导航栏

×
范文大全 > 教案

三角形的特性的教案

时间:2023-10-30 三角形特性教案 三角形教案

三角形的特性的教案精华。

您可以在以下内容中获取更多关于“三角形的特性的教案”的信息。以下是本文提供的一些参考信息,请您参考。教案和课件都是老师需要仔细准备的,需要老师自己花时间完成。教案是教师教学评估的参考依据。

三角形的特性的教案 篇1

一、说教材

新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。

二、说学情

1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与技能基础。

2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。

三、说教学目标

基于以上对教材的分析以及对学生情况的思考,我从知识与技能,过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

1、通过量一量,算一算,拼一拼,折一折的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

2、通过把三角形的内角和转化为平角进行探究实验,渗透转化的数学思想。

3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。

教学重难点:理解并掌握三角形的内角和是180度这一结论。

四、说教学准备

教具:多媒体课件,

学具:各类三角形、长方形、量角器、活动记录表等。

五、说教法

“三角形的内角和”一课,知识与技能目标并不难,但我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、动手操作、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时地启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。

六、说过程

本节课,我遵循“学生主动和教师指导相统一,问题主线和活动主轴相统一”的原则,制定了以下教学程序:

(一)创设情境,激发兴趣

兴趣是最好的老师。开课伊始我利用课件动态演示一只蝴蝶在把一条绳子围成不同的三角形。让学生观察在围的过程中,什么变了?什么没变?让学生在变与不变的观察与对比中,激发学生的学习兴趣,引出本节课的学习内容(板书:三角形的内角和),为后面的探索奠定基础。

设计意图:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情。

(二)动手操作,探索新知

本环节是学生获取知识、提高能力的一个重要过程。我有目的、有意识的引导学生主动参与实践活动、经历知识的形成过程。

1、揭示“内角”和“内角和”的概念

明确“内角”和“内角和”的概念是学生进一步探究内角和度数的前提,本环节首先请学生都拿出一个三角形,指一指三个内角,然后让学生谈谈自己对内角和的理解,在大家交流的基础上得出:三角形的内角和就是三个内角的度数之和。

2、猜测内角和

牛顿曾说:“没有大胆的猜想,就没有伟大的发现!”所以我放手让学生猜测三角形内角和的度数,由于绝大多数学生有课外知识的积累,不难说出三角形的内角和是180度,但猜想并不等于结论,三角形的内角和到底是不是180度?(板书:?)还要进一步的验证。猜想——验证是学生探究数学的有效途径。

3、动手验证,汇报交流

(1)介绍学具筐

由教师介绍学具筐中都有什么学习材料。

(2)生独立思考、动手操作

因为合作交流应建立在独立思考的基础上,所以先让学生独立思考:打算选用什么材料,怎样来验证三角形的内角和是不是180°。然后再让学生把想法付诸实践。此环节会留给学生充分的思考、操作、发现的时间,让学生在探索中找到证明的切入点,体验成功。在这期间,教师走下讲台,参与学生的活动,与学生一起寻找验证的方法,对有困难的学生提供帮助,不放弃任何一个学生。JK251.com

(3)组内交流

经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。

(4)全班汇报交流。

在足够的交流之后,开始进入全班汇报展示过程,达到智慧共享的目的。

三角形的特性的教案 篇2

各位老师,下午好:

今天我要给大家呈现的是人教版四年级上册《三角形的特性》。

平面图形的特征是小学阶段“空间与图形”的重要内容。对于三角形,同学们头脑中的感性认识比较充分,却缺少抽象与概括的数学化过程。这节课的教学流程分为四个环节,下面我重点展示一、二两个环节。

首先请大家和我一起走进生活中的图形世界。(幻4)

(欣赏过后)让我们一起来找寻其中的数学平面图形。

几位同学慧眼识图,可是你知道什么是三角形吗?三角形又有哪些特征呢?下面以小组为单位,利用手中三角形学具一起来研究。

(视频1)说:小组成员们讨论得热火朝天,让我们听听他们有了哪些发现。(视频继续中)

一起来看两种意见:(围成和组成)

同学们各抒己见,不妨辩论辩论。这位组长认为围成的是封闭图形,而组成的可能是这样的图形。现在意见统一了吗?

(幻8)看来,三条线段围成了三角形,于是三角形有了三条边,三个角,三个顶点,也有了一个名字△ABC。

我们认识了平行四边形的高,三角形的高在哪里呢?刚才有同学认为三角形只有一条高,是否正确呢?请大家在练习本上画出三角形的一条高,一位同学来前面画。请刘颖同学说一说她画高的过程。(视频2)

再来看大家画的三角形的高(幻)有什么想说的?

有的同学认为。

来看同学们画另外两条高的情况。

三角板旋转方向,直角边和另一条底边重合,底边所对的顶点和三角板另一条直角边重合,得到第二条高。

在画第三条高的时候,一位同学出现了下面的情况:三角板太小了!于是他急中生智,借助直尺来帮忙,画出了三角形的第三条高。

像这样三个角是锐角的三角形三条高在三角形内且交于一点。

大家来找一找有一个角是直角的三角形三条高的位置。除了三角形内的一条高,另外的两条高在哪里呢?原来它的两条直角边分别是它的两条高。(再变成钝角三角形)

让我们一起走进生活中的三角形。①建筑物和交通工具上有三角形。②③④

同学们猜想这些都是因为三角形具有稳定性,我们利用手中的学具来验证:用小棒拼成了三角形和平行四边形,拉动三角形,纹丝不动,再拉动四边形,形状变了。由此我们确定了三角形具有稳定性。

三角形为什么不容易变形而具有稳定性呢?

变化三角形三条边的位置,三角形的形状、大小并没有改变,再来变化,依然没有改变。原来三角形的稳定性是因为它三条边的长度确定了,它的形状和大小就完全确定了。而四边形的形状和大小并不能确定,所以容易变形。

以上就是我对这一课的重点环节、整合环节的介绍。谢谢大家!

三角形的特性的教案 篇3

一、说教材

《认识三角形》是苏教版四年级下册上的内容,在此之前,学生已经学习了角,初步认识了三角形,但对三角形的三边关系未曾探索,本课将引导学生探究三角形的三边关系,理解任意二边之和大于第三边。教材给我们提供2个例子,例题1提供场景图让学生观察,并找出其中的三角形;再联系日常生活说说还在哪里看到三角形。通过找和说唤起学生对三角形初步认识的回忆,从整体上初步感知三角形。例题2让学生任意选三根小棒围一个三角形,在此活动基础上我增加了让学生找出第三边的长度范围,这样使学生知道三角形第三边的长度是有一定范围的,更容易发现三角形任意两边之和大于第三边。最后教材还安排"想想做做",让学生及时巩固所学的知识。所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索规律等方面发展学生的思维和解决实际问题的能力,同时也为学习其他平面图形和立体图形积累知识经验。

三角形的特性的教案 篇4

一、说教材

(一)教材分析

《三角形的特性》是人教课标版小学数学第八册第五单元的内容,三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导有关的性质。因此,三角形的认识是学平面图形知识的起点,也为学平面几何、立体几何打下基础。

本节课是在学生已经学习了线段、角和直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。

(二)教学目标

根据本节课在教材中的地位和作用,依据新课程标准的基本理念和学生的认知水平,我拟定了以下教学目标:

1、知识目标:理解三角形的定义,掌握三角形特征和特性,并会给三角形画高。

2、能力目标:学会通过观察、操作、分析和概括去获得的学习方法,体验数学与生活的联系,培养学生的观察、分析、操作的能力,进一步发展空间观念。

3、情感目标:在小组合作、探究与交流的过程中,增强学生创新意识和团结协助的精神。

(三)教学重点、难点

教学重点:理解三角形的定义,掌握三角形的特征。

教学难点:给三角形确定高和画高。

二、说教法、学法

1、说教法

本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。先创设情境激发学生的学习兴趣,然后让学生自学课本,独立探索,再让学生操作实践,合作交流,从而达到概念的自主建构;在整个教学过程中充分体现了以学生为主体,教师为主导的教学思想,让学生在活动中感受数学之美。

2、说学法

根据本节课的教学目标和教法,我主要采用独立探索、合作交流、实践操作相结合的学习方法,让学生通过动脑、动口、动手来亲身经历“做数学”的过程,真正理解和掌握基本的数学知识和技能,获得广泛的数学活动经验,建立学习成就感和信心,使学生成为数学学习的主人。

三、说教学过程,设计意图

这节课的教学过程,我是本着新课标的精神,在整个教学流程设计上力求充分体现“以学生为主体”、“以学生发展为本”的教育理念,我将教学思路拟定为“创设情境、诱发兴趣——合作交流、探索新知——深化训练,拓展延伸——质疑反思,总结评价”,努力构建探索型的和谐课堂教学模式。

1、生活实际出发,引出课题。

教师拿出三角板,流动红旗,问学生是什么图形,然后让学生说出生活中有哪些三角形。教师说明数学与生活有密切的联系,我们用数学的眼光发现问题。根据学生的年龄特点和心理特征。从生活实际出发,引起学生的兴趣。

这样一来,既打通了数学与生活间的无形屏障,又引发学生强烈的兴奋感和亲切感,营造积极向上的学习氛围,让学生在欢松的心情投入到学习当中。问题的悬念,有利于提高学生的学习热情,使学生产生强烈的求知欲望。

2、合作交流,探索新知

A:三角形的定义

师:这里主要是回顾学生对三角形原有的认识,起到一个温故而知新的效果。同时,教师及时给予学生鼓励和表扬,这样也可以激发学生、提高学生的学习的积极性。

B:认识三角形的特征

先让学生自学书本第81页的内容,并画出三角形的各个部分的名称,再请学生小组合作交流,拿出并指着自己的三角板向同伴说出三角形各部分的名称。

C:三角形的高的画法

请学生自学书本第81页的内容,理解三角形的高和底的定义。并在此基础上调动学生已有的知识经验,先让学生在小组内合作探索尝试画高;然后,教师示范讲解三角形的高的画法;最后出示练习,让学生作出正确的判断。这是在学生已学会了画平行四边形的高的基础上进行教学的。通过自学并调动学生原有的经验去独立思考、去逐步探索,让学生在获取数学知识的过程中体验到成功的喜悦,感受数学的乐趣,增强学生学习数学的信心,并通过练习,使学生对高有一个整体的认识,从而突破这节课的重难点。

D:三角形的稳定性

利用做游戏来说明:三角形具有稳定性。

这里主要是利用游戏,引起孩子的兴趣,达到寓教于乐的目的。

3、深化训练,拓展延伸

生活中的三角形。

第一、做生活的小能手,老师的椅子总是摇晃不稳,谁能帮老师修理一下,怎样才能更坚固呢?

第二、围篱笆。“哪种方法更牢固,为什么?”

通过这些有序而多样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的能力,有趣的数学在学生们的积极主动的探索中显得更有味道。

四、说板书设计

本节课的板书比较简洁,突出重点,体现本课时的内在联系,更进一步加深了学生对三角形的特征和特性的认识。

三角形的特性的教案 篇5

一、教学指导思想

依据新课标的教学理念,我以一切立足于学生的学,一切有利于学生的学,一切为了学生的学,一切促进学生的学为目的。努力营造民主、快乐、宽松、和谐的课堂氛围,张扬学生的个性,鼓励学生敢想、敢问、敢说、敢做。在整个教学过程中充分体现以学生为主体,教师为主导的教学思想,让学生在愉悦的氛围下获取知识,在活动中感受数学之美。

二、教材分析

三角形是平面图形中最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导有关的性质。因此,三角形的特性是学习图形知识的起点,也为学习几何、立体几何打下基础。

三、学情分析

在此之前,学生已经直观的认识了三角形,并且认识了平行四边形、梯形的底和高,正确画出已知底边上的高对学生来说难度较大,也是本节课的教学难点。还有学生对三角形的稳定性还停留在表面,还不能从数学的角度来认识。

四、说教学目标

1、通过动手操作和观察比较,使学生理解三角形的意义,知道三角形高和底的含义,会画三角形的高。

2、通过实验,使学生认识三角形的稳定性,体验数学在生活中的应用价值,培养学生的应用意识。

3、经历观察、比较、分析和操作的过程,体验数学与生活的联系,感受数学之美。

教学重点:三角形的意义和三角形的高

教学难点:三角形的高

五、教法和学法

1、教法

根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,先创设情境激发学生的学习兴趣,然后让学生独立探索,合作交流,再自学课本,操作实践,达到概念的自主建构;

2、学法

为了完成教学目标,我主要采用独立探索、合作交流、实践操作相结合的学习方法,让学生通过动脑、动口、动手来亲身经历“做数学”的过程,真正理解和掌握基本的数学知识和技能。

六、教学过程

本节课我设计了以下三个环节:

(一)、理解三角形的意义和特征

1、创设情境,导入新课

出示一些漂亮的图片,让学习在欣赏图片的同时找出图片中共有的平面图形——三角形。

揭示课题:这节课我们就来进一步认识三角形。(板书:三角形的特性)

2、认识意义和特征

出示:

(1)画一个你喜欢的三角形,想一想三角形有几条边?几个角?几个顶点?并相应的标在你画的三角形上。

(2)判断:你认为下列图形中哪些是三角形请用“√”标记

(3)结合画三角形和判断三角形的过程,你认为什么样的图形叫做三角形?

要求学生独立完成后小组交流。

学生汇报:

第一个问题:三角形有三条边,三个角,三个顶点。

第二个问题:图1、5、6、8都是三角形。

第三个问题学生的回答可能有下面几种情况:

在汇报的过程中互相判断,我适时的用反例来加以说明,引导学生在争论中逐步形成对三角形的正确认识,得出:由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。再让学生根据三角形的意义来解释判断题中没选中的图形为什么不是三角形,从而加深对三角形意义的理解。

3、用字母表示三角形

告诉学生为了表达方便,可以用字母分别表示三角形的三个顶点,用A、B、C表示这个三角形的三个顶点,这个三角形就可以表示成三角形ABC。(同时板书三角形ABC。)让学生选择三个字母表示出自己画的三角形,培养学生的符号感。

(二)认识三角形的高

1、情境引入。

出示两幅动物别墅的图片,让学生判断哪幅是长颈鹿的?哪幅是山羊的?并说明理由。学生会说出高的房子是长颈鹿的,因为长颈鹿长的高,再让学生指出房子的高是指哪部分?使学生对三角形的高有一个初步的感知,接着出示三幅图,让学生判断哪幅把房子的高(也就是三角形的高)表示出来了,让学生直观的感受三角形的高。

2、自学定义

让学生自学书上高的意义,使学生对三角形的高有一个初步的认识,然后用定义上的重点词解释为什么后两幅图都不是三角形的高,使学生加深对概念理解。

3、学习画高。

学生已经有了平行四边形高的基础,让学生尝试画高,指名学生版演并讲解画高的方法。学生可能从不同的顶点画出三角形的高,甚至有的同学可以画出三条高,收集学生不同类型的画法,让学生评价。我再此环节中让学生学会用定义来判断,再争论中让学生知道三角形有三条高并学会画高的方法。

4、巩固练习。

出示三个三角形,让学生选择一个三角形画出已知底边上的高。由每个学生画出一种三角形指定底边上的高,到小组和全班的交流。使每个学生都能掌握不同类型三角形指定底边上高的画法。突破教学的重点和难点。

(三)认识三角形的稳定性。

1、比赛引入、激发兴趣。

让两个学生分别拉平行四边形和三角形(规则:谁能把图形拉变形谁就胜利),宣布拉平行四边形的同学获胜。

2、深入研究、探索特性。

问学生为什么三角形具有稳定性呢?学生的理由可能是

(1)、三角形拉不动。

(2)、三角形很牢固不易变形……

这是学生表层的理解,然后通过实验来说明问题,我拿出一个三角形,让学生拿出三根小棒(三根小棒的长度和我手中三角形三边的长度是相同的)摆三角形。学生会发现,无论怎样摆,摆出的三角形和我手中的三角形的形状和大小是完全相同的。

3、认识特性,体会应用。

只要三角形三边的长度确定后,三角形的形状和大小就完全确定,这个性质叫做三角形的稳定性。告诉学生四边形以及四边形以上的多边形都不具备稳定性,实现知识的拓展。

出示图片体会应用。

(四)交流收获,全课总结。

让学生谈这节课的收获,告诉学生关于三角形的知识远不止这些,随着我们学习的不断深入,收获会更多。

Jk251.coM编辑推荐

相似三角形


教学建议

知识结构

本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理

重难点分析

的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.

教法建议

1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念

2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念

3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识

4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解

5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解

6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

教学设计示例

一、教学目标

1.使学生理解并掌握的概念,理解相似比的概念.

2.使学生掌握预备定理,并了解它的承上启下的作用.

3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.

4.通过学习,培养由特殊到一般的唯物辩证法观点.

二、教学设计

类比学习、探索发现.

三、重点、难点

1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.

2.教学难点:是相似比的概念及找对应边.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

【复习提问】

1.什么叫做全等三角形?它在形状上、大小上有何特征?

2.两个全等三角形的对应也和对应角有什么关系?

【讲解新课】

1.

的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.

