导航栏

×
范文大全 > 幼儿园教案

小学数学三角形教案

时间:2024-08-18 小学数学三角形教案 小学数学教案

小学数学三角形教案实用。

每个老师在上课前会带上自己教案课件,而现在又到了写课件的时候了。教案编写需要灵活性和适应性。给大家推荐一篇具有阅读价值的文章题目为“小学数学三角形教案”,欢迎浏览我们的网页了解更多信息!

小学数学三角形教案(篇1)

一题多解的解,若当作解法,即为一道题有多种解法,但数学中把解又当作结果,所以也可理解为一道题有多种结果.通常人们是以第一种解释为多,这里笔者想借此谈点教学解斜三角形时的一些新想法.

解斜三角形,就是利用三角形的已知元素,求出未知元素的过程.其原理是正弦定理.条件必须满足3个,就是在斜三角形三角三边个元素中,必须已知其中的三个,而已知三个角时,三角形不确定,所以三个条件中至少要有一条边.这样我们可以把已知条件分为三种类型:1、已知三边.由定理可知,要用余弦定理开解;2、已知两角一边.因为三角形的三个内角和是180,所以实际是已知三角一边,由定理可知,不管是已知夹边还是对边,用正弦定理都可以解;3、已知两边一角.这种类型要注意.由定理可知,若是已知夹角要用余弦定理来解.经过这样的分析,我们可以进行总结并归纳为口诀:三边必定用余弦,还有两边夹一角;正弦两边一对角,双角必定用正弦.

有了定理,有了口诀,只是初步掌握.请看例一:在△ABC中,已知A=45,a=2,b=2,求B.简解为:。例二:在中,已知求,简解为:且或。以上两例,同样是正弦定理,却存在着一解或两解的问题,按照大边对大角,小边对小角的原则,例一是已知大边对大角,求小边的对角,只能有一解,而例二是已知小边对小角,求大边的对角,则有锐角和钝角两种结果.这种一题多解的问题因该特别小心,不能出现漏解或是增解的情况.在斜三角中,已知三边,已知两角一边和已知两边一夹角时,三角形都是唯一确定的;一有已知两边一对角时,才有可能出现一解、两解或是无解的情况.这里大边对大角的原则起着决定性的作用.

有了定理,有了口诀,有了原则,还要能灵活运用各种不同的解法,以求达到一题多解.请看例三:在△ABC中,已知A=30求c。简解为:由正弦定理得:且或。当,则,当则所以,。这是已知两边一对角的情形,按口诀应该用正弦定理如上所解,但是用余弦定理也是可行的.简解为:由公式,代入得,化简,,所以,或=8或=4,此法不仅简洁且不会漏解,值得重视.

小学数学三角形教案(篇2)

小学数学四年级苏教版《认识平行》教学设计

[教学目标]

1.使学生联系实际生活情景,体验直线的相交与不相交关系;

2.使学生认识两条直线互相平行,能判断两条直线的平行关系。

3.使学生能根据直线平行的意义,在老师的指导下探索和掌握用直尺、三角板画平行线的步骤和方法,能正确地画出已知直线的平行线。

4.使学生通过观察、操作,形成平行线的`表象,发展空间观念;初步了解生活里的平行现象,产生学习图形位置关系的兴趣。

[教学重点]

1.使学生联系实际生活情景,体验直线的相交与不相交关系;

2.学生在老师的指导下探索和掌握用直尺、三角板画平行线的步骤和方法,能正确地画出已知直线的平行线。

[教学准备]游戏棒、A4纸、记号笔

[教学过程]

一、情境导入

1、同学们,看(拿出一根游戏棒),这根游戏棒,你能想象出这根游戏棒所在的直线吗?可以向两端无限延长。

2、今天这节课,我们就要借助游戏棒来学习一个新知识。

3、怎么玩游戏棒呢?请大家听清要求:同桌合作,一人撒小棒,一人把这两根小棒所在的直线画在白纸上,注意,每张白纸上只画一种情况,画的时候要用直尺和黑色水笔。可以多撒几次,画出不同的情况。

4、学生动手活动,教师参与活动。

小学数学三角形教案(篇3)

【教学内容】

新人教版义务教育课程四年级数学下册第五单元《三角形的分类》。

【教材分析】

“三角形分类”是在学生认识了直角、钝角、锐角和三角形的特征基础上展开学习的,教材分为两个层次:一是三角形按角分类,分为锐角三角形、钝角三角形和直角三角形,并通过集合图形象地揭示三角形按角分得的三种三角形之间的关系,并体现分类的不重复和不遗漏原则;二是三角形按边分类,不等边三角形和等腰三角形,等腰三角形里又包含等边三角形。按边分类较难一些,教材不强调分成几类,着重引导学生认识等腰三角形、等边三角形边和角的特征。

【教学目标】

1、通过动手操作,会根据三角形的边、角的特点给三角形分类,认识各种三角形。

2、经历动手操作、分析思考的过程,感悟分类的数学思想。

3、培养学生动手、动口、动脑及分析推理能力

【教学重点】

学会从不同角度给三角形分类,掌握各类三角形的特征。

【教学难点】

会按边的特征给三角形进行分类。

【教具准备】

多媒体课件、三角形、量角器

【教学过程】

一、设疑自探

今天老师带大家去一个神秘的王国,你们想去吗?进入这个神秘王国的密码是一个谜语。大家请看:

1、猜谜语,激发学习情趣。

“形状似座山,稳定性能坚;三竿手尾连,学问不简单。”打一几何图形(课件出示谜语)

大家真聪明!现在,这个王国派了代表迎接我们。

2、出示课件:四个三角形

师:这四位代表,就像孪生兄弟,你们能找出它们的共同点吗?

学生说三角形的特征:

都有3条边,3个顶点……三角形任意两边之和都大于第三边等等。

同学们在四位代表的带领下进入了这个神秘的王国,放眼望去,到处都是三角形,这些三角形都有刚才我们说的的共同点,但仔细一瞧还是有区别的,同学们能不能给它们分分类呢。这节课我们就学习《三角形的分类》。板书课题《三角形的分类》

3、看到这个课题你想知道什么问题?

问题预设:三角形可以分为哪几类?

可以按照什么标准分类?

4、教师根据学生提出的问题,经过整理归纳形成自探内容。

学生自学63-64页的内容并思考以下问题:

(1)、观察每个三角形.可以动手量一量,小组合作。根据你发现的特点将三角形分类。给三角形分类有几种分法?

小组合作要求:小组长从课前下发的信封中取出三角形,分好工,每个同学负责测量一个三角形的相关数据。把测量的数据记录在三角形对应的位置上。各小组按照你们讨论的方法去进行分类,并在桌子上分一分。

(2)、三角形按角分可以分哪几种呢?各是什么?

(3)、三角形按边分可以分哪几种呢?各是什么?

(4)、三角形的关系可以用一个什么样的图表示呢?

(5)在直角三角形中,请同学们量一量它的直角边和斜边,再比一比,你发现了什么?

(6)、自己画一个等腰三角形和一个等边三角形。并量一量等腰三角形和等边三角形的各个角。你发现了什么?

(7)、从红领巾、三角板、慢行标志中找一找哪里有这两种特殊的三角形?

二、解疑合探

(一)、小组交流自探提示的问题,尤其是自己不明白的问题。

(二)、全班汇报自探效果:让学生汇报自探结果。差生汇报,中等生补充,优等生评判。反馈。

(1)按角分类

1、每个小组的成员带上你们的三角形把小组合作的成果进行展示。(请同学们认真观察,看看你们小组的分法是否和他们的一样)

2、请小组长汇报为什么这样分?

一个直角,两个锐角 一个钝角,两个锐角 三个锐角(板书)

3、有没有哪个小组也是这样分类的?需要补充吗?

4、你能给这三类三角形分别取个名字吗?

直角三角形 钝角三角形 锐角三角形 (板书)

5、像这样的三类三角形我们是按什么方法分类的呢?按角分(板书)

6、三角形按角分成了这三类,下面我们用图来表示这三类三角形的关系,你们觉得可以怎样来表示呢?

7、课件概括三类三角形的概念。

8、在直角三角形中,请同学们量一量它的直角边和斜边,再比一比,你发现了什么?(直角三角形的斜边大于任意一条直角边)

(2)按边分类

1、刚才那一组是从角的角度进行分类,其他小组有没有用不同的方法进行分类的呢?(小组成员进行成果展示)

2、请你说一说你们为什么会这样分类呢?

三条边都不等 两条边相等 三条边相等

3、有没有哪个小组也是这样分类的?需要补充吗?

4、分别给它们取个名字。

不等边三角形 等腰三角形 等边三角形

5、我们来看看等腰三角形和等边三角形之间是否存在一定的关系。等边三角形是否具备等腰三角形的特征呢?(教师引导分析)这就说明等腰三角形包含等边三角形,那我们通常把等边三角形归为等腰三角形这一类。

6、在小组内找出等腰三角形和等边三角形,看看它们各个角的度数分别是多少,你有什么发现呢?(等腰三角形有两个角相等,等边三角形有三个角相等)

7、下面我们来认识等腰三角形和等边三角形的各部分名称,请同学们看书上第64页的内容。

8、课件出示各部名称。(学生回答后再逐一出示)

9、总结等腰三角形和等边三角形的特征。

10、想一想,在我们的身边有哪些物品的外表形状是等腰三角形或等边三角形的。学生交流后教师课件出示:

(等腰三角形)(等腰三角形)(等边三角形)

11、你还有什么疑问?

三、质疑再探

通过本节课的学习你有哪些疑问或不明白的地方提出来我们共同研究解决。

问题预设:

思考:三角形中能有两个直角吗?为什么?

三角形中能有两个钝角吗?为什么?

四、拓展运用

五、课堂总结

同学们,这节课你们学得愉快吗?为什么?

六、布置作业

第65页练习十五,第4题;

第66页练习十五,第10题。

小学数学三角形教案(篇4)

1、知识技能:

(1)掌握等腰三角形的性质。

(2)运用等腰三角形的性质进行证明和计算。

2、数学思考:

(1)观察等腰三角形的对称性,发展形象思维。

(2)经历等腰三角形性质的探究过程,在实验操作、观察猜想、推理论证的过程中发展学生合情推理和演绎推理能力。

3、问题解决:

(1)通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。

(2)通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力,发展学生的应用意识、创新意识、反思意识。

4、情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

重点是等腰三角形的性质及应用。

人类的聪明智慧让我们看到了一个又一个令人惊叹的奇迹,下面请同学们观察这几幅图片,看看这些伟大的人类建筑中都含有一个什么样的基本图形?

师1:同学们,这几张图片中共同存在的基本图形是什么?

等腰三角形以它那对称、和谐、庄重、典雅之美成为我们数学殿堂的一枚瑰宝,可现实生活中为什么这些建筑要设计成等腰三角形的形式呢?等腰三角形有什么特殊的性质吗?今天就让我们一同来走进这个美妙的图形。(板书)12.3.1等腰三角形

师1:在小学时我们就知道两条边相等的三角形叫做等腰三角形。

下面我们利用剪纸的方法将手中的矩形纸片变变形。请大家跟着老师一起做:先将纸片向下对折,再把角斜向下折叠,沿折痕剪下,打开就得到一个等腰三角形。

观察这个等腰三角形,我们称相等的边叫做――腰,那么另一边叫做――底边,两腰的夹角叫做――顶角,腰和底边的夹角叫做――底角。

师1:接下来,我们再度观察手中的等腰三角形,它是轴对称图形吗?为什么?

师2:仔细观察:将等腰三角形ABC沿折痕对折,请大家找出其中重合的线段和角。哪位同学可以发表一下自己的看法?

师3:这些线段是互相重合的,它们存在什么数量关系?重合的角呢?

师4:通过刚才的分析,由这些重合的线段和角,你能发现等腰三角形的性质吗?说一说你的猜想。

(板书)猜想①等腰三角形的两个底角相等。

猜想②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

师1:请同学们用心观察等腰三角形ABC:随着等腰三角形的形状变化,观察两个底角是否永远相等?这说明什么?

师2:请同学们再认真观察,随着等腰三角形的形状变化,AD是否永远是顶角的平分线、底边上的中线、底边上的高?这又能说明什么?

师1:来看猜想1等腰三角形的两个底角相等。将这个命题改写成“如果―那么―”的形式,该如何叙述?

今天大家从不同角度添加辅助线,将等腰三角形问题转化成全等三角形问题,进而证明出等腰三角形的性质1,接下来,请大家将性质1齐读1遍。性质1简称:等边对等角。下面我们用符号语言描述性质的因果关系。同学们一定要注意,在应用“等边对等角”时必须是在同一个三角形中。

师5:由性质1的证明过程,你能不能证明出猜想2呢?下面让我们一同观察性质1的证明过程,在作出等腰三角形顶角平分线的基础上,由三角形全等,我们还能得到什么结论?

师6:类比这种证明方法,当我们作出等腰三角形底边上的中线时,又能得到什么结论呢?

经过证明它平分顶角并平分底边。通过刚才的证明,我们得到三个结论,这三个结论我们能否用一句话概括?也就证明出了性质2。接下来,我们来看一组填空题,这就是性质2的数学符号表述。仔细观察这三组符号语言,在等腰三角形的前提下,我们只要知道顶角平分线、底边上的中线、底边上的高这三个条件中的任意一条,即可推出其余两个是成立的。

等腰三角形的性质为我们今后证明两条线段相等、两个角相等提供了重要依据。

3.辩证思考等腰三角形的性质:

我们再来看性质2“等腰三角形的顶角平分线、底边上的中线、底边上的'高互相重合”,那么底角的平分线,腰上的中线和高是否互相重合?请大家动手折叠来说明。

所以等腰三角形的性质2必须强调的是顶角平分线、底边上的中线、底边上的高互相重合。

利用我们今天所学的主要内容:等腰三角形的性质,能解决什么样的具体问题?请看例1,独立思考第(1)、(2)问,有答案,请举手。

师1:请大家观察∠BDC是等腰△ABD的外角,思考∠BDC与∠A有何数量关系?

师2:思考第(3)问,如何求各角的度数?请同学们在练习本上求解第(3)问。

这道题目我们结合图形,利用方程进行求解,可以使我们的表述更加清晰。

下面请大家再看一个例题,齐读例2,有思路,请举手回答。

下面,我们进行两组小练习,看看谁的速度快?

师1:通过这两个题目,你有什么发现?我们发现在等腰三角形中,若已知角为锐角,则它既可以作为顶角,也可以作为底角,需要分情况讨论;若已知角为钝角,则它只能作为顶角。

通过今天的数学学习,你有哪些收获?

(六)划分层次,布置作业。

(A)P56 1,4。

(B)P56 1,4,6。

小学数学三角形教案(篇5)

教学目标:

1、让学生经历猜想、操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,推导出三角形面积公式。

2、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣,发展学生的空间观念,培养学生的创新精神与实践能力。

3、能运用三角形的面积计算公式解决简单的实际问题,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

教学重、难点:

探究三角形面积公式的推导过程。

教学准备:

课件,2个完全一样的钝角、锐角、直角三角形,剪刀。

教学方法:合作探究

教学过程:

一、谈话导入、揭示课题

同学们穿着统一的校服,戴着鲜艳的红领巾,真精神。做这样一条红领巾需要多少布料呢?需要我们计算红领巾的什么?

我们已经学过哪些图形的面积?

红领巾是什么形状的?

会求三角形的面积吗?这节课我们就学习三角形的面积。

二、合作探究、汇报交流

1、猜测:

你想用什么方法求三角形的面积?

平行四边形能转化成学过的图形求面积,三角形能转化成学过的图形求面积吗?

用桌子上的材料(每人一个钝角三角形、每组一把剪刀)试试吧。

转化成学过的图形了吗?有难度吧。我们能不能换个思路、换种方法用两个三角形来拼呢?

2、同桌合作动手操作。

用两个同样的钝角三角形拼一拼。展示作品。

3、小组合作。

锐角三角形、直角三角形能拼成学过的图形吗?

同学们想试试吗?根据提示板上的提示研究吧。

提示:

做一做:想办法把三角形转化成学过的图形。

找一找:转化成的图形和原来的图形有什么关系。

想一想:三角形的面积该怎么求呢?

4、学生汇报。

5、归纳小结。

转化后的图形用一个名字概括,哪个比较合适?

三、推导公式

1、回顾

课件演示:两个同样的三角形旋转、平移拼成了平行四边形。

每个三角形与拼成的平行四边形有什么关系?

三角形的底和高与拼成的平行四边形的底和高有什么关系?

2、得出结论

三角形的面积该怎样计算?

为什么要除以2?

三角形的面积计算公式用字母该怎样计算?

3、小结方法

刚才我们的研究过程正好体现了数学上常用的一种方法——转化法。

4、拓展延伸

介绍刘徽用一个三角形推导出了面积公式。

四、运用公式解决问题

1、解决红领巾的.问题。

2、解决底是8厘米、10厘米,高是6厘米的三角形的面积。

体会底和高的对应性。

3、三角形的面积是25平方厘米,底是10厘米,高是多少厘米?

五、全课总结

同学们,通过这节课的学习,你有收获吗?一起来分享吧!

追问:

三角形的面积为什么要除以2?

怎样推导出三角形的面积计算公式的?

只要大家勤动手、勤思考,就一定能学到更多的数学知识。

板书设计:

三角形的面积

三角形的面积=平行四边形的面积÷2

=底×高÷2

S=ah÷2

小学数学三角形教案(篇6)

设计思路

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180,引发学生的猜想:其它三角形的内角和也是180吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180或接近180(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180的结论。这一系列活动潜移默化地向学生渗透了转化数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着学贵在思,思源于疑的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

教学目标

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透转化数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教材分析

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。

教学重点

让学生经历三角形内角和是180这一知识的形成、发展和应用的全过程。

教学准备

多媒体课件、学具。

教学过程

一、激趣引入

(一)认识三角形内角

师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,

师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍内角。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

生:想。

师:那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究新知

(一)研究特殊三角形的内角和

师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

生:90、60、30。(课件演示:由三角板抽象出三角形)

师:也就是这个三角形各角的度数。它们的和怎样?

生:是180。

师:你是怎样知道的?

生:90+60+30=180。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

生:90+45+45=180。

师:从刚才两个三角形内角和的计算中,你发现什么?

生1:这两个三角形的内角和都是180。

生2:这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1.猜一猜。

师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180。

生2:不一定。

2.操作、验证一般三角形内角和是180。

(1)小组合作、进行探究。

师:所有三角形的内角和究竟是不是180,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

(2)小组汇报结果。

师:请各小组汇报探究结果。

生1:180。

生2:175。

生3:182。

(三)继续探究

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?

生:把它们剪下来放在一起。

1.用拼合的方法验证。

师:很好,请用不同的三角形来验证。

师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

2.汇报验证结果。

师:先验证锐角三角形,我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180。

生2:直角三角形的内角和也是180。

生3:钝角三角形的内角和还是180。

3.课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180。

(教师板书:三角形的内角和是180学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

三、解决疑问。

师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

生:因为三角形的内角和是180,在一个三角形中如果有两个直角,它的内角和就大于180。

师:在一个三角形中,有没有可能有两个钝角呢?

生:不可能。

师:为什么?

生:因为两个锐角和已经超过了180。

师:那有没有可能有两个锐角呢?

生:有,在一个三角形中最少有两个内角是锐角。

四、应用三角形的内角和解决问题。

1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

2.按要求计算。(数学信息较为隐藏和生活中的实际问题)

3.游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

五、全课总结。

今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

教学反思

这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。

在学习活动的过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。但还受课本资源的限制,不能大胆突破教材,充分利用生活资源。例如:可以出示一块被打烂了的三角形玻璃板(如图:),向学生提出挑战性的问题:老师今天不小心把这块三角形的玻璃板打烂了,要重新买与原来同样大的一块,可老师不知道尺寸,怎么办呢?谁能帮老师解决这个问题呢?让学生利用学过的知识解决生活中常出现的问题,更能使学生体会到数学不仅来源于生活,学习数学的目的更是为了解决生活中的问题,体会到学习数学的重要意义。

小学数学三角形教案(篇7)

人教版小学四年级下册数学教学设计:四则运算

(一)教学目标

1.使学生掌握含有两级运算的运算顺序,正确计算三步式题。

2.让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两三步计算的方法解决一些实际问题。

3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

(二)教材说明和教学建议

教材说明

1.本单元的内容结构及其地位作用。

本单元主要教学并梳理混合运算的顺序。混合运算前面学生已经学会按从左往右的顺序计算两步式题,并且知道小括号的作用,这里主要教学含有两级运算的运算顺序,并对所学的混合运算的顺序进行整理。主要内容有:整理同级运算的顺序,教学并整理含两级运算的顺序及含有小括号的运算顺序、有关0的运算。具体安排如下:

2.本单元教材的编写特点。

(1)解决问题与四则混合运算顺序的梳理有机结合起来。

本单元在整理混合运算顺序时,是结合解决问题进行的。目的是使学生在解决一个个实际问题的过程中,进一步掌握分析解决问题的策略和方法,同时体会运算顺序规定的必要性,从而系统地掌握混合运算的顺序。

(2)为学生提供自主探索与合作交流的情境和空间。

本单元是从解决问题的角度教学整理四则混合运算的顺序,其中的问题是需要两三步计算解决的问题。教材创设了热闹的滑雪场情境,由此生出一系列的情境串,引出相应的4个例题。每个例题都呈现了学生交流不同的解题思路,以及整理混合运算的画面,以鼓励学生在已有的知识基础上,积极思考,主动解决问题。

教学建议

1.将探求解题思路过程与理解运算顺序有机结合起来。

本单元是让学生在经历解决问题的过程中,感受混合运算顺序规定的必要性,掌握混合运算的顺序。因此,教学时,要充分利用教材提供的生动情境,放手让学生独立思考,自主探索,并在合作交流的基础上形成解决问题的步骤和方法,先求什么?用什么方法计算?再求什么?又用什么方法计算?最后求什么?用什么方法计算?使解题的步骤与运算的顺序结合起来。当学生列出综合算式后,还要追问每步算式列出的依据及表示的实际意义,促进学生正确地概括出混合运算的运算顺序。

2.帮助学生逐步掌握解决问题的步骤和策略。

本单元混合运算的顺序是结合解决问题进行的,其中解决问题的步骤和策略又是重点和难点之一。教学时,要注意加强数量关系的分析,在叙述解题思路时,要引导学生透过数看到量,用量的关系来描述解题思路。如,可引导学生这样描述思路“先算出每天接待多少人,再计算6天接待多少人”。不要停留在“先用987÷3,再乘6”的描述方式上。可能开始时学生不习惯,但要逐步培养这种分析方法。

3.本单元内容可以用6课时进行教学。

(三)具体内容的说明和教学建议

(第2~16页)

1.主题图。

编写意图

主题图“冰雪天地”为学生展示了雪地里活动的场景。从活动区域指示牌上可以看出滑雪区、滑冰区和冰雕区,场景图中还给出了三条信息:滑冰区有72人,滑雪区有26人,冰雕区有180人。给学生提问题提供了数据。

教学建议

教学时出示主题图后,可以开展以下两项活动:

(1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?

