定教学目标如下:

1.教学目标:

(1)知识与技能目标:(ⅰ) 初步掌握等差数列的前项和公式及推导方法;

(ⅱ) 当以下5个量(a1,d,n,an,Sn)中已知三个量时,能熟练运用通项公式、前n项和公式求其余两个量。

(2)过程与方法目标:通过公式的推导和公式的应用,使学生体会数形结合的思想方法,体验从特殊到一般,再从一般到特殊的思维规律。

(3)情感态度与价值观:通过经历等差数列的前项和公式的探究活动,培养学生探索精神和创新意识,提高学生解决实际问题的观念,激发学生的学习热情。

2.教学重、难点

等差数列前项和公式的推导有助于培养学生的发散思维,而且在应用公式的过程中体现了方程(组)思想,所以等差数列前项和公式的推导和简单应用是本节课的重点。但由于高二学生推理能力有待提高,所以难点在于一般等差数列前项和公式的推导方法上。

第四方面:教法学法

毕达哥拉斯说过:“在数学的天地里,重要的不是我们知道什幺,而是我们怎幺知道什幺。”

针对本节课的特点,教师采用问题探究式教学法,学生的学法以发现式学习法为主。

教学手段上通过多媒体辅助教学,可以帮助学生直观理解,提高课堂效率。

第五方面:教学过程

建构主义理论认为教师应以问题为载体,以学生活动为主线开展教学。为此,我设计如下(情境引入、公式探索、公式推导、公式应用、归纳总结和发展作业)六个环节

1.情境引入

上课伊始,先给同学们看一段视频,回顾学校建校60年的光辉历史,然后跟同学们共同欣赏照片,提出

问题1:学校为了庆祝建校60年,在校园里摆放了一些鲜花,最前面一行摆了4盆,后面每行比前一行多一盆,共八行,一共摆放了多少盆鲜花?

这样设计帮助学生了解学校历史,渗透德育教育,激发学习热情。

有的学生会选择直接相加,教师提出问题:有没有简单的方法呢?自然进入第二环节。

2.公式探索

发现公式的推导方法是本节课的难点,我先引导学生明确上述问题的本质是等差数列求和问题,引出课题并板书,提出:

问题2:如果每行的花都一样多,则花的总数易于求得,我们怎样能把这些花补成每行都一样多呢?

此时,学生会想到如下几种拼凑形式,我们选择最易于解决原问题的第1种

教师及时引导学生小结:

对于求等差数列的前n项和在已知a1,an,n时,可选择公式(1);已知a1,d,n时可选择公式(2);

设计意图:例1是等差数列前项和两个公式的直接应用,对于不同的已知条件选择不同的公式,帮助学生完成对公式的记忆和巩固,例1的第(2)问由教师板书解题步骤,起到了示范教学的效果。

例2由学生板书,师生共同完善给予评价,变式由学生互评,教师及时引导学生进行小结:

已知等差数列如下a1,d,n,an,Sn五个量中三个可求其余两个,即等差数列“知三求二”。

设计上述题目,实现对公式的简单应用这一教学目标。

5.归纳总结

教师引导学生总结本节课的知识要点和思想方法,师生共同完善,对本节内容整体把握。

6.布置作业

我根据学情分层布置作业,基础性作业的安排是为巩固课堂内容,发展性作业可以帮助学生进一步体会等差数列前项和公式的结构,通过开放性作业,帮助学生关注课堂,拓展知识面,提高学生自主学习能力。

(课件打出(1)课本第41页练习B 1,2题

(2) 思考与讨论:自主探讨公式(2)并思考:如果一个数列的前n项和Sn=an2+bn+c(a,b,c为常数),那幺这个数列一定是等差数列吗?请同学们给予证明。

六、设计说明

1.设计特色

(1)在探求公式推导思路的过程中,渗透德育教育,培养学生良好道德情操;

(2)公式推导和应用阶段,借助问题台阶,创造性使用教材,符合认知规律,体现教学科学性。

2.是板书设计。

等差数列教案 篇9

教学目标:

(1)理解等差数列的概念,掌握等差数列的通项公式;

(2)利用等差数列的通项公式能由a1,d,n,an“知三求一”,了解等差数列的通项公式的推导过程及思想;

(3)通过作等差数列的图像,进一步渗透数形结合思想、函数思想;通过等差数列的通项公式应用,渗透方程思想。

教学重、难点:等差数列的定义及等差数列的通项公式。

知识结构:一般数列定义通项公式法

递推公式法

等差数列表示法应用

图示法

性质列举法

教学过程:

(一)创设情境:

1.观察下列数列:

1,2,3,4,……;(军训时某排同学报数)①

10000,9000,8000,7000,……;(温州市房价平均每月每平方下跌的价位)②

2,2,2,2,……;(坐38路公交车的车费)③

问题:上述三个数列有什么共同特点?(学生会发现很多规律,如都是整数,再举几个非整数等差数列例子让学生观察)

规律:从第2项起,每一项与前一项的差都等于同一常数。

引出等差数列。

(二)新课讲解:

1.等差数列定义:

一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。

问题:(a)能否用数学符号语言描述等差数列的定义?

