教材分析:
以乘、除法知识拓展方式,引入对“因数与倍数”知识的学习。有利于沟通新旧知识之间的联系,分散难点,便于学生理解和掌握知识。
教学目标:
①在具体的情境中,借助乘法算式认识因数和倍数。
②掌握求一个数的因数和倍数的方法,知道一个数的因数及倍数的特点。
重点难点突破:
为了突出重点、突破难点,特设计以下三个环节进行教学:
①以学生的贴画为素材,通过不同的贴法引出不同的乘法算式,以乘法算式引出因数
和倍数的意义。
②引导学生自主找一个数的因数,以此加深对因数的理解。
③引导学生自主找一个数的倍数,以此加深对倍数的理解。
组内教师讨论要点:
①找一个数的因数时,一定要放手,且给学生足够的时间让他们去同位之间、小组内交流,如何能快速且没有遗漏的找全。
②及时的练习巩固也是很有必要的,在多个练习的基础之上让学生发现一个数因数的特点。
③找一个数的因数也反映出学生的口算水平的高低。
④找一个数的倍数时,以找2、3、5的倍数为主,让学生发现一个数倍数的特征。
《公倍数和公因数》的教学已接近尾声,但练习反馈,部分学生求两个数的最大公因数和最小公倍数错误百出,细细思量,用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的最大公因数有学生写5。……而且去问问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“烦”,“很烦”,“太麻烦了”。
在了解了学生的感受以后,我又重新通过练习概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。
另外,我又结合教材后面的“你知道吗?”,指导了一下用短除法求两个数的最小公倍数和最大公因数的方法。在完成练习时,让学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢。
想来想去,还是真得很怀念旧教材上的“短除法”。
教学内容:教材第30页练习五的第12~14题
教学目标:
1、通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的办法,开展有条理思考。
2、通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决现实问题的能力。
教学重点:熟练掌握求两个数最大公因数和最小公倍数的办法
教学难点:熟练掌握求两个数最大公因数和最小公倍数的办法,提高解决现实问题的能力。
教学具准备:教学光盘。
教学过程:
一、揭示课题。
师:今日我们继续完成一些公因数、公倍数的有关练习。
二、基本练习。
1、写出36和24的公因数,最大公因数是多少?
2、写出100以内10和6的公倍数,最小公倍数是多少?
学生独立完成,完成后汇报交流。
分别让学生说说自己是用什么办法找出的?
三、综合练习。
1、完成练习五第12题。
问题:谁能说说什么数是两个数的公倍数?两个数的公因数指什么?
学生在书上完成后汇报办法。
问题:你是怎样找到24和16的公因数的?
你是怎样找到2和5的公倍数的?
学生可能用不一样的办法。
24和16的公因数有1、2、4、8;
2和5的公倍数有10、20、30……
2、完成第13和14题。
(1)学生独立完成。
(2)在小组内交流各自的办法。
问题:求最大公因数和最小公倍数的办法有什么相同和不一样?
什么情况下可以直接写出两个数的最大公因数?
什么情况下可以直接写出两个数的最小公倍数?
3、指导完成思考题。
(1)小组讨论办法。
(2)教师指导解法。
四、阅读与自学“你知道吗?”[11]
五、课堂总结。
大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意思,最大公因数和最小公倍数的意思,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的办法,才能为后面的学习做好准备。
1.因数和倍数的定义
2和6是12的因数,12是2的倍数,12也是6的倍数
18的因数有1、18、2、9、3、6
2.一个数的因数个数是有限的,一个数的倍数有无数个
任何数都有最小的因数1,最大的因数本身,最小的倍数也是本身
3.2、3和5倍数的特征
2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数
5的倍数的数特征是个位是0或5
3的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数
4.只有1和本身两个因数的数叫做质数(或素数)
5.除了1和本身外还有其它因数的数叫做合数
6.1既不是质数,也不是合数
7.100以内的质数总共25个,它们是:
2357
11131719
31233729
41434759
61536779
71739789
83
补充知识:
1.9的倍数的数特征是一个数各位上的数字的和是9的倍数,这个数就是3的倍数
2.既是2的倍数,又是5的倍数的数的特征是个位必须是0
3.4和25的倍数的特征是末二位是4或25的倍数
4.8和125的倍数的特征是末三位是8和125的倍数
5.如果a和b都是c的倍数,那么a-b和a+b一定也是c的倍数
6.如果a是c的倍数,那么a乘以一个数(0除外)后的积也是c的倍数
7.偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数
偶数+奇数=奇数偶数-奇数=奇数偶数×奇数=偶数
奇数+奇数=偶数奇数-偶数=奇数奇数×奇数=奇数
奇数-奇数=偶数
无论多少个偶数相加都是偶数
偶数个奇数相加是偶数
奇数个奇数相加是奇数
教学内容:五年级第二学期第三单元“公倍数与最小公倍数”
教学目标:
1、理解公倍数与最小公倍数的意义。
2、会用不同的方法求两个数的最小公倍数。(例举法、分解质因数、短除法)
3、会求存在互质和倍数关系的两个数的最小公倍数。
4、培养学生观察、迁移、概括的能力和主动探求新知的能力。
5、经历探求新知的过程,体验发现问题、解决问题的快乐。
教学重点:
理解公倍数与最小公倍数的意义,并会用短除法求两个数的最小公倍数。
教学难点:
理解两个数的公倍数与最小公倍数必须包含它们的公有质因数以及它们各自独有的质因数。
教学过程:
一.揭示课题:
1、说出下面每组数的最大公约数:
4和918和2413和3910和12
2、我们学习了公约数和最大公约数的那些知识?