(2)根据图中提供的信息,你能提出哪些问题,怎么解决?

学生提出的问题可以先在小组里交流,然后在班上交流。交流时,学生可能只说出问题,丢掉相关的条件,这时教师要引导学生完整地表述条件和问题,让学生感受数学问题的整体性。另外,学生提出的问题可能用一步计算解决的,也可能用两步或两步以上计算解决的,只要合理,教师都要给予肯定。在学生广泛提出问题的基础上,再引出例1。

2.例1。M.JK251.coM

编写意图

(1)例1通过应用加减法知识解决两步计算的实际问题,来明确加减混合运算的顺序。

(2)教材以主题图“冰雪天地”的“滑冰区”为背景,提供了一天上、下午滑冰人数的变化信息,提出“现在有多少人在滑冰”的问题。由于学生积累了较为丰富的解决此类问题的生活经验和知识经验,教材中呈现了两个学生的解决方法,一个是分步列式解答的,另一个是列综合算式解答的,通过计算使学生理解加减混合运算顺序,是按从左到右的顺序进行计算。

教学建议

(1)出示例1后,可以放手让学生独立思考、尝试解答,并能与同伴说说自己是怎样想的?

(2)组织反馈,并在全班交流,主要交流自己的解题思路,根据是什么?每步算式表示什么意义?然后从思路上对比分步列式和综合算式,使学生明确它们都是用加减法两步运算解决问题,并进一步明确加减混合运算要按从左往右的顺序计算。

(3)以小组合作的方式,让学生根据自己日常生活经验,编出一些类似例1的实际问题,如乘公交车时的“上车下车”,学校图书室的“借书还书”等等,使学生在用加减两步运算解决问题的过程中,巩固加减混合运算的运算顺序。

3.例2及“做一做”。

编写意图

(1)教材以“冰雪天地”接待游人的信息为素材,通过解决“6天预计接待多少人?”引导学生观察所列混合算式,明确乘除混合运算的顺序。在例1、例2的基础上,教材总结出:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要按从左往右的顺序计算。

(2)解决“6天预计接待多少人?”教材呈现了学生的两种不同解法,一种是先求出平均每天接待的人数,再求6天一共接待的人数;另一种是先算出6天里有几个3天,再用算出的结果去乘3天接待的人数。这样编排目的是鼓励学生积极思考独立解决问题。

(3)“做一做”的第2题是配合例2的练习,其中解决问题所需的一个条件“12瓶”隐含图中的箱子上。

教学建议

(1)在学生读题后,让学生尝试说一说自己是怎样理解“照这样计算”一句话的含义。同桌的相互说一说,再组织在班上交流,使每个学生明白“照这样计算”的意思是每天接待的人数,按“3天接待987人”计算。

(2)引导学生画线段图表示相应的数量关系。由于学生已有一些画线段图的基础,教学时可以提出以下问题:①3天接待987人怎样用线段图表示出来?②6天里接待多少人?又怎样用线段图表示?让学生尝试画一画,并组织交流。对画图有困难的学生教师要给予指导,然后让学生把自己的线段图画在黑板上,引导学生评价,特别是评价表示6天接待人数的线段的长短。因为它直观形象地表示出第二种解法的数量关系,在画图的基础上让学生探索解决问题的方法。

(3)要重视解题过程的反思。当学生独立尝试解决后,要让学生说说解题思路和每一步计算结果所表示的实际意义,如987÷3=329表示平均每天接待的人数,6÷3=2表示6天里含有两个3天即两个987人,等等。

(4)在比较例1与例2的基础上,让学生总结出在没有括号的算式里只有加减法或只有乘除法的运算顺序。

4.例3及“做一做”。

编写意图

(1)例3通过解决需用三步计算的实际问题,教学“积商之和(差)的混合运算”。

(2)教材以星期天玲玲一家三口去“冰雪天地”游玩购买门票为解决问题的现实背景。

先通过解决“购门票需要花多少钱”,来总结“在没有括号的算式里,既有加减法又有乘除法的混合运算”的顺序。

然后再提出“你还能解决其他数学问题吗?”鼓励学生根据情境中给出的门票信息,提出问题并加以解答。同时根据上面总结出的混合运算的运算顺序尝试列综合算式进行解答,以进一步掌握混合运算的顺序。

(3)“做一做”第1题有三组题,每组题中上、下两题参与运算的数和排列顺序都相同,只是运算符号不同,有的是同级运算,有的是两级运算,让学生通过判断其运算顺序是否相同巩固混合运算的运算顺序,逐步养成认真审题的习惯。

教学建议

(1)像例3这样一家三口购票一共要用多少钱的问题,数量关系不难理解且学生也已接触过,教学时可以让学生独立思考,自主解答。如有学生对“半价”不理解,教师可加以说明。一般学生分步解答并不困难,但对如何列综合算式解答可能会有一定困难,教师要引导学生想办法把分步算式合并成一个算式,在合并时,结合解答过程说明运算的顺序:“在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。”

(2)学生解答完“购门票需要花多少钱”后,可以让学生根据情境呈现的信息,提出其他问题,进行交流。学生根据自己的生活经验可能提出各种各样的问题,如“爸爸付出100元,应找回多少钱?”“买1张成人票,3张儿童票,一共要付多少钱?”等,在学生充分交流的基础上,再让学生解答教材上的问题:“买3张成人票,付100元,应找回多少钱?”在这一环节中,教师要注意两点:第一,学生提出的问题不管是几步计算解决的,只要能作出合理解释的,都应给予鼓励;第二,对于两步以上解答的,可引导学生列综合算式解答,在此过程中巩固上面总结的混合运算的顺序。

(3)“做一做”第2题,让学生独立解答第一问,再组织提问题练习,如果学生提出一步计算的问题,教师也应肯定。

5.关于练习一中一些习题的说明和教学建议。

第1题,是同级运算的练习。通过口算让学生进一步理解没有括号的乘除混算与加减混算顺序一样,都是按从左到右的顺序进行。练习时,可以直接将结果填在书上,再组织订正。

第2题,是例1的巩固练习。学生根据自己的生活经验,弄清“便宜”与“贵”的含义后,独立进行解答。

第3题,是例2的巩固练习。解决问题的信息比较隐蔽:六边形有6条边隐含在图中,一共有多少根小棒需要先算出,正方形有4条边需要学生明确。教学时,可让学生独立解答,以提高学生寻找信息理解信息的能力。订正时,要注意学生所列的综合算式是否正确。

第4题,用统计表给出某路口1小时通过的三种汽车数。让学生先估算再笔算这个路口1小时一共通过的汽车辆数,以培养学生的估算意识。学生估算的结果可能不同,只要合理都要鼓励。

第5题,是有两级运算的练习,先让学生说说运算顺序,再脱式计算,要提醒学生脱式计算时能口算的尽量口算。

第6、7题,是例3的巩固练习。在审题的基础上,先独立完成,再交流。第6题是两问,后问是求两积之差。第7题是求两商之差,且路程160千米被用了两次,练习后要引导学生比较,感受到它们都是应用路程、速度和时间三者关系解决的实际问题。

第9题,先让学生说一说自己是怎样理解“养鸭的只数是鸡的一半”这一条件的,然后独立解答。为使一题多用,教师也可以提出:如果条件不变,你还能提出什么问题?怎样解答?还可以加一个条件,提出:“养鹅的只数与鸡同样多”其他条件不变,问题改成“李伯伯家一共养鸡、鸭和鹅多少只?”怎样解答?

第10*题,解题思路有:①先求上、下两层相差多少本,再求上、下层各有多少本;②先求上、下两层现在各有多少本,再求原来两层各有多少本。

练习一后面的思考题,通过选择适当的.运算符号或填加小括号使等式成立。使学生进一步看到,由于选择的运算符号和小括号的位置不同,得数就不同,从而加深对运算符号和小括号的作用的理解。每小题的答案不唯一,现介绍一些。

①3-(3-3÷3)=13÷3-(3-3)=1

②3÷3+3÷3=2(3×3-3)÷3=2

③3×3-3-3=33+(3-3)×3=3

④3+3+3÷3=73+(3÷3)+3=7

⑤3×3-3÷3=8

⑥3×3÷(3÷3)=93×3÷3×3=9

6.例4。

编写意图

(1)例4通过解决实际问题,来总结含有小括号的混合运算的运算顺序。

(2)例4是既可以用三步计算解决,也可以用两步计算解决的实际问题。它以冰雕区的活动场景为题材,完全用文字提供了一个实际问题的全貌,含有三条数学信息:上午有游人180位,下午有270位,每30位游人派一位保洁员。问题是:下午比上午多派几位保洁员?教材在学生分析思考的基础上呈现了两个学生不同的解题方法:第一种方法是先求上午要派几位保洁员,再求下午要派几位保洁员,最后求下午比上午多派几位保洁员;第二种方法是先求下午游人比上午多多少位?再求下午比上午多派几位保洁员。在分步解决的基础上,再将上面的两种解法分别列成一个算式,并进行计算,最后得出含有括号的算式的运算顺序:先算括号里的。

教学建议

教学时,应注意以下几点:

(1)引导学生认真解读题意。解读“每30位游人需要派一位保洁员”时,需要明白两点:一是游人数与保洁员人数之间的关系,游人越多,派出的保洁员越多;二是上午与下午派保洁员的标准一样,都是按每30位游人派一位保洁员。为帮助学生更好地理解这句话,教师可以问:60位游人要派几位保洁员?90位游人呢?有多少游人要派5位保洁员呢?学生回答后要让学生说出自己是怎么想的?根据什么?通过以上的解读活动,为学生分析数量关系,寻找解题思路做好铺垫。

(2)让学生尝试分析数量关系时,教师要引导学生按照:要求下午比上午多派几位保洁员,先要求什么?再要求什么?……的思路去独立思考,并尝试解答,教师要巡视是否出现不同的解法。

(3)注重交流解题思路。当学生尝试解答后,要组织学生在全班交流不同的思考方法,如果学生想不出第二种方法,教师要给予适当启发:下午游人比上午多多少位?每多派一位保洁员,就得多多少位游人?怎样求出下午比上午多派几位保洁员?逐步引导学生列出算式,计算时,要使学生明白为什么先算括号里的,体会小括号的作用。

(4)要重视两种不同解决方法的对比。教学时引导学生从思路上、方法上和解题步数上进行比较,体会到解决问题的思路不同,解决方法也不同,计算的步数也不一样,有些实际问题用三步计算解决也可以用两步计算来解决。

(5)例4后的“做一做”是一道图文结合的实际问题。由于贴近生活,学生会用两种方法解决,100-54-6,100-(54+6),要让学生说思路和方法,为什么要使用小括号。

7.例5。

编写意图

(1)例1~例4都是以主题图“冰天雪地”为题材编排的实际问题。学生经历了解决实际问题的过程,不仅逐步掌握了解决实际问题的策略和方法,而且理解了四则混合运算顺序的必要性,掌握了四则运算的运算顺序。例5就是在以上基础上安排的。

(2)例5引导学生结合具体四则混合运算式题,总结四则混合运算的顺序。

教材首先让学生独立计算例5中的两小题,探讨为什么参与运算的数、排列顺序及运算符号都相同,而计算结果却不一样,使学生再一次认识小括号的作用,进一步掌握混合运算的顺序。

在此基础上,教材让学生结合具体式题,总结四则混合运算的顺序。

教学建议

(1)由于学生对四则混合运算中,先算什么,再算什么,最后算什么,已经积累了一些经验,因此教学例5时,可以采用自主探究和小组合作相结合的学习方式开展学习活动。例5中的两小题出示后可分三步进行:第一步,让学生在书上的算式里标出运算顺序号,如:

同桌互评后独立计算,把计算过程填写在书上,然后互相核对结果。第二步,分小组讨论,再派代表在全班交流。讨论交流的问题是:例5中的两小题有什么相同的地方?有什么不同的地方?两题的计算结果为什么不一样?第三步,引导学生用术语和、差、积、商来表述运算过程,如例5中的第(1)题可以这样说,首先求差,然后求积,最后求和。

在学生明确了加法、减法、乘法和除法统称四则运算后,再以小组合作的形式总结四则运算的运算顺序,在整理的基础上教师可以做如下板书:

(2)例5后面的“做一做”,第1题先让学生用术语和、差、积、商说说运算顺序,然后计算。其中,第(2)小题学生练习后,教师可指出:算式里含有两个小括号的,可以同时脱式。第2题要求学生列综合算式解答。

8.例6。

编写意图

(1)在第一学段,学生刚开始学习加减法,就认识了0,掌握了有关0的加、减法计算,明白了这些加减法的含义,随着知识的不断扩展,在学习乘、除法时,又认识了0在乘除运算中的特性,之后学生又经历了许许多多的实际计算,进一步掌握了0在四则运算中的特性,体会到0在四则运算中的地位和作用。为了把分散学习的有关0的运算这部分知识系统化,提高学生计算的正确率和整理概括知识的能力,教材编排了例6。

(2)例6首先提出:“想一想,你知道哪些有关0的运算。应该注意些什么?”接着又以一幅小组合作学习的画面,生动地展示了同学们讨论交流的情境,对0在四则运算中的特性作了比较系统精练的总结。这样安排的问题和学习形式,能充分调动学生的积极性。

(3)教材通过“注意”,特别说明0不能作除数及0为什么不能作除数的道理。0为什么不能作除数这部分知识很重要,也很难理解,以后学习分数、比等知识要用到。为了帮助学生突破难点,教材中联系除法的意义举例作了说明:先举5÷0,说明不可能找到商,再举0÷0,说明不可能得到一个确定的商。

教学建议

教学时,应注意以下几点:

(1)要给学生留有充分的时间,让他们回忆、整理和概括有关0在四则运算中的特性。教学时,可以采用小组合作形式,大家在组内畅所欲言,并派一人记录,然后在全班交流。教师根据学生交流的内容,有针对性分加、减、乘、除法板书出实例,再引导学生分类概括出结语。学生总结出的话可能没有书上那样精练,但只要意思相似,教师都应鼓励,并让学生看看书上的小朋友是怎样说的。如果学生以结语的形式表达有关0的运算,可让他再举例说明。总之,教学时教师只能适当引导,让学生充分发表意见和看法,不要包办代替。

(2)0为什么不能作除数是个难点,教学时要引导学生通过举例来说明,比如让学生举出除数是0的除法的例子,5÷0=□0÷0=□,问:如果用0作除数结果会怎样?引导学生分两种情况分析:①5÷0=□表示一个非零的数除以0,从除法的意义上说是什么意思,商是多少,引导学生说出积是5,一个因数是0,求另一个因数,要想0和几相乘得5呢?因为一个数和0相乘仍得0,所以5÷0不可能得到商。②0÷0,从除法意义上说是什么意思,商是多少,引导学生说出积是0,一个因数是0,求另一个因数,要想0和几相乘得0,然后问:能找到这样的数吗?能,因为0和任何数相乘都得0,这时指出0÷0得不到一个确定的商,所以不研究,最后得出0不能作除数的结论。

(3)例6后面安排了一个数学游戏,明确题意后分小组活动,把和为340的算式记下来,便于交流和评价。

9.关于练习二中一些习题的说明和教学建议。

第1题,先口算,再竖着比上下三题的异同点,从中体会运算顺序的重要性。

第2题,是含有小括号的两三步计算的式题,让同桌的同学相互说说运算顺序后独立练习,教师指出算式中有两个小括号的,可以同时脱式。

第3题,要求学生用综合算式解答,并说出小括号里的算式表示的实际意义,体会小括号的作用。

第4题,学生做完后,可以引导学生竖着比较上下三小题的相同处和不同处,学生的回答可能比较“乱”,只要说对的都要鼓励,并在此基础上整理成:上下三题中参加运算的数、运算符号以及排列顺序都相同,但是由于加了小括号,改变了运算的顺序,导致计算结果不同,所以在计算混合式题之前,要审题,根据运算顺序来确定怎样算,然后再计算,养成良好的计算习惯。

第5题,是以统计表的形式提供了数据信息,先让学生估计平均每组做的个数,再计算精确数,通过估算与笔算结果比较,培养学生的估算意识

第6题,在学生用一个算式解答后,要引导学生将具体情况与除法意义联系起来,说说为什么两步都用除法解答,使学生进一步体会“倍”的含义。

第7题,可以用三步计算也可以用两步解决的实际问题,审题后可让学生尝试用两种方法解答,然后用自己的语言表达解题思路,体会解决问题策略的多样性,又为今后学习乘法分配律做些孕伏。

第8题,是一道填表练习,让学生经历“填表—说思考过程—观察比较表中数据变化”这一过程,加深对路程、速度、时间三者之间关系的理解,体会两个变量之间的依存关系和变化规律。

第9题,通过“凑24”游戏,复习四则混合运算。4张牌上的点数代表4个数,要求经过适当的四则运算使这四个数变成24。练习时首先让学生读懂题意,明确要求,然后独立解答。对少数学困生要进行辅导,当多数学生写出三四个不同算式后,组织交流、评价。最后归纳出在凑数过程中主要运用8×3、4×6、12×2等基本算式。下面是几个参考算式:

6×2+4×3(6+4-2)×36×4÷(3-2)6×3+2+4

(6-3)×4×2(6÷2+3)×4(6×2-4)×36×4×(3-2)

第10题,以选择一日游购票方案为题材,给出了多个信息,启发学生利用生活经验理解问题情节,通过计算与比较获得合理的购票方案。练习时应让学生在独立思考的基础上交流各自的想法,感受数学与生活的联系,增强数学应用意识。

第11题,是运用加减、乘除之间关系进行推理的练习题。练习时,先要明白图形表示的是什么数,再独立思考,作出正误判断,最后组织全班交流思考过程及依据,并归纳出

第12、13题,先让学生独立练习,再交流自己的思考过程,从中感悟解决问题的基本思路。第12题,有两问且不互相联系,避免一问结果是解决二问的条件的干扰,教育学生审题的重要性。第13题,是“倍”的含义在生活中的应用,引导学生着重弄清有关“倍”的不同应用,加深对“倍”的含义的理解。

第14*题,实际上是把三个一步算式合并成一个三步算式。练习时先引导学生明白不同的图形代表不同的数,弄清图形之间的数量关系,再启发学生用代换方法进行思考,这种练习既能培养学生的分析综合能力,又为今后学习用字母表示数打下基础。

思考题,是一道逆推的问题。密码是个四位数,百位和个位上数字一样,千位和十位数字一样,启发学生用逆推的方法确定○与□各是多少。通过练习,既加深学生对四则运算中各部分之间关系的理解,又培养了学生逆向推理能力。

(四)参考教案

课题:用三步计算方法解决问题

教学内容:教科书第6页例3及“做一做”,练习一中的第5题~7题。

教学目标:

1.让学生从实际问题的解决过程中感受“先乘除后加减”的道理。

2.掌握含有两级运算(没有括号)的运算顺序,并能正确计算。

3.培养学生完整地叙述问题的能力。

4.培养学生养成良好的学习习惯,提高学生的计算能力。

教具准备:例3课件(教学挂图)。

教学过程:

一、复习导入

出示下表:

这是“冰雪天地”游乐场接待人数的统计表

提问:根据表中提供的数据,你能提出哪些数学问题?

根据学生回答,出示:

3天一共接待987人,照这样计算,一周预计接待多少人?

学生列式解答。并说说计算顺序。

导入新课:

师:星期天,爸爸妈妈带玲玲去“冰雪天地”游玩。

课件出示情境图,引导学生看图。提问:从图中你看到了什么?

二、探究新知

1.教学例3。

(1) 学生分组讨论,在组内交流获取的信息,小组汇报。

师:谁能用语言完整地叙述问题?

师引导,学生回答,教师课件出示:星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩。成人票每张24元,儿童票半价。购门票需要花多少钱?

提问:成人票每张多少元?半价是什么意思?儿童票每张多少元?要买几张成人票?几张儿童票?要解决什么问题?

提问:要求购门票一共需要花多少钱,必须先求什么,再求什么,最后求什么?

(2) 列式解答。

生1:24+24+24÷2

生2:24×2+24÷2

师板书,提问:它们之间有什么联系?

24×2表示什么意思?24÷2表示什么意思?

让学生独立解答。

(3) 引导学生进行比较。

复习题的算式与例3的算式有什么不同?

揭示课题:这就是我们今天这节课要学习的内容。(板书课题:混合运算)

提问:在没有括号的算式里,有乘、除法和加、减法,要先算什么?

生回答,师小结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

2.提问:你还能提出其他问题吗?小组讨论并交流。

学生可能提出:买1张成人票,3张儿童票,一共要付多少钱?

买3张成人票,付100元,应找回多少钱?

……

学生独立列综合算式解答,并说出计算顺序。

3.比较:这些算式与例题算式有什么异同?

学生回答,教师归纳并小结,深化运算顺序。

4.反馈练习:第7页“做一做”第1题。

三、练习

1.说出下面各题的运算顺序,再计算。

203-134÷228+120×8

97-12×6+4326×4-125÷5

2.同学们植树,四年级140人,每人植树2棵;五年级120人,每人植树3棵。这两个年级一共植树多少棵?

3.果园里有苹果树48棵,桃树的棵数是苹果树的2倍,梨树的棵数比苹果树和桃树的总数多12棵。果园里有梨树多少棵?

4.三、四年级学生进行体操比赛,其中三年级有240人,四年级有300人。每12人站成一排,四年级比三年级多站几排?

四、总结

教师引导学生总结:今天这节课你学习了哪些知识?有什么收获?

五、布置作业

练习一第6、7题。

小学数学三角形教案(篇8)

教学目标:

1.通过实际操作对三角形进行分类,认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每类三角形特点,分辨各类三角形。

2.在活动中渗透分类的数学思想,培养学生的归纳概括能力。

3.在操作、思考中逐步发展学生的空间想象能力。

教学重点:

能够通过思考和动手操作准确地按照不同分类标准给三角形分类

教学难点:

能够区别掌握各种三角形的特征以及区分各类三角形之间的关系

教具、学具准备:

课件、三角板、量角器、不同类型的三角形、剪刀、正方形纸

教学过程:

一、创设情境,激趣导入

师:请看大屏幕,这些都是什么图形?

生:三角形

师:三角形有哪些基本特征?

生:都有三个角,三条边,三个顶点。(师随学生的回答板书:角、边)

师:仔细观察,它们的长相有不一样的地方吗?哪里不一样?

生:三角形的角有大有小,边有长有短。

师:无论是从角的大小来看,还是从边的长短来看,都各有特色。你能给这些三角形分分类吗?这节课我们就来共同学习三角形的分类(板书课题:三角形的分类)。

二、自主探究,创建数学模型

(一)根据提示,引发思考

师:分类首先要确定?标准

你想根据什么来给这些三角形分类呢?