定义:对应角相等,对应边成比例的三角形,叫做

符号“∽”,读作:“相似于”,记作:∽,如图所示.

∴∽

反之亦然.即对应角相等,对应边成比例(性质).

∵∽,

另外,具有传递性(性质).

注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.

思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?

(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?

2.相似比的概念

对应边的比K,叫做相似比(或相似系数).

注:①两个的相似比具有顺序性.

如果与的相似比是K,那么与的相似比是.

②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.

3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∽,如图所示.

教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:

(1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.

(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成BC截两边所得,其中,本质上与右图是一致的.

(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现的错误,如出现错误,教师要及时予以纠正.

(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.

【小结】

1.本节学习了的概念.

2.正确理解相似比的概念,为以后学习的性质打下基础.

3.重点学习了预备定理及注意的问题.

七、布置作业

教材P238中2,3.

八、板书设计

等边三角形的教案精华


每位教师必须在上课前准备好自己的教案和课件,如果还没有准备好的老师就要尽快完成。教案是教育改革的必要结果。我们编辑了“等边三角形的教案”以更好地满足您的需求,我们将积极开拓您的思路和思维模式!

等边三角形的教案 篇1

活动目标:

1、引导幼儿在探索操作活动中,初步感知三角形,知道其名称和形状特征;

2、培养幼儿的动手操作能力,发展幼儿思维的灵活性;

3、初步培养幼儿的创新意识和实践能力。

活动准备:

1、长短不同的小棒若干,总数是幼儿人数的6倍;

2、三角形卡片若干;

小房子、小旗子等三角形实物若干;

铅笔、橡皮、剪刀每人一份。

活动过程:

一、探索操作

1、在正方形拼图的.基础上,请幼儿任意拿3根小棒拼摆图形。幼儿探索活动,教师指导。

2、请个幼儿说一说,摆得什么样的图形,用了几根小棒,有几个角;

角;

小结:有3个角的图形叫三角形。丰富词汇:三角形。

二、探索感知

几个角?

2、出示各种不同的三角形,引导幼儿观察其不同点,相同点。

不同点:有的大、有的小、有的角尖、有的角大……

相同点:都有3条边。

3 个角的图形都是三角形。

三、找一找、想一想、说一说

红领巾)。

说一说,见过的象三角形的物体

四、做一做、试一试剪裁三角形并拼图

撕、画等),培养幼儿的创新意识

2、鼓励幼儿用剪出的三角形拼出自己喜爱的动物或物品的形象。

等边三角形的教案 篇2

教学难点:

帮助学生认识到为什么要“÷2”

我们已经学习过哪些平面图形的面积计算?请你用字母公式来说一说。

能说说这些公式是分别用什么方法得到的呢?

[复习中的这两问,第一个问题是帮助学生回忆相关的知识基础,这是学习新知的一个重要前提。后一问,主要是从学习方法上考虑的。数面积单位的方块数或是用等积变形,这两种方法将是我们这课学习三角形面积计算的重要方法。

将刚才复习中的三种图形,利用课件的演示,添上一条对角线。

S 表示三角形的面积, a和h分别表示三角形的底和高,谁能用字母来表示上面的公式?

3、学生在小组交流的时候,可能会有不同的意见,比如就只用一个三角形,通过剪、拼,也可以得到一个平行四边形。如图:

这个三角形的面积就等于平行四边形的面积。平行四边形的底就是三角形的底,平行四边形的高是三角形高的一半,所以平行四边形的面积=底×(高÷2)

4、学生阅读第16页的“你知道吗?”,通过阅读,再与上面的方法做一比较。

师:这几种方法都正确地算出了三角形的面积。它们之间有什么相同的地方呢?

1、完成“练一练”

电脑分别演示这两题。在交流答案的时候,引导学生说清楚什么时候要“×2”,什么时候要“÷2”,为什么?以进一步加深对三角形面积公式与平行四边形面积公式之间联系的理解。

继续完成p.17想想做做的第1题。

2、完成“试一试”,算出这块三角形交通标志牌的面积。

在交流的时候,要给学生正确解答这类题书写格式的示范,培养学生规范地应用计算公式完成练习。

指名板演,讲评的时候注意发现学生练习中的问题。比如书写的格式、计算中的.问题、“÷2”的遗漏、单位名称等,都要一一指出并纠正。

一个特例:第一张图画的是一个直角三角形,它的一组直角边就分别是它的底和高。

3、画一画,比一比:在方格图上画出面积是6平方厘米的三角形,你能有几种画法?

比如:

汇总学生的各种画法之后,指名说说自己在画的时候是怎么想的?通过交流,使学生进一步认识到“6平方厘米”先要考虑“12平方厘米”(对应的平行四边形面积),进而考虑只要底和高相乘得“12”就可以了;这样画出的三角形虽然形状各不相同,但面积都是6平方厘米。

四、全课总结:

这节课我们学习的是三角形面积的计算,说说你知道了哪些具体的知识?怎么得到这些知识的?

等边三角形的教案 篇3

教学目标:

1、通过动手操作和观察比较,学生认识三角形,知道三角形的特征。

2、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。

3、体验数学与生活的联系,培养学生学习数学的兴趣。

教学重点:

掌握三角形的特征。

教学难点:

理解三角形的概念。

教学关键:

要联系生活实际,让学生在充分感知的基础上抽象出三角形的图形,从而认识三角形的特征。

教学过程:

一、创设情境,观察发现。

1、请同学们仔细观察这几幅图,有没有我们学过的数学知识?(或你发现了什么?)

2、说一说生活中你还见到了那些物体中有三角形?

3、三角形在生活中有着广泛的应用,这节课就让我们一起走进三角形,来研究有关三角形的知识。(板书课题:三角形的认识)

二、合作交流,探究体验。

1、你能用彩笔在A4纸上画一个三角形吗?(老师在黑板上画出1个三角形)

2、小组内的同学观察你们画的三角形,都有什么共同点?

3、全班交流:(老师板书:三条线段、三个角、三个顶点。)

4、你能用自己的话说一说什么是三角形吗?(当学生说由3条线段组成的图形叫三角形时,课件:图1是三角形吗?图4是三角形吗?理解围成)

5、揭示三角形的概念。(板书:由三条线段围成的图形叫做三角形。)

6、老师介绍三角形各部分名称,在黑板上标出(边、顶点、角)。

7、介绍三角形的三个顶点可以用字母A、B、C表示,三角形就表示为三角形ABC。

三、反思总结,自我建构

这节课你有什么收获?师:这节课我们一起研究了三角形,知道了三角形有三条线段、有三个顶点、有三个角;还知道由三条线段围成的图形叫做三角形;了解了三角形各部分的名称。

这节课我们就研究到这儿,同学们,再见!

等边三角形的教案 篇4

本课教学设计思路:唤起内驱,激发兴趣,让学生享受自由呼吸的课堂,感受三角形的特点引发思考。感知三角形的本质属性并表达出来。体会三角形的高和底的相互依存性。

本课教学内容是人教版小学数学四年级下册第五单元第一课时内容,是本单元的起始部分,也是三角形认识的第二学段,内容包括三角形各部分的名称,三角形的特征、定义、高和底的含义,三角形是平面图形中最简单最基本的多边形,学好本课将会为以后学习习近平面几何、立体几何打下基础。

数学课标解读中说:图形与几何的学习有助于学生更好地认识和理解人类的生存空间;有助于培养学生的创新精神;初步发展空间观念,学会推理;有助于学生全面、持续、和谐的发展。所以在教学时我善于强调现实背景,联系生活经验和活动经验,经常运用观察、操作、推理想象(猜想)、作图设计等手段。培养学生的符号意识,和应用意识。

1、知识与能力:联系实际和利用生活经验,通过观察、操作、测量、联想等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形的底和高的相互依存的关系。

2、方法与途径:在认识三角形的基本特征及底和高的活动中,体会认识多边形特征的基本方法,发展观察能力和比较、抽象、概括等思维能力。

3、情感与评价:认识到三角形是日常生活中的常见图形,在学习活动中进一步产生学习图形的兴趣和积极性。

教学重点:认识三角形的基本特征,认识三角形的底和高。

教学难点:懂得底和高的对应关系,会画三角形指定边上的高。

一、猜谜引入,激发兴趣。

四条边一样长,四个角一样大,方方正正什么形?

没有角,像个车轮转转转,像个钟面圆又圆什么形?

三个角尖尖的,三条边直直的,三角三边紧相连什么形?

揭示:同学们都有一双善于发现的眼睛,看来三角形在我们的生活中无处不在,今天这节课就让我们一起走进三角形的世界,来认识三角形。(板书课题《三角形的认识》)

1、激趣:想动手做一个三角形吗?首先,我们要明确活动要求。

出示要求:(1)用你手中的学习材料,做出一个三角形。

(2)小组成员比较所做的三角形,看看有什么共同点。

3.交流:指名某组代表上台介绍,别的小组补充。(材料:小棒、三角尺、方格纸、点子图、白纸)

4、画:闭上眼睛想一想你心目中的三角形是什么样子的,画在展评单上。

5、概括特征:

观察比较:刚才我们一起完成的三角形做法不同,材料不同,大小各异,但是它们是具有共同特征的,你发现了吗?

7、感受围成:以小组为单位选择自己的伙伴感受围城是什么意思?

拓展延伸:由4条线段围成的图形叫什么形?五条线段围成的图形呢?由几条线段围成的图形是6边形?我们利用这样的方式就可以认识更多的多边形。

自学课本66页,同伴交流,组内探讨,完成展评单上的活动二,比一比,哪组同学最会学习。

1、从三角形的一个到它的作一条垂线,顶点到垂足间的线段叫做三角形的高,这条对边叫做三角形的.

交流小结:在直角三角形中,把一条直角边看作三角形的底,另外一条直角边就是这个三角形的高。

三、巩固练习、闯关游戏。

完成检测反馈。

四、再现知识,总结评价。

师:这节课你有什么收获,对于三角形的知识,你还有那些问题和疑惑?

这节课我们明确了三角形的特征:三个角、三条边和三个顶点,知道了高是从顶点出发画出来的,研究了顶点的特性,下节课我们还要继续探究三角形的其他奥秘。

等边三角形的教案 篇5

相似三角形的判定课件


相似三角形是高中数学中的重要内容之一,它有着广泛的应用领域,比如地理测量、建筑设计等。为了帮助学生更好地理解相似三角形的判定条件和方法,特别准备了这份相似三角形的判定课件。在本课件中,将详细介绍相似三角形的判定方法,并通过生动的例子和图像,帮助学生深入理解和掌握这一知识点。


课件的第一部分主要介绍相似三角形的定义与性质。会通过简单明了的语言和生动的图例,解释相似三角形的定义以及相似三角形的性质。学生可以通过观察图形和运用已有的知识,理解相似三角形的概念。


课件的第二部分是相似三角形的判定方法。在这一部分中,将介绍两种常用的相似三角形判定方法:AAA相似判定和AA相似判定。对于AAA相似判定,会通过图例说明,当两个三角形的对应角度相等时,它们是相似的。对于AA相似判定,会介绍当两个三角形的两个对应角度相等,并且它们的对应边成比例时,它们是相似的。通过这些判定方法,学生可以在实际运用中准确判断两个三角形是否相似。


课件的第三部分是相似三角形的实际应用。这一部分将通过地理测量的例子,以及建筑设计的例子,展示相似三角形的实际应用。学生可以通过实际的例子,了解相似三角形在生活和工作中的实际意义,并加深对相似三角形的理解和记忆。


课件的第四部分是练习与总结。将设计一些练习题,供学生巩固所学的知识,并在最后总结本课件的内容。通过实际操作和练习,学生可以进一步掌握相似三角形的判定方法,并且能够灵活运用于解决实际问题。


这份相似三角形的判定课件旨在提供一个生动、简洁、易懂的学习资料,帮助学生更好地理解和掌握相似三角形的判定方法。相信通过这份课件的学习,学生将能够在今后的学习和实践中灵活运用所学的知识,解决实际的问题。同时,也鼓励学生在学会基本的判定方法后,通过自主学习和思考,进一步拓展和应用相似三角形的知识。


通过本课件的学习,相信学生将能够深入理解相似三角形的判定方法,并且能够运用于实际问题的解决。希望这份相似三角形的判定课件能够成为学生学习的助力,帮助他们在数学学习中取得更好的成绩,并在未来的学习和生活中能够灵活应用所学的知识。

等边三角形的教案 篇6

三角形外角课件

一、引言

在初中数学的学习中,我们经常会接触到不同的几何形状,其中三角形是非常基础的几何形状之一。在研究三角形的性质时,我们会遇到一个重要的概念,即三角形的外角。本文将详细介绍三角形外角的定义、性质以及其在解题中的应用。

二、三角形外角的定义

三角形外角指的是三角形的一个角与其邻接边的补角之差。通过这个定义,我们可以得到一个非常重要的结论:三角形的三个外角的和恒等于360°。

三、三角形外角的性质

1. 外角的度数之和恒等于360°:这是外角的最重要的性质。无论是什么样的三角形,无论边的长度和角的大小如何变化,三个外角的度数之和始终等于360°。

2. 外角与内角的关系:三角形的外角与其对应的内角之和恒等于180°。这是由于外角与内角是互补角,所以它们的度数之和等于180°。

3. 外角的大小关系:当一个三角形的两个外角的度数已知时,第三个外角的度数可以通过360°减去两个已知外角的度数来得到。

四、三角形外角的应用

三角形外角的概念在解题中有着非常广泛的应用。以下是几个常见的例子:

1. 证明三角形是等腰三角形:如果一个三角形的两个外角的度数相等,则可以推断该三角形是等腰三角形。这是因为等角的外角相等。

2. 寻找缺失的角度:在已知三角形中,如果两个外角的度数已知,可以通过360°减去两个已知的外角的度数来找到第三个角的度数。

3. 解三角形的问题:根据三角形外角的性质,我们可以通过求解外角的度数来得到未知的角度,从而解决一些三角形的问题。

五、结语

通过对三角形外角的仔细观察和研究,我们可以更好地理解三角形的性质,并且能够灵活地运用这些性质来解决与三角形相关的问题。通过课件的学习,我们可以更加直观地了解外角的概念以及其在解题中的应用,从而提高我们的数学能力和解决问题的能力。希望这篇文章对你在学习三角形外角的过程中有所帮助!

等边三角形的教案 篇7

★教材与学情分析

《三角形的内角和》是人教版四年级下册的教学内容,这一内容是三角形的一个重要性质。它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。经过第一学段以及本单元的学习,学生已具备了一些相应的三角形知识和技能,初步的动手操作能力、主动探究能力以及合作学习的习惯,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。

★教学目标、重难点

以建构主义理论以及有效教学的理念为指导,结合对教材的认识以及学生的情况分析我将本节课的教学目标定为下列几点:

1、知识与技能目标:通过量、剪、拼等活动发现、验证三角形的内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、过程与方法目标:通过对三角形的内角和转化为平角的探究与体验,渗透“转化”、“变中找不变”的数学思想。

3、情感与态度目标:体验成功的喜悦,激发主动学习数学的兴趣。

教学重点:经历“三角形的内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:验证“三角形的内角和是180°”以及对这一知识规律的灵活运用。

学具准备:量角器、三角尺、剪刀和准备一个喜欢的三角形(可以画在纸上,也可以剪下来)

★教学环节

下面向大家重点介绍我对这节课教学环节的设计:

建构主义理论学习观提倡以学生为中心,强调学习者对知识意义的主动建构。本节课我设计采用支架式教学方法,以猜想→验证→应用→评价四个活动环节为主线,引导学生通过自主探究学习实现对“三角形内角和是180°”这一知识规律的数学理解。同时,每一个活动环节都让学生尝试扮演一种角色,激发他们投入课堂活动的兴趣。

一.大胆设疑,提出猜想(猜想家)

在这节课之前,有不少学生通过各种渠道了解了三角形的内角和是180°。因此,第一个环节我就让学生根据已有的知识经验进行大胆设疑,提出猜想,做一个猜想家。

首先,我向学生出示一个长方形,向学生讲解长方形的四个内角,从长方形的角的特征可知它的四个内角都是直角,将这四个内角的度数相加就算出长方形的内角和是360°。接着,我把长方形拆成两个三角形,让学生指出其中一个三角形的三个内角,设问:这个三角形的三个内角和是多少?让学生说说各自的看法和理由,并提出“三角形的内角和是180°”的猜想。通过这一环节,学生首先获得对“三角形内角和是什么”这一陈述性知识的数学理解。

二、科学验证,探索规律(科学家)

有了大胆的猜想,就要进行科学的验证,第二个角色就是扮演科学家,对刚才的猜想进行科学验证,自主探索规律,这也就是本节课的第二个环节。

第二个环节的活动步骤如下:

(1)提供实验活动需要操作的工具,如:量角器、三角尺、剪刀等,让学生说说:“要知道三角形的内角和,怎样利用好这些工具?”

(2)明确提出操作要求:先在自己准备的三角形上作好内角的符号,选择合适的工具开展实验,遇到操作困难可以与同伴商量或请老师帮助解决。

(3)学生操作后在小组内交流,出示交流提纲:

A、通过实验操作,你发现三角形的内角和有什么特点?你是怎样发现的?