用递推公式表示为或.

(b)例1:观察下列数列是否是等差数列:

(1)1,-1,1,-1,…

(2)1,2,4,6,8,10,…

意在强调定义中“同一个常数”

(c)例2:求上述三个数列的公差;公差d可取哪些值?d>0,d=0,d

(d有不同的分类,如按整数分数分类,再举几个等差数列的例子观察d的分类对数列的影

响)

说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列,为递减数列。

例3:求等差数列13,8,3,-2,…的第5项。第89项呢?

放手让学生利用各种方法求a89,从中找出合适的方法,如利用不完全归纳法或累加法,然

后引出求一般等差数列的通项公式。

2.等差数列的通项公式:已知等差数列的首项是,公差是,求.

(1)由递推公式利用用不完全归纳法得出

由等差数列的定义:,,,……

∴,,,……

所以,该等差数列的通项公式:.

(验证n=1时成立)。

这种由特殊到一般的推导方法,不能代替严格证明。要用数学归纳法证明的。

(2)累加法求等差数列的通项公式

让学生体验推导过程。(验证n=1时成立)

3.例题及练习:

应用等差数列的通项公式

追问:(1)-232是否为例3等差数列中的项?若是,是第几项?

(2)此数列中有多少项属于区间[-100,0]?

法一:求出a1,d,借助等差数列的通项公式求a20。

法二:求出d,a20=a5+15d=a12+8d

在例4基础上,启发学生猜想证明

练习:

梯子的最高一级宽31cm,最低一级宽119cm,中间还有3级,各级的宽度成等差数列,请计算中间各级的宽度。

观察图像特征。

思考:an是关于n的一次式,是数列{an}为等差数列的什么条件?

课后反思:这节课的重点是等差数列定义和通项公式概念的理解,而不是公式的应用,有些应试教育的味道。有时抢学生的回答,没有真正放手让学生的思维发展,学生活动太少,课堂氛围不好。学生对问题的反应出乎设计的意料时,应该顺着学生的思维发展。

等差数列教案 篇10

《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。等比数列的前n项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到.具有一定的探究性。

在认知结构上已经掌握等差数列和等比数列的有关知识。在能力方面已经初步具备运

用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。

(1)能够推导出等比数列的前n项和公式;

(2)能够运用等比数列的前n项和公式解决一些简单问题。

过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。体会公式探求

过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。

情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。

《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。

为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。

为达到本节课的教学目标,我把教学过程分为如下6个阶段:

1、创设情境:

创设一个西游记后传的情景,即高老庄集团,由于资金短缺,决定向猴哥进行贷款,猴哥每天给八戒投资1万元,以后每天比前一天多1万,连续30天,但有一个条件:第一天返还1分,第二天返还2分,第三天返还4分后一天返还数为前一天的2倍.假如你是高老庄集团企划部的高参,请你帮八戒决策.这是一个悬念式的实例,后面的“假如”又把学生带入了实例创设的情境,营造了积极、和谐的学习气氛,使学生产生学习心理倾向,并进一步了解数学来源于生活.

2、探究问题,讲授新课:

根据创设的情景,在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。提出如何求等比数列前n项和的问题,从而引出课题。通过回顾等差数列前n项和公式的推导过程,类比观察等比数列的特点,引导学生思考,如果我们把每一项都乘以2,则每一项就变成了它的后一项,引导学生比较这两个式子有许多相同的项的特点,学生自然就会想到把两式相减,进而突破了用错位相减法推到公式的难点。教师再由特殊到一般、具体到抽象的启示,正式引入本节课的重点等比数列的前n项和,请学生用错位相减法推导出等比数列前n项和公式。得出公式后,学生一起探讨两个问题,一是当q=1时Sn又等于什么,引导学生对q进行分类讨论,得出完整的等比数列前n项和公式,二是结合等比数列的通项公式,引导学生得出公式的另一形式。

3、例题讲解:

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。本节课设置如下两种类型的例题:

2)等比数列中知三求二的填空题,通过公式的正用和逆用进一步提高学生运用等比数列前n项和的能力.