师:有的同学已经有了自己的想法。先让学生说一说,有的按角的大小分,有的按边的长短分,我们先看一下要求(出示:温馨提示)

温馨提示:

1.同桌两人讨论,确定好分类标准;

2.分一分;

3.议一议,找出各类图形的共同特点。

看明白了吗?好,开始!看哪个小组分的既快又准。

(二)动手操作,小组合作分类

学生以小组为单位进行分类,教师参与到学生的分类活动中。当老师发现有的小组很快就分好时,适机指出:“老师发现有的小组同学很快就分好了,你们还能再尝试用别的方法来分类吗?”学生尝试按照不同的分类方法进行分类。

分完的同学用你们的坐姿告诉老师。

(三)全班讨论、汇报交流

师:按角的大小分类的请举手,哪个小组愿意先来汇报你们的想法?

师:把你们的想法展示在黑板上。

我们先来看一下,他们分的第一类三角形的三个角分别是什么角?

生:有一个角是直角,另两个角是锐角(教师板书)

师:你能给这样的三角形起个名字吗?

生:直角三角形。(板书:直角三角形)

师:大家同意吗?

师:再来看一看第二类三角形,它们的三个角有什么特点?

生:有一个角是钝角,另两个角是锐角(板书)

师:应该叫什么三角形呢?

生:叫钝角三角形(板书:钝角三角形)

师:再看第三类三角形,它们的三个角呢?

师:我们就叫它--------

生:锐角三角形(板书:锐角三角形)

(四)游戏激趣:

大家学累了吧,我们一起来做个小游戏,放松一下,好吗?(出示:猜猜我是谁)

师:纸袋里面有一些三角形,如果只露出一个角,你能猜出它是哪种三角形吗?

(露出一个直角)

生:我猜是直角三角形。

师:你确定吗?

生:确定

师:其他同学呢?

生:点头说是。

师:我们一起来看一下,(拿出三角形)真是这样啊!

师:一个三角形中会有两个直角吗?如果有两个直角会是什么样子呢?我们一起来看看。(投影出示:两个角是直角的演示图)

师:你发现了什么?

生:它不是三角形。

师:既然不可能有两个直角,有可能一个是直角一个是钝角吗?(教师投影出示第二个角是钝角演示图。)

生:不可能。

师:(拿出一个直角三角形)直角三角形中有一个角是直角,大家说另外两个角一定是什么角?

生:锐角。

师:现在你能用自己的话说一说什么是直角三角形吗?

生:有一个角是直角的三角形就是直角三角形。(还有必要再加上两个角是锐角吗?)

师:一起来说说什么是直角三角形?

师:还想猜吗?(露出一个钝角)这次谁来接受挑战?

生1:我觉得是锐角三角形。其他学生纷纷举手表示反对。

生2:我认为是钝角三角形。

师:为什么?

生2:它露出来的是个钝角,不可能再出来第二个钝角啊!

师:我们来看一看到底是不是钝角三角形?(拿出钝角三角形)掌声鼓励。现在你能概括一下什么是钝角三角形吗?

生:有一个角是钝角的三角形就是钝角三角形。

师:还想接受挑战吗?(只露出一个锐角)

生1:是锐角三角形。生2:直角三角形。生3:钝角三角形。生4:都有可能。

师:为什么会有不同答案呢?

生:因为所有的三角形都会有锐角,只露出一个锐角并不能确定另外两个角分别是什么角。

你能在脑中分别想象出这些三角形的样子吗?(闭上眼睛想一想,出示三种三角形)

师:这三种三角形有什么共同特点?

生:每一个三角形中都至少有2个锐角。

师:你是怎么理解至少的?

生:最少2个,最多3个。

师:那要是露出两个锐角你能猜出这个三角形是什么形状吗?

生继续摇头:还是不能。

师:为什么不能?

生:因为每一类三角形都有两个锐角,另一个角不一定是锐角,还有可能是直角或钝角!

师:你认为怎样才能判定出一个三角形是锐角三角形?

生1:得告诉三个角的度数

生2:还有一个可能就是三个角都露出来。

师:三个角都是锐角才可以判定出是锐角三角形。(教师投影出示:三个角都是锐角的三角形是锐角三角形)

师:请大家任意画一个三角形。并说一说你画的是什么三角形?为什么?有没有属于这三类之外的?

(随学生的回答,教师总结:看来按角分类只能分为这三类)

师:如果用大的集合圈表示三角形,你能把这个集合圈补充完整吗?(找学生完成)

(五)研究按边的分类的三角形

按边分类学生小组请举手。哪个小组愿意来给大家展示你们的想法?

师:你们的想法和他们一样吗?

师:我们一起看一下,第一类三角形的三条边有什么特点?

生:三条边都不相等。

师:像这样的三角形我们就叫做不等边三角形。(板书:不等边三角形)

师:我们再来看一下,第二类三角形的三条边有什么特点?

生:有两条边相等。

师:(出示:等腰三角形)如果我们把这两条相等的边叫做腰,你能个这类三角形起个名字吗?

生:等腰三角形(板书:等腰三角形)

师:你认为什么样的三角形是等腰三角形?

生:有两条边相等的三角形叫等腰三角形。

师:下面我们一起来看一下等腰三角形各部分的名称。(出示:图形)

师:等腰三角形的两腰的长度什么关系?

生:相等。

师:等腰三角形的两个底角呢?

生:相等

师:怎么验证呢?

(利用手中的等腰三角形纸片)

生1:折一折。

生2:量一量。

师:我们再来看一下余下的这个三角形,它是等腰三角形吗?(学生意见不统一,有说是有说不是的)

生1:我觉得不是,因为等腰三角形有两条边相等,而这个三角形三条边都相等。

生2:我反对,因为这个三角形三条边都相等了,肯定满足两条边相等。

师:理由非常充分!掌声送给他!

师:等腰三角形只要满足有两条边相等就可以了。所以说这个三角形也是等腰三角形。(标注集合圈)

师:这个三角形与刚才的几个等腰三角形相比,有什么特殊的地方?

生:三条边都相等。

师:我们把三条边相等的三角形叫做?

等边三角形(板书)

师:它还有一个非常好听的名字叫:正三角形

为了加深大家的印象,我们再看一下大屏幕

(先播放2条边相等,说明它是等腰三角形,再补充),说明等边三角形的三条边都相等。并且三个角也相等。

仔细观察集合图,你能说一说,等腰三角形与等边三角形有什么关系吗?

生1:等腰三角形包括等边三角形。

生2:等边三角形是特殊的等腰三角形。

师:如果用一个大的集合圈表示三角形,你能把这个集合圈补充完整吗?

同学们真了不起,能分别按照角和边两种不同标准来给三角形分类。

5.综合判断,渗透本质特征

出示;两个等腰三角形(一个锐角的,一个钝角的)

师:你认为第一个是什么三角形?

生1:等腰三角形,因为它有两条边相等。

生2:锐角三角形,因为它的三个角都是锐角。

师:第一个图形既是等腰三角形又是锐角三角形。说它是等腰三角形是按边的长短来分的,说它是锐角三角形是按角的大小来分的。

师:第二个图形呢?

生:既是等腰三角形又是钝角三角形

师:等腰三角形还有可能是什么三角形呢?

生:还有可能是直角三角形。我们来看一下(出示等腰直角三角形)

师:大家看,它是什么三角形:

生:按角分是直角三角形,按边分是等腰三角形。

师:这是我们以后会经常遇到的一类特殊的三角形叫等腰直角三角形。

师:所以,我们判断一个三角形的形状时,既可以根据角的大小来判断,也可以根据边的长短来判断。

(六)游戏升华,培养综合能力

出示:连一连

以AB为三角形的一条固定的线段,想一想,和哪个点连接起来能组成直角三角形?

和哪个点连起来组成锐角三角形?和另一个点连起来能组成什么三角形?

C点非常调皮,跑到了点子图的外面,大家思考:当点C跑到哪个位置时,能与线段AB组成直角。我移动,如果到了合适的位置,大家就喊停,好吗?

第一次,可以吗?现在组成的是什么图形?

第二次,可以吗?现在组成的是什么图形?・・・・・・

三、全课小结

回顾本节课的内容,我们主要学习了什么内容?

小学数学三角形教案(篇9)

写说课稿首先必须明确什么叫说课,所谓说课,就是教师备课之后讲课之前(或者在讲课之后)把教材、教法、学法、授课程序等方面的思路、教学设计、|板书设计及其依据面对面地对同行(同学科教师)或其他听众作全面讲述的一项教研活动或交流活动。以下是小学数学第八册《三角形的特性》说课稿范文,希望大家喜欢!

小学数学第八册《三角形的特性》说课稿

一、说教材

(一)教材分析

《三角形的特性》是人教课标版小学数学第八册第五单元的内容,三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导有关的性质。因此,三角形的认识是学习平面图形知识的起点,也为学习平面几何、立体几何打下基础。

本节课是在学生已经学习了线段、角和直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。

(二)教学目标

根据本节课在教材中的地位和作用,依据新课程标准的.基本理念和学生的认知水平,我拟定了以下教学目标:

1、知识目标:理解三角形的定义,掌握三角形特征和特性,并会给三角形画高。

2、能力目标:学会通过观察、操作、分析和概括去获得的学习方法,体验数学与生活的联系,培养学生的观察、分析、操作的能力,进一步发展空间观念。

3、情感目标:在小组合作、探究与交流的过程中,增强学生创新意识和团结协助的精神。

(三)教学重点、难点

教学重点:理解三角形的定义,掌握三角形的特征和特性。

教学难点:给三角形确定高和画高。

(四)教具准备:三角板、课件、数学用具盒、幻灯片

(五)学具准备:三角尺、数学用具盒、图纸。

二、说教法、学法

1、说教法

本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。先创设情境激发学生的学习兴趣,然后让学生自学课 本,独立探索,再让学生操作实践,合作交流,从而达到概念的自主建构;在整个教学过程中充分体现了以学生为主体,教师为主导的教学思想,让学生在活动中感 受数学之美。

2、说学法

根据本节课的教学目标和教法,我主要采用独立探索、合作交流、实践操作相结合的学习方法,让学生通过动脑、动口、动手来亲身经历“做数学”的过程,真正理解和掌握基本的数学知识和技能,获得广泛的数学活动经验,建立学习成就感和信心,使学生成为数学学习的主人。

三、说教学过程

这节课的教学过程,我是秉着新课标的精神,在整个教学流程设计上力求充分体现“以学生为主体”、“以学生发展为本”的教育理念,我将教学思路拟定为“创设 情境、诱发兴趣——合作交流、探索新知——深化训练,拓展延伸——质疑反思,总结评价”,努力构建探索型的和谐课堂教学模式。

小学数学三角形教案(篇10)

等腰三角形是一种特殊的三角形,它除了具备有一般三角形的所有性质外,还有许多特殊的性质,由于它的这些特殊的性质,使它比一般的三角形应用更广泛,而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,它也是证明两个角相等,两条线段相等,两条直线互相垂直的方法,学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要。根据本班学生的特点我确定如下:

能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质

2、过程与方法:

经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。

3、情感态度与价值观:

等腰三角形性质的探索和应用是本节课的重点。由于初二学生的几何知识有限,而本节课性质的证明又添加了辅助线,所以等腰三角形性质的验探究是本节课的难点。

本节课中我遵循教师为主导,学生为主体的原则,针对当前学生的厌学情绪,我运用课件,实物演示等多种教学手段激发学生的学习兴趣,让学生感到容易学,采用创设情景、实验法来分散难点让学生感到愿意学,并设置适当的追问、探究,让学生来主宰课堂,成为学习的主人。

好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习和解题方法,并且通过自己动手操作、动脑思考、动口表述,培养学生的观察、猜想、概括、表述论证的能力

首先我用一个三角形测平架,测量黑板的下边是否水平,并让学生猜想其中的道理和奥妙,这样的引入既明确了本节课的主要内容,也激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。

教育学中有句谚语:“告诉我我会忘记,做给我看我会记得,让我去做我才会懂”,由此可见实验法在教学中具有重要的作用。因此我设计了一个动手操作的环节,让学生按要求剪出一个三角形,为下面折纸操作作好铺垫,结合剪出的等腰三角形学习相关的概念加深印象,并指明等腰三角形是轴对称图形。

在这个环节我安排了两个探究,通过折纸的方法猜想并归纳。首先通过折纸让学生猜想∠B和∠C有什么关系?鼓励学生用多种方法来验证他们的猜想,并归纳出等腰三角形的第一条性质。这个地方我设计一个疑问,来强调等边对等角有一个前提条件就必须是在同一个三角形中,为了保证学生思维的连贯性,在这里我是这样引入探究二的,“从刚才辅助线的作法中,你发现了什么?”让学生感觉到这三条辅助线好像是一条线段,然后在通过折纸归纳出性质二。

学生在长时间的`学习和探究中大脑已感到疲劳,随即引出课前设置的疑问,再次激发学生的学习热情。由于“三线合一”的性质在描述上经常出错,所以我设置了一个辨析,然后用填空的形式规范“三线合一”的符号表示形式,让学生理解性质的内涵。

我用两个练习巩固等腰三角形的性质并让学生体验分类讨论的思想在解题中的应用。由于本节课的例题较难,因此我对它进行了改编,先让学生解决“等腰三角形一个底角的外角是108°时,三个内角分别是多少度?”然后再延长CD,得到一个新的等腰三角形,运用性质一就可以解决这两个问题,然后今天的例题就可以迎刃而解了,同时也要强调此题图形的特殊性,只有顶角是36°的等腰三角形才能满足这样的性质。

二是注重教学过程、重视方法;

三就是注重概括总结。

首先我让学生回想一下本节课的内容,“通过本节课的学习,你对等腰三角形有什么新的认识吗?”然后教师肯定学生的积极性。

jk251.cOm扩展阅读

三角形优秀教案汇总


教案课件是老师工作当中的一部分,每个老师对于写教案课件都不陌生。教案是实施教育目标的重要工具。教师范文大全为您精心准备了关于“三角形优秀教案”的相关资讯,下面的内容只是提供参考请大家详细阅读!

三角形优秀教案【篇1】

教学内容:

人教版义务教育课程标准试验教科书数学五年级上册第84-86页。

教学目标:

1.知识与技能:

(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2)培养学生应用已有知识解决新问题的能力。

2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:理解并掌握三角形面积的计算公式

教学难点:理解三角形面积计算公式的推导过程

教学准备:教具:多媒体课件、红领巾实物。学具:剪刀、各种不同类型的三角形等。

教学过程:

创设情境,引入课题

一、创设情境,引入探索

1、出示红领巾,问:会计算它的面积吗?

2、学生交流 (课件演示)揭题

二、自主合作,探究新知

1、请看大屏幕说一说你看到了什么?课件出示不同的三角形 {学生口述)

2、三角形面积公式的推导

活动一:

请同学们拿出准备的三角形, 用推导平行四边形面积的方法,试着拼一拼,摆一摆,看能不能推导出三角形的面积公式。动手前,注意老师提出的这几个问题:

你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)

(1)学生分小组进行操作实践活动

(2)汇报交流操作结果(请学生将自己的拼图贴于黑板上,对照拼图进行汇报交流,不完整的地方,小组内其他同学补充。

拼法一:用两个完全一样的直角三角形拼成一个长方形,三角形的一条直角边(底)相当于长方形的长,另一条直角边(高)相当于长方形的宽,长方形的面积相当于三角形面积的两倍,因为长方形的面积=长×宽,所以,三角形的面积=底×高÷2。

拼法二:两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形的2倍,平行四边形的面积=底×高,所以三角形的面积=底×高÷2。

拼法三:两个完全一样的钝角三角形拼成一个平行四边形。

拼法四:两个完全一样的直角三角形还可拼成一个平行四边形。

拼法五:两个完全一样的。等腰直角三角形可拼成一个正方形。

教师概括:通过动手我们发现,两个完全一样的三角形都可以拼成一个平行四边形(或长方形或正方形)这个平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以,推出:

三角形优秀教案【篇2】

教学内容:

三角形面积公式的推导和面积的计算。课本P47--P49。练习十1-3题。

教学目标:

1、使学生理解三角形的面积正好是它等底等高的平行四边形面积的一半,引导学生推导出三角形面积计算公式。

2、使学生掌握三角形面积的计算公式,并能结合实际正确选择条件,应用公式计算三角形面积。

3、通过图形的割补、剪拼,渗透图形变化的数学思考方法,并培养学生的动手操作能力。

教学准备:

多媒体课件。学生准备剪拼的还有平行四边形、长方形等三个图形与三对三角形、剪刀等。

教学过程:

一、复习旧知,建立基础。

昨天我们学习了平行四边形的面积计算,请同学们回忆一下平行四边形的面积公式我们是怎样推导出来的?

学生回答,教师小结。平行四边形的面积公式我们是通过沿高剪割、平移的方法把平行四边形转化成了长方形后推导出来的。(演示推导过程)这样我们就把要学习的新知识转化成了已会的旧知识。(板书:转化)

我们今天也要应用这个思想来学习新知识。

二、导入新课,揭示课题

师:,这堂课我们学习"三角形面积的计算"(板书)。

三、三角形面积公式的推导

1、用数方格的方法求三角形的面积

多媒体屏幕出示3个三角形。放在边长为1厘米的正方形方格图中。每个小方格就是多少面积?

(1)、分别说说这三个三角形是什么三角形?

(2)、请你用数方格的方法求出这3个三角形的面积各是多少平方厘米(不满一个的,都按半格计算,小组里分一下工,每人数一种。看哪个小组数的最快)

边数边思考:

(1)。如果以水平方向的边为它的底,那么高在哪里?底和高分别是多少?

(2)。并且请你根据所得的结果猜一猜三角形的面积可能与什么有关?有怎样的关系呢?

思考题交流。

师:那么三角形能不能转化成我们学过的图形来推导出它的面积计算公式呢?你想转化成怎样的图形?

1、尝试操作

每个学生放有九个图形,其中六个三角形。请你剪一剪,或者拼一拼。看看三角形与我们以前学过的图形有没有关系?有怎样的关系?

要求:每个人做一次剪的实验、做一次拼的实验,小组长进行一下分工。

交流:通过剪一剪,或者拼一拼,你发现了什么?汇报剪的情况。

(1) 请学生把自己剪的图展示在投影仪上。说说你是怎样剪的?发现了什么?

根据剪的情况,谁能用一句话来概括一下?

(2)交流拼的情况,说说你是怎样拼的?通过拼一拼,你又发现了什么?

展示在投影仪上。根据拼的情况,谁能用一句话来概括一下?

三角形优秀教案【篇3】

     【学习目标】

1. 知识技能

利用平行四边形的性质和判定证明出三角形的中位线定理,并会用定理进行计算或证明.

2.数学思考

通过猜想、验证、推理、交流等数学活动,发展我们的动手操作能力、合情推理能力以及应用数学能力.

3.解决问题

通过三角形中位线定理的探索过程,丰富我们从事数学活动的经验与体验,感受数学思考过程的条理性及解决问题策略的多样性.

4.情感态度

(1)在观察、分析过程中发展我们主动探索、质疑和独立思考的习惯.

(2)经历合作探究的过程,培养我们合作交流意识和探索精神.

【学习重难点】

1.教学重点:理解和掌握三角形中位线定理,并能熟练运用.

2.教学难点:利用平行四边形的性质与判定证明三角形的中位线定理,以及复杂图形中通过作辅助线应用三角形中位线定理.

课前延伸

各人准备一张三角形纸片,记作△ABC,分别取AB、AC边中点D、E,用直尺分别测量DE、BC的长,比较DE、BC的大小关系,并猜想DE、BC之间存在怎样的数量关系.还能借助量角器测量有关角的大小,并猜想出DE、BC之间的位置关系吗?

课内探究

一.上面猜想进行理论证明.

已知:D、E分别平分AB、AC,

求证:_______________________

二.总结归纳.

三角形的中位线定义:

三角形的中位线定理:

三.三角形的中位线和中线区别:

三角形中位线定理的符号语言:

四.随堂练习、巩固深化

1.D、E分别平分AB、AC,若BC=10cm,则DE=______;

若DE= cm,则BC=______.

2.已知 中, ,且 cm,D、E、F分别是AB、BC、CA的中点,则 的周长是_________cm.

3.如图, 内有一点P,EF是 的中位线,MN是 的中位线,

求证:四边形MNFE是平行四边形.

4.判断任意一个四边形各边中点连接所形成四边形的形状,并证明你的结论.

已知:E、F、G、H分别为四边形ABCD中点,

求证:四边形EFGH为平行四边形.

5.实际应用:

想知道一池塘边缘宽度AB,且AB不可直接测量,怎么办?

提醒:池塘旁取一点C,C与A、B之间可以直接到达.

五.当场训练反馈:

1.如图,任意四边形ABCD各边中点分别为E、F、G、H,若对角线AC、BD的长都为10 cm,则四边形EFGH的周长是( )

A.40cm B.20cm C.10cm D.5cm

2.以三角形的三个顶点及三边中点为顶点的平行四边形共有( )

A.1个 B.2个 C.3个 D.4个

课后提升

1.已知一个三角形的周长为a,它的三条中线组成的第二个三角形周长为_________,

第二个三角形的三条中线又组成第三个三角形,其周长为_________,以此类推,

第2010个三角形的周长为_________.

2.如图,已知△ABC的中线BD、CE相交于点O,F、G分别是BO、CO的中点,

试猜想EF、DG之间的关系,并证明你的结论.

三角形优秀教案【篇4】

一、导入新课:

上节课我们去参观了王伯伯的养虾池,认识了平行四边形,学习了怎样计算平行四边形的面积,那平行四边形的面积公式是怎样的呢?(学生回答:平行四边形的面积=底×高)。谁能回顾一下,我们是怎样推导出平行四边形的面积公式的呢?(学生回答,教师总结)。今天我们再去参观一下张爷爷家的养蟹池吧。(课件出示情景图),根据这幅图,你能提出什么问题?(1号蟹池的面积是多少?……)一号蟹池的形状是一个什么图形?(三角形)那怎样求三角形的面积呢?下面我们就来研究一下。板书:三角形的面积

二、探究新知:

(一)操作引入

1、提问:怎样求三角形的面积呢?我们能不能像推导平行四边形的面积那样也设法把三角形转化成我们已经学过的图形呢?老师为大家准备了很多三角形,请大家以小组为单位研究一下,试着把三角形转化成我们学过的图形。(生小组讨论,师巡视指导)。

2、汇报交流:不同方法的小组到前面演示,边拼边讲。(师选择三种图形贴到黑板上)。

(二)公式推导

1、咱班同学真了不起,小小的三角形竟然拼出了这么多的图形。那接下来我们一起来研究一下,这两个三角形拼成了一个什么图形呢?(长方形)。那长方形的面积怎样计算?(长×宽)。师在黑板上所贴长方形下面板书:长方形的面积=长×宽。

2、黄颜色三角形的面积与这个长方形的面积有什么关系呢?(三角形面积是长方形面积的一半)。

3、长方形的长与这个三角形的底是什么关系?板书

4、长方形的'宽与这个三角形的高是什么关系?板书

5、那这个三角形的面积该怎样计算呢?(生答,师在长方形面积公式下板书——三角形的面积=底×高÷2)。

6、是不是所有等底等高的三角形面积都是它所拼成图形的一半呢?

