一、素质教育目标
(一)知识教学点
1.要求学生学会用移项解方程的方法.
2.使学生掌握移项变号的基本原则.
(二)能力训练点
由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.
(三)德育渗透点
用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.
(四)美育渗透点
用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.
二、学法引导
1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.
2.学生学法:练习→移项法制→练习
三、重点、难点、疑点及解决办法
1.重点:移项法则的掌握.
2.难点:移项法解一元一次方程的步骤.
3.疑点:移项变号的掌握.
四、课时安排
3课时
五、教具学具准备
投影仪或电脑、自制胶片、复合胶片.
六、师生互动活动设计
教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习导入
师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.
(出示投影1)
利用等式的性质解方程
(1);(2);
解:方程的两边都加7,解:方程的两边都减去,
得,得,
即.合并同类项得.
【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.
提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?
(二)探索新知,讲授新课
投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.
(出示投影2)
师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?
2.改变的项有什么变化?
学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.
师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的项都改变了原来的符号.
【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.
师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
(三)尝试反馈,巩固练习
师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.
学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.
【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.
对比练习:(出示投影3)
解方程:(1);(2);
(3);(4).
学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.
师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)
【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.
巩固练习:(出示投影4)
通过移项解下列方程,并写出检验.
(1);(2);
(3);(4).
【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.
(四)变式训练,培养能力
(出示投影5)
口答:
1.下面的移项对不对?如果不对,错在哪里?应怎样改正?
(1)从,得到;
(2)从,得到;
(3)从,得到;
2.小明在解方程时,是这样写的解题过程:;
(1)小明这样写对不对?为什么?
(2)应该怎样写?
【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式.
(出示投影6)
用移项解方程:
(1);(2);
(3);(4).
【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目.
学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分.
(出示投影7)
解下列方程:
(1);(2);(3);
(4);(5);(6).
【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识.
(五)归纳小结
师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点.②检验要把所得未知数的值代入原方程.
八、随堂练习
1.判断下列移项是否正确
(1)从得()
(2)从得()
(3)从得()
(4)从得()
2.选择题
(1)对于方程,移项正确的是()
A.B.
C.D.
(2)对于方程移项正确的是()
A.B.
C.D.
3.用移项法解方程,并写出检验
(1);
(2);
(3).
九、布置作业
课本第205页A组1.(1)(3)(5).
十、板书设计
随堂练习答案
1.×××√
2.DC
3.略
作业答案
(5)
解:移项得
合并同类项得
检验:略
探究活动
运动与学习成绩
班里共有25个学生,其中17人会骑自行车,13人会游泳,8人会打篮球.全部掌握这三种运动项目的学生一个也没有.在这25个学生中,有6人数学成绩不及格.而参加以上运动的学生中,有2人数学成绩优秀,没有数学不及格的(学习成绩分优秀、良好、及格、不及格).问:全班数学成绩优秀的学生有几名?既会游泳又会打篮球的有几人?
参考答案:
全班数学成绩及格的学生有25-6=19(人),参加运动的人次共有17+13+8=38,因没有一个学生掌握三个运动项目,且数学没有不及格的,所以参加运动的学生共19人.每人掌握两个运动项目,19人中有17个会骑自行车,只有两个学生同时会游泳又会打篮球.
参加运动的共19人,且数学成绩全部及格,不参加运动的数学全不及格,所以全班数学成绩优秀的学生只有2名.
教学设计示例
一、素质教育目标
(一)知识起学点
1.理解:等式的意义,并能举出有关等式的例子.
2.掌握:关于等式变形的两条性质,并能语言叙述.
3.应用:会用等式的两条性质将等式变形,并能对变形说明理由.
(二)能力训练点
通过等式的两条性质的教学,培养学生由等式走向新等式的解题思想,即为以后方程的同解变形打下基础.
(三)德育渗透点
从特殊到一般的思维方法.
(四)美育渗透点
等式的两条性质体现了数学的对称美.
二、学法引导
1.教学方法:采取引导发现法,创设合理的问题情境,激发学生思维的积极性,充分展现学生的主体作用.
2.学生学法:演示实验→等式性质→巩固练习.
三、重点、难点、疑点及解决办法
1.重点:等式概念的认识理解,等式性质的归纳.
2.难点:利用等式的两条性质变形等式.
3.疑点:(1)等式性质2中,关于除数不为零的理解.
(2)利用性质变形时,对“等式两边”的理解.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片、简单实物.