4.形成性练习:

练习基本上是直接运用公式求和,三个练习是按由易到难、由简单到复杂的认识规律和心理特征设计的,有利于提高学生的积极性。学生练习时,教师巡查,观察学情,及时从中获取反馈信息。对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。

(2)推导公式的所用方法——从特殊到一般的思维方法、错位相减法和分类讨论思想。通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。进一步完成认知目标和素质目标。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。并可布置相应的研究作业,思考如何用其他方法来推导等比数列的前n项和公式,来加深学生对这一知识点的理解程度。

jk251.cOm扩展阅读

高中教案等差数列【精】


教学目标

1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

(2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

(3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

关于的教学建议

(1)知识结构

(2)重点、难点分析

①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

(3)教法建议

①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项可看作项数的一次型()函数,这与其图像的形状相对应.

⑤有穷的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.

⑥前项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

通项公式的教学设计示例

教学目标

1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

3.通过参与编题解题,激发学生学习的兴趣.

教学重点,难点

教学重点是通项公式的认识;教学难点是对公式的灵活运用.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

研探式.

教学过程一.复习提问前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计通项公式反映了项与项数之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用(1)已知中,首项,公差,则-397是该数列的第______项.(2)已知中,首项,则公差(3)已知中,公差,则首项这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用(1)已知中,,求的值.(2)已知中,,求.若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).如:已知中,…由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知中,求;;;;….类似的还有(4)已知中,求的值.以上属于对数列的项进行定量的研究,有无定性的判断?引出3.研究的单调性,考察随项数的变化规律.着重考虑的情况.此时是的一次函数,其单调性取决于的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号这是为研究前项和的最值所做的准备工作.可配备的题目如(1)已知数列的通项公式为,问数列从第几项开始小于0?(2)从第________项起以后每项均为负数.三.小结1.用方程思想认识通项公式;2.用函数思想解决问题.四.板书设计通项公式1.方程思想的运用2.基本量方法的使用3.研究的单调性4.研究项的符号

等差数列教案2000字精选


在教学过程中,老师教学的首要任务是备好教案课件,因此教案课件可能就需要每天都去写。备好一份完整的教案课件,会有利于老师在课堂上的教学。该从哪些方面,哪些角度来写自己的教案课件呢?小编为大家呈上收集和整理的等差数列教案2000字精选,欢迎大家借鉴与参考,希望对大家有所帮助。

等差数列教案【篇1】

2。2。1等差数列学案

一、预习问题:

1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母 表示。

2、等差中项:若三个数 组成等差数列,那么A叫做 与 的 ,

即 或 。

3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。

4、等差数列的通项公式: 。

5、判断正误:

①1,2,3,4,5是等差数列; ( )

②1,1,2,3,4,5是等差数列; ( )

③数列6,4,2,0是公差为2的等差数列; ( )

④数列 是公差为 的等差数列; ( )

⑤数列 是等差数列; ( )

⑥若 ,则 成等差数列; ( )

⑦若 ,则数列 成等差数列; ( )

⑧等差数列是相邻两项中后项与前项之差等于非零常数的'数列; ( )

⑨等差数列的公差是该数列中任何相邻两项的差。 ( )

6、思考:如何证明一个数列是等差数列。

二、实战操作:

例1、(1)求等差数列8,5,2,的第20项。

(2) 是不是等差数列 中的项?如果是,是第几项?

(3)已知数列 的公差 则

例2、已知数列 的通项公式为 ,其中 为常数,那么这个数列一定是等差数列吗?

例3、已知5个数成等差数列,它们的和为5,平方和为 求这5个数。

等差数列教案【篇2】

一、知识与技能

1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;

2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.

二、过程与方法

1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;

2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.

三、情感态度与价值观

通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.

教学过程

导入新课

师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)

(1)0,5,10,15,20,25,…;

(2)48,53,58,63,…;

(3)18,15.5,13,10.5,8,5.5…;

(4)10 072,10 144,10 216,10 288,10 366,….

请你们来写出上述四个数列的第7项.

生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510.

师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.

生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78.

师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.

生:1每相邻两项的差相等,都等于同一个常数.

师:作差是否有顺序,谁与谁相减?

生:1作差的顺序是后项减前项,不能颠倒.

师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.

这就是我们这节课要研究的内容.

推进新课

等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).

(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;

(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公差.

师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)

生:从“第二项起”和“同一个常数”.

师::很好!

师:请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?

生:数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2.5n-15.5,….

师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.

[合作探究]

等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?

生:a2-a1=d,即a2=a1+d.

师:对,继续说下去!

生:a3-a2=d,即a3=a2+d=a1+2d;

a4-a3=d,即a4=a3+d=a1+3d;

……

师:好!规律性的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?

生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.

师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?

生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:

因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-1)d.

师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.

[教师:精讲]

由上述关系还可得:am=a1+(m-1)d,

即a1=am-(m-1)d.

则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)

由此我们还可以得到.

[例题剖析]

【例1】(1)求等差数列8,5,2,…的第20项;

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?

生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49.