7、操作验证(学生小组完成)

结论:等腰直角三角形的面积是拼成的正方形面积的一半。

钝角三角形的面积是拼成的平行四边形面积的一半。

8、推导公式:生答:通过实验我们知道,等底等高的三角形是它所拼成图形面积的一半,所以三角形的面积=底×高÷2。

三、拓展练习

刚才大家的表现非常棒,自己就总结出了三角形的面积公式,那么根据公式,谁来说一下,要求三角形的面积,必须知道哪几个条件?(底和高)。

1、下面我们就将1号蟹池的面积计算一下吧。课件。(生解答,交流)

2、比一比,看谁算的又快又准确。课件。生独立解答,全班交流。

3、课件出示:一个没有标出底和高的三角形,怎样求出它的面积。(测量底和高),做书上第31页练习2。

4、课件出示:火眼金睛辨对错。生用手势判断,并说明理由。

5、聪明小屋:平行线中的三个三角形,哪个面积大?生讨论交流,说明理由。(一样大,因为它们等底等高)。

四、课堂小结

出示学习材料,学生阅读后谈感想。体会祖国的古代科学家得了不起,2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

1、你从这节课学到了哪些知识?

2、你认为计算三角形面积需要注意什么?

三、板书设计

三角形的面积

长方形面积=长×宽正方形面积=边长×边长平行四边形面积=底×高

三角形面积=底×高÷2三角形面积=底×高÷2三角形面积=底×高÷2

三角形优秀教案【篇5】

教学目标:

1 。知识与技能:

(1 )探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2 )培养学生应用已有知识解决新问题的能力。

2 。过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3 。情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点:三角形面积公式的推导过程。

教学关键:让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。

教具准备:红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。

教学过程:

一、创设情境,揭示课题

师:今天老师有什么不同? 老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗?(把红领巾展开贴在黑板上)

教师提出问题:

⑴ 红领巾是什么形状的?(三角形)。

⑵ 你会算三角形的面积吗?

师:这节课我们一起来学习探索三角形面积的计算方法。板书:三角形的面积

[ 设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“ 教学活动” 转化为“ 学习活动” 。]

3 。讨论与归纳公式

(1 )讨论:(小黑板出示问题)

①三角形的底和高与平行四边形的底和高有什么关系?

②怎样求三角形的面积?

③你能归纳出三角形的面积计算公式吗?

[ 设计意图: 借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]

二、应用新知,解决问题

师:现在同学们能帮老师解决问题了吗?

1 。计算一条红领巾的面积。

师:你能估算出这条红领巾的底和高各是多少吗?

师:这条红领巾的底是100cm, 高是33cm ,你能计算出它的面积是多少吗?

学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。

师:计算三角形的面积,应注意什么地方?(强调“÷2” 和“ 底和高要对应” 这两个重点、难点。)

2 。独立完成P85 做一做。

学生板演,教师点评。

[设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]

三、深化理解、应用拓展

课本86 页的练习第1 题。(课件出示)

师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?

(让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)

[ 设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]

四、总结

师:今天这节课,我们主要学习了什么知识?你有什么收获?

(小出示)让学生说一说图意:

师:很好!今天我们通过分“ 四人小组” 动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的平行四边形推导出了三角形面积的计算公式,这种“ 转化” 的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。

[ 设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]

五、课外作业

课本第87 页“ 练习十六” 第5 、6 、7 题。

教学反思:

本节内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来 “ 教学活动” 转化为“ 学习活动”, 引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。

1、小组结合动手操作

在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。

2、引导学生发现问题、思考问题,培养合作精神

在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“ 除以2” 是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“ 除以2” 的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。

3、应用公式解决生活中的问题

新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。

此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识, 从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。

三角形优秀教案【篇6】

【教材分析】

这一节课主要学习等腰三角形“等边对等角”及“底边上的高、底边上的中线、顶角的平分线互相重合”的性质。本节内容既是前面知识的深化和应用,又是下节学习等腰三角形和等边三角形判别的预备知识,还是证明角相等、线段相等及两条直线互相垂直的'依据。学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要,起着承前启后的作用。

【学情分析】

在此之前,学生已学习了轴对称图形,这为过渡到本节的学习起着铺垫作用。初二学生心理和认知发展规律要求在教学中要充分调动他们的激情,他们不喜欢鼓噪无味的数学课堂。根据认知理论和心理学的基本原理,学生对所学知识的掌握是通过感知阶段、理解阶段、巩固(记忆)阶段、应用(迁移)阶段的发展实现的,知识的掌握如此,思维能力的培养也是如此,也应遵循认知迁移的规律,逐极展开。

【教学目标】

1、知识和技能目标:

能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质。

2.过程和方法目标:

经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。

3.情感和价值目标:

培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心。

【教学重点和难点】

1.教学重点

等腰三角形的性质及应用

2.教学难点

等腰三角形性质的建立

教学过程

三角形优秀教案【篇7】

教学目标:

1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。

3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。

4.体验数学与生活的联系,培养学生学习数学的兴趣。

教具准备:师准备木条(或硬纸条)钉成的三角形、学习卡

教学过程:

一、联系生活,情境导入

1、谈话导入,板书课题。

2、课件展示课本第80页情境图,让学生指出图上的三角形。

3、让学生讨论说一说:生活中还有哪些物体上有三角形。

二、实验解疑,探索特性

1、三角形在生活中有这么广泛的运用,究竟它有什么特点?下面我们来变个小魔术。

2、生上台前拉教具:拉一拉,你有什么发现?

3、实验结果:三角形具有稳定性。

4、请学生举出生活中应用三角形稳定性的例子。(如:自行车三角架、交通警示牌等)

5、出示教材第81页插图:图中哪儿有三角形?它具有什么作用?

三、操作感知,理解概念

1、4人为小组画三角形,理解含义。

2、展示学生画的三角形,组织交流:三角形有什么特点?

3、生板演完成习题:三角形有()条边,()个角,()个顶点。(生齐读)

4、概括定义:大家对三角形的特征有了一定的认识,能不能用自己的话说一说什么样的图形叫三角形?(指名说)

5、辨一辨:(出示幻灯片)它是三角形吗?说说你的理由。

6、师小结:由三条线段围成的图形叫三角形。

四、画三角形的底和高。

1、出示图形:看这是老师课前画的三角形,大家仔细观察老师画的与你们画的有什么不同。

2、生观察指出,师引导出高和底的概念,以及三角形的字母表示形式。

3、学生分组讨论练习画三角形的高。

4、展示学生作品:说说你是如何画的。

5、幻灯片演示画高过程。

6、学生板演画高。

五、总结

1、师:通过这节课的学习,我们懂得了三角形具有——稳定性,还知道了怎样画三角形的——高。

2、巩固练习。(课件演示学生修椅子:说说为什么要这样修?)

三角形优秀教案【篇8】

本节课重点要让学生通过实践、交流、猜想、论证,得出等腰三角形"两个底角相等"、"三线合一"的性质。

“等腰三角形”是学生小学学过的、生活中常见的一类平面图形,今天讲的一定要是有别于以往的、又对旧知识做一个补充和印证的。因此我给它定位是“轴对称图形”的典型代表。从这点出发结合“探究1”让学生用不同的方法得到等腰三角形,继而复习它的相关概念,由“探究2”让学生自主探究等腰三角形的性质。实践、交流、归纳出等腰三角形的2点性质:"两个底角相等"、"三线合一"。要论证猜想的正确性,除了小学里的等腰三角形翻折的直观印证外,就要用到之前的'“证明三角形全等”这一常见方法了。在此,将猜想的命题转化成符号语言是一个初步的训练。而此命题证明的关键是“添加辅助线”,有前面两个“探究”,如何添加辅助线也就水到渠成了。这条辅助线就是图形的对称轴。结合课本76页证明过程,进一步提出:将“作底边BC的中线AD”改为“过A作底边BC的高线AD”或者“作∠BAC的平分线AD交BC于D”性质1、2是不是同样得到证明?证明过程中有什么异同?在此要给学生强调:性质2实际上包含了三个命题,需要一一证明。这点在辅助线的添加处加以说明:作中线,证高线,证平分线;作高线,证中线,证平分线或作角平分线,证高线,证中线。

性质2不容易引起学生的重视,但它的应用十分广泛,所以我在此补充了例题让学生加以巩固。

等腰三角形的2条性质对今后证明线段相等或角相等方面有很多的应用,限于课堂时间有限,没有加以补充,今后具体问题时再予总结。

它山之石可以攻玉,以上就是范文为大家整理的9篇《初中数学等腰三角形的性质教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在范文。

三角形优秀教案【篇9】

活动目标:

1、引导幼儿在探索操作活动中,初步感知三角形,知道其名称和形状特征,认识三角形的多样性;

2、能不受其他图形干扰找出三角形;

3、培养幼儿的动手操作能力,发展思维的灵活性。

活动准备:

教具:

1、各种不同的三角形;数字卡;

2、星星、正方形、菱形各1。

学具:

1、3条长度不同的纸条(幼儿每人一套);

2、各种图形:圆形、正方形、长方形、三角形若干;

3、图形拼图;

4、胶垫人手一块

活动过程:

一、探索操作:

1、请幼儿拿3条不同长度的纸条拼摆图形。幼儿探索活动,教师指导。

2、幼儿展示自己的图形,教师集体说说,摆了什么样的图形,用了几条纸条,有几个角;

二、认识三角形的特征

1、小朋友真棒!现在我们请出今天的图形客人。出示三角形引导幼儿数数三角形的角与边各有多少?(教案出自:教案网)(教师根据幼儿数出的角、边,在三角形上标上数字)2、出示星星、正方形、菱形、让幼儿分辨它们是否三角形?

2、出示各种图形,让幼儿把三角形归类放到一边。(二次操作,巩固对三角形特征的认识)

3、操作:幼儿人手一图形拼画,请幼儿找出画中的三角形,涂色。

4、向爸爸妈妈展示自己的画。

三、活动结束。

三角形优秀教案【篇10】

教学目标:

知识技能

了解等腰三角形的性质,掌握等腰三角形的性质定理及推论,会用定理及推论解决简单问题。

数学思考

培养学生探究思维、逻辑思维能力,探索引辅助线的规律。

情感态度与价值观:

渗透"实践--理论--实践"的辩证唯物主义思想,培养探究分析数学知识方法的兴趣,养成踏实细致、严谨科学的学习习惯。

教学重点与难点

重点:理解等腰三角形的性质定理、推论,并能用它们解决简单的问题。

难点:引辅助线证明定理和推论1的应用。

教学过程与流程设计

引导性材料:

1. 学生把等腰三角形的两腰叠在一起,发现它的两个底角重合,这说明等腰三角形具有什么性质?(等腰三角形的两个底角相等)(演示叠合过程)

2. 教师用等腰三角形纸片演示两腰叠合,再把纸片展开。

提问:你能发现等腰三角形还有什么特性吗?

(引入课题,明确目标)(显示教学目标)

教学设计:

问题1:怎样来证明“等腰三角形的两个底角相等”呢?

已知:如图,△abc中,ab=ac.

求证:∠b=∠c.

(方法1)证明:作顶角的平分线ad.

在△bad和△cad中。

ab=ac (已知)

∠1=∠2 (辅助线作法)

ad=ad (公共边)

∴△bad≌△cad(sas)

∴∠b=∠c(全等三角形的对应角相等)

问题2:上述命题还有哪些证法?

方法2:作底边bc上的高ad. (证明过程由学生口述)

方法3:作底边bc上的中线ad.(证明过程由学生口述)

(演示):等腰三角形的性质定理    等腰三角形的两个底角相等

(简写成“等边对等角”)

观察上述三种方法,思考如下问题:

(1) 在等腰△abc中,如果ad是顶角的平分线,那么ad是否平分底边?是否垂直于底边?

(2) 在等腰△abc中,如果ad是底边上的高,那么ad是否平分顶角?是否平分底边?

(3) 在等腰△abc中,如果ad是底边上的中线,那么ad是否平分顶角?是否垂直于底边?

推论1  等腰三角形顶角的平分线平分底边并且垂直于底边。

(等腰三角形的顶角平分线、底边上中线、底边上的高互相重合。)

练习:填空,在△abc中,

(1) ∵ab=ac,ad⊥bc,

∴∠=∠,     =     .

(2) ∵ab=ac,ad是中线,

∴⊥,∠=∠.

(3) ∵ab=ac,ad是角平分线,

∴⊥,     =     .

问题2:等边三角形是特殊的等腰三角形,除具有等腰三角形的性质外,还有特殊的性质吗?

推论2:等边三角形的各角都相等,并且每一个角都等于60°.(学生完成证明)

已知:如图,△abc中,ab=ac=bc.

求证:∠a=∠b=∠c=60°

证明:∵ ab=ac,

∴∠b=∠c(等边对等角),

∵ac=bc,

∴∠a=∠b(等边对等角),

∴∠a=∠b=∠c,

∵∠a+∠b+∠c=180°(三角形内角和定理),

∴∠a=∠b=∠c=60°

例题解析:

例1:填空,1.在△abc中,ab=ac.

(1) 若∠a=50°,则∠b=      °,∠c=      °;

(2) 若∠b=45°,则∠a=      °,∠c=      °;

(3) 若∠b=∠a,则∠a=      °,∠c=      °;

(4) 若∠b=2∠a,则∠a=      °,∠c=      °.

2.等腰三角形的一个角是40°,则它的底角是                     .

3.等腰三角形的一个角是120°,则它的底角是                      .

例2:已知,如图(6),房顶的顶角∠bac=100°,过屋顶a的立柱ad⊥bc,屋椽ab=ac,求顶架上∠b、∠c、∠bad、∠cad的度数。

解:在△abc中,

∵ab=ac(已知),

∴∠b=∠c (等底对等角),

∴∠b=∠c=(180°-∠bac)=40°,

(三角形内角和定理),

又∵ad⊥bc(已知),

∴∠bad=∠cad(等腰三角形顶角的平分线与底边上的高互相重合),

∵∠bac=100°,

(7)              ∴

课堂练习:

已知:如图(7)中的三角形测平架中,ab=ac,在bc的中点挂一个重锤,自然下垂,调整架身,使点恰好在重锤线上。

求证:(1)ad⊥bc;

(2)这时bc处于水平位置,为什么?

课堂小结:

1. 等腰三角形的性质定理:“等边对等角”,揭示了同一个三角形中边与角之间的关系;

2. 等腰三角形性质定理的推论1、推论2;

3. 由推论1知,等腰三角形“底边上的三条主要线段互相重合”,这条线段具有三种不同的“身份”,因此,它是推证两条线段相等、角相等以及两条直线互相垂直必须关注的“热线”。

4. 掌握证明几何命题的完整过程,以及不同辅助线的添法,从中体验数学知识的美妙。

作业:习题14.3  第6、7题(作业本),其他课本

三角形优秀教案【篇11】

数学三角形的面积练习题

一、填空。

1、一个三角形的面积是25平方厘米,和它等底等高的平行四边形的面积是平方厘米。

2、一个平行四边形的底是6厘米,高是14厘米,它的面积是()平方厘米,与它等底等高的三角形面积是()平方厘米。

3、一个三角形的面积是20平方厘米,它的高是8厘米,底是()厘米。

4、直角三角形的两条直角边长分别为3厘米和4厘米,斜边为5厘米,这个直角三角形面积是()平方厘米。

5、一个三角形与一个平行四边形的底和面积都相等,平行四边形的高是16厘米,三角形的高是(   )厘米。

6、一个等腰直角三角形的直角边是10厘米,它的面积是(   )平方厘米。

二、判断题。

1、平行四边形面积等于长方形面积。()

2、等底等高的三角形可拼成一个平行四边形。()

3、如果两个三角形面积相等,那么它们一定等底等高。()

三、选择题。将正确答案的序号填在括号里。

1、将一个长方形拉成一个平行四边形(四条边长度不变),它的。面积()。

A.比原来小B.比原来大C.与原来相等

2、平行四边形的面积是44cm2,与它等底等高的三角形的面积是()cm2

A、44B、22C、88

四、解决问题。

1、一块三角形的地的面积是360平方米,底是50米,高是多少?

2、一种直角三角形的小旗,一条直角边长15厘米,另一条直角边长24厘米,做150面这样的小旗,至少要用红布多少平方米?

3、三角形广告牌,底25分米,高20分米。如果每平方米刷漆2千克,那么将这个广告牌正反两面刷漆,购买18千克油漆够不够?

4、大白菜地的形状是三角形,底80米,高60米,如果每棵大白菜占0.2平方米,这地可种大白菜多少棵?

三角形优秀教案【篇12】

教学内容:

教材第62页的内容及第66页练习十五的第68题。

教学目标:

1、知道两点间距离的意义,明白两点之间线段最短的道理。

2、通过操作、观察,发现三角形三边之间的关系:三角形任意两边之和大于第三边。

3、掌握判断三条线段是否构成一个三角形的方法,并能解决有关的问题。

4、提高学生逻辑思维能力,以及培养学生猜想验证总结的学习习惯。

教学重点:

知道两点间距离的意义,明白两点之间线段最短的道理。

教学难点:

通过操作、观察,发现三角形三边之间的关系:三角形任意两边之和大于第三边。

教具学具:

多媒体课件、剪刀、白纸。

教学过程:

一、情境导入

课件出示教材第62页例3.

师:老师给大家介绍一位新朋友小明。他正从家里出发去学校。观察情景图说一说,从小明家到学校有几条路线?分别是怎么走的?

生:从小明家到学校有3条路可走。

第一条:家邮局学校第二条:家学校

第三条:家商店学校

师:哪条路最近?

生:家学校的路最近。

师:为什么家学校的路最近?

二、自主探究

1、体验两点间的距离的意义。

师:为什么大家认为中间这条路最近?

生1:因为第一条和第三条路线拐弯了,绕远路,所以中间这条最近。

生2:我生活中这样走过,中间的这条路线最短。

生3:我在课本的图中通过测量得出中间的这条路线最近。

师:家、邮局、学校,我们可以看作三个点,你能发现它们构成了一个什么图形吗?

生:观察情境图我们可以发现家邮局学校可以看成一个三角形,其中家到邮局的距离+邮局到学校的距离>家到学校的距离。

师:家商店学校呢?

生:家商店学校也可以看成一个三角形,家到商店的距离+商店到学校的距离>家到学校的距离。

师:通过上面的观察,你能得出什么结论?

等边三角形课件实用


一般给学生们上课之前,老师就早早地准备好了教案课件,因此就需要老师自己花点时间去写。写好教案,才能让课堂教学更完整。通过本文了解“等边三角形课件”您会对它有更多深刻的认识,您可以尝试应用本文内容或许能为您提供有效的帮助!

等边三角形课件(篇1)

教学目标

重难点

1、知识与技能

(1)理解掌握等腰三角形的性质.

(2)运用等腰三角行的性质进行证明和计算.

(3)发展合情推理,培养观察、分析、归纳问题的能力.

2、过程与方法

通过动手操作、观察、归纳,经历探索等腰三角形的性质的过程,体会获得数学结论的过程,逐渐形成自己对数学知识的理解和有效的学习策略.

3、情感态度与价值观

(1)通过引导学生动手操作,对图形的观察发现,激发学生的学习兴趣.

(2)在师生之间、生生之间的合作交流中进一步树立合作意识,培养合作能力,体验学习的。快乐.

(3)在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.

4、教学重点:等腰三角形的性质的发现和应用.

5、教学难点:等腰三角形性质的证明

教学过程

(交互式白板使用功能)

1、情境创设

问题:地震过后,同学用下面方法检测教室的房梁是否水平:在等腰直角三角板斜边中点绑一条线绳,线绳的另一端悬挂一个铅锤。把三角板斜边紧贴在横梁上。这就能检查横梁是否水平,你知道为什么吗?1。提出问题。

2、演示课件(1):介绍方法,设下悬念,引出课题。思考作答;

带着问题进入学习。激发学生思考,设置悬念,激活学习所必需的先前经验,唤起学生的学习需要,激发学生的学习兴趣。用课件演示检测方法:旋转“房梁和三角板”,保持铅垂线不动,判断房梁是否水平。演示可能的情况,给学生直观感受,激发学生的学习兴趣。

3、动手操作

(1)把一张长方形的纸片对折,并剪下阴影部分(教科书图12.3—1),再把它展开,得到一个什么图形?

(2)上述过程中得到的

问题(1):△ABC有什么特点?

问题(2):除了以上方法,还可以怎样剪出一个等腰三角形?发出指令引导学生操作;画图介绍腰、底、顶角、底角。

问题(3)让学生各抒己见的基础上介绍自己的想法

要关注学生是否积极参与到活动中来。

动手操作,观察。讨论、回答问题给学生提供参与活动的时间与空间,调动学生主观能动性,激发学习

等边三角形课件(篇2)

一、教材背景及学情分析:

本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级(上)12.1 全等三角形第一课时,主要内容是全等三角形概念及利用全等三角形的性质,探索发现全等三角形的性质.新课标对本节课的要求是:“了解全等三角形的有关概念,探索并掌全等三角形的性质.”本节课是在学生学习三角形的概念及相关知识的基础上,进一步探究全等三角形的有关知识。三角形的全等是初中几何部分一个十分重要的内容,是研究图形的重要工具,它既和前面所学知识练习紧密,又为学习三角形全等的判定做准备,同时也为今后研究学习其他图形奠定坚实的基础。

二、教学目标分析:

1、知识技能

了解全等形及全等三角形的概念,能理解全等三角形的性质,并能熟练找出两个全等三角形的对应角、对应边。

2、数学思考

在图形的变换以及实际操作的过程中,发展学生的空间观念,培养学生的几何直观能力。

3、过程与方法

在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径

4、情感态度与价值观

让学生在观察、发现生活中的全等形和实际操作中获得全等形和全等三角形的体验;在探究和运用全等三角形性质的过程中感受数学活动的乐趣。

5、教学重点

⑴全等三角形以及相关概念。

⑵探索全等三角形的性质.

6、教学难点

寻找并掌握全等三角形对应角、对应边的方法。

三、教法分析

《课标》指出:学生是学习的主人,教师是学习的组织者、引导者、合作者,本节课以学生的活动为主线,以突出重点、突破难点、发展学生的数学素养为目的,采用以自学辅导式为主,讲授法、发现法、分组交流合作法、启发式教学法、多媒体辅助教学等多种方法相结合,注重数学与生活的联系,创设一系列有启发式、挑战性的为题激发学生学习的兴趣,引导学生用数学的眼光思考问题,发现规律,验证猜想,注重师生互动,生生互动,更着眼于学生的实际,充分提现学生的心理需要,从而发展他们的能力和自主学习的意识。

四、课前准备

教具:直尺、三角形纸板、同一底片的两张照片、多媒体课件。

学具:同一底片的照片两张、三角形纸板。

五、教学过程

1、创设情境、激发兴趣,引入新课

问题1:我们每个人手里的数学课本在外形和大小上有什么关系呢?你能发现下面的里两个图形有什么美妙关系吗?(多媒体展示)

通过学生观察、猜想初结论后,教师板书课题(本环节约3分钟)

2、动手实践、师生互动、启发思维

问题2:学生自己动手(同桌互相配合)。

⑴、 把同一底片洗出来的两张照片上的图形沿边框剪下来,把剪下来的 图片放在一起,你有什么发现?