六、师生互动活动设计
师生共同做演示实验,得出等式性质,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(-)创设情境,复习导入
教师在上课开始时,给出如下的数学关系
(出示投影1)
;;
;;
;
师提出问题:观察上面式子表示了什么关系?由学生回答“相等关系”后引出等式的概念和等式的含义,分清等式的左边和右边.
教师和学生一起完成一个演示实验:
两只手中各拿4支粉笔,现在我们再分别从粉笔盒里拿出两支,放入相应手中,问两只手中粉笔个数的关系?如果我们将开始手中的粉笔各放回两支怎样呢?既扩大到原来的2倍,或缩小到原来的2倍,结果还是相等.
(二)探索新知,讲授新课
教师引导学生,把上面实验抽象为一个数学问题.
即:4=4.
提出问题:由上面两组等式变形,我们可以得出关于等式变形什么结论?把上面式中2,改3或-5行吗?
学生活动:让全体学生参与讨论,启发学生怎样用精炼的语言叙述,或分组推荐代表回答.
师总结等式的性质:
由前两式总结:1.等式的两边都加上(或减去)同一个数或同一个等整式,所得结果仍是等式.
由后两式总结:2.等式的两边都乘以(或除以)同一个数(除数不能为零),所得结果仍是等式.
提出问题:①4=4两边都加上整式如:两边都加上结果还是等式吗?
②第二结论中所说除数可以是零吗?
学生活动:学生回答问题后,教师对上面结论加以补充说明.
教师归纳:以上两个规律,就是我们今天学习的“等式性质”
【教法说明】通过以上两条性质的总结,教师应强调以下四点:
①等式的性质1是加法和减法运算,等式的性质2是乘法或除法运算.
②等式的两边都参与运算,并且是同一种运算.
③加(或减)、乘以(或除以)的是同一个数.
④零不能做除数或分母.
(三)尝试反馈,巩固练习
【教法说明】由于这组题是例题的巩固,因此可以由学生讨论分组,以竞赛形式回答以增加课堂上的参与意识.
(出示投影2)
1.判断:已知等式,下列等式是否成立?
①;②;③;④.
2.若,请同学们根据等式性质编出三个等式并说出你的编写根据.
【教法说明】这组题是对等式性质的辨析,教学时应多让学生思考,并能说出依据.
(出示投影3)
1.从能不能得到呢?为什么?
2.从能不能得到呢?为什么?
3.从能不能得到呢?为什么?
4.从能不能得到呢?为什么?
学生活动:分组抢答.
【教法说明】从以上题目可知,根据等式的性质,从已知等式出发通过变形可得出新的等式.
(出示投影4)
例用适当的数或整式填空,使所得结果仍是等式
1.如果,那么;
2.如果,那么;
3.如果,那么.
【教法说明】分析:
1题从已知的一边入手,怎样变形就得到呢?(原等式两边都减去5)根据___________________________________________?
2题观察等式的右边怎样由变形成5(两边加上),即原来两边都加上,根据等式性质1.
3题观察等式左边怎样由变形为,即等式两边都除以0.2,根据等式性质2.
巩固练习:(出示投影5)
练习:用适当数填空,并且说出根据等式的哪条性质及怎样变形的?
1.如果,那么;
2.如果,那么;
3.如果,那么;
4.如果,那么;
5.如果,那么.
学生活动:分组讨论回答.
【教法说明】这一段是学生尝试利用等式性质对等式变形的练习过程,因此可采用小组竞赛、抢答等灵活的课堂训练形式.
师提出问题:上面问题同学们解答的非常好,下面请大家考虑一个问题,每个同学编一道和上面填空题类似的题目,交给同桌同学解答,并请对方谈谈所编题目是否符合标准.
【教法说明】上面问题教师应指导学生编题、解答,最后应用由学生代表性地评比一下,以培养学生灵活性、多角度思考数学问题的方法.
(四)变式训练,培养能力
我们通过学习等式的性质,不难发现可以利用等式的性质解决方程的求解问题(也就是可以求方程未知数的值).
(出示投影6)
利用等式的性质解方程:
(1);(2);
解:等式两边都乘以2解:等式两边都加上7得
得
等式的两边都除以5
得.
【教法说明】上面题目可启发学生思考如何应用等式性质求方程中未知数的值,由学生思考后教师引导作答写出以上过程
(出示投影7)
已知:、都是数,利用等式性质将下列各小题中的等式进行变形,然后填空.
(1)如果,那么
这就是说,如果两个数的和为零,那么这两个数___________.