师:好!下面我们来看看第(2)小题怎么做.

生:2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1).

由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项.

师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个).

说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.

【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?

例题分析:

师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?

生:只要看差an-an-1(n≥2)是不是一个与n无关的常数.

师:说得对,请你来求解.

生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕

an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,

所以我们说{an}是等差数列,首项a1=p+q,公差为p.

师:这里要重点说明的是:

(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….

(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.

(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习

(1)求等差数列3,7,11,…的第4项与第10项.

分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.

解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.

评述:关键是求出通项公式.

(2)求等差数列10,8,6,…的第20项.

解:根据题意可知a1=10,d=8-10=-2.

所以该数列的通项公式为an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

评述:要求学生:注意解题步骤的规范性与准确性.

(3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,请说明理由.

分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.

解:根据题意可得a1=2,d=9-2=7.因而此数列通项公式为an=2+(n-1)×7=7n-5.

令7n-5=100,解得n=15.所以100是这个数列的第15项.

(4)-20是不是等差数列0,,-7,…的项?如果是,是第几项?如果不是,请说明理由.

解:由题意可知a1=0,,因而此数列的通项公式为.

令,解得.因为没有正整数解,所以-20不是这个数列的项.

课堂小结

师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)

生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1).

等差数列教案【篇3】

尊敬的各位专家、评委:

上午好!

我叫郑永锋,来自安庆师范学院。今天我说课的课题是人教A版必修5第二章第三节《等差数列的前n项和》。

我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

一、教材分析

地位和作用

数列是刻画离散现象的函数,是一种重要的属性模型。人们往往通过离散现象认识连续现象,因此就有必要研究数列。

高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。

在推导等差数列前n项和公式的过程中,采用了:

1从特殊到一般的研究方法;

2倒叙相加求和。不仅得出来等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。

等差数列的前n项和是学习极限、微积分的基础,与数学课程的其他内容(函数、三角、不等式等)有着密切的联系。

二、目标分析

(一)、教学目标

1、知识与技能

掌握等差数列的前n项和公式,能较熟练应用等差数列的前n项和公式求和。

2、过程与方法

经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。

3、情感、态度与价值观

获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

(二)、教学重点、难点

1、重点:等差数列的前n项和公式。

2、难点:获得等差数列的前n项和公式推导的思路。

三、教法学法分析

(一)、教法

教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。

探索与发现公式推导的思路是教学的重点。如果直接介绍“倒叙相加”求和,无疑就像波利亚所说的“帽子里跳出来的兔子”。所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。

应用公式也是教学的重点。为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过“选择公式”,“变用公式”,“知三求二”三个层次来促进学生新的认知结构的形成。

(二)、学法

建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。

四、教学过程分析

(一)、教学过程设计

1、问题呈现阶段

泰姬陵坐落于印度古都阿格,是世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成共有100层。你知道这个图案一共花了多少宝石吗?

设计意图:

(1)、源于历史,富有人文气息。

(2)、承上启下,探讨高斯算法。

2、探究发现阶段

(1)、学生叙述高斯首尾配对的方法(学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但是他们对这种方法的认识可能处于模仿、记忆的阶段。)

(2)、为了促进学生对这种算法的进一步理解,设计了下面的问题。

问题1:图案中,第1层到第21层共有多少颗宝石?(这是奇数个项和的问题,不能简单模仿偶数个项求和的方法,需要把中间项11看成是首、尾两项1和21的等差中项。

通过前后比较得出认识:高斯“首尾配对”的算法还得分奇数、偶数个项的情况求和。

(3)、进而提出有无简单的方法。

借助几何图形的直观性,引导学生使用熟悉的几何方法:把“全等三角形”倒置,与原图补成平行四边形。

获得算法:S21=

设计意图:

几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面,只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。

问题2:求1到n的正整数之和。即Sn=1+2+3+…+n

∵Sn=n+(n—1)+(n—2)+…+1

∴2Sn=(n+1)+(n+1)+…。+(n+1)

Sn=(从求确定的前n个正整数之和到求一般项数的前n个正整数之和,旨在让学生体验“倒叙相加求和”这一算法的合理性,从心理上完成对“首尾配对求和”算法的改进)

由于前面的铺垫,学生容易得出如下过程:

∵Sn=an+an—1+an—2+…a1,

∴Sn=。

图形直观

等差数列的性质(如果m+n=p+q,那么am+an=ap+aq。)

设计意图:

一言以蔽之,数学教学应努力做到:以简驭繁,平实近人,退朴归真,循循善诱,引人入胜。

3、公式应用阶段

(1)、选用公式

公式1Sn=;