⑵、 取一张纸,将自己的三角板按在纸上,画下图形,照图形裁下来,纸样与三角形的形状、大小有什么关系?

⑶、 问题3:通过刚才的体验,大家谈谈什么样的两个图形是全等形,全等三角形?如何表示两个全等三角形呢?

(本环节约6分钟)

3、动态演示,观察归纳,尝试体验(多媒体演示)

问题4:三角形在平移、翻折、旋转的过程中是否发生了改变?各图中的两个三角形全等吗?(多媒体演示,给学生更直观的启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有变,所以平移、翻折、旋转前后的图形全等,这是利用运动的方法寻找全等的一种策略)。

本环节约5分钟

4、自主学习,深入思考,获取概念。

通过学生自学课本P31内容,理解全等三角形对应元素的概念,培养学生的数学概念辨析能力,并能将三角形经过平移、翻折、旋转前后的对应元素找出来,同时能正确的表示两个全等三角形,强调要将对应的顶点写在对应的位置上。

5、启发猜想,合作实践,验证猜想。

问题5:全等三角形的对应角有什么关系呢?对应边呢?(通过对图形的观察、以及演示,启发学生大胆猜想,并通过动手实践、验证猜想的正确性。)

本环节约5分钟

6、学以致用,分层练习,巩固提高(多媒体展示)

通过对三个练习题的讨论分析、总结得出根据文职元素寻找对应角、对应边的方法,从而配用学生对较复杂图形的识别能力,进一步加深学生对全等三角形的认识。

本环节约10分钟

7、反馈评价,师生小结(多媒体展示)

问题6:本节课你学到了什么?你最大的收获是什么?你还有什么问题呢?

本环节有5分钟

8、回味知识,布置作业

未了加深学生对知识的理解,促进学生对课堂的反思,布置阅读本节课内容后,分层次完成P33页12.1 第1、2题。

六、板书设计

一、相关概念

二、三角形全等的性质

三、学生练习

七、教学反思:

本教学设计通过学生在做模型、画图、动手操作等活动中亲身体验,完成对三角形实验,加深对“三角形全等”、“对应”含义的理解,即培养学生的画图、识图能力,又提高了逻辑思维能力。在整个教学过程中,学生在自主探索和合作交流中,经历了观察、实验、归纳、类比、直觉、数据处理等思想过程,而这样的过程能够促进学生对数学的正真理解和把握,从而不仅获得了数学知识、技能,而且经历了数学活动的过程,体验了数学活动的方法。同时,情感、态度价值观都能得到很好的发展。

等边三角形课件(篇3)

教学目标

重难点

1、知识与技能

(1)理解掌握等腰三角形的性质.

(2)运用等腰三角行的性质进行证明和计算.

(3)发展合情推理,培养观察、分析、归纳问题的能力.

2、过程与方法

通过动手操作、观察、归纳,经历探索等腰三角形的性质的过程,体会获得数学结论的过程,逐渐形成自己对数学知识的理解和有效的学习策略.

3、情感态度与价值观

(1)通过引导学生动手操作,对图形的观察发现,激发学生的学习兴趣.

(2)在师生之间、生生之间的合作交流中进一步树立合作意识,培养合作能力,体验学习的快乐.

(3)在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.

4、教学重点:等腰三角形的`性质的发现和应用.

5、教学难点:等腰三角形性质的证明

教学过程

(交互式白板使用功能)

1、情境创设

问题:地震过后,同学用下面方法检测教室的房梁是否水平:在等腰直角三角板斜边中点绑一条线绳,线绳的另一端悬挂一个铅锤。把三角板斜边紧贴在横梁上。这就能检查横梁是否水平,你知道为什么吗?1。提出问题。

2、演示课件(1):介绍方法,设下悬念,引出课题。思考作答;

带着问题进入学习。激发学生思考,设置悬念,激活学习所必需的先前经验,唤起学生的学习需要,激发学生的学习兴趣。用课件演示检测方法:旋转“房梁和三角板”,保持铅垂线不动,判断房梁是否水平。演示可能的情况,给学生直观感受,激发学生的学习兴趣。

3、动手操作

(1)把一张长方形的纸片对折,并剪下阴影部分(教科书图12.3—1),再把它展开,得到一个什么图形?

(2)上述过程中得到的

问题(1):△ABC有什么特点?

问题(2):除了以上方法,还可以怎样剪出一个等腰三角形?发出指令引导学生操作;画图介绍腰、底、顶角、底角。

问题(3)让学生各抒己见的基础上介绍自己的想法

要关注学生是否积极参与到活动中来。

动手操作,观察。讨论、回答问题给学生提供参与活动的时间与空间,调动学生主观能动性,激发学习

等边三角形课件(篇4)

教学目标:

1、引导学生在通过观察、操作、实验等学学习活动中,感受并发现三角形的有关特征,了解三角形两边之和大于第三边。

2、在经历充分的探索过程中,提高学生的观察能力、推理能力,发展空间观念。

3、使学生体会三角形在日常生活中的普遍性,通过学习进一步激发其学习的兴趣好积极性。

教学重点:

认识三角形的基本特征,知道三角形两边之和大于第三边。

教学难点:

探究三角形两边之和大于第三边。

教学准备:

学生每人准备小棒若干,4厘米、5厘米、6厘米、10厘米的彩色纸条各一根(颜色同课本),教学课件。

教学过程:

一、创设情境,引入新课

1、谈话:江阴长江大桥是我们泰州市在长江上架设的第一座大桥,是泰州人的骄傲,同学们见过吗?(出示江阴长江大桥图片)

师:观察一下,你能在这座大桥上找到我们熟悉的图形吗?

板书:三角形

【设计意图】:由课本插图改为学生熟悉的江阴长江大桥引入,使学生感到亲切,能激发他们的学习兴趣。

2、寻找生活中的三角形。

学生举例说一说生活中见到的三角形。

教师课件展示:红领巾、三角尺、交通指示牌、房屋等含有三角形物体的.图片。

【设计意图】:从生活中丰富的三角形物体的图片,使学生从整体上进一步感知三角形,使学生体会到数学与生活的密切联系,唤起他们主动探究的欲望。

二、动手操作,感悟特征

1、做三角形,初步形成概念。

⑴师:三角形是我们非常熟悉的一种图形,你能用自己手中的材料做一个三角形吗?学生动手操作,小组交流,全班展示。

⑵学生可能出现的方法:

①用三根小棒摆成一个三角形。

②在钉子板上围成三角形。

③用三角板画一个三角形。

④在方格上画一个三角形。

分别指名学生展示自己制作的三角形,并要求其说说自己的想法。

【设计意图】:不同的学生由于生活经验的不同,呈现出来的三角形的形状、大小、位置也不一样,这一环节重点让学生在交流时分析各种做法的共同点,初步感知三角形的特征。

⑶讨论:出示小棒摆的三角形:这样的图形是三角形吗?为什么?学生讨论教师将图形移动。

【设计意图】:学生对三角形的认识停留在较肤浅的层面上,他们有时会把类似于三角形的图形当作三角形,通过这个环节的设计,三角形是由三长线围成的这一重要特征。

2、认识三角形各部分名称。

教师出示手中的小棒,我们用小棒围成一个三角形时,实际上是把这根小棒看成一条什么?(线段)

围成一个三角形,需要几条线段?(板书:3条)

师:我们把这三条线段叫做三角形的边。(板书:边)

问:三角形除了边,还有什么?

学生讨论、交流。

教师小结并板书:三条边、三个角、三个顶点。

3、画三角形。

⑴学生在作业本上画一个三角形,同桌互相说一说三角形的边、角、顶角。

⑵在点子图上画两个三角形,(课本想想做做第1题)

学生画好后,再指名说三角形的特征。

【设计意图】:学生在“做三角形、画三角形、比较三角形”等活动中逐步由具体到抽象,由生活到数学,初步实现了三角形的概念的主动建构。

三、合作探究,深入探索。

1、疑问引入

师:通过刚才的活动,我们知道了三角形是三条线段围成的,现在给你任意三根小棒,你能围成三角形吗?

学生自由讨论、交流。

师:能,还是不能,我们用什么办法来解决呢?

板书:实验

【设计意图】:数学猜想是探索数学规律或本质时的一种策略,当学生基本认识了三角形的特征后,教师提出这个猜想的话题,激发了学生对正确结果的渴望,从而水到渠成地进入下一步学习环节——小组实验。

2、合作探究

⑴学生拿出课前准备的信封,拿出4厘米、5厘米、6厘米、10厘米的彩色纸条各一根。

⑵出示表格

选用小棒情况

能否围成三角形

10厘米(红)

6厘米(黄)

5厘米(绿)

4厘米(蓝)

注:请在表格中用“√”表示。

你发现了什么?

⑶学生分小组实验,并填写表格,组织汇报。

⑷教师用视频展示台展示,学生填写的实验记录表。

师:我们先来看选哪几根小棒不能围成三角形?

教师根据学生的讨论,分别用电脑演示:

A:10、4、5B:10、6、4

研究:这两组数据都不能围成三角形,你有什么发现?

板书:4+5<106+4=10

小结:两边之和小于第三边,不能围成三角形。

两边之和等于第三边,不能围成三角形。

师:哪几根小棒能围成三角形?

板书:5、6、104、5、6

观察一下,你又有什么发现?

将上述板书补充为:

5+6>104+5>6

小结:两边之和大于第三边能围成三角形。

【设计意图】:学生通过实验验证自己的猜想,在交流中碰撞思维,引发思考,经历了发现问题、合作探究,解决问题主动获取的过程,学生的主体作用得到充分的发挥。

⑸讨论:在10、4、5和10、6、4这两组数据中,10+4>510+6>4

10+5>410+4>6

都有符合两边之和大于第三边的条件,为什么它们不能围成三角形呢?

学生再次讨论、交流。

⑹引导小结:三角形任意两边的长度之和大于第三边。

等边三角形课件(篇5)

重点与难点分析:

本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

教法建议:

本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的`判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的学习方法,获取知识。

由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?  (2)怎样判定一个三角形是等边三角形?

一.教学目标:

1.使学生掌握等腰三角形的判定定理及其推论;

2.掌握等腰三角形判定定理的运用;

3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4.通过自主学习的发展体验获取数学知识的感受;

5.通过知识的纵横迁移感受数学的辩证特征.

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.

(简称“等角对等边”).

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

等边三角形课件(篇6)

教学目标

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

教学重点

等边三角形的判定定理和直角三角形的性质定理。

教学难点

能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学方法

教学后记

教学内容及过程

教师活动学生活动

一、定理:一个角等于60°的等腰三角形是等边三角形

1.引导学生回忆上节课的'内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

二、一种特殊直角三角形的性质

1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

2.肯定学生的发现和解释,在此基础上进一步深入提问:在直角三角形中,30°所对的直角边与斜边有怎样的大小关系?

3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

4.让学生准备一张正方形纸片,,按要求动手折叠。

5.讲解例题,应用定理。

6.布置学生做练习。

练习:课本随堂练习1

三、课堂小结:

通过这节课的学习你学到了什么知识?了解了什么证明方法?

四、作业:同步练习

板书设计:

1.积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。

2.积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。

3.认真听讲,体会分类讨论的数学思维方法,理解定理。

1.积极动手操作,并很快得到结果:可以拼出等边三角形。

2.在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。

3.认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。

4.很有兴趣地折叠纸片,体会定理的应用。

5.听讲,体会定理的应用。

6.认真做练习。

(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)

等边三角形课件(篇7)

教学目标

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

3、结合实例体会反证法的含义。

教学重点

等腰三角形的关性质定理和判定定理。

教学难点

能够用综合法证明等腰三角形的关性质定理和判定定理。

教学方法

教学后记

教学内容及过程

教师活动学生活动

一、等腰三角形性质的探究

1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。

2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。

3.分别演示:

∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。

4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。

5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。

6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。

7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。

8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。

9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。

10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。

11.小结这两个课时的内容。

作业:

同步练习

板书设计:

1.积极思考,回忆以前所学知识,联想新问题。

2.认真观看例1图形中线段的关系,积极思考,认真听讲。

3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的.启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。

4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。

5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。

6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。

7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。

8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。

9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。

10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。

11.体会老师的讲解,并根据小结记忆掌握知识。

(学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)

等边三角形课件(篇8)

活动目标:

1、使学生能够在已知三角形两个角的度数的情况下,求出第三个角的度数。

2、通过撕拼、折叠、测量等方法,探索和发现三角形三个内角和的度数等于180度。

活动准备:

量角器、剪刀、小组活动记录表(15份)、各式各样的三角形(3锐,2钝,2直,15份)、灯谜3条、大信封(里面装有2锐、1直、1钝形大,后粘有双面胶)、几何画板、五边形的图、剪用的大三角形(色浅,画出角的符号)、黑色水彩笔等。

活动过程:

(活动目标:1、明确什么是三角形的内角;2、以四人小组为单位,通过量、撕拼、折叠等方法,探索和发现三角形三个内角和的度数等于180度。)

活动一:探究与发现

三角形的三个角是哪三个角?谁能到台上来指一指?(师画出角的符号)我们把这三个角称为三角形的内角。(板书:内角)三个内角的总和称为内角和。(板书:和)你怎么知道三角形三个角的内角和就是180度?你们有什么办法可以验证吗?量一个就能说明它的内角和是180度吗?(生答:测量等)

好,下面我们以四人小组为单位,每个同学选择桌面上几个不同类型的三角形,动手量一量、折一折、画一画,验证你的想法。并将测量的结

果填入小组活动记录表中。

四人小组活动:师巡视。

除了量的办法,你们还有什么好办法?

学生交流、反馈:你们用的是什么办法?发现了什么?(注意学生评价,操作+表述,投影学生的活动记录表)

生1:我用的是测量的办法。

(师适时板书,尽量选不同类型的三角形)

谁来汇报一下你们测量的结果。真不错!

还有谁也是用测量的办法?测量的是什么三角形?还有吗?

哗!大家测量了各种类型的三角形三个角的度数。为什么大家用测量的办法会出现这样的情况?(度数和不同)

学生反馈:因为存在误差。

小结:同学们会用实验的方法来验证自己的猜想是否正确,这是一种好方法,而且是进行科学研究常用的一种方法。老师还用计算机中的几何画板,收集了很多大小不同的三角形,你们仔细观察三角形各个内角的度数和内角和的度数,你得出什么结论?

电脑演示。(解释角的问题)

小结:三角形三个角的内角和是180度。

谁还有不同的办法也可以验证?

生2:我用的是撕拼的办法。(提示:可以将3个角撕下来,拼拼看) 你是在怎么做的?上台来给大家演示一下。这个办法行不行?你们也试着做一做。

生3:我用的是折叠的办法。

请你也来给大家说一说。(折叠后画出角的符号)

这个办法行不行?你们也试着做一做。

对于撕和折的办法,你觉得怎样?

评价学生发言:同学们通过小组合作,用量、折、拼的办法验证了“三角形的内角和等于180度”的猜想。(板书:三角形三个内角和等于180度)这真是个了不起的发现!老师真的非常佩服你们这种大胆质疑的勇气和严谨的科学精神。

(活动目标:通过形式多样的练习使学生进一步掌握三角形内角和的规律,并能根据已知两个角的度数,求出第三个角的度数。)

活动二:试一试

1、基础训练。

(1)老师这里有一个三角形,你能求出其中一个角的度数吗?这是书28页的“试一试”,请同学们打开书,独立完成。

学生反馈:角a是多少度?你是怎么想的?还有什么办法吗?你发现了什么?

小结:已知三角形的两个角的度数,可以求出另一个角的度数。

如果是直角三角形,那么两个锐角的度数和等于90度。

(2)直角三角形的度数,同学们都算对了。老师这儿还有三个三角形,比比看谁能最先算出角的度数,直接写在书上。请打开书29页,完成“练一练”第1题,你是怎么想的?(把书合上)

2、剪三角形。

你们看,老师手上有一个大三角形,它的内角和是多少?仔细观察,我用剪刀剪了一刀,(投影)变成了两个三角形。(一左一右手拿小三角形)这个三角形的内角和是多少?另一个三角形的内角和是多少?(将两个三角形拼合)这个三角形内角和是多少?都认为是180度吗?(如有怀疑的,

提示你想自己试试吗?)请你们注意看,老师将其中一个三角形又剪一刀。这个小三角形的内角和是多少?还可以继续往下剪吗?你发现了什么?

3、学生反馈。

小结:只要是三角形,不管它的形状、大小,所有三角形的内角和都是180度。

4、知识拓展。

刚才同学们知道了三角形(也就是三边形)、四边形(也就是长、正方形)内角和是多少。用同样的办法,你会求五边形、六边形的内角和吗?(投影五边形图)感兴趣的同学可以课后自己去研究。把你们重要的发现,写成数学小论文,寄给报刊杂志社的叔叔阿姨们,相信他们也一定也会佩服我们同学的发现。

三角形与圆教案收藏


教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师都要用心的考虑自己的教案课件。 良好的教案和课件能够促进教学内容的深入学习。感谢查阅小编为你推荐“三角形与圆教案”,相信您可以在这篇文章中找到您需要的一切!

三角形与圆教案【篇1】

一、教材背景及学情分析:

本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级(上)12.1 全等三角形第一课时,主要内容是全等三角形概念及利用全等三角形的性质,探索发现全等三角形的性质.新课标对本节课的要求是:“了解全等三角形的有关概念,探索并掌全等三角形的性质.”本节课是在学生学习三角形的概念及相关知识的基础上,进一步探究全等三角形的有关知识。三角形的全等是初中几何部分一个十分重要的内容,是研究图形的重要工具,它既和前面所学知识练习紧密,又为学习三角形全等的判定做准备,同时也为今后研究学习其他图形奠定坚实的基础。

二、教学目标分析:

1、知识技能

了解全等形及全等三角形的概念,能理解全等三角形的性质,并能熟练找出两个全等三角形的对应角、对应边。

2、数学思考

在图形的变换以及实际操作的过程中,发展学生的空间观念,培养学生的几何直观能力。

3、过程与方法

在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径

4、情感态度与价值观

让学生在观察、发现生活中的全等形和实际操作中获得全等形和全等三角形的体验;在探究和运用全等三角形性质的过程中感受数学活动的乐趣。

5、教学重点

⑴全等三角形以及相关概念。

⑵探索全等三角形的性质.

6、教学难点

寻找并掌握全等三角形对应角、对应边的方法。

三、教法分析

《课标》指出:学生是学习的主人,教师是学习的组织者、引导者、合作者,本节课以学生的活动为主线,以突出重点、突破难点、发展学生的数学素养为目的,采用以自学辅导式为主,讲授法、发现法、分组交流合作法、启发式教学法、多媒体辅助教学等多种方法相结合,注重数学与生活的联系,创设一系列有启发式、挑战性的为题激发学生学习的兴趣,引导学生用数学的眼光思考问题,发现规律,验证猜想,注重师生互动,生生互动,更着眼于学生的实际,充分提现学生的心理需要,从而发展他们的能力和自主学习的意识。

四、课前准备

教具:直尺、三角形纸板、同一底片的两张照片、多媒体课件。

学具:同一底片的照片两张、三角形纸板。

五、教学过程

1、创设情境、激发兴趣,引入新课

问题1:我们每个人手里的数学课本在外形和大小上有什么关系呢?你能发现下面的里两个图形有什么美妙关系吗?(多媒体展示)

通过学生观察、猜想初结论后,教师板书课题(本环节约3分钟)

2、动手实践、师生互动、启发思维

问题2:学生自己动手(同桌互相配合)。

⑴、 把同一底片洗出来的两张照片上的图形沿边框剪下来,把剪下来的 图片放在一起,你有什么发现?

⑵、 取一张纸,将自己的三角板按在纸上,画下图形,照图形裁下来,纸样与三角形的形状、大小有什么关系?

⑶、 问题3:通过刚才的体验,大家谈谈什么样的两个图形是全等形,全等三角形?如何表示两个全等三角形呢?

(本环节约6分钟)

3、动态演示,观察归纳,尝试体验(多媒体演示)

问题4:三角形在平移、翻折、旋转的过程中是否发生了改变?各图中的两个三角形全等吗?(多媒体演示,给学生更直观的启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有变,所以平移、翻折、旋转前后的图形全等,这是利用运动的方法寻找全等的一种策略)。

本环节约5分钟

4、自主学习,深入思考,获取概念。

通过学生自学课本P31内容,理解全等三角形对应元素的概念,培养学生的数学概念辨析能力,并能将三角形经过平移、翻折、旋转前后的对应元素找出来,同时能正确的表示两个全等三角形,强调要将对应的顶点写在对应的位置上。

5、启发猜想,合作实践,验证猜想。

问题5:全等三角形的对应角有什么关系呢?对应边呢?(通过对图形的观察、以及演示,启发学生大胆猜想,并通过动手实践、验证猜想的正确性。)

本环节约5分钟

6、学以致用,分层练习,巩固提高(多媒体展示)

通过对三个练习题的讨论分析、总结得出根据文职元素寻找对应角、对应边的方法,从而配用学生对较复杂图形的识别能力,进一步加深学生对全等三角形的认识。

本环节约10分钟

7、反馈评价,师生小结(多媒体展示)

问题6:本节课你学到了什么?你最大的收获是什么?你还有什么问题呢?

本环节有5分钟

8、回味知识,布置作业

未了加深学生对知识的理解,促进学生对课堂的反思,布置阅读本节课内容后,分层次完成P33页12.1 第1、2题。

六、板书设计

一、相关概念

二、三角形全等的性质

三、学生练习

七、教学反思:

本教学设计通过学生在做模型、画图、动手操作等活动中亲身体验,完成对三角形实验,加深对“三角形全等”、“对应”含义的理解,即培养学生的画图、识图能力,又提高了逻辑思维能力。在整个教学过程中,学生在自主探索和合作交流中,经历了观察、实验、归纳、类比、直觉、数据处理等思想过程,而这样的过程能够促进学生对数学的正真理解和把握,从而不仅获得了数学知识、技能,而且经历了数学活动的过程,体验了数学活动的方法。同时,情感、态度价值观都能得到很好的发展。

三角形与圆教案【篇2】

《三角形》教学设计

仓子中心小学 杨素英

教学内容:冀教版第八册数学第六单元多边形第一课时三角形 教学目的:

1.在观察、操作和交流等活动中,经历认识三角形的过程。 2、了解三角形具有稳定性的特征,认识三角形各部分的名称,会画出三角形的高。

3、感受三角形与现实生活的密切联系,体验三角形的稳定性 教学重难点:

1、了解三角形的稳定性的特征。

2、认识三角形各部分的名称,会画出三角形的高。 教学流程:

一、创设情境,导入新课。

1.让学生说说生活中见到的三角形。

课前调查:找一找,生活中有哪些物体的外形或表面是三角形?请收集和拍摄这类的图片。

二、认识三角形 认识三角形的稳定性 [活动1] 多媒体展示图片(自行车、梯子、魁北克的桥、电线杆等)

问题:

(1) 展示的图片中最基本的图形是什么?