B、你认为三角形的内角和与三角形的大小、形状有关吗?为什么?

(4)集体交流,小结规律:

在组织学生交流实验的过程与成果时,我会挑选出研究不同形状或不同大小的三角形的学生进行实验汇报,并在学生提出疑问时进行合理的解释与调控,最后与学生一起小结归纳出:“三角形的内角和是180°,而且与它的大小、形状无关”这一数学规律,从中感悟由特殊到一般的证明方法。

建构主义心理学认为,学习的过程是学习者用自己的观点去解读教材的内容,从而在自己头脑中建构出一个新的概念。在第二个环节,学生通过动手实验,用自己适用的方式将“三角形内角和是180°”这一知识规律建构起来,也就是获得了对“三角形内角和是多少、为什么”这些程序性知识的数学理解。

三、联系生活,实践应用(实践家)

俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。有效教学理论指出练习要考虑它的实效性。在这个环节,我设计让学生扮演实践家,通过三个有层次有针对性的练习实践把探索得出的知识应用于生活问题之中。

第一,基本运用。即书本中的“做一做”这个练习,通过这个练习让学生形成运用三角形内角和的知识求出未知角度数的基本技能。我设计让学生先尝试独立完成,在汇报交流时,鼓励学生注意倾听、领会同伴的解法,从而反思自己解法。

第二,综合运用。即书本中练习十四的第9题,这道题目的是让学生在求特殊三角形的未知角的度数的过程中,综合运用之前所学的各种三角形的特征与三角形内角和的知识,对知识的运用提高了一个层次。因此做这道题时,我会先引导学生说说自己的看法,找出特殊三角形中隐藏的已知条件。我估计学生可能会混淆了等腰三角形的顶角和底角,因此在汇报交流时重点放在等腰三角形这个图形的求解,让学生首先明确已知的是顶角的度数,因此从180°中减去顶角的度数,再平分成两份,才能得出一个底角的度数。这时,我再提出一个反例,如果知道的是底角的度数,你能求出顶角是多少度吗?以此引出练习十四的第10题。

第三,拓展延伸。我设计了将一个大三角形拆分成两个小三角形,其中一个三角形的内角和是不是用180°除以2得到?然后再出示两个三角形拼成一个大三角形,这个大三角形的内角和是不是用180°乘2得到?以这样的一个变式练习让学生进一步感悟“三角形的内角和与它的形状、大小没有关系”的知识规律。

通过三个层次的练习,学生应用“三角形内角和是180°”这个知识规律回到现实问题中,用自己的思维方式对各种现实问题进行解释,这是学生不断完善对三角形内角和知识的内涵与外延的数学理解,实现了对数学理解的提升。

四、自我反思,评价延伸

在这个环节,我会让学生自己说说:“这节课你有什么收获?”“在扮演三个角色时,哪一个角色完成得最好,为什么?”“在今后的课堂活动中哪方面可以做得更好?”对学生的各种自我评价,同伴和老师都可以发表自己的看法,让学生发现、总结开展本次课堂活动的经验与不足,明确今后努力的方向。

★教学特色

一、渗透数学思想

通过探究活动,学生将三个内角和转化为一个平角,得出三角形的内角和是180°,渗透了“转化”的数学思想;通过实验小结,学生发现无论三角形的形状、大小怎样变,三角形的内角和不变,都是180°,渗透了“变中找不变”的数学思想。

二、利用课程资源

1、挖掘学生资源

有效教学有时需要教师保持“无为而教”的自我克制,不过多地干扰学生的自由学习空间。在设计这节课时,我利用学生已有的知识经验,对三角形的内角和进行猜想,然后通过大胆的实验激起同伴之间的互相影响,作为教师,我更多的是为学生提供大量的课程资源,唤醒和激励学生亲自去接触、体验知识和规律的产生过程。

2、善用教材资源

新课标数学实验教材倡导人人学“有用”的数学,它把原教材繁、难、杂、偏的内容删去。因此,我在设计练习巩固时,不作无谓的浪费,直接使用教材中习题,作为基础性练习和综合性练习。考虑学生学习基础、能力的差异,在练习的最后一层拓展性练习,我利用三角形的拆分与组合为学生提供多层次的思考,以满足不同层次学生均发展的`需要,让人人都获得不同程度的提高,得到成功的体验。

等边三角形的教案 篇8

学习目标:

1.能用不同的方法探索并了解三角形3个内角之间的关系;;

2.会利用三角形的内角和定理解决问题;

3.知道直角三角形的两个锐角互余的关系;

4.通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力。

学习重点:

三角形的内角和定理

学习难点:

三角形内角和定理推理和应用

教学过程:

一、情境创设,感悟新知

1、三角形蓝和三角形红见面了,蓝炫耀的说:“我的面积比你大,所以我的内角和也比你大!”

红不服气的说:“那可不好说噢,你自己量量看!”

蓝用量角器量了量自己和红,就不再说话了!

同学们,你们知道其中的道理吗?

三角形三个内角的和等于180°

2、你有什么方法可以验证呢?

方法一:度量法.

方法二:剪拼法.

3、你还有其他说明方法吗?

二、探索规律,揭示新知

1、议一议:如图,3根木条相交得∠1、∠2.若a∥b,则∠1+∠2=.

理由:.

2、操作:把木条a绕点A转动,使它与木条b相交于点C.根据图形,你能说明“三角形3个内角的和等于1800”的.理由吗?

3、说理:(补充说明:也可以转化为平角进行说明。)

4、方法小结:在这里,为了说明的需要,在原来的图形上添画的线叫做辅助线。在平面几何里,辅助线通常画成虚线。

5、你还有其他方法说明“三角形3个内角的和等于1800”吗?

6、思路总结:为了说明三个角的和为1800,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用思想方法.

三、尝试反馈,领悟新知

例1:如图,AC、BD相交于点O,∠A与∠B的和等于∠C与∠D的和吗?为什么?

例2.如右图,在△ABC中,∠A=3∠C,∠B=2∠C求三个内角的度数。

若将条件改为∠A:∠B:∠C=2:3:4,又如何解呢?

四、拓展延伸,运用新知

1、随堂练习

2.结论:直角三角形的两个锐角互余.

3、巩固练习:

①、△ABC中,若∠A+∠B=∠C,则△ABC是()

A、锐角三角形 B、直角三角形

C、钝角三角形 D、等腰三角形

②、在一个三角形的3个内角中,最多能有几个直角?最多能有几个钝角呢?为什么?

③、如图△ABC中,CD平分∠ACB,∠A=70度,∠B=50度,求∠BDC的度数。

五、课堂小结,内化新知

1本节课你有哪些收获?

2你还有什么疑问?

六、布置作业,巩固新知

1、必做题:

习题7.5第1、2、3、4题。

2、选做题。

如右图:试求出图中∠1+∠2+∠3的度数

七、教学寄语,拓宽课堂

老师寄语:

If you wish to learn swimming,you have to gointo the water,and if you wish to become a problem solver,you have to solve problems.

如果你想学会游泳,你必须下水;

如果你想成为解题能手,你必须解题。

等边三角形的教案 篇9

一、说教材

本节课的教学内容是人教版义务教育课程标准实验教科书小学数学五年级上册第84—87页。本节内容是在学生已充分认识三角形的特征及掌握了长方形、正方形与平行四边形面积计算的基础上进行学习的。通过对这一部分内容的学习,让学生能够正确理解并掌握三角形面积的计算公式,学会用公式解决简单的实际问题,同时加深对三角形与长方形、平行四边形之间内在联系的理解。

本课内容编排的最大特点是突破实践性、研究性,加强了学生动手操作能力的培养。让他们通过一系列的操作、研究,逐渐明白所学图形与已学图形之间的联系,达到将所学图形(三角形)转化为已学会计算面积的图形(平行四边形),从而找到三角形面积的计算方法,培养学生的创新意识与实践能力。根据新的教学理念与教材的编排特点及学生的学习需要,我制定了以下教学目标:

1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。

3、培养学生的分析、综合、抽象、概括能力和运用转化的方法解决实际问题的能力。

教学重点在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

教学难点培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

二、说教法、学法

《课程标准》明确指出:有效的数学活动不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。因此,在本课的教学过程中,我力求突破传统的以教师讲解与示范为主的教学方法,让学生广泛参与操作实践,使学生的数学能力与数学情感得到发展。

学具与教具的准备:完全相同的钝角三角形、直角三角形、锐角三角形各两个。

三、说教学过程

根据这节课所要完成的教学目标并结合农村小学课堂教学的实际情况,我制定了以下教学过程。

(一)情境导入

1。同学们,上一节课我们学习了什么图形的面积计算?(平行四边形)你还能记住求平行四边形面积的公式吗?(S=a×b)那么,这个公式是怎样推导出来的呢?这样,复习与新知识联系紧密的旧知识,唤醒学生对有关知识及其形成过程的记忆,为学习新知识做准备。

2。大家看看胸前的红领巾,知道红领巾是什么形状的吗?(三角形)如果叫你们裁一条红领巾,你知道要用多大的布吗?(求三角形面积)这节课老师就和你们一起来研究、探索这个问题,你们有兴趣吗?(揭示课题)

(以学生身边熟悉的事物来创设问题情境,体现了“数学来源于生活”的思想,激发了学生内心的求知欲望,明确了探索的目标与方向)

(二)自主探索,合作交流

1、出示直角三角形、锐角三角形和钝角三角形纸片,提问:这3个三角形分别是什么三角形?

2、探究三角形面积计算公式。

教师:我们学习过哪些求面积的方法?(数方格和转化的方法)

教师:同学们,那就用你喜欢的方法推导三角形面积公式。引导学生运用所学的方法探究三角形面积计算公式,并组织学生分组合作。

①如果是用数方格的方法,那就在方格纸上进行计算。(教师巡视,对个别学生进行指导)

②如果是用拼摆转化的方法,那请同学们拿出老师为你们准备的三角形进行计算。组织学生开展操作活动。(教师巡视,对个别学生进行指导)

(三)、探讨交流。

1、组织全班学生进行交流,说明推导公式的过程。

2、让数方格小组说明推导的公式及过程。(我们先计算出三个图形的面积,再分别量出它们的底和高,发现它们的面积都可以用底×高÷2表示。所以我们小组觉得三角形的面积公式应该是:底×高÷2

3、让转化小组说明推导的公式和过程。(我们将两个完全一样的锐角三角形拼成一个平行四边形,其中三角形的底和高分别是平行四边形的底和高,因为平行四边形的面积公式是底×高,而这个平行四边形是由两个相同的三角形拼成,所以三角形的面积公式是:底×高÷2。

钝角三角形和直角三角形的面积公式也一样。

4、在讲台上演示用两个相同三角形推导的过程,让学生进一步理解上述同学和推导思路,看清楚转化的过程。

5、引导转化小组学生总结三角形面积的计算公式,同步板书:

两个相同的三角形=一个平行四边形

平行四边形的面积公式=底×高

三角形的面积公式=底×高÷2

用字母表示公式:s=ah÷2

6、教学例题2。

(四)、巩固练习。

解答练习题"做一做"。之后教师指定学生回答,并集体订正。

(五)、全课小结

这节课探究了什么?你有什么收获?

师:本节课大家通过动手操作,小组相互讨论、交流,用“重叠、旋转、平移”

等数学方法将三角形转化成学过的图形,推导出了三角形面积的计算公式,这种“转化”的数学方法是数学研究的重要手段,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。

(六)、板书设计

三角形的面积计算

平行四边形的面积=底×高

三角形的面积=底×高÷2

S=a×h÷2

等边三角形的教案 篇10

【学习内容】

《人民教育出版社20xx教育部审定·数学》四年级下册P59—61页。

【内容分析】

认识三角形和认识三角形特性在四年级中属于较为简单的内容,主要让学生了解三角形各部分的名称。因为上个学期学生已经学过画垂线,所以给三角形画高能起到很好的迁移。

【学情分析】:

本班有学生27人,其中男生17人,女生10人。本班的每个学生都活泼可爱,有着很强的上进心和集体荣誉感。但是有一半的同学的数学基础较差,差生占50%。是本校数学成绩中等的一个班。他们不仅计算能力差,空间想象能力也差。因此为了上好本节课,我利用多媒体教学,另外我还精心制作了一些教具,来进行直观教学。以此激发学生的学习兴趣,培养学生的空间想象能力,为进一步应用几何知识解决实际问题打下基础。

【教学目标】

1、认识三角形、了解三角形的特征。

2、知道三角形各部分的名称、

3、会在三角形上画高。

【学习重点】

理解三角形的特性

【学习难点】

给三角形画高

【学习过程】

一、激趣定标

1、出示埃及金字塔的和桥的资料图。

2、你从图中发现三角形了吗?

3、展示目标:

二、自学互动+适时点拨

1、小组合作,利用学具摆三角形,上台展示。

2、出示以下三角形引导学生说出三角的定义。

3、这些三角形有什么特点?引导学生说出有三条边,三个角,三个顶点。

4、播放图片让学生欣赏生活中的三角形。

5、小组合作阅读60页,回答三个问题。

什么是三角形的'高?

怎么画三角形的高?

自己画一条三角形的高。

6、一个三角形的有多少条高、

7、生活中的三角形有什么作用?举例子

8、如何增加椅子的稳定性?

三、测评训练。

完成课文65页第一题。

等边三角形的教案 篇11

北师大版小学四年级下册

《三角形内角和》教案

指导思想与理论依据

本课教学的设计指导思想是通过教学活动,传导“学贵在思,思源于疑”的思想,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,让学生在整节课中学得轻松。在整个教学设计中,本着不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。教学理念是关注学生的元认知,引导学生自主学习,发现规律,让学生体会动手的乐趣,从中发现学生的兴趣,来指导学生的志趣发展。

教学背景分析:

教学内容:北师大版数学四年级下册27-29 页《探索与发现

(一)三角形内角和》

教材分析:《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第二单元认识图形中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索规律,概括出一般结论,即任意一个三角形,它的内角和都是180度。接着说明应用这一结论,在一个三角形中,已知两个角的度数,可以求出第三个角的度数。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作、小组合作探究,发现三角形内角和为180度。它的教学内容的核心思想体现在,通过让学生通过直观操作,通过猜想—验证—

结论的过程,来认识和体验三角形内角和的特点,在小组活动中,通量一量、拼一拼、折一折等进行猜想—验证数学的思想方法。

学情分析:

1、学生已有的知识基础:

学生已具备了角的度量,角的分类,三角形的认识,三角形的简单分类。其中知道三角形内和是180度的学生有14占全班总人数的44.4%。

由此,我把自己的学习目标设定为,让学生自己动手发现不同类型的三角形的内角和都是180度这个知识点上。

还有少部分学生知道无论是大三角形还是小三角形,他们的内角和都等于180度。有三名学生知道多边形内角和公式。

2、学生已有生活经验和学习该内容的经验:

学生具备了一定的动手操作能力,和小组的合作交流能力。

3、学生学习该内容可能的困难:

在小组合作过程中,由于中年级的孩子年龄不大,所以在动手操作过程中有的学生动作较慢;学生三角形分类没有学过,对于三角形内角和都是180度的理解会有影响;少数学生角的测量时方法还有问题(前测发现的);学生固有思想对探索活动的阻碍。

4、学生学习的兴趣、学习方式和学习方法的分析:

学生自己动手发现三角形内角和为180度,对小组合作很感兴趣。主要是利用了独立探索、合作学习、交流等学习方法,符合学生兴趣和本次课的特点。

教学目标:

1.让学生亲自动手,通过量、剪、拼、推导等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作等探究活动引导学生产生疑问再寻求方法的过程培养学生客观严谨的学习态度。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:

如何得出真实正确的结论。

教学用具:

几何图形若干:长方形、正方形、直角三角形、锐角三角形、钝角三角形、课件一套。教学过程:

一、旧知引入,渗透数学联系

1、认识内角

师: 我们已经学习了哪些平面图形?

师:关于长方形你都知道什么?

介绍内角:图形中相邻两边的夹角称为内角,长方形内角和是多少?

师:(出示一个三角形)三角形有几个内角呢?

标出我们手中的三角形的内角。

同桌互查。

2、揭示课题:三角形内角和(板书)

今天我们就来研究三角形的内角和。

【设计意图:先从已学的一些平面图形引入, 引导学生认识内角, 并从长方形的内角和切入, 引出三角形的内角和的问题。这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系。

二、自主探究,寻求规律

(一)独立探索

1、师:老师在每个同学的桌子上都放了很多不同的三角形,还有量角器等学习材料请同学们先独立思考采用什么方法,然后再亲手操作探索结论。

2、师巡视了解学生活动情况。

(二)小组交流

在小组中充分发表自己的看法,小结本组有几种方法推出结论,选出一位主发言人

(三)集体交流讨论

1、测量

展示几组测量数据:如内角和是180度的、不正好是180度的,由学生观察得出什么结论:三角形内角和180度左右。产生疑问:所用三角形内角和是一样的吗?如果是一样的是多少度呢?