公式2Sn=na1+。

(2)、变用公式

(3)、知三求二

例1

某长跑运动员7天里每天的训练量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。这位长跑运动员7天共跑了多少米?(本例提供了许多数据信息,学生可以从首项、尾项、项数出发,使用公式1,也可以从首项、公差、项数出发,使用公式2求和。达到学生熟悉公式的要素与结构的教学目的。

通过两种方法的比较,引导学生应该根据信息选择适当的公式,以便于计算。)

例2

等差数列—10,—6,—2,2,…的前多少项和为54?(本例已知首项,前n项和、并且可以求出公差,利用公式2求项数。

事实上,在两个求和公式中包含四个元素,从方程的角度,知三必能求余一。)

变式练习:在等差数列{an}中,a1=20,an=54,Sn=999,求n。

知三求二:

例3

在等差数列{an}中,已知d=20,n=37,Sn=629,求a1及an。(本例是使用等差数列的求和公式和通项公式求未知元。

事实上,在求和公式、通项公式中共有首项、公差、项数、尾项、前n项和五个元素,如果已知其中三个,连列方程组,就可以求出其余两个。)

4、当堂训练,巩固深化。

通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。

采用课后习题1,2,3。

5、小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

(1)、课堂小结

①、回顾从特殊到一般的研究方法;

②、体会等差数列的基本元素的表示方法,倒叙相加的算法,以及数形结合的数学思想。

③、掌握等差数列的两个球和公式及简单应用

(2)、反思

我设计了三个问题

①、通过本节课的学习,你学到了哪些知识?

②、通过本节课的学习,你最大的体验是什么?

③、通过本节课的学习,你掌握了哪些技能?

(二)、作业设计

作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。

我设计了以下作业:

1、必做题:课本p118,练习1,2,3;

习题3。3第2题(3,4)。

2、选做题:

在等差数列中,

(1)、已知a2+a5+a12+a15=36,求是S16。

(2)、已知a6=20,求s11。

(三)、板书设计

板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析

学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!

等差数列教案【篇4】

[教学目标]

1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

1.教学重点:等差数列的概念的理解,通项公式的推导及应用。

2.教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

一.课题引入

创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

根据等差数列的定义可得:

因此等差数列的通项公式就是:,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

将以上-1个式子相加得等差数列的通项公式就是:,

三、应用与探索

例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

例2、在等差数列中,已知=10,=31,求首项与公差d.

解:由,得。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

四、小结

1.等差数列的通项公式:

公差;

2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

3.判断一个数列是否为等差数列只需看是否为常数即可;

4.利用从特殊到一般的思维去发现数学系规律或解决数学问题.

五、作业:

1、必做题:课本第40页习题2.2第1,3,5题

2、选做题:如何以最快的速度求:1+2+3+???+100=

等差数列教案【篇5】

一、教学内容分析

本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析

教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想

1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。2.学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标

通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

五、教学重点与难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。难点:

①理解等差数列“等差”的特点及通项公式的含义。②理解等差数列是一种函数模型。关键:

等差数列概念的理解及由此得到的“性质”的方法。

六、教学过程(略)

等差数列教案【篇6】

首先,我对本教材进行分析。

一、说教材的地位和作用

《等差数列》是选自北京师范大学出版社普通高中课程标准实验教科书数学必修5的第一章数列的第2节的课时,本教材在课程结构、教学内容、教学方法等方面进行了新的探索和改革创新,对于促进高中教育深化教学改革,提高教育教学质量将起到积极的推动作用。等差数列这一节在数列这一章中起着奠基作用,是高中生学好数列这一部分内容所必不可少的重点所在。

二、说教学目标

根据本节课的机构和内容分析,结合现今高中生的认知结构及其心理特征,我制定了一下的教学目标:

本节课的教学目标包括认知目标、能力目标及情感、态度、价值观目标,其中:

认知目标:通过理解等差数列的定义,使学生能够应用定义判断一个数列是否为等差数列,并确定等差数列的公差。

能力目标:1.探索并掌握等差数列的通项公式,使学生能够应用其公式解决等差数列的问题;

2.体会等差数列与一次函数的关系,使学生能够应用一次函数的性质解决等差数列问题;

3.掌握等差中项的定义和等差数列项的性质,使学生能够应用等差中项的定义和等差数列项的性质解决问题。

情感、态度、价值观目标:使学生能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题。

三、说教学的重、难点

本着新课程标准,在吃透教材基础上,确定了一下的教学重点和难点:

(一)教学主要内容及其重点、难点

1.教学主要内容:等差数列的定义、通项公式和等差数列的函数性质;

2.教学重点:等差数列的定义、通项公式;