(2) 为什么这些物体中最基本的构造都是三角形呢? 学生思考并回答问题。

(设计意图:从视觉上冲击学生大脑,感受数学图形的魅力,拓展学生的见识,从而激发学生的学习热情。)

[活动2] 探究三角形的稳定性和四边形的不稳定性 问题:

探究过程中你发现了什么?在独立探究的基础上,学生交流总结归纳,教师深入学生参与活动,指导,倾听。 本次活动教师应注意:1 学生是否按步骤,按要求完成探究。2 学生是否能积极参加小组活动。

(设计意图:亲手操作寻求数学的结论,有利于引起学生的学习兴趣。通过交流,让学生用自己的语言清楚地表达解决问题的过程,提高语言表达能力,让学生深入领会问题的本质,以及学会从现象找规律。)

[活动3] 制作模型 问题:

(1)你能举出生活中应用三角性稳定性的事例吗?

(2)你能说出你所做的模型中那些用到了三角形的稳定性。 学生通过竞赛的形式举出生活中应用三角形稳定性的事例。展示学生做好的模型,并解说。

教师针对学生的回答做出恰当的评价及补充,并对学生提供的生活素材给予肯定和鼓励。

本次活动教师应注意:

1 对学生激励教育,激发学生的思维。 2 培养学生留心身边事物的习惯。 3 学生生活经验的积累

4 学生应用数学语言描述问题的能力

5 学生在作品中所体现的情感态度和价值观,以及创新意识。 (设计意图:经历运用所学的知识,寻找实际背景的过程,使学生体会到数学是解决实际问题的和进行社会活动的重要工具,在现实生活中有着广泛的应用,加强动手操作的能力和创新能力。)

认识三角各部分名称 画出一个三角形

师:你认识三角形各部分的名称吗?指名说一说,指一指,教师板书(顶点、边、角)三角形有几个顶点、几条边、几个角?

结合教材,把你画的三角形的各部分名称,指一指,说一说,给同桌听听。

认识三角形的高 提出问题,可边讨论边画,使学生了解一个三角形有三条高。注意:画出位于钝角三角形外面的高不做要求。

师生在深入理解三角形高的概念后,共同画高。 学生在自己的三角形上练习画高,画后交流。 三.质疑问难

学生质疑问难,若无,教师:从三角形的一个顶点到它的对边最多能画几条高?为什么?

学生思考后回答。 四.巩固练习

1、填空:

(1)、三角形都有( )条边,( )个顶点,( )条高。 (2)、三角形具有( )性。

(3)、从三角形的一个顶点到它的对边作一条( ),顶点到垂足之间的线段叫做三角形的( ),这条边叫做三角形的( )。

2、出示第74页“练一练” (1)、第一题画出三角形的高:

指定三人板演,其他同学用铅笔画在书上。 完成后全班交流,并说一说自己是怎样画的。 (2)、视频呈现第二题:椅子腿活动了,怎么办? 学生思考、讨论后交流。

(3)、动手操作:用硬纸板做一个位置牌。 同学依据教材提示动手完成。

完成后比一比,谁的更稳定,并说说位置牌运用了什么原理。

五、课堂小结:

通过本节课的学习,你有哪些收获想和同学们说说呢? 学生畅谈收获。

三角形与圆教案【篇3】

教学目标

重难点

1、知识与技能

(1)理解掌握等腰三角形的性质.

(2)运用等腰三角行的性质进行证明和计算.

(3)发展合情推理,培养观察、分析、归纳问题的能力.

2、过程与方法

通过动手操作、观察、归纳,经历探索等腰三角形的性质的过程,体会获得数学结论的过程,逐渐形成自己对数学知识的理解和有效的学习策略.

3、情感态度与价值观

(1)通过引导学生动手操作,对图形的观察发现,激发学生的学习兴趣.

(2)在师生之间、生生之间的合作交流中进一步树立合作意识,培养合作能力,体验学习的。快乐.

(3)在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.

4、教学重点:等腰三角形的性质的发现和应用.

5、教学难点:等腰三角形性质的证明

教学过程

(交互式白板使用功能)

1、情境创设

问题:地震过后,同学用下面方法检测教室的房梁是否水平:在等腰直角三角板斜边中点绑一条线绳,线绳的另一端悬挂一个铅锤。把三角板斜边紧贴在横梁上。这就能检查横梁是否水平,你知道为什么吗?1。提出问题。

2、演示课件(1):介绍方法,设下悬念,引出课题。思考作答;

带着问题进入学习。激发学生思考,设置悬念,激活学习所必需的先前经验,唤起学生的学习需要,激发学生的学习兴趣。用课件演示检测方法:旋转“房梁和三角板”,保持铅垂线不动,判断房梁是否水平。演示可能的情况,给学生直观感受,激发学生的学习兴趣。

3、动手操作

(1)把一张长方形的纸片对折,并剪下阴影部分(教科书图12.3—1),再把它展开,得到一个什么图形?

(2)上述过程中得到的

问题(1):△ABC有什么特点?

问题(2):除了以上方法,还可以怎样剪出一个等腰三角形?发出指令引导学生操作;画图介绍腰、底、顶角、底角。

问题(3)让学生各抒己见的基础上介绍自己的想法

要关注学生是否积极参与到活动中来。

动手操作,观察。讨论、回答问题给学生提供参与活动的时间与空间,调动学生主观能动性,激发学习

三角形与圆教案【篇4】

探索三角形全等的条件(3)教学设计

河北肥乡第二中学 杨改英

一、教材说明

1、内容:北师大版七年级下册第五章第四节《探索三角形全等的条件》第3课时

2、本节内容的地位和作用

三角形是做简单、最基本的几何图形,在生活中随处可见。它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。本节课是在探索了三角形前三种方法的基础上进一步探索三角形全等的第四种方法。同时,探索三角形全等的条件的方法也将为八年级进一步探索三角形相似奠定基础。

二、学生状况分析

肥乡二中是一所普通初级中学,学校教学条件相对简陋,学生主要来自农村。学习基础较差,存在着“两多一少”的现状(即学困生多、贫困生多,尖子生少)。但经过一年的新课堂教学,学生已具备了一定的自学和合作探究的能力。因此,本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手,从而乐于探究。

三、课前设想

我校自2010年4月开始进行新课堂教学,一年来,通过不断的学习和实践,生本教育的基本理念已深植每一位二中师生的大脑,生本课堂已成为第二中学的一大特色。我于2011年8月开始接手现在的两个班,两个班的学生数学课堂的自主意识得到了明显加强,一种“先做后学”、通过做去感悟、“通过自己的思维学习数学”的学习氛围正逐渐形成。

《新教材》是遵照循序渐进、螺旋上升的原则进行设计的,在学习本节内容之前,学生已经探索了SSS,ASA,AAS这些内容的学习既重视测量的实践性,又注重探究过程的创新性,为学习本节内容打下了很好的基础。

基于以上的认识与思考,我将本节课设计为展示课,力求进行开放式教学,教学的重心主要想体现以下三个方面:

1、学生自主探索,自我建构数学知识。学生是课堂的真正主人。历经一年多的新课堂教学,学生们已经从自主学习中品尝到成功与创新的喜悦,由他们自己来做,他们本身具有较大的兴趣与热情,从而更便于落实本课时的主要目标:实

2、怎样探索:开放式的教学与生本课堂相应的要求是充分利用学生的资源,更多地尊重学生的个性,力求再现操作、讨论、创新的过程,并关注学生数学方法的运用。

3、探索后的反思:通过反思,回味过程,提炼探究、学习的方法,提升思维品质。

1 验操作、尝试创新。

四、教学目标

1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.

2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.

3.通过画图、思考、探索来激发学生学习的积极主动性,并使学生获得一些研究问题的经验和方法,发展实践能力与创新精神.

教学重点 难点

三角形全等的条件的探索.

学具:剪刀、纸片、直尺。画有相关图片的作业纸。 教学过程分析

整个教学过程中“以学生为主体”,让每个学生都亲身经历知识发生发展的过程。因此,我以四个活动来开展本节课的教学。 活动

一、创设情境

1、只给出一个条件或两个条件时,能保证所画出的三角形一定全等吗?.给出三个条件时,有几种可能出现的情况,分别是什么?

2、我们已探索出两个三角形全等的有方法有那些?

3、除了上述情况外,还可能有几种类型?

他们能否判定两个三角形全等呢?说说你的想法和做法。

设计意图:通过类比的情境提出疑问,引发认知冲突,激起学生思维的火花,为学生的探索提供了指导。 活动

二、实验探究

实验报告单:

1、各组自行规定所作三角形的两边长度和一角的度数,或画图、或摆放。。。进行实验操作

(1) 两边及这两边的夹角

条件:a= ∠1= b= 图形:

结论:两边和它们的夹角对应相等的两个三角形________________ (2) 两边及一边的对角

条件:a= b= ∠1=

图形或反例

结论:两边其中一边的对角对应相等的两个三角形________________

2、合作探究

(1)各小组根据所化图形,剪下后对比分析,看图形是否完全重合 (2)通过对比交流你发现了什么?从而你能得到什么结论?

3、全班反馈

以小组为单位进行展示

4、教师点评并板书

结论:两边和它们的夹角对应相等的两个三角形________________简写成_____________或________________________ 设计意图:学生亲身经历“提出问题---画图观察—直观猜想---比较验证---发现结论”的过程,调动了学生的积极性。在这个过程中,学生获得的不仅仅是认识“两边和它们的夹角对应相等的两个三角形全等”和“两边其中一边的对角对应相等的两个三角形不一定全等”的结论,而是通过这样的过程,积累如何去发现问题、如何去研究问题的经验。另一方面,这样的过程给学生创新意识的孕育留下非常丰富的“营养”。

活动

三、反馈精练,自我矫正

1、独立思考,自己尝试写出:图中两个三角形全等的理由

设计意图:设计这道题的目的是为了培养学生的几何直观。几何直观常常是靠逻辑支撑的。它不仅仅是看到了什么?而是通过看到的图形思考到了什么?想象到了什么?这是数学非常重要而有价值的思维方式。

2、如图,AB=AD,你认为添上什么条件就可以判定△ABC和△ADC全等?为什么?

在探索完以上问题的基础上,对第二题做如下的变式与引申: 变式与引申:

AOBCD若将“你认为添上什么条件就可以判定△ABD和△ACD全等?”改为“∠BAD=∠CAD”你能提出什么问题?

这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的是发展学生数学思维的教学”这一思想。 活动

四、主动反思,促进学习:

(1) 本节课在知识方面你有什么收获? (2)本节课你积累了哪些数学活动经验? (3)本节课你遇到问题了吗?你是怎么解决的?

( )看教材 ( )问同学 ( )问老师 ( )其他_______

设计意图:通过反思,回味过程,提炼探究、学习的方法,提升思维品质。

4 课后反思:

著名数学家和教育家波利亚曾指出:“数学有两个侧面,一方面它是欧几里得式的严谨科学,从这个方面看,数学像是一门系统的演绎科学;但另一方面,创造过程中的数学,看起来却像一门实验性的归纳科学”,旧的教材过于注重前一方面而忽视后一方面,这有悖于数学的本质。新教材则两者并举,在七年级与八年级主要侧重后者,符合学生的心理特点与认知规律。在本节课里,我们欣喜地看到,实验不再是物理、化学的专利,数学课堂内同样有非常丰富的实验,非常生本的内涵,这就是:探索!

本课的设计理念:通过类比的情境提出疑问,引发认知冲突,学生根据已有的知识经验自行探究,在实验中解决问题,并通过解决问题获得探究问题的方法和尝试创新的体验,从而增长学生积极的学习情感,培养学生的创新意识、合作精神和实践能力。实践证明,这种设计还是比较成功的,具体来说,主要有以下的体会:

1、“小立课程,大作功夫”既促成了教学方式的改变,也改变了学生的学习方式。对学生而言,我认为课前的预习、探究、准备,同课内的小组合作、交流、讨论一样重要,课内与课外的有机结合,是生本课堂真正取得成功的保证。本课例在课前让学生带着预习,在课前先行独立尝试解决,可查资料、可做模型等等,再将钻研的成果和遇到的困难带回课堂;在课堂内,画图、交流、讨论,再在全班进行展示,使学生亲身经历“提出问题---画图观察—直观猜想 ---比较验证---发现结论(解决问题)”的过程,其目的就是让学生们真正体会到“大大的感受,小小的认识”,数学原来是一件很有意思的事情。

2、开放式的问题与开放式的教法给了学生较大的思考、活动空间,在学习本节内容之前,学生已经探索了SSS,ASA,AAS这些内容的学习为学习本节内容打下了很好的基础。每个学生可以根据自己的能力、兴趣、时间取得学习上的进步。本课例中,课前可能有的学生探索不到SSA的反例,但只要他进行了独立的思考,在课堂内主动参与,经过积极学生的带动,就会有不少的收获,“先做后学”、“先会后学”本身就酝酿着感悟、酝酿着创新。

3、依托学生资源进行教学,效果较好。从本节课的过程来看,学生的智慧是宽广的,动力是强大的。借力打力,我感觉到了轻松和快乐。

4、注意改进的方面

探究的过程应在多给点时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。使小组合作学习更具实效性。

三角形内角和教学设计

《三角形内角和》教学设计

三角形的内角教学设计

《三角形的内角和》教学设计

相似三角形教学设计

三角形与圆教案【篇5】

一、教学目标:

1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。3、结合实例休会反证的含义。

二、教学重点:

了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理。

三、教学方法:观察法。

四、教学过程:

复习:1、 什么是等腰三角形?2、 你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。3、试用折纸的办法回忆等腰三角形有哪些性质?新课讲解:在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。同学们和我一起来回忆上学期学过的公理w 本套教材选用如下命题作为公理 :w 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; w 2.两条平行线被第三条直线所截,同位角相等; w 3.两边夹角对应相等的两个三角形全等; (SAS)w 4.两角及其夹边对应相等的两个三角形全等; (ASA)w 5.三边对应相等的两个三角形全等; (SSS)w 6.全等三角形的对应边相等,对应角相等. 由公理5、3、4、6可容易证明下面的推论:推论 两角及其中一角的对边对应相等的'两个三角形全等。(AAS)证明过程:已知:∠A=∠D,∠B=∠E,BC=EF求证:△ABC≌△DEF证明:∵∠A=∠D,∠B=∠E(已知)∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)∠C=∠F(等量代换)BC=EF(已知)△ABC≌△DEF(ASA)这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。

五、议一议:

(1)还记得我们探索过的等腰三角形的性质吗?(2)你能利用已有的公理和定理证明这些结论吗?等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。定理:等腰三角形的两个底角相等。这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,AB=AC。求证:∠B=∠C我们刚才利用折叠的方法说明了这两个底角相等。实际上,折痕将等腰三角形分成了两个全等三角形。能否通过作一条线段,得到两个全等的三角形,从而证明这两个底角相等呢?证明:取BC的中点D,连接AD。∵AB=AC,BD=CD,AD=AD,∴△ABC△≌△ACD (SSS)∴∠B=∠C (全等三角形的对应边角相等)让同学们通过探索、合作交流找出其他的证明方法。想一想:在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论,这一结合通常简述为“三线合一”。推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。随堂练习:做教科书第4页第1,2题。课堂小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的含义。五、课外作业:教科书第5页第1,2题。

六、板述设计:

七、课后记:

三角形与圆教案【篇6】

教学目标

重难点

1、知识与技能

(1)理解掌握等腰三角形的性质.

(2)运用等腰三角行的性质进行证明和计算.

(3)发展合情推理,培养观察、分析、归纳问题的能力.

2、过程与方法

通过动手操作、观察、归纳,经历探索等腰三角形的性质的过程,体会获得数学结论的过程,逐渐形成自己对数学知识的理解和有效的学习策略.

3、情感态度与价值观

(1)通过引导学生动手操作,对图形的观察发现,激发学生的学习兴趣.

(2)在师生之间、生生之间的合作交流中进一步树立合作意识,培养合作能力,体验学习的快乐.

(3)在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.

4、教学重点:等腰三角形的`性质的发现和应用.

5、教学难点:等腰三角形性质的证明

教学过程

(交互式白板使用功能)

1、情境创设

问题:地震过后,同学用下面方法检测教室的房梁是否水平:在等腰直角三角板斜边中点绑一条线绳,线绳的另一端悬挂一个铅锤。把三角板斜边紧贴在横梁上。这就能检查横梁是否水平,你知道为什么吗?1。提出问题。

2、演示课件(1):介绍方法,设下悬念,引出课题。思考作答;

带着问题进入学习。激发学生思考,设置悬念,激活学习所必需的先前经验,唤起学生的学习需要,激发学生的学习兴趣。用课件演示检测方法:旋转“房梁和三角板”,保持铅垂线不动,判断房梁是否水平。演示可能的情况,给学生直观感受,激发学生的学习兴趣。

3、动手操作

(1)把一张长方形的纸片对折,并剪下阴影部分(教科书图12.3—1),再把它展开,得到一个什么图形?

(2)上述过程中得到的

问题(1):△ABC有什么特点?

问题(2):除了以上方法,还可以怎样剪出一个等腰三角形?发出指令引导学生操作;画图介绍腰、底、顶角、底角。

问题(3)让学生各抒己见的基础上介绍自己的想法

要关注学生是否积极参与到活动中来。

动手操作,观察。讨论、回答问题给学生提供参与活动的时间与空间,调动学生主观能动性,激发学习

三角形与圆教案【篇7】

一、教材分析

本节课是苏科版八年级上册第三章第6节第1课时的内容。在此之前,学生已学习了中心对称图形及平行四边形的性质,在此基础上来研究三角形的中位线。此外本节内容在今后的几何推理、证明中将时有出现,有些问题我们用构造中位线的方法可以轻松解决。因此,学好本节课的内容至关重要。

二、学情分析

八年级的学生好奇心强,对数学的求知欲旺盛,学生已掌握了中心对称图形及性质,也具备一定的操作、归纳、推理和论证能力。基于以上分析,我制定了如下的学习目标:

1、知识与技能:理解并掌握三角形中位线的概念及性质,会利用性质定理解决有关问题。

2、过程与方法:在探索三角形中位线性质的过程,体会转化的思想方法,进一步发展学生操作、观察、归纳、推理能力,培养学生分析问题和解决问题的能力。

3、情感态度价值观:通过真实的、贴近生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣。体会学数学的快乐,培养运用数学的思想。

三角形中位线定理是三角形的重要性质定理,是解决几何问题的重要依据。因此,我将本课的教学重点定为“三角形中位线定理及应用”

由于本节定理证明的关键是恰当地引辅助线,构造平行四边形,而学生对辅助线的引法、规律还不得要领。因此,我将本节课的教学难点确定为“三角形中位线定理的证明”

三、教法与学法分析教法:

依据本节课的内容及学生认知结构的特点,我选用了合作探究式的教学方法,在多媒体的辅助下,让学生在活动、探究中获取新知,开发学生

的创造性思维,达到教学目标。

学法:

学生经过自己亲身的实践活动,形成自己对结论的感知。并掌握探究问题的方法,真正地学会学习,达到“授之以鱼,不如授之以渔”的教育目的。

四、教学过程:

(一)、创设情境,引入新课.创设生活情景

A、B两棵树被一池塘隔开,如何测量A、B之间距离呢?

巧用多媒体展示出实物图片,吸引学生的注意,激发学习兴趣,提出问题,告诉学生,通过本节课对三角形中位线的学习,我们就能解决这个问题了,从而引出新课。

(二)、合作交流,探究新知:①给出三角形中位线的概念(板书):连结三角形两边中点的线段叫三角形的中位线。请学生自己在座位上做出三角形的中位线。

并提出疑问:什么是三角形的中线,它与三角形的中位线有什么不同?通过画图,让学生熟悉图形特征,加强对三角形中位线的感知,并通过与已学的三角形中线概念作比较,加强对三角形中位线概念的理解加深学生对三角形的中线和中位线认识,从而培养学生对比学习的能力。

让学生观察前面画出的三角形的中位线,并回答问题:一个三角形共有几条中位线?三角形中位线与三角形各边又有怎样的关系?

引导学生猜想,鼓励学生仔细观察,说出他们自己的猜想。使学生在学习过程中学会猜想。

紧接着,我安排了以下两个活动。

②活动(板书)

我将班级学生分为两种组,每组同座位之间合作,每组分别进行一下两个活动。

A活动一(测量)

1、任意画一个三角形并画出它的一条中位线。

2、量出中位线和第三边的长度。

3、量出所画图形中一组同位角的度数。DE4、你发现了什么?

B

CA活动二(裁剪拼接)

1、剪一个三角形,记作△ABC。DFE。

2、找到边AB和AC的中点DE连结DE。

3、沿DE把△ABC剪成两部分。

4、把分割开的两部分重新拼接。BH。

5、新拼接的四边形是什么特殊的四边形?

教师引导学生通过动手测量、拼剪、推理检验自己猜想的合理性。

经过以上的探究和讨论,学生得出三角形的中位线平行于第三边,并等于它的一半的`结论。

紧接着我将继续提问:“这个结论是否具有普遍性,还得从理论上加以证明。”

为了突破难点,借助于我将借助于多媒体和几何画板直观展示,进行完整地证明展示,让学生有直观的认识几何图形,证明方法是将问题转化到平行四边形中去解决。这体现了数学中的转化归纳的重要思想。

思路:过点C作AB的平行线交DE的延长线于F,连结AF、DC,去证,四边形ADCF是平行四边形,从而得出AD//FC且AD=FC。

实验先行,证明完善后提出三角形中位线定理,让学生学会科学地研究问题和解决问题,以此培养学生严谨的逻辑思维,三角形的中位的性质定理(板书):三角形的中位线平行于第三边,并且等于它的一半。

(三)、课堂练习,巩固提高

回归到一开始的问题情境,让学生根据今天的所学,想出办法来解决之前的问题。以此让学生感受到数学来源于实际,并反过来作用于实际,解决实际问题。

针对本课重点,我会设置一组有层次的习题,强化学生对重点知识的熟练掌握。

我将利用多媒体,先出示一些较为简单的题目,让学生进行口算抢答。这样既可以调动学习气氛,又可以巩固所学知识。接着再给出以下的练习(板书)

①已知三角形三边分别为6、8、10,连结各边中点所成三角形的周长是多少?