2、折、撕、画转化平角=180度

疑问:折、撕、画都有误差,数据也不准确。师:老师在每个同学的桌子上都放了很多不同的三角形,3、推导:长方形转化直角三角形内角和是180度

锐角三角形、钝角三角形转化直角三角形得出内角和是180度。

【设计意图:在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角、长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。首先, 学生用度量的方法探索三角形内角和, 初步得出 了三角形内角和是180°的结论, 并发现了直接度量的局限性。其次, 学生又创造性地与平角知识联系起来, 用“撕——拼”“、折——拼”等方法, 把三角形的三个内角转化成一个平角, 但也发现了问题,由于提供的学具有长方形的, 课始又是从长方形四个内角的和是360°引入的, 又有学生利用长方形与三角形的关系推导直角三角形的内角和进而推导出锐角三角形和钝角三角形的内角和。在整个探索过程中, 引导学生积极思考并大胆质疑, 他们的创造性思维得到了充分发挥。】

三、综合应用,沟通知识联系

1、操作游戏

正方形纸对折成三角形再对折,每操作一次问内角和是多少。

【设计意图:进一步理解巩固任意三角形内角和都是180度。】

2、猜角游戏

给出两个角的度数猜第三个角。

【设计意图:进一步熟悉三角形内角和及应用。】

四、全课总结。

板书设计:三角形内角和

折转化平角180度

推导:长方形转化直角三角形内角和是180度

锐角三角形、钝角三角形转化直角三角形得出内角和是180度。学习效果评价设计

1、能运用自己的方法推导三角形内角和。

2、能运用学具进行探究。

3、在实践活动中能提出问题,进行讨论。

4、充分理解三角形内角和是180度,并能进行简单应用。

本次教学设计与以往或其他教学设计相比的特点

1、关注学生的元认知。从学生实际出发,在学生已有基础上进行教学。例如新课的导入由学生已学图形导入,认识了内角,进而提出了本课的主题,学生轻松的进入了新课。课始长方形的引入也为后面内角和的推导做了铺垫。

2、培养科学严谨的研究态度。在探究过程中引导学生不断产生疑问进而再深入研究,一般情况下,大多数老师到撕折拼成平角即得出结论。我觉得这种方法也有误差不能确定内角和就是180度,所以引导学生又有了更深次的认知,使学生本着科学的态度去研究问题,突破了知识本身。

等边三角形的教案 篇12

《三角形的内角和》说课稿

各位领导、老师:

大家上午好!今天我说课的内容是青岛版小学数学四年级下册第四单元“角与三角形的认识”信息窗2中的第二课时《三角形的内角和》。下面我将从教材分析、学情分析、教学模式、教学设计、板书设计、课堂评价、资源开发七个方面进行说课。

一、教材分析

本册教材依据“数与代数”、“图形与几何”、“统计与概率”和“综合与实践”这四个维度共安排了七个单元,在图形与几何领域本册教材安排了两个单元:第三单元“角与三角形的认识”和第五单元“观察物体”,而第三单元“角与三角形的认识”既是本册教材的教学重点也是教学难点,在整个图形与几何领域起到承上启下的重要地位。上承一年级下册:方位与图形(各种平面图形的认识);二年级下册:角的初步认识(直角、锐角、钝角的认识);三年级上册:图形的周长,下启五年级上册多边形的面积;承上启下,使知识之间循序渐进,螺旋上升。

三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形,一个多边形都可以分割成若干个三角形。三角形的稳定性在实践中有着广泛的应用。因此这部分知识的学习不仅可以从形的方面加深对周围事物的理解,发展学生空间观念,而且可以在动手探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力。同时也为以后学习图形的面积打下基础。

本单元安排了2个信息窗,信息窗1学习角的认识、大小比较及画法,主要学习习近平角和周角的认识,直观比较角的大小,量角器的认识、角的度量、角的分类以及各种角的之间的关系和角的画法。信息窗2学习三角形的认识,包括三角形的认识及特性,三角形的三边关系,三角形的分类,三角形的底和高及高的画法,三角形的内角和。本单元的教学重点是全面认识角和三角形,教学难点是画角和三角形三边关系的探索。

在这里,我需要指出的是,与人教版和苏教版教材有所不同,青岛版教材不再把角的度量和认识三角形割裂开来,分成两个单元学习,而是按照知识的循序渐进原则把两部分知识放在一个单元中学习,角的度量是角的分类的基础,角的分类又是三角形分类的基础。因此教材安排信息窗1学习角的有关知识,信息窗2学习三角形的有关知识,教材将这部分知识有机地编排在一个单元中学习,符合学生认知特点,有助于学生很好地建构知识体系。

课标对这部分知识的要求是:

1.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。2.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。3.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180度。

三角形的内角和是180度是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

依据课标要求和教材分析及学生的年龄特点,确定本节课的教学目标是:(1)通过“量一量”,“算一算”,“拼一拼”,“折一折”的小组活动的方法,探索发现并验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

(2)通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。

(3)知道三角形两个角的度数,能求出第三个角的度数。

(4)发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。

本课的教学重点:让学生探究发现并验证三角形内角和等于180度。教学难点是:让学生用不同方法验证三角形的内角和是180度。教具、学具准备 教具:多媒体课件;

学具:锐角三角形、钝角三角形三角形、直角三角形各一个,剪刀,三角板,直尺,量角器,纸。

二、学情分析

学生通过第一学段以及四年级上册对图形与几何内容的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,但是还缺乏对角和三角形知识的系统深入了解。本节课是学生在学习了各种角,会画角,会量角以及学习了三角形的稳定性、三角形的三边关系,三角形分类的基础上来进行学习的。对于“三角形的内角和等于180度”这个性质,大多数学生已经在课前通过不同的途径知道,但不一定清楚道理,更不能用多种方法来进行验证。因此,我把本节课的教学重点及难点放在三角形内角和的验证上,在学生已有的学习基础上设置更高的目标,重视猜想与验证、培养学生事实求是的科学态度,学生对于验证的方式和方法,老师要做到适当点拨,及时鼓励。

三角形与日常生活联系紧密,图形直观,所以教学相对而言操作性很强。而学生的数学知识、能力和思考问题的角度存在一定的差异,因此比较容易出现解决问题的策略多样化,这样也对教学的开展提供了很好了研讨环境。

基于此,在教学时,学生的学习主要采取以下两种方法:

(1)动手操作学习法。鼓励学生自己去探索,让学生亲身经历观察、操作、归纳、验证的过程,培养学生探究的意识和能力。

(2)小组合作学习法。通过小组的合作、同桌的合作,让学生共同解决问题,培养团结协作精神。体会知识的产生及发展,使数学知识在充满探索中得到升华。

三、教学模式

新课标指出:教学活动是师生积极参与、交往互动、共同发展的过程。数学教学活动,特别是课堂教学应激发学生学习兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维。对于四年级的学生来说,“三角形的内角和等于180度”这个性质,大多数学生已经在课前通过不同的途径知道,但不一定清楚道理,更不能用多种方法来验证这个性质。如何才能让学生真正理解三角形的内角和为什么是180度,我力图通过:设疑——猜想——验证——提升这四大步去突破。

(一)设疑激趣,创设学生喜欢的学习情境

“良好的开端等于成功的一半”。上课伊始,我给同学们制造了一个小小的矛盾,“既然同学们都会画三角形,请你帮老师画一个有两个直角的三角形”,学生通过动手去画,发现按老师的要求是画不出这样的三角形的,这是为什么呢?从而激发学生的学习热情,激起学生求知的欲望。

(二)重视操作,引导学生形成正确的图形表象,发展空间观念。几何初步知识无论是线、面、体的特征还是图形的特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。要让学生动手做数学,而不是用耳朵听数学,让学生带着问题,动手、动口、动脑,调动多种感参与数学学习活动,在活动中获得知识。本节课我通过猜想验证让学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,拼一拼选择一种或几种方法来验证三角形的内角和是180°。

四、教学设计

整节课我预设为4个大的教学环节:

(一)设疑激趣,初步感知。(本环节预计用时5分钟)

1.复习旧知 复习前面学过的锐角三角形,直角三角形,钝角三角形的特征及角的有关知识,特别是复习近平角是180度。

『有效的复习,承上启下,既复习了前面的知识,又为后面的学习做好铺垫』 2.设疑激趣:老师提出要求:让学生帮老师画一个有两个直角的三角形。

3、制造矛盾,引出课题:同学们根本画不出老师要求的三角形,这么看来,三角形的角之间一定藏有很多的奥秘在里面!这节课我们就一起来研究“三角形的内角和”。(板书:三角形的内角和)学习什么是三角形的内角?内角和?

『问题是数学的心脏,问题是最好的老师,学生研究学习的积极性、主动性,往往来自于充满疑问和问题的情境。上课一开始我通过创设“请你帮老师画一个有两个直角的三角形”这一问题情境,在学生求知心理之间制造一种“不协调”,激发学生产生强烈的研究欲望,为后面的学习打下良好的基础。』

(二)操作验证,引导建构。(本环节预计用时25分钟)

1、猜测 老师出示一个三角形,请同学们看一看,猜一猜,它的内角和可能是多少度?

2、验证

(1)动脑想一想 让同学们以小组为单位,先在小组里互相说说你打算用什么样的方法来验证。

(2)动手做一做 利用手中的学具从以上讨论的若干种方法中选择一种你喜欢的方法来进行求和。

【《课程标准》指出:学生学习应当是一个生动活泼的、主动的和富有个性的过程。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。四年级学生经过第一学段以及本单元前面的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段.因此我重点引导学生从“猜测--验证”展开学习活动,让学生感受这种重要的数学思维方式.】

(3)动口说一说 全班汇报交流 a、量一量

①汇报交流 同学们汇报测量求和的结果。

②分析原因(误差的存在)为什么有的正好是180度,有的是在180度左右,这是什么原因呢?

b、拼一拼

①一生上台展示锐角三角形撕下来拼组成一个平角的过程。

②鼓励全班同学尝试 刚才这个同学为我们展示的锐角三角形撕下来拼组的过程,其余的三角形进行这样的操作也会有同样的结果吗?

③生动手操作,验证各种三角形撕下来拼组成平角的过程。④师引导点拨:多媒体课件展示各种三角形撕下来拼组的过程。c、折一折

课件展示各种三角形通过折叠三个角凑成一个平角的过程,再次验证三角形的内角和是180度。

『建构主义认为:学生的建构不是教师传授的结果,而是通过亲身经历,通过与学习环境的交互作用来实现的。用量一量的方法来验证三角形内角和需要进行测量和计算两个过程,略显麻烦又存在误差;采用折一折的方法对于有些同学操作起来又有一定的难度,而拼一拼的方法操作起来既简单又没有误差,还与我们刚刚尝过的平角联系紧密,是全体学生必须掌握的一种方法。』

(三)练习巩固,深化提升(本环节预设用时8分钟)1.第45页“做一做”第8题。

2、第46页“做一做”第12题。3.(1)请同学们回想一下,为什么画不出有两个直角的三角形?(2)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少?

(3)将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少?

4、根据所学的知识,你能想办法求出四边形和五边形的内角和吗?

5、数学文化:向学生介绍帕斯卡在12岁时发现并证明三角形的内角和是180度,对同学们进行数学文化方面的教育。

『习题是沟通知识联系的有效手段.我遵循由浅入深的原则,设计了四个层次的练习, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力.』

(四)回顾全课,小结延伸:(本环节预设用时2分钟)

今天这节课你学到了什么?有什么收获?关于三角形你还想知道什么? 让学生自己总结重点知识。

五、板书设计

三角形的内角和

量一量 拼一拼 折一折

三角形的内角和等于180度

这样的板书设计,简单明了,直观易懂。不仅突出教学重点,更有利于帮助学生掌握正确的概念。整个设计重点突出,一目了然,画龙点睛。

六、课堂评价 评价包括评价内容和评价方法,从评价内容来看,本节课主要围绕学生的动手操作能力、自主探究能力、合作交流能力、质疑释疑能力、发展空间观念和学习态度六大方面来评价。依据这六大方面,针对四年级学生数学学习过程的评价,我专门设计了这张综合评价量表。表现很好(奖励五颗星)、表现不错(奖励四颗星)、还需加油(奖励三颗星)。以此来激励学生的学习。

评价方法多元化,主要从教师评价、学生互评、自我评价几个角度来评价。评价方式多样化,本节课主要采用课前检测、当堂达标测试、课后开放问题等方法检测学生对知识的理解和掌握程度,并充分发挥小组合作学习的优势,设计表格,由小组长负责做好每一个学生的成长记录。

七、资源开发

资源的开发和利用对学生的学习与成长起着潜移默化的作用,教学本节课时,我注重了以下几个方面:

1.多媒体资源

我们学校已实现了电子白板“班班通”,不仅可以播放各种多媒体课件,还能利用白板软件提供的数学工具画出常见的立体图形来直观演示教学内容。比如画出三角形,然后剪切,移动等,非常方便,效果明显。

2.自制教具、学具

既便于操作,又提高了学生的学习兴趣,增强了学生的动手能力。本节课我提前让学生自制了各种类型的三角形若干个。

3.及时捕捉课堂生成资源

比如:在采用量一量来验证三角形内角和的时候,有的学生通过测量三个内角的度数并相加得出三角形内角和并不正好是180度,而是在180度左右,这个时候,有些同学就认为是自己量错了,还有些同学对三角形内角和是180度产生了怀疑,这时就需要我们及时捕捉这一课堂生成资源,引入对测量误差的认识。

4、开发数学文化资源

数学作为一种文化走进小学课堂,渗入我们的实际教学中。本节课通过向学生介绍帕斯卡在12岁时发现并证明三角形的内角和是180度,对同学们进行数学文化方面的熏陶,增长了同学们的知识,激起了学生创新的欲望。以上我从七个方面阐述了自己对本节课的粗浅认识,希望各位老师批评指正,不吝赐教,谢谢大家!

三角形的中位线


教学建议

知识结构

重难点分析

本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.

教法建议

1.对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

教学设计示例

一、教学目标

1.掌握中位线的概念和三角形中位线定理

2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

5.通过一题多解,培养学生对数学的兴趣

二、教学设计

画图测量,猜想讨论,启发引导.

三、重点、难点

1.教学重点:三角形中位线的概论与三角形中位线性质.

2.教学难点:三角形中位线定理的证明.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具

六、教学步骤

【复习提问】

1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

2.说明定理的证明思路.

3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明?

分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证,只要即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

4.什么叫三角形中线?(以上复习用投影仪打出)

【引入新课】

1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

(结合三角形中线的定义,让学生明确两者区别,可做一练习,在中,画出中线、中位线)

2.三角形中位线性质

了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

如图所示,DE是的一条中位线,如果过D作,交AC于,那么根据平行线等分线段定理推论2,得是AC的中点,可见与DE重合,所以.由此得到:三角形中位线平行于第三边.同样,过D作,且DEFC,所以DE.因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

(l)延长DE到F,使,连结CF,由可得ADFC.

(2)延长DE到F,使,利用对角线互相平分的四边形是平行四边形,可得ADFC.

(3)过点C作,与DE延长线交于F,通过证可得ADFC.

上面通过三种不同方法得出ADFC,再由得BDFC,所以四边形DBCF是平行四边形,DFBC,又因DE,所以DE.

(证明过程略)

例求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

(由学生根据命题,说出已知、求证)

已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

求证:四边形EFGH是平行四边形.‘

分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

证明:连结AC.

∴(三角形中位线定理).

同理,

∴GHEF

∴四边形EFGH是平行四边形.

【小结】

1.三角形中位线及三角形中位线与三角形中线的区别.

2.三角形中位线定理及证明思路.

七、布置作业

教材P188中1(2)、4、7

九、板书设计

相似三角形的性质


教学建议

知识结构

重点、难点分析

及应用是本节的重点也是难点.

它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究,以完成对相似三角形的定义、判定和性质的全面研究.还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.

它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.

教法建议

1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等

2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答

3.在知识的巩固中要注意与全等三角形的对比

(第1课时)

一、教学目标

1.使学生进一步理解相似比的概念,掌握定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

下面我们研究相似三角形的其他性质(见图).

建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

∽,

教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

分析示意图:结论→∽(欠缺条件)→∽(已知)

∽,

BM=MC,

∽,

以上两种情况的证明可由学生完成.

[小结]

本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

七、布置作业

教材P241中3、教材P247中A组3.

八、板书设计

苏教版三角形教案


在众多文章中栏目小编看到了一篇令人深思的“苏教版三角形教案”。教案课件是老师上课预先准备好的,而课件内容需要老师自己去设计完善。 学生反应可以帮助教师调整教学方案,提高教学效果。我们将为您提供更多的人才招聘和培养建议!