3.教学难点:在具体的问题情境中,发现数列的等差关系,并能灵活运用这些公式解决相应的实际问题。

(二)教学主要内容及其重点、难点的解决方法

在教学中采取灵活多样的教学形式,对理论性较强的内容以知识教授为主,多媒体教授为辅,达到化抽象为具体的课堂教学效果,对于教学难点问题,主要采取讨论式教学方法,首先教师提出问题让学生开动脑筋思考并寻找解决问题的方法,然后再进行分析、归纳和总结。

为了讲清楚教学的重、难点,使学生能够达到本节内容设定的教学目标,我再从教法和学法上谈谈。

四、说教法和学法

(一)教法

在教学过程中,不仅要使学生“知其然”,更要使学生“知其所以然”,在以师生既为主体,又为客体的原则下,展现获取理论知识、解决实际问题方法的思维过程。考虑到高中生的现状,主要采取学生活动的教学方法,让学生真正的参与教学活动,同时教师通过课堂教学感染和激励学生,充分调动起学生参与活动的积极性,从而通过师生互动达到最佳的教学效果。这也同时体现了课改的精神。

基于本节课内容的特点,我主要采用了以下的教学方法:

1.直观演示法:利用图片的投影等手段进行演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握;

2.活动探究法:引导学生通过创设情境等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自学、思维以及活动组织能力;

3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作精神。

(二)学法

在教学过程中特别注重学法的指导,让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,让学生成为真正的学习的主人。我主要采取了以下方法:

1.思考评价法

2.分析归纳法

3.自主探究法

4.总结反思法

最后我来谈谈这一堂课的教学过程:

五、说教学过程

在教学过程中,注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

1.导入新课:由上节课学过的知识和教材开头的情景设置导入新课,既概括了旧知识,引出新知识,温故而知新,又使学生明确本节课要讲述的内容。

2.讲授新课:在讲授新课的过程中,突出教材重点,明了地分析教材的难点,根据具体情况,适时选择多媒体的教学手段,可以使抽象的知识具体化、枯燥的知识生动化以及乏味的知识兴趣化。

3.课堂小结,强化知识:简明扼要的课堂小结,可使学生更深刻地理解等差数列在实际生活中的应用,并逐渐地培养学生具有良好的个性。

4.板书设计:注重直观、系统的板书设计,及时地体现教材中的知识点,以便于学生理解掌握。

5.布置作业。

等差数列教案【篇7】

一、说教材

等差数列为人教版必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的性质与应用等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

二、说学情

对于我校的高中学生,知识经验比较贫乏,虽然他们的智力发展已到了形式运演阶段,但并不具备教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、说教学目标

【知识与技能】能够准确的说出等差数列的特点;能够推导出等差数列的通项公式,并可以利用等差数列解决些简单的实际问题。

【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,锻炼知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。

【情感态度价值观】通过对等差数列的研究,激发主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

四、说教学重难点

【重点】等差数列的概念,等差数列的通项公式的推导过程及应用。

【难点】等差数列通项公式的推导,用“数学建模”的思想解决实际问题。

五、说教法与学法

数学教学是师生之间交往活动共同发展的课程,结合本节课的特点,我采取指导自主学习方法,并在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

六、说教学过程

(一)复习导入

类比函数,复习提问数列的函数意义,即数列可看作是定义域为正整数对应的一列函数值,从而数列的通项公式也就是相应函数的解析式。

设计意图:通过复习,为本节课用函数思想研究数列问题作准备,将课堂设置成为阶梯型教学,消除学生的畏难情绪。

(二)新课教学

教师创设具体情境,从具体事例中抽象出数学概念。

1.小明目前会100个单词,他打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92

2.小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25

通过练习1和2引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

接下来由学生尝试总结归纳等差数列的定义:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,

这个常数叫做等差数列的公差,通常用字母d来表示。

(三)深化概念

教师请学生深度剖析等差数列的概念,进一步强调

①“从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d(n≥1)

同时为配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。其中第一个数列公差小于0,第二个数列公差大于0,第三个数列公差等于0。由此强调:公差可以是正数、负数,也可以是0。

(四)归纳通项公式

在归纳等差数列通项公式中,我采用讨论式的教学方法。由学生研究,分组讨论上述四个等差数列的通项公式。通过总结对比找出共同点猜想一般等差数列的通向公式应为怎样的形式整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

猜想等差数列的通项公式:an=a1+(n-1)d

此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法---迭加法:

在迭加法的证明过程中,我采用启发式教学方法。

利用等差数列概念启发学生写出n-1个等式。

对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。

在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求

接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2,

即an=2n-1,以此来巩固等差数列通项公式的运用。

同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。

(五)应用举例

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。

先让学生求等差数列的第20项、30项等。向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

此外还可以联系实际建模问题,如建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?