(2)如果,那么.
这就是说,如果两个数的积为1,那么这两个数__________.
【教法说明】这是利用等式变形来认识相反数、倒数问题,解题时注意“互为”问题的有关概念语言.
(五)归纳小结
师:我们今天学习了等式的概念和等式的性质,通过学习我们应该清楚:
1.能根据等式的性质,把已知等式通过变形得到一个新等式,问题的关键在于怎样从新等式出发考虑用什么性质变形,这要靠大家的观察分析能力.
2.我们今天学习的等式的性质,是将来解方程的依据.
八、随堂练习
1.填空题
(1)将等式的两边都__________得到,这是根据等式性质______.
(2)将等式的两边都乘以____________、或除以___________得到,这是根据等式性质____________;
(3)将等式的两边都____________得到,这是根据等式性质_____________;
(4)将等式的两边都__________得到,这是根据等式性质________.
2.用适当的整式填空,使所得结果仍是等式
(1)如果,那么;
(2)如果,那么;
(3)如果,那么;
(4)如果,那么;
(5)如果,那么.
3.判断下列变形是否正确
(1)由得到.()
(2)由得到.()
(3)由得到.()
(4)由得到.()
(5)由得到.()
(6)由得到.()
九、布置作业
1.课本第186页习题4.1A组,4.(6)(7)(8);
2.课本第187页B组3.
十、板书设计
十一、参考答案
1.(1)加3,1;(2)2,,2;(3)减去,1;(4)除以,2.
2.(1)2;(2)-3;(3);(4);(5),3.
3.√√×××√
作业答案
4.(6);(7);(8);
B组3.①,零;②,是1.
列分式方程解应用题
教学目标
1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;
2.通过列分式方程解应用题,渗透方程的思想方法。
教学重点和难点
重点:列分式方程解应用题.
难点:根据题意,找出等量关系,正确列出方程.
教学过程设计
一、复习
例解方程:
(1)2x++3=1;(2)15x=2×15x+12;
(3)2(1x+1x+3)+x-2x+3=1.
解(1)方程两边都乘以x(3+3),去分母,得
2(x+3)+x2=x2+3x,即2x-3x=-6
所以x=6.
检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.
(2)方程两边都乘以x(x+12),约去分母,得
15(x+12)=30x.
解这个整式方程,得
x=12.
检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根.
(3)整理,得
2x+2x+3+x-2x+3=1,即2x+2+x-2x+3=1,
即2x++3=1.
方程两边都乘以x(x+3),去分母,得
2(x+3)+x2=x(x+3),
即2x+6+x2=x2+3x,
亦即2x-3x=-6.
解这个整式方程,得x=6.
检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.
二、新课
例1一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?
请同学根据题意,找出题目中的等量关系.
答:骑车行进路程=队伍行进路程=15(千米);
骑车的速度=步行速度的2倍;
骑车所用的时间=步行的时间-0.5小时.
请同学依据上述等量关系列出方程.
答案:
方法1设这名学生骑车追上队伍需x小时,依题意列方程为
15x=2×15x+12.
方法2设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为
15x-152x=12.
解由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程.
方程两边都乘以2x,去分母,得
30-15=x,
所以x=15.
检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意.
所以骑车追上队伍所用的时间为15千米30千米/时=12小时.
答:骑车追上队伍所用的时间为30分钟.
指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离时间.
如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按
速度找等量关系列方程,所列出的方程都是分式方程.
例2某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?
分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是
s=mt,或t=sm,或m=st.
请同学根据题中的等量关系列出方程.
答案:
方法1工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3.依题意,列方程为
2(1x+1x3)+x2-+3=1.
指出:工作效率的意义是单位时间完成的工作量.
方法2设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程
2x++3=1.
方法3根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程
1-2x=2x+3+x-2x+3.
用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了.重点是找等量关系列方程.
三、课堂练习
1.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.
2.A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.
答案:
1.甲每小时加工15个零件,乙每小时加工20个零件.
2.大,小汽车的速度分别为18千米/时和45千米/时.
四、小结
1.列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.
2.列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数.但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数.在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷.例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程
135x+5-12:135x=2:5.
解这个分式方程,运算较繁琐.如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了.
五、作业
1.填空:
(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;
(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;
(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克.
2.列方程解应用题.
(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?
(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?
(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?
(4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知两车的速度之比是5:2,求两辆汽车各自的速度.
答案:
1.(1)mnm+n;(2)ma-b-ma;(3)maa+b.