苏教版三角形教案 篇1

教学目标

(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。

教学重点和难点

重点:掌握三角形面积的计算方法。

难点:理解三角形面积计算公式的推导过程。

课前准备

1.每个小组准备两条洗净叠平的红领巾,2个完全相同的锐角三角形、钝角三角形,几个任意三角形和一把剪刀。

2.教师用吹塑纸剪好两个完全相同的直角三角形、锐角三角形、钝角三角形,及各种图形的投影片。

教学过程设计

(一)复习准备

1.出示投影片:

苏教版三角形教案 篇2


:


三角形是几何学中最基础的图形之一,它在数学领域中有着举足轻重的地位。教育界也十分注重三角形的教学,因为它不仅有助于学生发展逻辑思维和几何推理能力,还能提高学生的数学素养。本教案将详细介绍苏教版三角形教学的具体内容和安排,旨在帮助学生更好地理解三角形的性质和应用。


一、教学目标


1. 理解三角形的定义,并能够正确区分三角形和其他几何图形;


2. 掌握三角形的分类方法,包括按边长、按角度和按边长与角度的关系;


3. 掌握计算三角形的周长和面积的方法,能够应用于实际问题解决;


4. 培养学生逻辑思维和几何推理能力,提高数学素养。


二、教学重难点


1. 三角形的分类方法,包括按边长、按角度和按边长与角度的关系;


2. 如何计算三角形的周长和面积,以及应用于实际问题。


三、教学准备


1. 教师准备课件、三角形模型、实物三角形和试题等教学辅助材料;


2. 学生准备直尺、铅笔、纸等文具。


四、教学过程


1. 热身导入


为了让学生对三角形有初步了解,可以通过一些有趣的启发性问题开展讨论。例如,让学生观察周围环境中的三角形,找出它们的特点和区别。这样可以激发学生的兴趣,为后续教学打下基础。


2. 三角形的定义和分类


教师通过课件和实物三角形的展示,简单明了地介绍三角形的定义和分类方法。给出三角形的定义:三个不在一条直线上的点连成的图形称为三角形。然后,按边长和角度的特点分别介绍等边三角形、等腰三角形、直角三角形和普通三角形等的定义和特点。


3. 三角形的性质和应用


通过示意图和实例,教师讲解三角形的性质和应用。比如,角的对边是边的比例是相等的,如果两个角相等,则对应边也相等。接着,教师可以通过几个实际问题来引导学生应用三角形的性质解答问题,如计算台阶的高度、楼房的高度等。


4. 周长和面积的计算


教师通过计算实例,引导学生掌握计算三角形的周长和面积的方法。介绍周长的概念和计算公式,即三角形的周长等于三条边长的和。然后,讲解面积的概念和计算公式,即三角形的面积等于底边乘以高的一半。通过例题和练习题让学生巩固掌握计算的方法。


五、教学拓展


为了巩固学生的知识和拓展思维,可以引导学生进一步思考三角形的应用。例如,介绍世界上一些建筑物采用三角形结构的原因,以及其他与三角形相关的数学领域的知识。


六、课堂小结


教师对本节课的重点内容进行小结,概括三角形的定义、分类、性质和应用。并提醒学生复习温习所学内容。


七、作业布置


布置相应的作业,要求学生巩固课堂学习内容。如练习计算三角形的周长和面积,解答与三角形相关的应用问题。


八、教学反思


教师应及时反思本节课的教学效果,总结学生的学习情况,以便调整教学策略和下一节课的教学安排。


通过本教案的设计,学生将能够全面理解三角形的性质和应用,掌握三角形的分类、周长和面积的计算方法。同时,通过实际应用问题的解答,培养学生的逻辑思维和几何推理能力,提高数学素养。希望本教案能为苏教版三角形教学提供一定的指导和参考。

苏教版三角形教案 篇3

教学目标:1理解三角形面积计算公式的推导过程。

2掌握三角形面积的计算方法。

3引导学生积极探索解决问题的策略,发展动手操作、

观察、分析、推理、概括等多种能力。

4培养学生在生活实际中发现问题、独立思考、创新思

维,用旧知识转化为新知识来解决新问题的能力。

教学重点:理解三角形面积计算公式的推导过程。

教学难点:理解三角形面积是同底(长)等高(宽)长方形面积的

一半。

教学准备:教学软件、三角形学具。

教学过程:

一.复习铺垫。

1.数一数下图中有几个直角三角形。

2.我们学过计算哪些图形的面积?(长方形和正方形)

怎么计算他们的面积?

根据学生回答板书:

正方形的面积=边长边长

长方形的面积=长宽

3.出示:你会计算它的面积吗?

103

44

10310

想这样将上图通过剪拼成一个长方形来计算面积的方法,我们称为割补法。

二.创设情景,引入新课。

师:让天更蓝、水更清、地更绿,二十一世纪是以环保为主题的世界。我校正在开展创建绿色学校的活动,我们五(2)班的同学也积极投入到这项活动中,认养了校园里的一块地,要在这块地铺上草坪。同学们来到实地考察地形。猜猜看,他们想了解这块地的那些情况?三角形面积.doc(电脑演示)

根据学生回答板书:三角形面积

师:你会计算它的面积吗?你会计算那些图形的面积?

师:能不能把三角形转化成学过的图形呢?

二、动手操作,推导公式。

1请学生从老师提供的材料中,任意选取一个或两个三角

形,以小组为单位,通过剪一剪、拼一拼、折一折,看能

不能把三角形转化成我们已经学过的图形。

根据学生汇报媒体演示:

(1)两个直角三角形拼成一个长方形。

(2)两个锐角三角形剪拼成一个长方形。

(3)两个钝角三角形怎么拼呢?先把一个钝角三角形旋转一下,你发现什么?学生会发现两个钝角三角形能剪拼成一个长方形。

2师提问:

(1)拼成的长方形面积与原来每个三角形的面积有什么关系?

(2)长方形的长和宽分别是原三角形的那部分?

媒体演示后板书:S长=长宽

S三=底高2

(3)三种情况的分析。

钝角三角形、锐角三角形都要通过剪拼的方法转化成长方形,那么直角三角形可不可以也用剪拼的方法转化成长方形?

学生讨论后交流,演示。三角形面积2.doc(电脑演示)

对,所有的三角形都能通过剪拼的方法转化成长方形,而直角三角形比较特殊,它不剪拼也能转化为长方形。

3师:除了用剪拼的方法将两个三角形转化成长方形外,还有没有其他方法呢?请大家先分组讨论、操作,再汇报。

师:你是怎么转化的?拼成的图形与原三角形的面积有什么关系?长方形的长与宽是原三角形的哪部分?

媒体演示:三角形面积演示文稿1.ppt

(1)将一个直角三角形折成长方形。

(2)将一个锐角三角形剪拼成长方形。

都同样得出三角形的面积=底高2。

师:如果用母S表示三角形的面积,用字母a表示三角形的底,用字母h表示三角形的高,那么三角形的面积公式可以写作S=ah2。

问:同学们,根据公式,要求三角形的面积需要知道哪些条件?

(三角形的底和高)

三、公式运用,巩固练习。

1通过同学们自己动手操作,我们已经找出了三角形面积的计算公式,现在我们来算一算课的一开始认养的那块土地面积好吗?

媒体演示将土地标上底和高,请学生算出面积。

2再请大家看这一题。

出示例1一条红领巾的底边长100厘米,它的高33厘米,求红领巾的面积。

指导学生的书写格式。

学生尝试练习,再看书核对。

3计算下面三角形的面积。(单位:厘米)

12122014

7

14810

4.拓展练习。

电脑演示:同学们,你们知道上海将在20xx年申办什么?世博会。我们的城市将以新的面貌迎接这次盛会,请你想办法把街道两旁的旧建筑换新颜。你有什么好办法?可以给旧建筑加顶。

问:加上去的彩钢板是什么形状?要几块?电脑显示各种形状的彩钢板。供学生选择。(电脑显示三角形的底和高)学生再计算面积。算对了,彩钢板就贴在旧建筑顶上。

四、总结。

今天同学们通过自己动手,学会了什么?

苏教版三角形教案 篇4

教学内容:p.22、23、24(想想做做)

教学难点:认识两边之和大于第三边

教学目标:

1、使学生联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念,了解三角形两边之和大于第三边。

2、使学生体会单侥幸是日常生活中常见的图形,并在学习活动中进一步产生学习图形的兴趣和积极性。

教学准备:学具盒、尺等

教学过程:

一、导入:

出示例题图,问:在图上我们可以找到一种很常见的图形,是什么?(三角形)

生活中的三角形随处可见,说说哪些地方也能看到?

揭示课题:认识三角形

二、做三角形:

1、我们可以用不同的方法来得到一个三角形,利用手边的材料,比比谁的方法多?

交流:(1)、用小棒摆。讲评时注意:小棒摆的时候一定要首尾相接,不能有多出来的部分。

(2)、在钉子板上围。讲评时注意:只要有三个顶点,如果发现边不够直的话,需要把三角形调整得大一些。

(3)、用三角板或尺上的其他三角形直接描画。

(4)、在纸上分别画围起来的三条线段,也能得到一个三角形。

2、三角形各部分名称:

一起动手画一个三角形,说说各部分的名称:3个顶点、3条边、3个角

三、三边关系:

1、是不是所有的三根小棒都能围成一个三角形?

用学具盒里的小棒分别摆一摆,是不是都能围成一个三角形呢?

学生摆完后交流:(1)同一种颜色(一样长)的小棒肯定是能摆成一个三角形的。

(2)一红两绿这三根小棒是不能围成一个三角形的

小结:看来并不是所有的三根小棒都能围成三角形。那为什么会围不成了呢?

2、探究不能围成三角形的原因:

(1)说说你用一红两绿三根小棒怎么就围不成三角形了呢?

(两根绿的太短了,碰不到。)画一画(图略)

在图上分别标出三边为a、b、c,a+b<c不能围成三角形

(2)想象:如果把一根绿的换成长一点的,和原来那根绿的合起来正好和红的一样长,行不行?画一画(图略)

在图上分别标出三边为a、b、c,a+b=c不能围成三角形>

(3)那究竟什么时候能围成三角形呢?

可能会有学生会猜想,a+b>c

再用小棒摆一摆,摆完后再比一比,是不是符合a+b>c?

结合画图,指出:当两条边的长度和小于第三边的时候,这两条边根本就不能碰到,所以不能围成三角形;当两条边的长度和等于第三边的时候,就变成了3条线段重合在一起的一条线段,不是三角形;只有当两边的长度和大于第三边的时候,那它们就会在第三边上面的某一处碰到,就围成了一个三角形。

3、练习巩固:

(1)有这样两根小棒,分别是6厘米和8厘米,第三根小棒多长那么它们就能围成一个三角形?说说理由。你发现了什么规律?

(先可考虑最短的,如果是2厘米,那么和6厘米的合起来正好是8厘米,只能重合在一起,变成线段,所以至少要比2厘米长一点,在整数范围里,那至少就得3厘米。再从最长的角度考虑,6厘米和8厘米的合起来要14厘米,不能有14厘米长,那样也是重合后变成了线段,应该要比14厘米稍微短一点,即13厘米。)

(发现:比两边之差多1,比两边之和少1)

(2)继续练习,如:6厘米和6厘米,3厘米和4厘米

四、完成书上的想想做做:

1、在点子图上画出两个三角形:

指出:画的时候,要把三角形的三个顶点和点子重合。

2、下面哪几组中的三条线段可以围成一个三角形?为什么?

在学生交流完后追问第一种情况:那如果老师把2厘米的加上6厘米的,不就变成大于4厘米,那就可以围成三角形了。这样的判断对不对?为什么?

(6厘米是其中最长的一条边,它单独一条就比别的两条都长,所以,要用比较短的边合起来,然后和最长的比。)

3、从学校到少年宫有几条路线?走哪一条路最近?

请你用今天学得的知识来解释这一现象。

五、全课总结:

本课你懂得了什么。

苏教版三角形教案 篇5

教学内容:p.26、27

教学重点:会按角的大小给三角形分类。

教学目标:

1、让学生在给三角形分类的探索活动中发现和认识锐角三角形、直角三角形和钝角三角形。

2、让学生在实际操作中发展空间观念。

教学准备:三角板等

教学过程:

一、复习角的分类:

角是有大有小的,角按大小可以分成哪几类?

老师随学生回答依次板书:锐角、直角、钝角、平角、周角

这些角有的度数是确定的?分别是多少度?

锐角和钝角的度数是不确定的,但有一个范围,谁来说一说?

板书整理成:锐角、直角、

钝角、

平角、

周角

1o~89o、90o、91o~179o、180o、360o

指出:89o、90o、91o这三种度数非常的接近很难判断,所以当看到接近直角的角时,都要用三角板上的直角量一量。

二、学习三角形的分类:

1、老师画一个直角。再连接两点,问:这样画得到的三角形叫什么三角形?

(板书:直角三角形)

老师再画一个钝角,并连接两点,问:这样画得到的三角形叫什么三角形?

(板书:钝角三角形)

联想:刚才我们分别先画一个直角和钝角,再连接就得到了一个直角三角形和一个钝角三角形;如果我先画一个锐角,再连接是不是也会得到一个锐角三角形呢?

请你试一试。交流(有意识选择开始画的锐角较小的学生来交流):

(1)连接后可能得到的是一个钝角三角形。

问:你怎么知道现在这个三角形是钝角三角形?

通过说理,使学生明白:判断的时候只要看其中最大的一个角,如果这个最大的角是钝角,那这个三角形就是钝角三角形。

(2)连接后可能得到一个直角三角形。

通过三角板的之间检验,确认其中最大的角是一个直角。使学生进一步明白判断方法:其中最大的一个角是直角,该三角形就是直角三角形。

比较、讨论:为什么刚才可以肯定的得到钝角三角形和直角三角形,而现在却不能肯定的得到锐角三角形呢?

(通过学生回答,使大家明白:钝角三角形中只有一个钝角,还有两个是锐角;直角三角形中只有一个角是直角,还有两个角也都是锐角;确定了钝角或直角后剩下的肯定是锐角了。而先画了锐角之后,剩下的角可能是三种角中的任意一种。)

(3)画锐角三角形比较保险的一种方法:

先画的锐角不能太小,可略小于直角;画的两条边长短比较接近,这样就能得到一个锐角三角形了。画完后为了保险起见,可找出其中最大的一个角,量一量是不是锐角。

学生分别在本子上画出这三种三角形。

2、通过刚才的学习,你觉得三角形可以分为几类?用自己的话分别说说怎样的角是锐角三角形?怎样的角是直角三角形?怎样的角是钝角三角形?

画出示意图。

揭示课题:这节课我们学习三角形按角分类的方法。

三、完成想想做做:

1、(第2题)你能连一连吗?

学生独立做,做完后把有疑问的几个选出来交流。

2、在钉子板上分别围出锐角三角形、直角三角形和钝角三角形。

学生围好后,互相检查验证。

3、用一张长方形纸,折出两个完全一样的直角三角形。

用一张正方形纸,折出四个完全一样的直角三角形。

让学生动手折一折,在交流的时候用对角线来说一说。

4、把右边这样的平行四边形纸剪成两个完全一样的锐角三角形,应该怎样剪?剪成两个完全一样的钝角三角形呢?

5、你能在下面的三角形中分别画一条线段,把它分成两个直角三角形吗?

通过交流使学生明白:画出的线段就是原来三角形的高。

6、在直角三角形中画一条线段,把它分成两个三角形。你分成了两个什么样的三角形还可以怎样分?

老师可以在学生画的基础上,展示其中几种比较典型的画法,组织学生再交流。

苏教版三角形教案 篇6

一、教学目标

1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

二、教材分析

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面转化的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

三、学校及学生状况分析

我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的程度等也会出现差异。

四、教学设计

(一)由谈话导入新课

师:我们已经学过长方形、正方形、平行四边形面积的计算公式。还记得它们的面积公式吗?(一人回答)还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

师:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

师:谁知道三角形面积的计算公式?老师调查一下:知道三角形面积计算公式的举手;不知道三角形面积计算公式的举手;不但知道公式,而且还知道怎样推导出来的举手。

师:今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程。

[板书课题:三角形面积]

(二)探究活动。

师:根据你们前面的学习经验,谁能说一说应怎样去探究三角形的面积?[板书:转化]

师:下面我们将按小组来探究三角形面积的计算公式。

(教师介绍学具袋中的学具,并出示探究活动的目标、建议与思考,见下表)

(学生在探究活动时,教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

师:谁愿意展示自己的探究成果?在同学介绍自己的探究成果时,其他同学要注意听,以便予以补充(交流过程注意引发学生间的争论)。

生1:我们是直接用两个完全一样的三角形拼成一个平行四边形,然后推导出三角形的面积计算公式。

生2:我们小组是用一个三角形折成长方形后推导出计算公式的。

生3:我们是将一个三角形用割补法进行推导的。

师:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,那么,谁能概括出三角形面积计算的公式呢?

生:三角形的面积=底高2s=ah2(在学生叙述时,教师板书)

师:刚才这个同学概括了三角形的面积计算公式,请同学们再用自己喜欢语言再来说一说三角形面积公式的意义。

师:不论同学们用一个三角形、或者两个三角形,还是用拼摆、或者用割补的方法,都是在想方设法将新知识转化为旧知识,这是推导三角形面积计算公式的重要方法?