这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型-----等差数列。

设置此题的目的:

1.加强同学们对应用题的综合分析能力;

2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;

3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法。

(六)小结作业

小结:(由学生总结这节课的收获)

1.等差数列的概念及数学表达式。

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。

2.等差数列的通项公式:an=a1+(n-1),会知三求一。

3.用“数学建模”思想方法解决实际问题

作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。

激发学生学习数学的兴趣,以及认识到学习数学的重要性,将数学知识应用于实际问题的解决不仅回顾加深了本堂课的教学内容,开阔学生思维,还锻炼了学生学以致用、观察分析问题解决问题的能力。

七、说板书设计

在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

等差数列教案【篇8】

教学目的:

1.明确等差数列的定义,掌握等差数列的通项公式。

2.会解决知道中的三个,求另外一个的问题。

教学重点:等差数列的概念,等差数列的通项公式。

教学难点:等差数列的性质

教学过程:

一、复习引入:(课件第一页)

二、讲解新课:

1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。

(课件第二页)

⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;

⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。

2.等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: (课件第二页) 第二通项公式 (课件第二页)

三、例题讲解

例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

例2 在等差数列 中,已知 , ,求 , ,

例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。

小结:①这就是第二通项公式的变形,②几何特征,直线的斜率

例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3)

例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)

分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。

注:①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,… ②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q. ③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。

例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数.

四、练习:

1.(1)求等差数列3,7,11,……的第4项与第10项.

(2)求等差数列10,8,6,……的第20项.

(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.

(4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由.

2.在等差数列{ }中,

(1)已知 =10, =19,求 与d;

五、课后作业:

习题3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9.

等差数列教案【篇9】

一、等差数列

1、定义

注:“从第二项起”及

“同一常数”用红色粉笔标注

二、等差数列的通项公式

(一)例题与练习

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二)新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件; f

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1—an=d (n≥1) ;h4z+0"6vG

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1。 9 ,8,7,6,5,4,……;√ d=—1

2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

3。 0,0,0,0,0,0,……。; √ d=0

4。 1,2,3,2,3,4,……;×

5。 1,0,1,0,1,……×

其中第一个数列公差0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

2、第二个重点部分为等差数列的通项公式

在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d,

则据其定义可得:

a2 — a1 =d 即: a2 =a1 +d

a3 – a2 =d 即: a3 =a2 +d = a1 +2d

a4 – a3 =d 即: a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

进而归纳出等差数列的通项公式:

an=a1+(n—1)d

此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:

a2 – a1 =d

a3 – a2 =d

a4 – a3 =d

……

an+1 – an=d

将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)当n=1时,(1)也成立,所以对一切n∈N﹡,上面的公式都成立因此它就是等差数列{an}的通项公式。在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n—1个等式。对照已归纳出的通项公式启发学生想出将n—1个等式相加。证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n—1)×2 , 即an=2n—1 以此来巩固等差数列通项公式运用同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。(三)应用举例这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项(2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。在前面例1的基础上将例2当作练习作为对通项公式的巩固例3 是一个实际建模问题建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5。8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型——————等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用展示实际楼梯图以化解难点)设置此题的目的:1。加强同学们对应用题的综合分析能力,2。通过数学实际问题引出等差数列问题,激发了学生的兴趣;3。再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法(四)反馈练习1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。2、书上例3)梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。目的:对学生加强建模思想训练。3、若数例{an} 是等差数列,若 bn = an ,(为常数)试证明:数列{bn}是等差数列此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。(五)归纳小结 (由学生总结这节课的收获)1。等差数列的概念及数学表达式.强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数2。等差数列的通项公式 an= a1+(n—1) d会知三求一3.用“数学建模”思想方法解决实际问题(六)布置作业必做题:课本P114 习题3。2第2,6 题选做题:已知等差数列{an}的首项a1= —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)五、板书设计在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

等差数列--精选版


教材:(一)目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。过程:

一、引导观察数列:4,5,6,7,8,9,10,……3,0,-3,-6,……,,,,……12,9,6,3,……特点:从第二项起,每一项与它的前一项的差是常数—“等差”

二、得出等差数列的定义:注意:从第二项起,后一项减去前一项的差等于同一个常数。1.名称:首项公差2.若则该数列为常数列3.寻求等差数列的通项公式:由此归纳为当时(成立)注意:1°等差数列的通项公式是关于的一次函数2°如果通项公式是关于的一次函数,则该数列成ap证明:若它是以为首项,为公差的ap。3°公式中若则数列递增,则数列递减4°图象:一条直线上的一群孤立点三、例题:注意在中,,,四数中已知三个可以求出另一个。例一(见教材)例二(见教材)

四、关于等差中项:如果成等差数列则证明:设公差为,则∴例四《教学与测试》p77例一:在-1与7之间顺次插入三个数使这五个数成ap,求此数列。五、小结:等差数列的定义、通项公式、等差中项六、作业:

关于等差数列的高中教案推荐


教学目标

1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

(2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

(3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

关于的教学建议

(1)知识结构

(2)重点、难点分析

①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

(3)教法建议

①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项可看作项数的一次型()函数,这与其图像的形状相对应.