2.(1)第二次加工时,每小时加工125个零件.
(2)步行40千米所用的时间为404=10(时).答步行40千米用了10小时.
(3)江水的流速为4千米/时.
课堂教学设计说明
1.教学设计中,对于例1,引导学生依据题意,找到三个等量关系,并用两种不同的方法列出方程;对于例2,引导学生依据题意,用三种不同的方法列出方程.这种安排,意在启发学生能善于从不同的角度、不同的方向思考问题,激励学生在解决问题中养成灵活的思维习惯.这就为在列分式方程解应用题教学中培养学生的发散思维提供了广阔的空间.
2.教学设计中体现了充分发挥例题的模式作用.例1是行程问题,其中距离是已知量,求速度(或时间);例2是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率).这些都是运用列分式方程求解的典型问题.教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识另别,让学生弄清哪些类型的问题可借助于分式方程解答,求解的思路是什么.学生完成课堂练习和作业,则是识别问题类型,能把面对的问题和已掌握的模式在头脑中建立联系,探求解题思路.
3.通过列分式方程解应用题数学,渗透了方程的思想方法,从中使学生认识到方程的思想方法是数学中解决问题的一个锐利武器.方程的思想方法可以用“以假当真”和“弄假成真”两句话形容.如何通过设直接未知数或间接未知数的方法,假设所求的量为x,这时就把它作为一个实实在在的量.通过找等量关系列方程,此时是把已知量与假设的未知量平等看待,这就是“以假当真”.通过解方程求得问题的解,原先假设的未知量x就变成了确定的量,这就是“弄假成真”.
12.1用公式解一元二次方程(一)
一、素质教育目标
(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.
二、教学重点、难点
1.教学重点:一元二次方程的意义及一般形式.
2.教学难点:正确识别一般式中的“项”及“系数”.
三、教学步骤
(一)明确目标
1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.
2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?
教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
(二)整体感知
通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.
(三)重点、难点的学习及目标完成过程
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
(3)什么叫做分式方程?
问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.
2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?
引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.
整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.
一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.
一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.
3.练习:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
(4)6x2=x;
(5)2x2=5y;
(6)-x2=0
4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.
一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.
5.例1把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?
教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.
6.练习1:教材P.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.
练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项.
8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.
教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.
(四)总结、扩展
引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?
1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.
3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.
四、布置作业
1.教材P.6练习2.
2.思考题:
1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”
2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).
五、板书设计
第十二章一元二次方程
12.1用公式解一元二次方程
1.整式方程:……
4.例1:……
2.一元二次方程……:
……
3.一元二次方程的一般形式:
……
5.练习:……
……
……
六、课后习题参考答案
教材P.6A2.
教材P.6B1、2.
1.(1)二次项系数:ab一次项系数:c常数项:d.
(2)二次项系数:m-n一次项系数:0常数项:m+n.
2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次项系数:m+n,一次项系数:m-n,常数项:p-q.
思考题
(1)不能.如x3+2x2-4x=5.
(2)一元三次方程:只含有一个未知数,且未知数的最高次数是3,这样的整式方程叫做一元三次方程.一般形式:ax3+bx2+cx+d=0(a≠0).
一元四次方程:只含有一个未知数,且未知数的最高次数是4,这样的整式方程叫做一元四次方程.一般形式:ax4+bx3+cx2+dx+e=0(a≠0).
第1教时
教学内容:12.1用公式解一元二次方程(一)
教学目标:
知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
过程与方法目标:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。
教学重、难点与关键:
重点:一元二次方程的意义及一般形式.
难点:正确识别一般式中的“项”及“系数”。
教辅工具:
教学程序设计:
程序
教师活动
学生活动
备注
创设
问题
情景
1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.
2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?
教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
学生看投影并思考问题
通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.
探
究
新
知
1
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
(3)什么叫做分式方程?
2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?
引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.
整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.
一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.
3.练习:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
(4)6x2=x;
(5)2x2=5y;
(6)-x2=0
4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.
一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.
5.例1把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?
教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.
讨论后回答
学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,
独立完成
加深理解
学生试解
问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫
反馈
训练
应用
提高
练习1:教材P.5中1,2.
练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:.
(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.
教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.
要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.
小结
提高
(四)总结、扩展
引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?
1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.
3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.
学生讨论回答
布置
作业
1.教材P.6练习2.
2.思考题:
1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”
2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).
反
思
本文网址://m.jk251.com/jiaoan/6691.html
下一篇:英语教案【荐】