②梯形ABCD中AD∥BC,对角线AC、BD相交于点O,A’、B’、C’、D’分别是AO、BO、CO、DO中点,证明:则四边形A’B’C’D’是梯形。

若梯形ABCD周长为10,求四边形A’B’C’D’的周长。学生在做完的同时学生引发思考:这两个三角形及梯形周长之间的关系。

(四)、课堂小结

让学生自己总结并谈谈收获,培养归纳能力,围绕教学目标,教师补充强调,通过小结,使学生进一步明确学习目标,使知识成为体系。

(五)、布置作业(板书)

利用多媒体,放出作业三道必做题,一道选做题。

作业分层次,让不同程度的学生都能在原有认知水平的基础上得到提高。

以上就是我说课的全部内容,谢谢。

三角形的性质教案6篇


老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“三角形的性质教案”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

三角形的性质教案 篇1

作为教师怎么处理教材为好?怎么引入新课?怎么展开课堂教学?等等一系列问题,人人都在不断的思考中追求完美,努力求得效果最好。

我教相似三角形性质的第一课时,主要是导出相似三角形的性质定理1,并进行初步运用,让学生经历相似三角形性质探索的过程,提高数学思考、分析和探究活动能力,体会相似三角形中的变量与不变量,体会其中蕴涵的数学思想。

本节课本我从复习相似三角形的判定方法入手,由判定与性质的互逆得到:相似三角形对应角相等,对应边成比例。再由全等三角形中对应的特殊线段的比为1,引出思考:相似三角形对应的特殊线段的比与相似比有什么关系呢?

学生带着疑问,进行分组测量探索,汇报交流。老师引导学生共同证明:一组相似三角形中对应角平分线的比等于相似比,再类比到对应高,对应中线的比也等于相似比。接着对四种“比”间的相互关系加以练习,突出“比”的“同一性”。本节课主要利用相似三角形中的变量与不变量,揭示一组相似三角形中对应边的长度、对应特殊线段的长度都发生变化,但其对应角不变,对应特殊线段的比也不变。以“不变应多变”,在“运动变化”中体会“守恒”!使学生把握数学的本质用“守恒来刻画变化”。最后,“温故而知新”(以前利用平行线的性质可以得出成比例线段;现在又多了一种证明成比例线段的方法),点出“相似三角形的`性质定理1”的作用。为了给下节课作好铺垫,“一组相似三角形对应周长的比、面积比与相似比有关吗?如果有,是怎样的关系呢?”从而把学生的学习兴趣延伸到课下,为下节教学活动的开展埋下伏笔!

这节课基本上做到了

㈠目标定位准确,较好地完成教学任务。目标是教学的导向轮、风向标。这节课目标明确,围绕教学任务逐层深入,提起学生思维兴趣,师生配合默契。

㈡教学过程流畅,教学设计环环紧扣,把学生思维一步步推向高潮,有效提高学生的思维品质,达到课前预设的“思维步步高”的效果。教学过程的实施阶段,从类比“全等三角形的性质”入手,进行横向类比,纵向类比,让学生明确新知识的来源。在操作、猜想、证明、运用各阶段,提高了学生的参与性,让人感觉如沐春风,一气呵成,自然流畅。

㈢细节很完美。在定理证明、强调注意点、关键点时,言简意赅,表达到位,课堂及时反馈。

同时也看到自己的不足,本节课在定理的证明阶段,本来是计划教师证明一个,剩下两个由学生说思路,课后完成证明过程,起到复习巩固的目的。但是由于自己放不开手,怕学生不会,在学生说时一再仔细强调导致最后时间不充分。其实回头想想:应该更大胆一些,放开一些,让学生有更大的思维空间;达到“授之以渔”的目的

今天有关《相似三角形的性质》教案设计讲解的相关内容就介绍到这里了。

三角形的性质教案 篇2

一、教材分析

1、教材分析之地位和作用

《等腰三角形的性质》是“华东师大版七年级数学(下)”第九章第三节的内容。本课安排在《轴对称的认识》后,明确了《等腰三角形的性质》与《轴对称的认识》的联系,起到知识的链接与开拓的作用。本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教材分析之教学目标

①知识与技能目标:

掌握等腰三角形的有关概念和相关性质。熟练运用等腰三角形的性质解决等腰三角形内角以及边的计算问题。

②过程与方法目标:

通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力。

③情感与态度目标:

通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,突出数学就在我们身边。在操作活动中,培养学生之间的合作精神,在独立思考的同时能够认同他人。

3、教材分析之教学重难点

重点:探索等腰三角形“等边对等角”和“三线合一”的性质。

(这两个性质对于平面几何中的计算,以及今后的证明尤为重要,故确定为重点)

难点:等腰三角形中关于底和腰,底角和顶角的计算问题。

(由于等腰三角形底和腰,底角和顶角性质特点很容易混淆,而且它们在用法和讨论上很有考究,只能练习实践中获取经验,故确定为难点。)

4、教材分析之教法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初一学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

5、教材分析之学法

最有价值的知识是关于方法的知识,首先对于我们教师应该创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域。本节课我将采用学生小组合作,实验操作,观察发现,师生互动,学生互动的学习方式。学生通过小组合作学会“主动探究----主动总结---主动提高”。突出学生是学习的主体,他们在感受知识的过程中,提高他们“探究---发现---联想---概括”的能力!

二、教学过程:

1、创设情景

①复习提问:向同学们出示几张精美的建筑物图片;

问题:轴对称图形的概念?这些图片中有轴对称图形吗?

②引入新课:再次通过精美的建筑物图片,找出里面的等腰三角形。

问题:等腰三角形是轴对称图形吗?

③相关概念:定义:两条边相等的三角形叫做等腰三角形。

边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.

角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.

2、探究问题

①动动手:让同学们做出一张等腰三角形的半透明的纸片,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?请你尽可能多的写出结论。

②得出结论:可让学生有充分的时间观察、思考、交流、可能得到的结论:

(1)等腰三角形是轴对称图形

(2)∠B=∠C

(3)BD=CD,AD为底边上的中线

(4)∠ADB=∠ADC=90°,AD为底边上的高线

(5)∠BAD=∠CAD,AD为顶角平分线

3、重要性质

性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。

(简称“三线合一”)

如图,在△ABC中,AB=AC,点D在BC上

(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC

(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

(为了方便记忆可以说成“知一求二!”)

三、例题部分:

例一:1、在等腰△ABC中,AB=3,AC=4,则△ABC的周长=________

2、在等腰△ABC中,AB=3,AC=7,则△ABC的周长=________

此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,仔细比较以上两个例题,并强调在没有明确腰和底边之前,应该分两种情况讨论。而且在讨论后还应该思考一个问题,就是这样的三条边能否够成三角形。

例二:1、在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

2、在等腰△ABC中,∠A=100°,则∠B=______,∠C=______

此例题的重点是运用等腰三角形“等边对等角”这一性质,突出顶角和底角的关系,强调等腰三角形中顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°。仔细比较以上两个例题,得出结论一个经验:在等腰三角形中,已知一个角就可以求出另外两个角。

例三:在等腰△ABC中,∠A=40°,则∠B=______

此题是一道陷阱题,可以先让学生进行分析,和例二的2小题比较,估计会出一些状况,大多数学生会按照两种情况讨论,得到两个答案。然后跟学生画出图形进行分析,分两种情况讨论,但是答案是“三个”。强调需要自己画图解题时,一定要三思而后行!

例四:在△ABC中,AB=AC,点D是BC的中点,∠B=40°,求∠BAD的度数?

此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

解:在△ABC中,

∵AB=AC,∠B=40°,∴∠B=∠C=40°

又∵∠A+∠B+∠C=180°,∴∠A=100°

在△ABC中,AB=AC,点D是BC的中点,

∴AD是底边上的中线根据等腰三角形“三线合一”知:

AD是∠BAC的平分线,即∠BAD=∠CAD=50°

四、练习部分:

练功房Ⅰ(基础知识)填空题

1、在△ABC中,若AB=AC,若顶角为80°,则底角的外角为_________.

2、在△ABC中,若AB=AC,∠B=∠A,则∠C=____________.

3、在△ABC中,若AB=AC,∠B的余角为25°,则∠A=____________.

4、已知:如图,在△ABC中,D是AB边上的一点,AD=DC,∠B=35°,

∠ACD=43°,则∠BCD=____________

开展小组竞赛,比一比那个小组算的又快又准!

练功房Ⅱ(实践运用)实践题

如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的建筑工人师傅对这个建筑物做出了两个判断:

①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。

②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

请同学们想想,工人师傅的说法对吗?请说明理由。

练功房Ⅲ(思维发散)选做题

已知:如图,在△ABC中,AB=AC,E在AC上,D在BA的延长线上,AD=AE,连结DE。请问:DE⊥BC成立吗?

五.小结部分

提问:今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?

1、等腰三角形是轴对称图形,等腰三角形的定义,以及相关概念。

2、等腰三角形的两底角相等。(简写成“等边对等角”)

3、等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。

(简称“三线合一”)

4、注意等腰三角形关于底和腰的计算题,特别是需要的讨论的时候,最后还要进行

检验,看看这样的三条边是否可以构成三角形。

5、注意等腰三角形的顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°

6、重视需要自己画图解题时一定要“三思而后行”!

六.作业部分

1、教科书P86习题9.31,2,3,4题

2、请问:在等腰三角形中,等腰三角形两腰上的中线(高线)是否相等?

为什么?

3、等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角

形呢?带着问题预习教科书P83—84。

七、板书设计

八、教学说明

本节课的设计力求体现使学生“学会学习,为终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,让学生在活动中获得知识、形成技能和能力;在教学中注意教师角色的转变,教师是组织者、参与者、合作者,教师的责任是为学生创造一种宽松、和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。在教法上采用启发探索式教学模式,整堂课以问题为思维主线,引导学生通过观察,自主探索,使学生观察、主动思考,充分体验探索的快乐和成功的乐趣,并充分利用计算机辅助教学,以加强感性认识并培养学生用运动联系的观点观察现象、解决问题。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生亲自观察、实验、发现、探索、运用的过程。使学生在获得知识的同时提高兴趣、增强信心、提高能力。本课就教学过程作以下几点说明:

1、知识结构安排:

本课以“问题情境--------获取新知--------应用与拓展”的模式展开,符合初一学生的认知规律。

2、教学反馈与评价:

本课从学生回答问题,练习情况等方面反馈学生对知识的理解、运用,教师根据反馈信息适时点拨;同时从新课标评价理念出发,抓住学生语言、思想、动手能力方面的亮点给予表扬,不足的方面给予帮助、指导和恰如其分的鼓励,形成发展性评价,提高学生学数学,用数学的信心。

3、对于本节的几点思考

①本节的学习任务比较重要,有等腰三角形性质的推导、性质的应用,所

以本人针对学生的特点,在课例的掌握好的情况下,让学生自己去发现、去联想,

能充分地发挥学生主观能动性。

②通过学生自己动手实验得到等腰三角形性质的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

③在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,师生互动,生生互动,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展。

三角形的性质教案 篇3

一、说教材

本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。

二、说教学目标

知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。理解等腰三角形和等边三角形性质定理之间的联系。过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。加强学生数学应用意识。

三、教学重点与难点

重点:等腰三角形的性质定理。难点:等腰三角形三线合一性质的运用四、说教法与学法课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。五、说教学过程:学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:

教学过程教学活动设计意图

一、回顾与思考电脑展示人字型屋顶的图像,提问:

1、屋顶设计成了何种几何图形?2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形)3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。

二、观察与表达1、观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。教师用多媒体课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。 2、得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理:定理1:等腰三角形两底角相等。

定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。

通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。

学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的心理机制不再是仅仅是同化,而是顺应。

三、了解与探究3、探索定理一、(A组口答,B组独立解答)A组:1、等腰直角三角形的两个锐角各等于几度?2、若等腰三角形顶角为40度,则它的顶角为几度?3、若等腰三角形底角为40度,则它的底角为几度?B组:1、若等腰三角形一个内角为40度,则它的其余各角为几度?2、若等腰三角形一个内角为120度,则它的其余各角为几度?3、一个内角为60度,则它的其余各角为几度?(A组口答,B组独立解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。

二、根据性质2填空:

(1)∵AB=AC,AD⊥BC,∴,。

(2)∵AB=AC,BD=CD,∴,。 A

B D C (3)∵AB=AC,∠1=∠2,∴,。为了对定理进行进一步探索,设计了以下练习:练习一的整体设计遵循低起点、小分阶、大容量、高密度的原则,其目的是要学生掌握应用等腰三角形性质定理1与三角形内角和定理求角的度数的规律,但教师不是直接将规律灌输给学生,而是让学生在练习过程中自己发现规律,使学生获得从问题中探索共同属性的思维能力。从认知结构看,利用三线合一性质来证明角相等、线段相等或垂直与学生原有认知结构联系较少,需要建构新的认知结构,是一种“顺应”过程,对学生来说有一定困难,因此设计了下面一组填空题,帮助学生进行建构活动。同时,提醒学生注意性质应用应以等腰三角形为前提,为例2的教学作了辅垫,起到分散难点的作用。四、应用与提高应用举例:如图,某房屋的顶角

∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B, ∠C, ∠CAD的度数。

例1:求证等腰三角形两底角平分线相等A

E D

B C

由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤:①根据命题画出相应的图形,并标出字母②通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。 ③探索证法在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。从已知出发:a:由AB=AC联想到什么

b:BD、CE是△ABC的角平分线联想到什么

c:由a、b联想到什么

d:由a、b、c联想到什么

e:由d联想到什么

从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。

“证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。

分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的学生来说,有一定的难度。所以,由教师提出一系列问题,引导学生进行联想。

本题是通过三角形全等来证明两条角平分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,组织学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。四、应用与提高例2:已知:如图,△ A

O

B D C O’ ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC与D.

求证:BD=CD,AD⊥BC

思考:(1)本题的结论有何特

殊之处?——证明两个结论

(2)你准备如何得出这两个结论?——分别认证或同时证明

(3)哪一种简捷?利用什

么性质?

在此基础上请学生按照例1的思考方法自己寻找解题思路,可以在小组间进行讨论。

变式拓展:

(1)如图,在例2中若点O是△ABC外一点,AO连线交BC于D,如何求证?

(2)若点O在BC上呢?

经过例1的学习,学生已有一定推理基础,因此应放手让学生自己去发现证题思路,从而学到新的研究数学学习的方法,并逐渐内化为自己的经验。同时也体现了自主探索、合作交流的学习方式。

在这里有意通过变式让学生经历图形变换过程,并使他们感受到在一定条件下,图形变换不会改变图形的实质,最后将点O移到BC上,使学生体验了从一般到特殊的过程。想一想:记一块等腰直角三角尺的底边中点为,再从顶点悬挂一个铅锤,把这块三角尺放在房梁上,如果悬线通过点M就能确定房梁是水平的,为什么?通过想一想进一步突出重点与难点,也有利于引导学生运用数学的思维方式去观察、分析现实生活,增强应用数学的意识。五、心得与体会

通过今天这堂课的研究,我明确了,我的收获与感受有,我还有疑惑之处是。请学生按这一模式进行小结,培养学生学习-总结-学习-反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。六、作业(1)作业本上相应的作业。(2)已知:D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE(1)进一步巩固和提高所学知识(2)及时反馈、查漏补缺(3)体现层次性与开放性六、说评价

三角形的性质教案 篇4

一、教学目标:

1.使学生掌握等腰三角形的判定定理及其推论;

2.掌握等腰三角形判定定理的运用;

3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4.通过自主学习的发展体验获取数学知识的感受;

5.通过知识的纵横迁移感受数学的辩证特征。

二、教学重点:

等腰三角形的判定定理

三、教学难点

性质与判定的区别

四、教学流程

1、新课背景知识复习

(1)请同学们说出互逆命题和互逆定理的概念

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(简称“等角对等边”).

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。

已知:如图,△ABC中,∠B=∠C.

求证:AB=AC.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出A B=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。

(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。

(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。2.推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。

要让学生自己推证这两条推论。

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。

证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

3.应用举例

例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。

分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠

1、∠2的关系。

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

求证:AB=AC.

证明:(略)由学生板演即可。

补充例题:(投影展示)

1.已知:如图,AB=AD,∠B=∠D.

求证:CB=CD.

分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

证明:连结BD,在

中,

(已知)

(等边对等角)

(已知)

(等角对等边)

小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。

2.已知,在 中,

的平分线与

的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。

证明: DE//BC(已知)

BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:

(1)等腰三角形判定定理及推论。

(2)等腰三角形和等边三角形的证法。

七。练习

教材 P.75

三角形的性质教案 篇5

各位领导、老师:

大家好!

我说课的课题是《等腰三角形》,源于义务教育课程标准实验教科书七年级数学第七章,下面我将来汇报我这节课的教学设计。

一、说教材分析

1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

2、教学目标:要求学生掌握等腰三角形的性质和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力

3、教学重点、难点:等腰三角形的性质定理是本课的重点等腰三角形“三线合一”性质的运用是本课的难点

4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多媒体教学。

二、说教学方法:

“教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

三、说学生学法。

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

四、说教学程序

1、等腰三角形的有关概念,轴对称图形的有关概念。

提问:等腰三角形是不是轴对称图形?什么是它的对称轴?

2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

性质定理1:等腰三角形的两个底角相等

在△ ABC中,∵AB=AC()∴∠B= ∠C()

性质定理:等腰三角形的顶角平分线、底边上的中线和高线互相重合

① ∵ AB=AC ∠1= ∠ 2()∴BD=DC AD⊥BC()

② ∵ AB=AC BD=DC()∴ ∠1= ∠ 2 AD⊥BC()

③ ∵ AB=AC AD⊥BC于D()∴ BD=DC ∠1= ∠ 2()

4、对新知识的感知性应用

指导学生表述证明过程。

思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

课堂练习:

p。227练习1,练习2(指出这是等边三角形的性质定理)。

5、小结:

(1)等腰三角形的性质定理。

(2)等边三角形的性质

(3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

(4)联想方法要经常运用,对解题大有裨益。

五、布置作业:

见作业本

六、对于本节的几点思考

1、本节的学习任务比较重要,有定理的证明、定理的计算和证题应用,所以本人针对学生的特点,在上节课例的掌握好的情况下,让学生自己去发现、去联想,能充分地发挥学生主观能动性。练习2其目的有二:(一)使学生在复习本节知识。(二)为下一节内容铺垫。

2、通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

3、在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

9.12等腰三角形的性质定理

板书设计

课题:

等腰三角形的性质定理

例1、书写格式

例2、书写过程

性质定理1

性质定理2

学生板演

三角形的性质教案 篇6

《等腰三角形的性质》教学设计

河北肥乡第二中学

牛海美

教学目标:

知识技能:

1、理解掌握等腰三角形的性质

2、运用等腰三角形的性质进行证明和计算 数学思考:

1、观察等腰三角形的对称性,发展形象思维

2、通过实践、观察、证明等 腰三角形的性质,发展学生合情推理能力和演绎推理能力

情感态度:引导学生对图形的观察、发现、激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心 重点

:等腰三角形的性质及应用 难点

:等腰三角形的性质说明

情景描述

1、创设情境,引出课题

教师活动:现在农村经济条件好了,大部分家庭盖有楼房。大家知道农村的楼房都有房梁,并且这些房梁都保持水平状态,你知道木匠师傅采用什么方法来确定房梁是否保持水平呢?

学生活动:学生思考。学生1:用水平尺。学生2:用铅垂线,使房梁与铅垂线互相垂直。学生3:木匠师傅眼睛估计。??

教师活动:教师肯定以上学生回答,同时指出学生3凭估计来判断,总是令人不放心,花上几万元,造出的房子是一高一低的。

现在有这样一种方法,不知道这根房梁能否保持水平? 如图,房梁上放一把三角尺(等腰直角三角形),从顶点A挂一条铅垂线,使线经过三角尺斜边的中点O。

AO 我们学习了本节课的内容,就能解决这类问题。然后引出课题: 等腰三角形。

意图:通过问题情境,让学生体验生活中的经历,调动学生学习的主动性、积极性,激发学生的兴趣和求知欲望。

2、实验操作,探究规律

教师发给每位学生一张方格纸、一张白纸。活动一:在方格纸上画出等腰三角形

方格纸上学生画出各种等腰三角形(锐角等腰三角形、钝角等腰三角形、等腰直角三角形)。

意图:由于学生对等腰三角形已有初步的认识,通过画各种等腰三角形,进一步加深理解等腰三角形的概念,同时为下面的“折”的实验作好准备。

活动二:等腰三角形的概念

由方格纸所画等腰三角形,说出等腰三角形及相的腰、底边、顶角、底角的概念。

并给出等边三角形的概念:三条边相等的三角形是等边三角形。同时在概念的基础上理解等腰三角形与等边三角形的关系。活动三:一张白纸,如何折出一个等腰三角形

AAD白纸片沿虚线对折BCDB

剪下△ABD思考:这样折出的△ABC为什么就是等腰三角形呢?

意图:让学生积极地参与到活动中来,都能成为数学活动的一分子。活动四:等腰三角形除了有两条边相等外,还有其他什么结论?(学生小组讨论)

由于等腰三角形是轴对称图形,把△ABC对折,使两腰AB、AC重叠,则折痕AD就是对称轴,因此可以得出一系列等腰三角形的性质。

结论:等腰三角形的两个底角相等(简称“等边对等角”)

“三线合一”——等腰三角形底边上的中线、顶角的平分线、底边上的高线互相重合。

意图:(1)留给学生充足的时间和空间进行实践、探究和交流。(2)设计活动情境,让学生通过画一画、折一折,合作讨论和探索交流,发现不同的等腰三角形有着类似的特征——两底角相等、“三线合一”。由学生探讨、归纳得出规律,充分发挥学生学习的积极性,体现了教学过程中学生的主体地位。

3、应用新知,尝试成功 尝试练习一:

(1)如果等腰三角形的一个底角为50°,则其余两个角为 和 ;

(2)如果等腰三角形的顶角为80°,则它的一个底角为 ;(3)如果等腰三角形的一个外角为70°,则它的三个内角为 ;

(4)如果等腰三角形的一个外角为100°,则它的三个内角为 ;

(5)等边三角形的一个内角为,为什么?

意图:通过本练习,巩固理角等腰三角形“等边对等角”的性质和等边三角形的性质;特别通过练习(4)设计,得出不同的结果,培养学生思维的开放性与灵活性。

尝试练习二:

如图,房梁上放一把三角尺(等腰直角三角形),从顶点A挂一条铅垂线,使线经过三角尺斜边的中点O。这根房梁是否保持水平呢?为什么?

意图:此例与引入课题时提出的问题模型呼应,体现了数学来源于实践,反过来又作用于实践的辩证唯物主义的观点。培养学生学数学,用数学的意识。

4、课堂小结,掌握方法

(1)小结本堂课的收获。(学生畅所欲言)

(2)掌握方法:等腰三角形的性质提供了说明两角相等的常用方法;“三线合一”是说明两条线段相等、两个相等及两条直线互相垂直的依据。

5、布置作业,课外拓展 教材156页第5、6题

设计说明

1、问题是数学的心脏。问题的解决允许运用直观的方法,还应当鼓励学生不停留在直观的认识上,要进行合情的推理、精确计算,科学地判断。本教学设计把“问题”贯穿于教学的始终,运用“提出问题——探究问题——解决问题”的方式,让学生发现规律和运用规律,使学生在长知识的同时,也长智慧、长能力,进一步培养学生良好的思维品质。

2、让数学思想方法渗透于课堂教学之中。本教学设计引导学生通过折一折的手段来运用于“转化”思想,将等腰三角形转化为轴对称变换。同时渗透数学与实践相结合的辩证唯物主义思想,培养学生的应用意识。

3、由于学生对等腰三角形的知识已有初步的认识,本教学设计的难点突破应在等腰三角形的“三线合一”及其应用上,创设有利于学生学习的情境(生活中的事例),通过“折”这一直观方法引导学生进行积极主动地探索、交流去发现,从而习得知识和经验,提高能力和兴趣。

三角形课件(范例十一篇)


老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“三角形课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

三角形课件(篇1)

了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

(l)延长DE到F,使 ,连结CF,由 可得AD FC.