师:下面我们运用三角形的面积计算公式解决一些具体的问题。

(巩固练习略)

五、教学反思

本节课是围绕着通过学生发现三角形面积与已学图形面积的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子。如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。

这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了再创造,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。

六、案例点评

本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。

教师设计让学生自主动手操作,目的是以动促思,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。

通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。

点评人:刘亚荣(北京二里沟中心小学)

苏教版三角形教案 篇7

设计意图

几年前,我教三角形面积的计算前,让每位学生准备两个完全一样的直角三角形、锐角三角形和钝角三角形。有学生问我:学习平行四边形面积的计算时,是把平行四边形转化成长方形来推导出公式的,今天为什么要准备三组两个完全一样的三角形当时,我没能作出详细的解释,而是建议这位学生先去看看书,预习预习。课堂上,我按照书上的思路组织学生用准备的三组三角形,通过旋转、平移把它们转化成平行四边形,推导出三角形面积的计算公式。课后,每想到这件事,我总觉得心里不很踏实:学生的问题通过看教材和上课就能明白了吗上课时学生的操作是一种应答式的操作,这不像是引导学生推导公式,倒像是在验证公式。华罗庚先生说过:难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。这样的教学很显然没有能很好地去发展学生的创造性思维和培养学生主动探索知识的能力。

今年,运用苏教版教材(修订本)再次教学三角形面积的计算公式推导时,在新课标理念的指导下,我力求在以下几个方面有所突破:

1.指导公式的思路。以书上拼的思路为主,渗透分的思想,即把一个平行四边形沿一条对角线剪开,分成两个三角形,让学生猜一猜一个三角形的面积,并简单说出想法。

2.学生操作的性质。由原来的应答性操作转化为探索性操作。在学生明确要把三角形转化为已经学过并能计算出面积的图形这一操作要求后,提供给学生一个长方形、一个平行四边形和四个三角形,其中四人小组中的1、2、3号同学的四个三角形中分别有两个完全一样的直角、锐角、钝角三角形,而4号同学则四个三角形各不相同。学生在操作中要去尝试,在失败后要去比较、选择,这样的操作具有很强的选择性、探索性和创造性。而且只有在尝试失败后,才能深深体会到只有两个完全一样的三角形才能拼成一个平行四边形。

3.教学的组织形式。分四人小组进行操作、讨论,这已为广大教师所采用,但小组中四名学生的材料各不相同,操作中可以互相借鉴、帮助,却无法模仿别人的操作。4号同学无法用两个三角形拼成一个平行四边形,促使其他学生自觉去分析、研究拼成平行四边形的两个三角形的特点、关系,并促使4号同学动脑筋去探索其他方法(如可制作与手中完全一样的三角形等)。

4.多媒体手段的使用。公式推导过程中只是当学生看书上的静态图难以理解图意时,用多媒体进行动态的旋转、平移,使学生明白图意,较好地发挥了多媒体化静为动的功能,而不过多依赖使用多媒体。

教学片段一

一、创设情景,合理猜想

(电脑出示下面左图。)学生口算面积。

(连接平行四边形的一条对角线,隐去其中一个三角形,得到右图。)学生猜猜三角形的面积。

师:刚才同学们猜得对不对呢现在你有办法来说明吗那怎么办

生1:现在我们不能说明他猜得对不对,如果我们知道三角形的面积怎样计算就好了。

生2:如果我们知道三角形面积的计算公式就好了。

二、尝试操作,自主探索

1.师:三角形的面积计算没有学过,你准备怎样着手来研究它呢

生l:我想看看它与学过的什么图形有关系。

生2:我想把它转化成已经学过的图形。

生3:我想试试三角形能不能转化成长方形。

生4:我想试试三角形能不能转化成平行四边形。

生5:我想研究三角形和长方形或平行四边形之间有没有关系。

师:你们的想法都有一定的道理,继续努力,我相信你们都能成功!

师:请每个同学把信封里准备的学具倒出来(1个长方形、1个平行四边形和4个三角形),自己先动手试试,看能想出什么办法。

(多数同学在尝试中有所发现。)

师:把你们的发现先在四人小组交流。

师:好!很多同学都有办法了。谁愿意把自己的研究情况展示给大家看(在视频展示台上。)

生1(边操作边说):我用两个三角形拼成了一个平行四边形。

生2(边操作边说):我也用两个三角形拼成了一个平行四边形。

生3(边操作边说):我用两个三角形拼成了长方形。

(屏幕上显示了分别用两个完全一样的锐角、钝角和直角三角形拼咸的平行四边形。)

师:很好!还有研究情况和他们不完全一样的吗

生4(边操作边说):我也用两个三角形拼成了一个平行四边形,但拼成的平行四边形和他们两个不一样。

生5:我把平行四边形(沿一条对角线)剪开,得到两个三角形,而且我发现这两个三角形是一模一样的。

师:真爱动脑筋!还有研究情况和他们不完全一样的吗

师:刚才这些同学都找到了三角形和已学过的图形之间的联系。你们能把这么多种方法分分类吗

生1:可以分成三类:一类是用两个三角形拼成一个平行四边形;第二类是用两个三角形拼成一个长方形;第三类是把一个平行四边形分成两个三角形。

生2:因为长方形是特殊的平行四边形,所以我觉得可以分成两类。

师:你能把知识联系起来思考,很好!

师:同学们先来看第一类用两个三角形拼成一个平行四边形。你们都用三角形拼成平行四边形了吗(指着其中没有两个完全一样的三角形的学生问)你也有4个三角形,怎么没有想到把它转化成平行四边形试过没有

生3(很委曲地):我的不能。

师:不能谁愿意帮助他

生4(很有把握地上来操作,尝试了好几次):他的不能。

师:不能怎么回事呢

生4:他的三角形不一样。

师:那怎样的两个三角形才能拼成一个平行四边形呢

生5:我想是两个一样的三角形才能够拼成一个平行四边形。

(很多学生若有所悟地微微点点头。)

师:请拼出平行四边形的同学把所用的两个三角形拿起来比比看,是不是这样

生(欣喜):真是这样!

师:这样的三角形我们称它们是完全一样的三角形(板书:完全一样)。完全一样是什么意思

生6:两个三角形放在一起完全重合。

生7:它们形状一样,大小相同。

师:对了,只有两个完全一样的三角形才能拼成一个平行四边形!刚才同学们用两个完全一样的锐角、钝角和直角三角形都分别拼成了一个平行四边形。三角形按角来分类还有第四种、第五种吗

所以,我们也可以说:只要是两个完全一样的三角形都可以拼成一个平行四边形。

师:同学们再来看第二类把一个平行四边形分成两个三角形。想一想,分成的两个三角形有关系吗

生:分成的两个三角形我想是完全一样的,而且我用重叠的方法证实了这一结论。

师:怎样用两个完全一样的三角形很快地拼成一个平行四边形呢

请同学看书上的图。你能看懂图的意思吗

(学生借助学具说说图的意思。电脑动态演示旋转、平移的过程,师边演示边板书:旋转、平移。)

师:请大家将两个完全+样的三角形用这种方法拼一拼。(同时指名到黑板上操作。)

师:同学们观察屏幕上已经拼好的图,思考一个三角形与拼成的平行四边形有什么关系

苏教版三角形教案 篇8

一、创设情境,揭示课题

师:昨天下午,老师接到了一个任务,现在想请咱们班的同学帮我一起解决,你们愿意吗?我们学校准备吸收100名新生入队,就需要做100条红领巾,那么要买多少布料呢?做一条红领巾时必须知道什么?

生:(可能会说:一条红领巾的大小)

师:红领巾是什么形状的?

生:三角形。

师:怎样计算三角形的面积呢?这节课我们就一起来研究三角形面积的计算方法。(板书课题:三角形的面积)

二、探究新知

1.复习长方形、正方形、平行四边形的面积计算。(课件出示)请学生分别计算出每个图形的面积,并订正。

2.请生说出平行四边形面积的计算公式的推导方法,再猜想三角形面积计算可以用什么方法?(学生猜测:数方格的方法,转化法)

3.出示三角形方格图。

师:请你用数方格的方法计算出三角形的面积。

学生独立数出每个三角形的面积:12平方厘米。

师:如果用这种方法求一块三角形菜地或三角形的草坪的面积,你觉得可行吗?

学生可能会说出:不方便、不准确等。

师:同学们能否找出一种方便的方法解答这种问题呢?能不能把三角形转化成已学过的图形来求面积呢?(能)

4.分组实验,合作学习。

请学生拿出课前准备的三种类型三角形(各两个),小组合作动手拼一拼,摆一摆。

然后展示汇报,可能用两个完全一样的三角形、长方形、平行四边形、正方形。(教师课件一一展示)。

5.组织讨论,探究算理,归纳公式。

在学生操作之后,提问:通过试验,你们发现了什么?(课件出示)

还有以下问题:认真观察拼成的平行四边形,这些平行四边形的底和高与三角形的底和高分别有什么联系?每个三角形的面积和拼成的平行四边形的面积有什么联系?(学生讨论过程中,教师给予适当指导。)

讨论结束后,引导学生归纳得出三角形的面积公式,根据学生的汇报板书公式:

因为:三角形面积=拼成的平行四边形面积梅2

所以:三角形面积=底脳高梅2

三、反馈应用

1.师:有了公式,现在你们能解决课前提出的问题了吗?

(1)课件出示例2,学生一起读题并理解题意。

(2)学生独立解答,叫两名学生板演。教师进行检查,了解信息反馈,并按反馈信息组织学生讨论和讲解,强调书写格式以及应用三角形面积公式时把底和高相乘不要忘记除以2,否则会计算成长方形或平行四边形的面积,以确保学生系统的掌握知识。(适时课件展示)

2.巩固练习

练习是学生掌握知识,形成技能的必要途径,是检查教学目标落实情况的重要手段。为了提高联系的效率,我合理的设计了以下几道练习题:

第一题:计算课本85页做一做题目。(属单一性练习,用于巩固新知识。)

第二题:口算下面每个三角形的面积。(属基本练习,旨在巩固、熟练公式,也可锻炼学生的口算能力。)

四、课堂总结

师:通过这节课的学习,你有什么收获?

五、布置作业

教材第86页练习十六第2题,第3题。

六、说板书设计

三角形的面积

因为:平行四边形面积=底高

三角形面积=拼成的平行四边形面积的一半

所以:三角形面积=底脳高梅2

S=ah梅2

苏教版三角形教案 篇9

教学目标

1、通过系统的整理和练习,使学生对本单元所学有关三角形的知识有进一步的了解,熟练完成练习。

2、指导学生有序地思考问题。

3、使学生在学习的过程中,进一步产生对数学的好奇心,努力学好数学。

重、难点:对本单元所学有关三角形的知识有进一步的了解,熟练完成练习。

教学准备:练习设计及投影片。

教学过程:

一、整理本单元知识。

提问:通过本单元的学习,你掌握了哪些有关三角形的知识?根据学生的回答,教师适当加以补充,小结,使本单元的知识系统化。

二、完成练习三的题目。

第1题

小黑板出示题目,指名学生判断各是什么三角形,并说明判断的理由。

在书上画出每个三角形的高。

实物投影展示。

第2题

出示题目,明确题目要求。

学生小组讨论。

全班交流:为什么前两个可以直接判断,而第3个却不行呢?帮学生进一步理解三角形按角分类的要求。

第3题

出示题目,明确题目要求。

学生小组交流有哪些不同的拼法。

全班交流,实物投影展示学生不同的方法。让学生说说是怎样想的,提示学生:怎样想就能很快找出不同的方法。引导学生说出:三角形三个内角和是180度,四边形的内角和是360度。

第4题

通过两个角的度数,可根据角分类,也可从等腰三角性形的角度去考虑。

第5题

学生先自己摆一摆后全班交流。

第6题

出示题目,明确题目的要求。

(1)走哪条路最近,为什么。学生明确:在所有连接两点的线中,线段最短。

(2)通过计算,学生知道,走红线和蓝线路线一样长,都等于120米。

第7题

同桌互相说说,这些三角形是什么三角形?你是怎样判断的?

思考题。

让学会上先计算填表,再探索规律。

三、阅读你知道吗?

苏教版三角形教案 篇10

一、说教材

1.说课内容:九年义务教育六年制小学数学教科书第九册第三单元多边形面积的计算中的第二节。

2.教学内容的地位、作用及意义

三角形面积的计算,是在学生掌握三角形的特征及长方形、平行四边形面积计算的基础上进行教学的。通过对这部分知识的教学,使学生掌握三角形面积的计算公式,学会运用公式正确计算三角形的面积;同时加深与长方形、平行四边形之间的内在联系,培养学生的实际操作能力和思维能力,进一步发展学生的空间观念,提高学生的数学素质。

3.教学目标的确定:

(1)掌握三角形面积的计算公式,学会运用公式正确计算;

(2)学会动手实验操作,渗透旋转、平移的数学思想和方法,培养学生分析、比较、抽象、归纳的能力,进一步发展空间观念;

(3)理解三角形面积计算公式的推导过程,渗透辩证唯物主义的思想,使学生初步懂得用运动变化的观点去观察事物;

4、教材编排的特点:

教材的编排加强了学生的动手操作。首先,通过数方格的方法求三角形的面积;过渡到运用学具实验操作观察探索总结规律,再运用规律解决实际问题的方法;为下节课学习梯形的面积具有正迁移的作用。

5、教学重点、难点及关键

教学重点:掌握三角形面积的计算公式,并能运用公式正确计算。

教学难点:理解公式的推导过程。

教学关键:通过实验操作和采用多媒体辅助手段,帮助学生掌握本节课的教学重点,突破难点,达成目标。

二、说教法:

根据教学内容的有关特点及学生的学习习惯、认知基础和接受能力;充分发挥学具和教具的作用;遵循教学的规律和原则;本节课特采用了讲解法、谈话法、实验法和激趣法等教学方法进行教学;以体现精讲、善导、激趣、引思的课堂教学八字要求;达到以教师为主导,学生为主体,训练为主线的教学指导思想。促进素质教育的发展。

三、说学法:

根据学生的年龄特点及学习能力,本节课准备指导学生学会以下两种学习方法:

(1)学会在动手操作中,实验观察、比较、分析、归纳的学习方法;

(2)学会正确使用学具解决实际问题的方法。

四、教学程序的设计

为实现教学目标,优化课堂结构,落实素质教育;根据以上的分析,本节课的教学,设计了以下几个教学环节:

1.复习旧知,作好铺垫

(1)口答(投影显示)

①长方形、平行四边形、三角形分别有什么特征?

②平行四边形的面积计算公式是怎样的?

计算下列图形的面积。

教育心理学表明:教学就是根据学生原有的基础上进行的。为此,这三道复习题都是选取与新知识有密切联系的,能为学习新知识起铺垫作用。

2.谈话设疑,引入新课

学生解答复习题后,根据学生好胜的心理特点,谈话设疑,引入新课,激发学生的求知欲望。提问:如果把复习题中第3题的三个图形从对角线剪开得出三个三角形,那么三角形的面积该怎样计算呢?这就是我们本节课要研究的内容三角形面积的计算板书揭示课题。板书后再运用语言激励学生提出:看谁学得又快又好。为学生学习新知识创设了最佳的学习情境。

3.动手动脑,指导探索

第一:数方格求面积

首先,发挥教材的作用,指导学生看教科书75页,用数方格的方法求三角形的面积,同桌对答案。

接着,教师放投影显示方格图,指名回答。

最后小结,点拨引导,质疑引思。师导:刚才大家用数方格的方法求三角形的面积,既费时又费力,并不容易求得准确,我们能不能象学习平行四边形面积一样把三角形转化成已学过的图形再求面积呢?

第二:指导实验,观察、归纳三角形的面

积公式。

首先,从直角三角形推导。根据学生准备的学具,引导学生初步感知三角形面积的计算公式的表象;要求学生拿出其中的两个完全一样的直角三角形。老师逐步提出问题,(幻灯显示)先提出:①两个完全一样的直角三角形可以拼成什么图形?再提出:②每个直角三角形的面积和拼成的平行四边形的面积有什么关系?③三角形的底和高分别与平行四边形的底和高有什么关系?让学生带着问题逐个动手操作实验观察总结。

其次,要求学生按照以上的教学和学习方法,分别用两个完全一样的锐角三角形、钝角三角形进行拼摆。其中,学生用两个完全一样的锐角三角形拼摆实验之后,教师投影显示拼摆过程边讲边演示(图):

首先把两个锐角三角形重叠位置,接着旋转、平移,就出现一个平行四边形。这个教学环节更加生动、具体形象,感染力强,帮助学生加深对公式来源的理解。

再次,归纳求三角形面积的计算公式

学生带着问题通过主动的动手操作,实验观察总结,使学生非常容易掌握本课的教学重点,突破难点。为初步检验实验的效果,教师再放投影显示题目要求学生回答以下问题:

①两个完全一样的三角形都可以拼成一个();这个平行四边形的底等于();这个平行四边形的高等于();

②每个三角形的面积等于拼成的平行四

边形面积的();

③三角形的面积=();

④如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式可以写成()。

根据学生的回答板书教学重点:三角形的面积=底高2,字母公式:S=ah2,学生齐读。

4运用公式,解决问题。

教学例题。先板书例题,用不同颜色表示数量关系以突出重点。接着要求学生读题、看图、解题。然后指名回答,集体纠正,教师板演解题过程。最后,质疑问题,提出:为什么要除以2?突出重点,深化理解。

5.巩固训练,深化理解

(1)基本性练习:

指出下面每个三角形的底和高,分别计算出它们的面积。

回应复习题3中的设疑,老师提问:通过这节课的学习你能求它们的面积吗?