我们主要是从它们的含义、方法、特殊关系来进行探讨的。(板书)
求两个数的最大公约数都有哪些方法?(板书:例举法、分解质因数、短除法)
3、今天我们一起来研究两个数倍数之间的关系。
出示课题:公倍数与最小公倍数
二、探求新知
通过大家的自学,你认为这节课我们应该从哪些方面进行研究比较合理?
我们试着从这三方面来进行研究。
1、研究含义。根据你的理解,说说什么是公倍数?什么是最小公倍数?还有其他理解吗?下面我们通过具体的例子来进一步理解。
练习:3的倍数有:
5的倍数有:
3和5公有的倍数有:
其中最小的一个公有的倍数是
练习:6的倍数9的倍数
6和9公有的倍数
6和9最小的公倍数是(),6和9有没有最大的公倍数?为什么?
小结:什么叫公倍数?什么叫最小公倍数?
2、我们已经了解了什么是最小公倍数,那么怎样求最小公倍数呢?
以30和40这两数为例。说说你准备用什么方法求他们的最小公倍数?
(集体练习,指名板演。)
(1)交流反馈例举法。
(2)交流反馈分解质因数法。
练习:
30=2×3×5m=2×2×3×5
42=2×3×7n=2×3×3×5
30和40的最小公倍数是()m和n的最小公倍数是()
用分解质因数法怎样来求几个数的最小公倍数?
(3)为了简便,通常求最小公倍数用短除法。你是怎样理解这个短除算式的?
分别提问:各个数表示什么意思?怎样用短除法求几个数的最小公倍数?
练习:用短除法求24和36的最小公倍数。
对于求最小公倍数的方法你还有不理解或者还有什么建议?
小结:我们根据题目的难易,有时需要灵活的方法。
练习:求下列各组数的最小公倍数。
20和307和95和86和123和24
交流反馈:
3、互质关系倍数关系(板书)
具有互质关系的两个数,怎样求它们的最小公倍数?
具有倍数关系的两个数,怎样求它们的最小公倍数?
看书,我们的结论和书上的一样吗?
三、练习反馈
1、任意选择两个数组成一组,并说出它们的最小公倍数。
13、2、4、15、18、6、100、25、9、1、12
2、判断:
(1)两个数的最小公倍数一定大于这两个数。()
(2)两个数的公倍数是无限的,而最小公倍数只有一个。()
3、应用
有一袋果糖,无论分6人,还是分5人,都正好分完,这袋果糖至少有多少粒?
四、总结评价
通过自学和交流反馈,你有什么收获?
《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。
对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。
一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。
《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:
“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?”
学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。
二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛
“对于今天学习的内容你有什么猜测?”这一问题的包容性较大,不同的学生面对这一问题都能说出自己不同的猜测,学生的差异与个性得到了较好的尊重,真正体现了面向全体的思想。不同学生在思考这一问题时都有了自己的见解,在相互补充与想互启发中生成了本课教学的内容,使学生充分体会了合作的魅力,构建了一个和谐的课堂生活。在这一过程中学生深深地体会到数学知识并不是那么高深莫测、可敬而不可亲。数学并不可怕,它其实滋生于原有的知识,植根于生活经验之中。这样的教学无疑有利于培养学生的自信心,而自信心的培养不就是教育最有意义而又最根本的内容吗?
三、让学生进行独立思考和自主探索
通过学生的猜测,我把学生的提出的问题进行了整理:
(1)什么是公因数与最大公因数?
(2)怎样找公因数与最大公因数?
(3)为什么是最大公因数而不是最小公因数?
(4)这一部分知识到底有什么作用?
我先让学生独立思考?然后组织交流,最后让学生自学课本
这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。
目标预设:
1.让学生经历探索2、5倍数特征的过程,理解2、5倍数的特征,能熟练判断一个数是不是2或5的倍数。
2.知道奇数与偶数的含义,能熟练判断一个数是奇数或偶数。
3.在观察、猜测过程中提高探究问题的能力。
教学重点、难点:掌握2、5的倍数的特征,并能迅速作出判断。
教学准备:
教学过程
一、复习导入
1.到目前,你认识了哪些数?请举例说明。
2.怎样能迅速找出一个数的倍数?你能很快说出下列各数的倍数吗?
二、探索新知
1.5的倍数的特征
(1)5的倍数有什么特点?请你在教科书第4页的数表中用自己喜欢的方式做上记号,找出5的倍数。
(2)观察、思考
刚才画出来的数都有什么特点?
(3)合作交流
先在小组内把自己的想法与同伴交流,语言不要做统一要求。
(1)验证
(2)引导学生说出几个较大数,对观察、发现的结果进行检验,看是否正确。
2.2的倍数
(1)独立学习
(2)汇报交流,归纳2的倍数的特征。
(3)验证
3.揭示奇数和偶数
结合2的倍数的特征,了解奇数与偶数的含义。
三、巩固应用,拓展提高
1.猜数游戏。
规则:同桌两人一组,一名同学说一个数,另一个同学说出是否为2或5的倍数还是奇数、偶数。
2.是2的倍数又是5的倍数这个数具备什么条件?
3.用0、5、8组成三位数
这个三位数有因数2
这个三位数有因数5
这个三位数有因数2又有因数5
四、全课小结
一、作业
课本相关练习。
板书:
2、5的倍数的特征
5的倍数的特征:个位是0或5
2的倍数的特征:个位是0、2、4、6、8
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
本文网址://m.jk251.com/jiaoan/17736.html
上一篇:圆的面积 小学教案范例
下一篇:上册单元简易方程练习