⑤有穷的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.

⑥前项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

通项公式的教学设计示例

教学目标

1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

3.通过参与编题解题,激发学生学习的兴趣.

教学重点,难点

教学重点是通项公式的认识;教学难点是对公式的灵活运用.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

研探式.

教学过程一.复习提问前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计通项公式反映了项与项数之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用(1)已知中,首项,公差,则-397是该数列的第______项.(2)已知中,首项,则公差(3)已知中,公差,则首项这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用(1)已知中,,求的值.(2)已知中,,求.若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).如:已知中,…由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知中,求;;;;….类似的还有(4)已知中,求的值.以上属于对数列的项进行定量的研究,有无定性的判断?引出3.研究的单调性,考察随项数的变化规律.着重考虑的情况.此时是的一次函数,其单调性取决于的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号这是为研究前项和的最值所做的准备工作.可配备的题目如(1)已知数列的通项公式为,问数列从第几项开始小于0?(2)从第________项起以后每项均为负数.三.小结1.用方程思想认识通项公式;2.用函数思想解决问题.四.板书设计通项公式1.方程思想的运用2.基本量方法的使用3.研究的单调性4.研究项的符号

等差数列的前n项【精】


教学目标

1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.

(1)了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式;

(2)用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

(3)会利用等差数列通项公式与前项和的公式研究的最值.

2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

教学建议

(1)知识结构

本节内容是等差数列前项和公式的推导和应用,首先通过具体的例子给出了求等差数列前项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

(2)重点、难点分析

教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程(组)思想.

高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

(3)教法建议

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用.

②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.

④补充等差数列前项和的最大值、最小值问题.

⑤用梯形面积公式记忆等差数列前项和公式.

等差数列的前项和公式教学设计示例

教学目标

1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题.

2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.

教学重点,难点

教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

讲授法.

教学过程

一.新课引入

提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?(课件设计见课件展示)

问题就是(板书)“”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

二.讲解新课

(板书)等差数列前项和公式

1.公式推导(板书)

问题(幻灯片):设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.

思路一:运用基本量思想,将各项用和表示,得

,有以下等式

,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进行不下去了.

思路二:

上面的等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得

于是有:.这就是倒序相加法.

思路三:受思路二的启发,重新调整思路一,可得,于是.

于是得到了两个公式(投影片):和.

2.公式记忆

用梯形面积公式记忆等差数列前项和公式,这里对图形进行了割、补两种处理,对应着等差数列前项和的两个公式.

3.公式的应用

公式中含有四个量,运用方程的思想,知三求一.

例1.求和:(1);

(2)(结果用表示)

解题的关键是数清项数,小结数项数的方法.

例2.等差数列中前多少项的和是9900?

本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数.

三.小结

1.推导等差数列前项和公式的思路;

2.公式的应用中的数学思想.

四.板书设计

等差数列的前n项


教学目标

1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.

(1)了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式;

(2)用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

(3)会利用等差数列通项公式与前项和的公式研究的最值.

2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

教学建议

(1)知识结构

本节内容是等差数列前项和公式的推导和应用,首先通过具体的例子给出了求等差数列前项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

(2)重点、难点分析

教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程(组)思想.

高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

(3)教法建议

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用.

②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.

④补充等差数列前项和的最大值、最小值问题.

⑤用梯形面积公式记忆等差数列前项和公式.

等差数列的前项和公式教学设计示例

教学目标

1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题.

2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.

教学重点,难点

教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

讲授法.

教学过程

一.新课引入

提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?(课件设计见课件展示)

问题就是(板书)“”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

二.讲解新课

(板书)等差数列前项和公式

1.公式推导(板书)

问题(幻灯片):设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.

思路一:运用基本量思想,将各项用和表示,得

,有以下等式

,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进行不下去了.

思路二:

上面的等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得

于是有:.这就是倒序相加法.

思路三:受思路二的启发,重新调整思路一,可得,于是.

于是得到了两个公式(投影片):和.

2.公式记忆

用梯形面积公式记忆等差数列前项和公式,这里对图形进行了割、补两种处理,对应着等差数列前项和的两个公式.

3.公式的应用

公式中含有四个量,运用方程的思想,知三求一.

例1.求和:(1);

(2)(结果用表示)

解题的关键是数清项数,小结数项数的方法.

例2.等差数列中前多少项的和是9900?

本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数.

三.小结

1.推导等差数列前项和公式的思路;

2.公式的应用中的数学思想.

四.板书设计

本文网址://m.jk251.com/jiaoan/113118.html

相关文章
最新更新

热门标签