(2)趣味性练习:

2判断题,用手势表示对的打错的打。

①两个完全相等的直角三角形可以拼成一个三角形、长方形、平行四边形。()

②两个三角形可以拼成平行四边形。()

③三角形的底边为6厘米,高为3厘米,它的面积是18平方厘米。()

④三角形的面积是平行四边形面积的一半。()

(3)对比性练习:

2.下表中给出的是三角形或平行四边形的底和高。算出每个图形的面积,填在空格里。

三角形平行四边形

底(厘米)86.29.612.5

高(厘米)3.54.86.316

面积(平方厘米)

(4)发展性练习,课本79页第7题。

以上四类形式不同的练习题为检查教学效果,根据教学目标,题目由浅入深,由易到难,有坡度;既突出重点,又分散难点,使不同层次水平的学生都有所提高,既巩固所获得的知识,又深化了知识间的联系和区别;既加强了学生动手操作的能力,又激发了学生学习的兴趣;既体现了知识的形成过程,又体现了能力的培养。符合素质教育的思想。

6、课堂总结:

课堂总结是课堂教学的重要组成部分,起画龙点睛的作用;本课的总结采用了引导回忆归纳的方法,提问:今天我们学习了什么内容和你学会了什么?这样总结,既突出教学重点,又使知识系统化、条理化,进一步培养归纳概括的能力。

7、家庭作业:练习十八第6、9题。

三角形教案模板


作为老师的任务写教案课件是少不了的,这就要老师好好去自己教案课件了。只有写好课前需要的教案课件,会让学生才能高效地掌握知识点。那写教案课件包括哪几个部分?下面是小编为你精心整理的“三角形教案模板”,在此温馨提醒你在浏览器收藏本页。

教材分析:

《等腰三角形》是冀教版八年级数学上册第十七章第一节内容。是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等、及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。

学情分析

学生在本节课学习之前,已经知道了全等三角形和轴对称相关知识,那么等腰三角形又有怎样性质呢?鉴于八年级学生的年龄、心理特点及认知水平,有进一步探究新知的愿望。本节课采用层层递进的问题启发学生的思考,让学生自主探究、合作交流中获取知识。

教学目标:

知识目标:掌握等腰三角形的有关概念和相关性质。并能用其解决有关问题。

能力目标:通过对性质的探究活动和例题的分析,提高学生分析问题和解决问题的能力。

情感目标:在探究对等腰三角形性质活动中,让学生多动手、多思考,培养学生之间的合作精神。

教学重难点:

教学重点:探索等腰三角形“等边对等角”和“三线合一”的性质。

教学难点:利用等腰三角形的性质解决有关问题。

教学方法:

本课立足于学生的“学”,采用小组合作探究,师生互动,突出“学生是学习的主体”,让他们在感受知识的过程中,提高他们的知识运用能力。学习中要求学生多动手、多观察、多思考,激发学生学习数学的兴趣,更好的让学生处在“做中学”“学中做”的良好学习氛围之中。

教学过程:

课前准备:课前安排学生带着五个问题预习课本140页和141页的教材内容,同时让学生做一个等腰三角形的纸片,各小组长负责预习等工作。

(一)、导入

先复习“轴对称图形”的相关知识,根据本节课的特点,让学生带着问观察图片,找出图片里面的轴对称图形。

(二)、思考

1、自主学习,独立思考问题:

(1)什么是等腰三角形?

(2)等腰三角形各边都叫什么名称?各角呢?

(3)等腰三角形的性质?

(4)如何证明等腰三角形的性质?

(5)等边三角形的概念及性质?

2、动手操作、演示探究

——等腰三角形的性质

请同学们把等腰三角形纸片对折,让两腰重合!(电脑演示)发现什么现象?请尽可能多的写出结论.(从构成要素:边、角;相关要素:线、对称性方面考虑)

(三)、议展

1、探讨交流、得出结论:

重合的线段

重合的角

AB=AC

∠B=∠C

BD=CD

∠BAD=∠CAD

AD=AD

∠ADB=∠ADC

由这些重合的部分,猜想等腰三角形的性质。

构成要素:

边:等腰三角形的两边相等.

角:等腰三角形的两底角相等.简称“等边对等角”

相关要素:

线:等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合.简称“三线合一”

对称性:等腰三角形是轴对称图形

2、学生展示

证明“等边对等角”(学生展示)

三种方法证明等腰三角形性质“等边对等角”

已知:在△ABC中,AB=AC,求证:∠B=∠C

方法一:

证明:作底边BC上的中线AD。

在△ABD与△ACD中:

BD=DC(作图)

AD=AD(公共边)

∴△ABD≌△ACD(SSS)

∴∠B=∠C(全等三角形对应角相等)

方法二:

作顶角∠BAC的平分线AD。

∵AD平分∠BAC

∴∠1=∠2

在△ABD与△ACD中

AB=AC(已知)

∠1=∠2(已证)

AD=AD(公共边)

∴ △ABD ≌ △ACD(SAS)

∴ ∠B=∠C

方法三:

作底边BC的高AD。

∵AD⊥BC

∴∠ADB=∠ADC=90°

在RT△ABD与RT△ACD中

AB=AC(已知)

AD=AD(公共边)

∴ △ABD ≌ △ACD(HL)

∴ ∠B=∠C

(四)、点评

找各小组代表分别展示答案之后,其他小组进行评价,查漏补缺。然后通过老师讲解,再指出其实这作三种辅助线的位置根本没有发生改变,从而自然的过度到“三线合一”从中得出结论,达到对知识点的理解和掌握。

等腰三角形性质的几何语言

∵ AB=AC(已知)

∴ ∠B=∠C(等边对等角)

(1)等腰三角形的顶角的平分线,既是底边上的中线,又是底边上的高。

几何语言:

在△ABC中,

∵AB=AC , ∠1=∠2(已知)

∴BD=DC , AD⊥BC(等腰三角形三线合一)

(2)等腰三角形的底边上中线,既是底边上的高,又是顶角平分线。

几何语言:

在△ABC中,

∵AB=AC , BD=DC(已知)

∴AD⊥BC , ∠1=∠2(等腰三角形三线合一)

(3)等腰三角形的底边上的高,既是底边上的中线,又是顶角平分线。

几何语言:

在△ABC中,

∵AB=AC , AD⊥BC(已知)

∴BD=DC , ∠1=∠2(等腰三角形三线合一)

在学生掌握了等腰三角形的有关概念和性质之后,引出等边三角形的教学。

等边三角形定义:三边都相等的三角形叫做等边三角形

等边三角形的性质定理:等边三角形的三个角都相等,并且每一个角都等于60°.

等边三角形性质的证明:(学生在练习本完成后,再用课件展示证明过程)

例题:

已知:在△ABC中,AB=AC,BD,CE分别为∠ABC,∠ACB的平分线。

求证:BD=CE.

(五)、练习

为了检测学生对本课教学目标的完成情况,进一步加强知识的应用训练,我设计了三组练习由易到难,由简单到复杂,满足不同层次学生需求。

练习1:知识点:(边:等腰三角形的两边相等.)

1、在等腰△ABC中,AB=3,AC=4,则△ABC的周长=________

2、在等腰△ABC中,AB=3,AC=7,则△ABC的周长=________

练习2:知识点:(角:“等边对等角”)

1、在等腰△ABC中,AB=AC, ∠B=50°,则∠A=__,∠C =_

2、在等腰△ABC中,∠A =100°,则∠B=___,∠C=___

练习3:(判断)知识点:(“三线合一”)

1、等腰三角形的顶角一定是锐角。()

2、等腰三角形的底角可能是锐角或者直角、钝角都可以。()

3、等腰三角形的顶角平分线一定垂直底边。()

4、等腰三角形底边上的中线一定平分顶角。()

5、等腰三角形的角平分线、中线和高互相重合。()

(六)、总结

师生合作,共同归纳:

1.等腰三角形的两底角相等(简写成“等边对等角”)

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合(简称“三线合一”)

3.等边三角形的性质定理:等边三角形的三个角都相等,并且每一个角都等于60°.布置作业

巩固性作业:143页习题1、2、(必做),143页习题3、4、(选做)

拓展性作业:

1、如图,在△ABC中,AB=AC,BD,CE分别为AB,AC边上的中线,试判断BD 、CE相等吗?并说明理由。

2、如图,在△ABC中,AB=AC,BD,CE分别为AB,AC边上的高线,试判断BD 、CE相等吗?并说明理由。

板书设计

17.1等腰三角形

等腰三角形相关概念:证明例题

等腰三角形的性质:

“等边对等角”

“三线合一”

等边三角形相关知识布置作业

课后反思

这节课从学生的实际认知出发,以“学生为主体,教师为主导”,课堂活动中充分调动学生的学习积极性,在整个教学过程中我以“启发学生,挖掘学生潜力,培养学生能力”为主旨而进行!充分地发挥学生的主观能动性。突出了重点,突破了难点,达到了知识能力情感的三合一,达到了预期的教学效果。不足之处的是,习题练习有限,未设置限时小测等等

全等三角形教案


通常老师在上课之前会带上教案课件,通常老师都会认真负责去设计好。教案是教学过程的有机组成部分。如果您需要符合您需求的“全等三角形教案”相关推荐,请把这个链接放入收藏夹以便您查看!

全等三角形教案 篇1

今天我说课的题目是《全等三角形》,内容选自沪科版数学教材八年级(上)第十四章第一节。

我设计的说课共分四个方面:

一、教材的分析与处理

1、教材的地位与作用

从本课开始,将向学生重点渗透图形变换的数学思想,使学生初步掌握推理论证的方法,有利于培养学生逻辑推理能力。教材通过一个思考活动,使学生体会将一个三角形进行变换后形成的新图形与原图形是全等形。我将此内容进行了加深和拓展

2、教学目标

知识与技能: 了解全等三角形的相关概念,性质,能够准确地辨认全等三角形中的对应元素,提高学生的识图能力。

过程与方法: 经历图形的平移,翻折,旋转等变换的过程,体会探索问题的方法。

情感态度与价值观:通过合作交流,增强团队意识,体验成功的喜悦。

3、教学重点与难点

重点:全等三角形相关概念,性质及全等三角形对应元素的寻找。

难点:能够准确地辨认全等三角形中的对应元素

二,教学方法与教学手段

教学方法:本节课主要采用探究体验式创新教学法。

教学手段:采用多媒体辅助教学,促进学生自主学习,提高效率。

三,教学过程设计

环节一 激情 引趣

拼图游戏:

通过动手拼图,学生能够发现这几组图形能够完全重合,从而得到全等形的定义。此环节的设计,利用学生原有知识经验,展开数学教学,激发了学生的学习兴趣,提高了学生观察,分析,抽象,概括的能力。

环节二 实践 感悟

活动一

打开你手中的材料袋,找出其中的全等形,并说明理由。要求 同桌合作完成学生亲身体验两个图形完全重合的过程,能够发现①与⑩,②与⑥,⑦与⒁⑿与⒀分别能够完全重合,而对于④与⑥,⑧与⒀教师留给学生充分的时间验证,通过再次验证,能够发现④与⑥,⑧与⒀是分别不能完全重合。

通过动手实践,使学生更加明确了全等形的判别条件, 培养了学生严谨求实的学习态度。

在此基础上,自然引出全等三角形,从而引出课题。

并通过观察两个三角形的变换过程,了解全等三角形的对应元素,并由教师介绍全等三角形的表示方法。

进一步提出:这两个全等三角形的对应边和对应角分别存在怎样的数量关系呢

由此得到全等三角形的性质,接着由师生共同得出全等三角形性质的符号语言:

∵△ABC≌△DEF

∴ AB= DE, BC=EF, AC= DF

∠A=∠D, ∠B=∠E , ∠C=∠F

此问题的设计,让学生在做中发现,做中感悟,做中理解,做中解决,使学生经历,感受,体验知识的形成过程,培养了学生乐于动手,勤于动手的意识和习惯,切实提高了学生的动手能力和实践能力。

环节三 探究 说理

活动二

利用两个全等三角形学具,先保持完全重合状态,再使一个三角形不动,将另一个三角形进行平移,翻折 ,旋转,探究以下图形的形成过程。

要求 四人为一小组合作交流的形式进行。

在讨论过程中,教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并给予适当点拨。

各个小组在黑板上演示图形的形成过程。

有以下几种:

个别学生发现第三个图形有另一种形成过程,此时教师尊重学生的富有个性的学习表现,及时捕捉问题的症结所在,进行巧妙地引导,鼓励,问疑,由此教学变得更加生动与鲜活,获得了更大的教学生成效果学生在汇报的过程中,展示不同的形成过程。接着用微机再现图形形成的过程,并使学生了解利用两个全等三角形学具还可以形成一些其他的图形,拓拓宽学生的视野,有利于学生认识数学的本质与作用,并从中体会到数学的美,这样设计,学生能够体验和感悟图形之间的联系和运动变换的过程中所体现的美,并为寻找全等三角形的对应元素作好准备,接着利用这几组图形寻找全等三角形的对应元素, 并体会寻找对应元素的方法。

学生从运动变化的角度发现:

重合的边是对应边,重合的角是对应角。例:

也会从边,角的特点来找:

如:全等三角形中 例:

有公共边的,公共边是对应边;

有公共角的,公共角是对应角;

有对顶角的,对顶角是对应角。

一对最长(短)的边是对应边;

一对最大(小)的角是对应角。

对应边所夹的角是对应角;

对应角所对的边是对应边。

无论从哪个角度,教师都对学生的成果给与充分的肯定,为将学生的认识由感性上升到理性,使学生对全等三角形对应元素的方法进行分类和总结,从而得到特殊图形寻找对应元素的方法。

此难点的突破,力求发挥自主学习的优越性,放手让学生去探索,在生生互动氛围中使学生思维的灵活性和创造性得到发展。

环节四 应用 拓展

为了使学生能够结合基本图形,灵活地运用本节课所学知识解决问题, 我设计了一组不同层次的习题,力争让不同的学生在数学上得到不同的发展。

1、△ABC≌△ADC,AB和AD,BC和DC是对应边,则______。(填数量关系)

2、△ABC≌△EDC,B和D,A和E是对应点,则_____。(填数量关系)

3、△ABC≌△EFD,∠ACB和∠EDF是对应角,AB与EF是对应边,则图中相等的边有_______。

学生能够叙述发现的结论,总结解决问题的方法, 从中体会到理解和掌握全等三角形性质是证明角相等,线段相等的主要途径,通过以上问题的解决,使学生抓住问题的实质,从而达到巩固双基,举一反三的目的。

环节五 体验 收获

此环节采用师生互动,共同反思,总结,补充的方式进行。小结如下:

学习方式 自主,探究,合作学习

探索流程图

环节六 拓展 延伸

为让学生更好的体会"学数学,用数学"的理念,布置了研究性作业,利用两个全等三角形,进行平移,翻折,旋转,结合得到特殊位置的图形,尝试寻找对应元素。

四、教法特点以及预期效果分析

1、教法特点

本节课采用研究体验式创新教学法,辅之以其它教学法,在探索新知过程中设计两个实践活动,有利于学生主动地进行观察,猜想,验证,推理,交流等数学活动,促使学生在自主探索的过程中形成自己的认知体系,在与人交流的过程中逐渐完善已有的认知体系。

2、预期效果分析

在学生体会全等形的定义时,学生可能说的不够准确,对于这些说法,教师不急于评价,而是用具有启发性的语言进行引导,由学生相互订正,补充得出:形状大小完全相同;

在学生表述全等三角形对应元素的寻找方法时, 可能有表达的不是很准确的地方,此时由学生相互补充,完善,教师给予适当的点拨。考虑到已有的知识经验,对学生的要求不要过高,要充分地尊重学生,增强学生探究的欲望,为学生提供合作交流的平台;在学生汇报图形形成的过程中, 对于复杂图形的形成过程,学生可能有表达不准或理解有误的地方, 此时通过生生质疑的方式加以解决,如果学生解决不了,此时我将利用微机或教具演示来消除学生的各种思维障碍。

本节课为学生提供观察,尝试,探索和发现的机会,从而形成学生主动参与。

全等三角形教案 篇2

【课前准备】

1.定义:能够的两个三角形叫全等三角形。

2.全等三角形的性质,全等三角形的判定方法见下表。

【例题讲解】

一.挖掘“隐含条件”判全等

如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)

1.如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由.

变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD

2.如图点D在AB上,点E在AC上,CD与BE相交于点O,

且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。

3.如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。

变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD

二.添条件判全等

1.如图,已知AD平分∠BAC,要使△ABD≌△ACD,

根据“SAS”需要添加条件;

根据“ASA”需要添加条件;

根据“AAS”需要添加条件.

2.已知AB//DE,且AB=DE,

(1)请你只添加一个条件,使△ABC≌△DEF,

你添加的条件是.

三.熟练转化“间接条件”判全等

1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?

为什么?

2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?

3.“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明.

巩固练习:如图,在中,,沿过点B的一条直线BE

折叠,使点C恰好落在AB变的中点D处,则∠A的度数.

4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D

【当堂反馈】

1.(20xx攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为全等三角形是△≌△

2.如图,已知AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE

3.如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC

4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的垂线,垂足分别为M、N

(1)你能找到一对三角形的全等吗?并说明.

(2)BM,CN,MN之间有何关系?

若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?

【课后作业】

1.如图,要用“SAS”说明ΔABC≌ΔADC,若AB=AD,则需要添加的条件是.

要用“ASA”说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是.

2..如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,AD.CE交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.

(第3题)

(第4题)(第5题)(第6题)

3.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()

A..2对B.3对C.4对D.5对

4.如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()

A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对

5.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).

6.如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?

7:如图11-9在△ABC中.⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.

试说明:①CE=BG;②CE⊥BG;

⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.

试说明:①CD=BE;②求CD和BE所成的锐角的度数.

【拓展延伸】

如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF

(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

全等三角形教案 篇3

【教学目标】:

1、知识与技能:

1.三角形全等的条件:角边角、角角边.

2.三角形全等条件小结.

3.掌握三角形全等的“角边角”“角角边”条件.

4.能运用全等三角形的条件,解决简单的推理证明问题.

2、过程与方法:

1.经历探究全等三角形条件的过程,进一步体会操作、?归纳获得数学规律的过程.

2.掌握三角形全等的“角边角”“角角边”条件.

3.能运用全等三角形的条件,解决简单的推理证明问题.

3、情感态度与价值观:

通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神

【教学情景导入】:

提出问题,创设情境

复习:

(1)三角形中已知三个元素,包括哪几种情况?

三个角、三个边、两边一角、两角一边.

(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?

三种:

①定义;

②SSS;

③SAS.

2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?

导入新课

[师]三角形中已知两角一边有几种可能?

[生]1.两角和它们的夹边.

2.两角和其中一角的对边.

做一做:

三角形的两个内角分别是60°和80°,它们的夹边为4cm,?你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?

学生活动:自己动手操作,然后与同伴交流,发现规律.

教师活动:检查指导,帮助有困难的同学.

活动结果展示:

以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.

提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).

[师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,?能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?

[生]能.

学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.

[生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.

②画线段A′B′,使A′B′=AB.

③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.

④射线A′D与B′E交于一点,记为C′ 即可得到△A′B′C′.

将△A′B′C′与△ABC重叠,发现两三角形全等.

[师]

于是我们发现规律:

两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).

这又是一个判定三角形全等的条件. [生]在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?

[师]你提出的问题很好.温故而知新嘛,请同学们来验证这种想法.

【教学过程设计】:

如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?

证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

∠A=∠D,∠B=∠E

∴∠A+∠B=∠D+∠E

∴∠C=∠F

在△ABC和△DEF中

∴△ABC≌△DEF(ASA).

于是得规律:

两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).

[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.

求证:AD=AE.

[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.

学生写出证明过程.

证明:在△ADC和△AEB中

所以△ADC≌△AEB(ASA)

所以AD=AE.

[师]到此为止,在三角形中已知三个条件探索三角形全等问题已全部结束.请同学们把三角形全等的判定方法做一个小结.

学生活动:自我回忆总结,然后小组讨论交流、补充.

有五种判定三角形全等的条件.

1.全等三角形的定义

2.边边边(SSS)

3.边角边(SAS)

4.角边角(ASA)

5.角角边(AAS)

推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.

练习:图中的两个三角形全等吗?请说明理由.

答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.

【课堂作业】 1.如图,BO=OC,AO=DO,则△AOB与△DOC全等吗?

小亮的思考过程如下.

△AOB≌△DOC

2、已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C?′全等的是( )

A.AB=A′B′ AC=A′C′ BC=B′C′

B.∠A=∠A′ ∠B=∠B′ AC=A′C′

C.AB=A′B′ AC=A′C′ ∠A=∠A′

D.AB=A′B′ BC=B′C′ ∠C=∠C′

3、要说明△ABC和△A′B′C′全等,已知条件为AB=A′B′,∠A=∠A′,不需要的条件为( )

A.∠B=∠B′ B.∠C=∠C′; C.AC=A′C′ D.BC=B′C′

4、要说明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,则不需要的条件是( A.∠C=∠C′ B.AB=A′B′; C.AC=A′C′ D.BC=B′C′

5、两个三角形全等,那么下列说法错误的是( )

A.对应边上的三条高分别相等; B.对应边的三条中线分别相等

C.两个三角形的面积相等; D.两个三角形的任何线段相等

6、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.

全等三角形教案 篇4

全等三角形的对应边相等.

全等三角形的对应角相等.

(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?

归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.

归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.

a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.

b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

c.平移法:沿某一方向推移使两三角形重合来找对应元素.

a.有公共边的,公共边是对应边;

b.有公共角的,公共角是对应角;

c.有对顶角的,对顶角是对应角;

d.两个全等三角形最大的边是对应边,最小的边也是对应边;

e.两个全等三角形最大的角是对应角,最小的角也是对应角;

练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,

你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?

⑴写出图中相等的线段,相等的角;

1.这节课你学会了什么?有哪些收获?有什么感受?

2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.

全等三角形教案 篇5

苏教版全等三角形教案(一)

【教学目标】

知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“SAS”条件,了解三角形的稳定性.能运用“SAS”证明简单的三角形全等问题.

过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.

情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.

教学重点:三角形全等的条件.

教学难点:寻求三角形全等的条件.

教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

学情分析:这节课是学了全等三角形的边边边后的一节课、將中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。

课前准备 全等三角形纸片、三角板、【教学过程】:

一、创设情境,导入新课

[师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?

[生]三内角、三条边、两边一内角、两内角一边.

[师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.

(一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?

[生]两种.

1.两边及其夹角.

2.两边及一边的对角.

[师]按照上节方法,我们有两个问题需要探究.

(二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB= A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等).把画好的三角形A/B/C/剪下,放到△ABC上,它们全等吗?

探究2:先画一个任意△ABC,再画出△A/B/C/,使AB= A/B/、AC= A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等).把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?

学生活动:

1.学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果.

2.作好图后,与同伴交流作图心得,讨论发现什么样的规律.

教师活动:

教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程.

二 、探究

操作结果展示:

对于探究1:

画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.

1.画∠DA/E=∠A;

2.在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC;

3.连结B/C/.

将△A/B/C/剪下,发现△ABC与△A/B/C/全等.这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”).

小结 : 两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“SAS”.

如图,在△ABC和△DEF中,

对于探究2:

学生画出的图形各式各样,有的说全等,有的说不全等.教师在此可引导学生总结画图方法:

1.画∠DB/E=∠B;

2.在射线B/D上截取B/A/=BA;

3.以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的.

也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件.

归纳总结:

“两边及一内角”中的两种情况只有一种情况能判定三角形全等.即:

两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)

三、应用举例

[例]如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长就是A、B的距离.为什么?

[师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE.

在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了.而∠1和∠2是对顶角,所以它们相等.

证明:在△ABC和△DEC中

所以△ABC≌△DEC(SAS)

所以AB=DE.

1.填空:

(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).

(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).

四、练习

1. 已知: AD∥BC,AD= CB(图3).

求证:△ADC≌△CBA.

2.已知:AB=AC、AD=AE、∠1=∠2(图4).

求证:△ABD≌△ACE.

五、课堂小结

1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.

2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.

六、布置作业

必做题:课本P43——44页习题12.2中的第3,选做题:第4题题

七、板书设计

全等三角形教案 篇6

1、知道什么是全等形,全等三角形以及全等三角形对应的元素;

2、能用符号正确地表示两个三角形全等;

3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;

4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;

5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。

[难点]

能用全等三角形的性质解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解。

活动4观察两个平移的三角形所做的变化(课件演示)及动手剪两个全等的三角形。

观察、发现生活中图形的形状和大小相同的图形获得全等形的体验。

利用两个形状和大小相同的图形通过平移、翻折、旋转的实验,得出全等形的概念。

及自己动手作比较得出全等形三角形的概念。

通过图形的变换,形成对应的概念,获得全等形三角形的性质。

(1)观察下列图案(电脑显示不同的图案及教科书的图案),学生指出这些图案的形状和大小是否相同?

(2)你能再举出生活中的一些实际例子吗?

(3)按照教科书的要求,将一块三角形样板在纸板上,画下图形,照图形裁下纸板。观察裁下的纸板的形状、大小是否完全一样,能否完全重合?

教师演示课件,提出问题,学生思考、交流。

学生思考发表见解。

学生举出生活中的实例,教师对有创意的例子给予表扬及鼓励。

教师给出全等形的概念。

教师提出要求,学生动手操作,并做观察、回答问题。

学生观察、发现全等形的能力,举出的离子是否是局限于某一范围,是否有新意;

(2)学生是否能够按要求裁下纸板,准确地重合纸板,并认真地进行观察。

运用贴近学生生活的图案激发学生探究的兴趣。

通过问题(1),引导学生从图形的形状与大小的角度去观察图形。

图形全等形、在生活中大量存在,创设这样的问题情境,引导学生有意注意,激发学生主动思考和联想;引导学生进一步联系生活,激发探究欲望。

通过动手实践,获得全等形的体验。

[活动2]

观察下列图形经过平移、翻折、旋转前后的形状和大小是否有所改变?

教师提出要求。

学生体会到图形的位置变化了,但经过平移、翻折、旋转依然全等。

培养学生对图形的识别能力。

[活动3]

对全等形知识的练习。

教师提问。

学生思考回答问题。

ABC的位子上,试一试:

观察△ABC在平移、翻折、旋转是否发生了改变?在图中的两个三角形全等吗?

教师用课件展示。

学生猜测,发表意见得出全等三角形的概念。

是否能体会三角形的位置变化了,但经过平移、翻折、旋转后两个图形依然全等。

学生动手实践、分析,总结出图形变换的本质,加深对图形变换的理解。

将两个三角形完全重合,观察并指出重合的顶点、边和角。

观察两个三角形找出对应边、对应角。

(4)观察重合的两个三角形对应边、对应角的关系。

教师课件演示提出问题。

学生实践交流得出结论。

教师给出对应顶点、对应边、对应角的概念并板书。

学生观察并回答问题。教师引导学生归纳总结得出三角形的性质并板书。

全等三角形性质的理解。

在教师演示课件的过程中,学生建立对应的概念。

学生学会掌握全等三角形的'表达方式,会使用全等符号。

练一练:

如图,已知ΔOCA≌ΔOBD,

(3)拓广探索:

如下图,矩形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,DM=5cm, ∠DAM=39°,则AN=___cm, NM=___cm, ∠NAB=___.

教师提出问题。

学生分组探究。

观察学生能否快速找出对应的边与角。

教师利用课件演示提问。

学生再一次对对应边与角的掌握。

教师提问。

学生独立思考回答并说出解题过程。

教师给出解题答案。

同学之间的交流与活动参与程度。

进一步培养学生对图形的识别能力,加深学生对全等三角形性质的理解与掌握。

运用全等三角形的性质对较复杂图形进行探索,初步培养学生综合运用全等三角形性质的能力。

教科书92页习题1。

学生分组总结。

教师布置作业,学生课后独立完成。

学生对全等三角形的情感认识。

加深学生对知识的理解,促进学生对课堂的反思。

巩固、提高、反思。使学生对知识的掌握。

全等三角形教案 篇7

一、教学目标

【知识与技能】

掌握三角??形全等的“角角边”条件,会把“角边角”转化成“角角边”。能运用全等三角形的条件,解决简单的推理证明问题。

【过程与方法】

经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

【情感、态度与价值观】

在探索归纳论证的过程中,体会数学的严谨性,体验成功的快乐。

二、教学重难点

【教学重点】

“角角边”三角形全等的探究。

【教学难点】

将三角形“角边角”全等条件转化成“角角边”全等条件。

三、教学过程

(一)引入新课

利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)

(四)小结作业

提问:今天有什么收获?还有什么疑问?

课后作业:书后相关练习题。

全等三角形教案 篇8

一、教学内容分析

本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析

学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想

我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。遵循启发式教学原则,采用引探式教学方法。用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标

1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

3.情感与态度价值观目标:通过探索活动,体验数学知识在现实生活中的广泛应用,培养学生勇于探索、敢于创新的精神。

五、教学重点和难点

重点:三角形全等条件的探索过程和三角形全等的“边边边”条件。

难点:三角形全等条件的探索中的分类思想的渗透。

六、教学过程设计

具体设计的教学过程描述如下:

(一)创设情境,提出问题

1.出示多媒体:

大家来看一个问题:这是一块三角形玻璃窗,里面的玻璃“啪”地一声损坏了,现在要打电话给玻璃店的老板配一块与损坏的玻璃大小相等形状相同的三角形玻璃,至少要报给玻璃店的老板(这块破裂三角形玻璃)几个数据呢?

[学情预设]学生考虑情况和条件多,大多围绕角和边进行分析。

[设计意图]通过问题情境的创设,不但引入了本课的课题,而且激发了学生的好奇心和求知欲,调动了学生的学习积极性,使他们体会探索的过程是为了解决问题的实际需要。联系生活,充分调动学生的积极性(让学生动起来)。

(二)探索发现,合作交流

1.一个条件

按照三角形“边、角”元素进行分类,师生共同归纳得出:

一个条件: 一边,一角;

再按以上分类顺序动脑、动手操作验证。

2.验证过程可采取以下方式:

画一画:按照下面给出的一个条件各画出一个三角形。

①三角形的一条边长是8cm;

②三角形的一个角为 60°。

剪一剪:把所画的三角形分别剪下来。

比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。

对只给一个条件画三角形,画出的三角形一定全等吗?

同组同学互相比较,观察得出结果。小组代表说明本小组的结论。

再结合展示幻灯片。以便强化结论。

教师收集学生的作品,加以比较,得出结论:只给出一个条件时,不能保证所画出的三角形一定全等。

3.二个条件

继续探索二个条件的情况,师生共同归纳得出:

两个条件: 二边,一边一角,二角;

[教师活动]教师积极帮助学生分析、归纳,对学生在分类中出现的问题,教师予以有序的引导。重点抓住“边”按“边”由多到少的顺序给出。

[设计意图]因为初一学生缺乏思维的严谨性,不能对问题做出全面、正确的分析,并对各种情况进行讨论,所以教师设计上述问题,逐步引导学生归纳出三种情况,分别进行研究,向学生渗透分类讨论的思想。从一个,两个到三个条件。培养学生思维的主动性和广阔性。很自然的突破难点。

4.画一画:按照下面给出的两个条件各画出一个三角形。

①三角形的两条边分别是:8cm,10cm;

②三角形一条边为7cm,一个角为 30°;

③三角形的两个角分别是:30°,50°。

剪一剪:把所画的三角形分别剪下来。

比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。

[学情预设]学生按条件画三角形,然后将所画的三角形分别剪下来,把同一条件下画出的三角形与其他同学画的比一比。

[教师活动]在此教师给学生留出充分的时间画图、观察、比较、交流,然后教师收集学生的作品,加以比较,为学生顺利探索出结论创造条件。

5.学生展示本小组的结论

[设计意图]培养学生的合作意识调动学生的主观能动性,使学生积极主动地参与教学活动,使学生对只有两个条件得不到三角形全等有更直观的认识。

[知识链接]这一知识点既是对后续归纳总结起到实验性证明。

6.教师同时展示幻灯片,加以比较说明,得出结论:只给出两个条件时,不能保证所画出的三角形一定全等。

[设计意图]从实践操作中,引发总结,将前面画图的结果升华成理论,让学生学会思考,善于思考。参与构建对知识的形成和体验。

7. 继续探索三个条件的情况,师生共同归纳得出:

三个条件: 三边,两边一角,一边两角,三角

再继续探索三个条件中的三条边的情况。

8. 画一画:在硬纸板上画出三条边分别是 10cm,12cm,14cm 的三角形。

(对画图有困难的同学提示:用长度分别为10cm、12cm、14cm小棒拼一个三角形并在硬纸板上画出)

剪一剪:用剪刀剪下画出的三角形,与周围同学比较一下,你们所剪下的三角形是否都全等。

比一比:作出的三角形与其他同学作的比一比,是否全等。

9.全班几十个三角形摞在讲台上,形成一个高高的三棱柱模型。学生看着讲台上的三棱柱,心中充满了自豪。

[学情预设] 全班几十个三角形摞在讲台上,形成了一个高高的三棱柱。学生看着讲台上的三棱柱,心中充满了自豪。

[设计意图]培养学生的合作意识、创造性思维,合理猜想,为得出SSS来进行三角形全等的验证作了铺垫。深入探索使学生积极主动地参与教学活动,使学生更利于理解SSS。很自然的突出重点。

(三)、归纳结论,解决问题

1.从上面的活动中,我们总结出:

三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

学生由理解上升到口述出原理,以便以后更好的运用到实践中去。

[学情预设]学生口述,从口头表达上升到书面表达。对学生的回答是否正确全面,都要给予肯定和鼓励,更好的促进他们学习的积极性。

2.成功的解决了上面提出的玻璃问题。

我们只要报给玻璃店的老板三条边长就可以配一块与损坏的玻璃大小相等形状相同的三角形玻璃。

(三条边就可以做出一模一样的三角形玻璃)为学生继续探索三个条件的其他情况,铺下了好的问题情境。(对于两边一角,一边两角和三个角,我们将下一节课研究)

[设计意图]学以致用,发现问题解决问题。

本文网址://m.jk251.com/jiaoan/118278.html

相关文章
最新更新

热门标签