(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.

(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.

上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .

例  求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

三角形课件(篇2)

一、教学目标:

1.使学生掌握等腰三角形的判定定理及其推论;

2.掌握等腰三角形判定定理的运用;

3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4.通过自主学习的发展体验获取数学知识的感受;

5.通过知识的纵横迁移感受数学的辩证特征.

二、教学重点:

等腰三角形的判定定理

三、教学难点

性质与判定的区别

四、教学流程

1、新课背景知识复习

(1)请同学们说出互逆命题和互逆定理的概念

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

已知:如图,△ABC中,∠B=∠C.

求证:AB=AC.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.

(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.

要让学生自己推证这两条推论.

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

3.应用举例

例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠

1、∠2的关系.

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

求证:AB=AC.

证明:(略)由学生板演即可.

补充例题:(投影展示)

1.已知:如图,AB=AD,∠B=∠D.

求证:CB=CD.

分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

证明:连结BD,在

中,

(已知)

(等边对等角)

(已知)

(等角对等边)

小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.

2.已知,在 中,

的平分线与

的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.

证明: DE//BC(已知)

BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:

(1)等腰三角形判定定理及推论.

(2)等腰三角形和等边三角形的证法.

七.练习

教材 P.75中

1、

2、3.

八.作业

教材 P.83 中 1.1)、2)、3);

2、

3、

4、5.

五、板书设计

三角形课件(篇3)

重点与难点分析:

本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

教法建议:

本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的`判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的学习方法,获取知识。

由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?  (2)怎样判定一个三角形是等边三角形?

一.教学目标:

1.使学生掌握等腰三角形的判定定理及其推论;

2.掌握等腰三角形判定定理的运用;

3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4.通过自主学习的发展体验获取数学知识的感受;

5.通过知识的纵横迁移感受数学的辩证特征.

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.

(简称“等角对等边”).

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

三角形课件(篇4)

《等边三角形》教学设计

教学目标:

1、了解等边三角形是特殊的等腰三角形,等边三角形是轴对称图形。

2、理解等边三角形的性质和判定方法。

3、经历应用等边三角形性质的过程,体会等边三角形与现实生活的联系。 教学重难点:

重点:等边三角形的性质和判定方法。 难点:等边三角形性质的应用。 教学过程:

一、复习提问:什么是等腰三角形?等腰三角形有哪些性质?

二、情境引入:出示用硬纸板制作的等边三角形,并演示说明在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。

分组观察与讨论:

1、把等腰三角形的性质用于等边三角形,你能得到什么结论?

2、你又能得到哪些等边三角表的判定方法?

如图:

三、解决问题

学生合作交流,归纳结论如下:

性质:等边三角形是轴对称图形,它有三条对称轴;等边三角形每一个角都相等,都等于60°。

判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。

四、初步应用

1、△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

(1)在边AB、AC上分别截取AD=AE。

(2)作∠ADE=60°,D、E分别在边AB、AC上。 (3)过边AB上D点作DE∥BC,交边AC于E点。

2、已知:如下图,P、Q是△ABC的边BC上的两点,并且BP=PQ=AP=AQ。求∠BAC的大小。

分组讨论并研究。

展示:生板演过程,师生共同找错更正。 解:∵AP=AQ=PQ,

∴△APQ是等边三角形。 ∴∠PAQ=∠APQ=∠AQP=60°。 又∵AP=PB,

∴∠PAB=∠PBA。 又∵∠APQ=∠PBA+∠PAB, ∴∠PAB=30°。 同理∠QAC=30°,

∴∠BAC=∠PAB+∠PAQ+∠QAC=30°+60°+30°=120°。

五、综合应用(出示教科书第54页例4)

学生自行解决,教师辅导并指正学生解题过程中的失误。

六、课堂小结

1、等边三角形性质判定是什么?

2、等边三角形与等腰三角形有哪些区别和联系?

七、布置作业

八、小试身手

1、三边( )的三角形是等边三角形。

2、等边三角形的三个内角都( ),每个内角都等于( )

3、三个角都( )的三有形是等边三角形。

4、有一个角等于60°的( )是等边三角形。

5、如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是( )。

6、等边三角形的边长是2,则它的面积是( )

7、已知:如图等边△ABC,D是AC的中点,且CE=CD,DF⊥BE。求证:BF=EF。

8、已知如图△ABC和△DCE都为等边三角形,AE交CD于点N,BD交AC于点M。

1)试找出图中相等的线段、相等的角。 2)连结MN,图中还有等边三角形吗?

《等边三角形》教学设计

甘南县巨宝中心学校

赵子洋

三角形课件(篇5)

【教学目标】

教学重点:“三角形任意两边之和大于第三边”的关系的探究和归纳。教学难点:判断怎样的三条线段能构成三角形?

教学关键:让学生合作交流,通过实验和观察PPT课件,从中体验三角形的三边关

系及构成三角形的条件,并从中探索出解决这种问题的.实质。

教学准备:教材、PPT演示文稿、小棒

教法:情境导入法、设疑诱导法、操作发现法、观察、归纳,分析归纳教学法;学法:实验操作法、合作探究法、观察法、分析法、归纳法,对比法。教学课时:一课时

教学过程:

一、导入新课,板书课题

上课后,放幻灯片1引入新课。

二、展示学习目标

放幻灯片2-3

放幻灯片4导学案反馈。

老师:讲出现的问题及强调得到的结论。放幻灯片5、6知识应用。

三、合作交流(8分钟)

放幻灯片7合作交流的要求。老师巡视观察学生完成学案的情况。

四、高效展示(8分钟)

放幻灯片8高效展示要求。

五、点评(约15分钟)

展示完成后,放幻灯片9点评要求。2分钟以后按照分工开始点评。点评【活动一】完成后放幻灯片10,老师点拨。学生继续点评。

学生点评完【跟踪练习1】后,放幻灯片11变形练习。完成后学生继续点评。

三角形课件(篇6)

等边三角形教学设计

一、教材分析

“等边三角形”是初中数学教学的重要内容,共有两课时。其中第一课时的内容是等边三角形的概念、性质、判定和相关知识的应用。该节内容是在等腰三角形的基础上学习。

二、学生分析

1、学生是八年级的学生。

2、学生已经建立了对几何的学习兴趣和基本的几何学习方法。

3、学生已经学习了三角形、等腰三角形和轴对称的内容。

4、学生应用所学知识解决实际问题的能力需要进一步加强。

5、学生使用规范的几何语言书写几何解题过程的能力需要进一步加强。

三、教学目标

1、知识与技能

1)了解等边三角形是特殊的等腰三角形,等边 三角形是轴对称图形; 2) 会阐述、推证等边三角形的性质和判定方法。

2、过程与方法

经历“猜想—验证—总结归纳—应用”的探究过程,培养探究数学问题、解决问题的能力。

3、情感、态度与价值观

1)体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲。

2)在学习中获得成功的体验,感受数学学习的乐趣, 建立自信心。

四、重点难点

1、重点:等边三角形的性质和判定。

2、难点:等边三角形性质的应用。

五、教学方法

本节课从“引导学生学习的方式、启发学生思考的方法、规范学生表达与书写的思路”的层面讲授新内容,帮助学生“猜想-验证-总结归纳-应用”新知识,从而达到学习新课的目的。

六、教学用具

本节课使用多媒体教学,采用PPT与几何画板相结合的方式。

七、教学过程

(一)导入

用PPT展示一组生活中的图片,让学生观察并发现其中蕴含的几何图形——等边三角形,理解数学源于生活的道理。 从知识与技能、过程与方法、情感态度与价值观等三个方面阐述本节课的学习目标。

(二)新知探究

1、探究定义

定义:三边相等的三角形是等边三角形。 探究过程:

师:如何定义等边三角形? 生:从“等边”两个字考虑,与等腰三角形的定义类比,和同学讨论,试着给出等边三角形的定义。认真观察等边三角形发生变化时三条边的变与不变,在自己感性认识的基础上达到理性认识的目的,并确定等边三角形的定义。

等边三角形是特殊的等腰三角形。

师:引导学生从“三角形按边分类”的结果考虑等边三角形与等腰三角形的关系,并用几何画板演示由一般三角形到等腰三角形再到等边三角形的变化过程。

生:先回顾三角形按边分类的结果,然后猜想等边三角形与等腰三角形的关系,然后仔细观察几何画板上由一般三角形到等腰三角形再到等边三角形的变化过程中三条边在数量上的变化,验证自己的猜想,确定结果。 第二定义:腰和底相等的等腰三角形是等边三角形。

2、探究性质

1)从边和角的角度探究性质

性质1:等边三角形的三条边都相等。

性质2:等边三角形的三个内角都相等,并且每个角都等于60°。

探究过程: 师:引导学生分别从边和角的角度出发,探索等边三角形的性质。 生:先利用刻度尺和量角器度量自制的等边三角形的边和角,根据自己的度量数据猜想等边三角形有什么性质,然后仔细观察几何画板上随着等边三角形的位置和大小的变化,它的边长和角的度数各有什么变化,进而验证自己的结论,最后用已学的知识进行严格的几何证明。 2)从重要线段的角度探究性质

性质3:等边三角形三边都存在“三线合一”,即等边三角形每个内角的平分线、该角对边的中线、高相互重合。 探究过程:

师:引导学生发现等腰三角形中“三线合一”的性质在等边三角形中依然存在,并且更加深刻。

生:在自制的等边三角形中做任何一个角的平分线,与对边有一个交点。然后用刻度尺度量被交点分成的两部分的长度,用量角器度量中线与边相交所形成的两个角的度数。根据自己度量所得到的数据猜想该中线又是等边三角形的什么重要线段。在猜想的基础上观察几何画板上演示的动画,根据几何画板给出的数据进一步验证自己的猜想。最后用所学的知识证明自己的猜想。

3)从对称的角度探究性质

性质4:等边三角形是轴对称图形,有三条对称轴,每条边上的中线(每条边上的高、每个角的平分线)所在的直线是它的对称轴。 探究过程:

师:引导学生从等腰三角形的对称性出发,考虑等边三角形是否也具有对称性,如果有对称性,等边三角形有几条对称轴,如何找出来。

生:回顾轴对称图形的定义和等腰三角形的对称性,并根据这些知识将等腰三角形的对称性延伸到等边三角形中,然后思考等边三角形的对称性与等腰三角形的对称性有什么不同。观察几何画板上演示等边三角形对称的动画,根据看到的结果找出对称轴并加以证明。

3、探究判定

1)在“任意三角形”上探究判定 判定1:三条边都相等的三角形是等边三角形。

探究过程:

师:引导学生从边的角度出发思考,当一个三角形三边满足什么条件时这个三角形是等边三角形。

生:根据定义得出当三角形的三角边相等时,这个三角形是等边三角形。 判定2:三个角都相等的三角形是等边三角形。

探究过程:

师:引导学生从角的角度出发思考,当一个三角形的三个角满足什么条件时这个三角形是等边三角形。

生:根据等腰三角形判定方法的得出过程,思考一个三角形的三个角满足什么条件时,该三角形是等边三角形。观察几何画板中一个斜三角形变化成等边三角形时,随着三个角的度数由任意的度数变化成60°时,三边的边长有什么变化,最后满足了什么条件。依此归纳判定方法,并进行证明。在所得的判定方法的基础上,根据老师的提示得出该判定方法的一个推论: 两个角相等并且都等于60°的三角形是等边三角形。 2)在“等腰三角形”上探究判定

判定3:腰和底相等的等腰三角形是等边三角形。 探究过程:

师:引导学生从边的角度出发思考,当等腰三角形的边满足什么条件时这个等腰三角形是等边三角形。

生:根据第二定义得出当等腰三角形的底边和腰边相等时,这个等腰三角形是等边三角形。

判定4:有一个角是60°的等腰三角形是等边三角形。 探究过程: 师:引导学生从角的角度出发思考,当等腰三角形的角满足什么条件时这个等腰三角形是等边三角形。

生:考虑等腰三角形在角之间已经满足的关系,在这个基础上考虑,这些角进一步满足什么条件时该三角形是等边三角形。在老师的帮助下得出有一个角等于60°的等腰三角形是等边三角形的结论,然后分别以60°的角为顶角和底角两种情况进行证明。

(三)应用小结

1、新知应用

1)△ABC是等边三角形,以下三种分法分别得到的△ADE是等边三角形吗,为什么?

①过边AB上一点D作DE∥BC,交边AC于E点.②作∠ADE=60°,D、E分别在边AB、AC上.③在边AB、AC上分别截取AD=)等边三角形三条中线相交于一点。画出图形,找出图中所有的全等三角形,并证明他们全等。

2、课堂小结

让学生从定义、性质和判定三个方面总结本节课所学的内容,并与等腰三角形做比较。

三角形课件(篇7)

教学内容:

人教版《义务教育课程标准实验教科书数学》四年级下册第80、81页的内容。

教学目标:

1.让学生在观察、操作和交流等活动中,经历认识三角形的过程。

2.认识三角形各部分名称,会画三角形的高,了解三角形具有稳定性特征。

3.体验三角形的稳定性在生活中的广泛应用,感受几何图形与现实生活的密切联系。

教学重点:

理解三角形的特性;在三角形内画高。

教学难点:

理解三角形高和底的含义,会在三角形内画高。

教学准备:

多媒体课件、长方形、正方形、三角形学具、小棒、钉子板、直尺、三角板。

教学过程:

一、联系实际,引出课题感知三角形

1.谈话导入。

2.学生汇报交流自己收集到的有关三角形信息。

3.教师展示三角形在生活中应用的图片。

谈话引出课题:“你想学习有关三角形的什么知识呢?(板书课题:三角形的认识。)

二、动手操作,探索新知

1.动手制作三角形,概括三角形定义。

(1)学生利用老师提供的材料动手操作,选择自己喜欢的方式做一个三角形。(制作材料:小棒、钉子板、直尺、三角板。)

(2)学生展示交流制作的三角形,并说说自己是怎么做的。

(3)观察思考:这些三角形有什么相同地方?

(4)认识三角形组成,初步概括三角形定义。

(5)教师出示有关图形,引起学生质疑,通过学生思考讨论,正确概括出三角形定义。

(6)判断练习。

2.理解三角形的底和高。

(1)情境创设。

“美丽的南宁邕江上有一座白沙大桥,从侧面看大桥的框架就是一个三角形,工程师想测量大桥从桥顶到桥面的距离,你认为怎样去测量?”

(2)课件出示白沙大桥实物图和平面图。

(3)学生在平面图上试画出测量方法。

(4)学生展示并汇报自己的测量方法。

(5)学生阅读课本自学三角形底和高的有关内容。

(6)师生共同学习三角形高的画法。

(7)学生练习画高。

3.认识三角形的稳定性。

(1)联系实际生活,为学生初步感受三角形的稳定性做准备。

(2)动手操作学具,体验三角形的稳定性。

(3)利用三角形的稳定性,解决实际生活问题。

(4)学生联系实际,找出三角形稳定性在生活中的应用。

(5)欣赏三角形在生活中的应用。

三、总结本课内容

1.学生说说本节课收获。

2.教师总结。

三角形课件(篇8)

2)掌握三角形中位线定理的证明和有关应用。

1)经历“探索―发现―猜想―证明”的过程,进一步发展推理论证能力。

2)能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳、类比、转化等数学思想方法。

3)能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力。

通过学生动手操作、观察、实验、推理、猜想、论证等自主探索与合作交流的过程,激发学生的学习兴趣,让学生真正体验知识的发生和发展过程,培养学生的创新意识。

教学重点:三角形中位线的概念与三角形中位线定理的证明。

对于三角形中位线定理的引入采用发现法,在教师的引导下,学生通过探索、猜测等自主探究的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示。

教具:多媒体、投影仪、三角形纸片、剪刀、常用画图工具。

问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书)

(这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。)

学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形.

如图中,将△ade绕e点沿顺(逆)时针方向旋转180°可得平行四边形adfe。

学生的验证方法较多,其中较为典型的方法如下:

生1:沿de、df、ef将画在纸上的△abc剪开,看四个三角形能否重合。

生2:分别测量四个三角形的三边长度,判断是否可利用“sss”来判定三角形全等。

生3:分别测量四个三角形对应的边及角,判断是否可用“sas、asa或aas”判定全等。

引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢?

问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?

学生的结果如下:de∥bc,df∥ac,ef∥ab,ae=ec,bf=fc,bd=ad,

△ade≌△dbf≌△efc≌△def,de=bc,df=ac,ef=ab……

学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。

生2:将ade绕e点沿顺(逆)时针方向旋转180°,使得点a与点c重合,

即ade≌cfe,

生3:延长de到f使de=ef,连接af、cf、cd,可得adcf

(笔者事先只局限于思考利用平行四边形及三角形相似的性质解决问题,没想到学生的发言如此精彩,为整个课堂添加了不少亮色。)

师:很好,好极了!这种证法在数学中叫做同一法,连老师也没想到。太棒了,大家要向生5学习,用变化的、动态的、创新的观点来看问题,努力去寻找更好更简捷的方法。

容易得出如下事实:都是三角形内部与边的中点有关的`线段.但中位线平行于第三边,且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分.(学生交流、探索、思考、验证)

问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗?(学生争先恐后回答,课堂气氛活跃)

做一做:任意一个四边形,将其四边的中点依次连接起来所得新四边形的形状有什么特征?

∵e、f分别是ab、bc的中点,

∴ef是abc的中位线,

∴ef∥ac且ef=ac,

∴ efgh,

其它解法由学生口述完成。

问题:如果将上例中的“任意四边形”改为“平行四边形、矩形、菱形、正方形”,结论又会怎么样呢?(学生作为作业完成。)

学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业)

三角形课件(篇9)

一、教学内容

本单元教学三角形的相关知识,这是在学生直观认识过三角形的基础上教学的,也是以后学习三角形面积计算的基础。内容分五段安排:第一段通过例1、例2第22~25页形成三角形的概念教学三角形的基本特征,三角形的高和底;第二段通过第26~27页教学三角形的分类,认识锐角三角形、直角三角形和钝角三角形;第三段第28~29页通过例4教学三角形的内角和;第四段通过第30~32页例5、例6认识等腰三角形和等边三角形及其特征。第五段第33~34页单元练习。全面整理知识,突出三角形的分类以及关于边和角的性质。

教材中的思考题有较大的思维容量,能促进学生进一步理解并应用三角形的知识。编写的三篇“你知道吗”介绍三角形的稳定性、制作雪花图案的方法和埃及的金字塔,能激发学生学习三角形的兴趣,丰富对三角形的认识。

二、教材编写特点和教学建议

1、让学生在“做”图形的活动中感受三角形的形状特点和结构特征。

空间与图形的概念教学,一般要让学生经历感知——表象——形成概念的过程,教材注意按学生的认识规律安排教学过程。学生在第一学段直观认识了三角形,本单元继续教学三角形的知识,教材经常采用“活动——体验”的教学策略,即组织学生“做”图形,让他们在做的过程中体会图形的特点,主动构建对图形的比较深入的认识。

(1) “做”三角形,感受边、角和顶点。第22页例题教学三角形的边、角和顶点,分三个层次编写:首先呈现一幅宜昌长江大桥的照片,引起学生对三角形的回忆,并联系生活里的三角形进行交流,感知三角形;;然后安排学生想办法做每人至少“做”一个三角形并在小组里交流进一步强化表象;;最后讲解三角形的边、角和顶点。

学生“做”三角形并不难,做的方法必定是多样的。用小棒摆、在钉子板上围、在方格纸上画三角形在第一学段都曾经做过,现在学生还可能剪、折、拼……“做”三角形的目的不在结果,要注重学生在做的过程中是怎样想的、怎样做的,把精力放在建立边、角和顶点等概念上。所以,交流的时候要分析各种做法的共同点,如用三根小棒、三段细绳、三条线段……才能“做”成三角形,三角形有三条边;小棒、细绳、线段……必须两两相连,三角形有三个顶点和三个角。

(2)围三角形,体会两条边的长度和必须大于第三边。《标准》要求:

通过观察、操作,了解三角形的两边之和大于第三边。这是新课程里增加的教学内容,第23页例题教学这个知识。教材通过学生的具体体验来使学生知道这一点。首先,为学生提供四根长度分别是10cm、6cm、5cm、4cm的小棒,向学生提出问题:任意选三根小棒,能围成一个三角形吗?然后让学生在操作中发现有时能围成三角形,有时围不成三角形,并直觉感受这是为什么。最后通过比较每次选用的三根小棒的长度,找到原因、理解规律。

例题的编写特点是不把知识结论呈现给学生,而让学生在“做”图形活动中发现现象、研究原因、体会规律。因此,教学这道例题时要注意三点:第一,课前作好充分的物质准备,力求让每一名学生都有长10cm、6cm、5cm、4cm的四根小棒。第二,课上要让学生自由地选择小棒,充分地围,经历围成和围不成三角形的过程,并给学生提供思考“为什么”的时间。第三,要引导学生从直觉感受上升到理性认识。在用小棒围的时候,他们的直觉感受是如果两根较短的小棒的另一端能够碰到一起,就围成了三角形;如果不能碰到一起,就围不成三角形。这种直觉感受是必要的,但不是最终的。要在直觉感受的基础上,进一步对三根小棒的长度进行分析研究,这才是“数学化”的过程,才能在获得数学结论的同时又学习用数学的方法进行思考。

(3)对图形量、剪、折,亲身感知并认识体会等腰三角形、等边三角形的特点。第30页的两道例题分别教学等腰三角形和等边三角形,认识等腰三角形和等边三角形,首先要感知各自的特点,教材注意突出教学的这一过程。都分三个层次教学:

第一层次是通过学生量三角形边的长度,理解“等腰”“等边”的含义;第二层次是仿照例题示范的方法剪出一个等腰三角形和一个等边三角形,继续体会它们的边的长度关系;第三层次是给出等腰三角形各部分的名称,发现等腰三角形、等边三角形的角的大小关系。其中第二层次的教学比较难。两道例题里“茄子”和“白菜”提的问题不同,前一道例题的问题是“用下面的方法剪成的三角形是等腰三角形吗”,因为学生容易看懂图文结合表述的剪法,通过这个问题引导学生关注到两条腰是同时剪的,长度肯定相同。后一道例题的问题是“你会像下面这样剪出一个等边三角形吗”,因为学生不容易看懂教材展示的方法,教材希望通过这个问题引导学生先研究剪法、弄懂剪法。关键在找到那个红色的点,先对折又斜折是为了让三条边的长度都相同。

2、从已有经验中提炼数学概念。

在具体的感性材料里提取本质特征,形成理性认识是概念教学的渠道之一。丰富的感性经验与清晰地认识特征是建立正确概念的前提。

(1)循序渐进,帮助学生逐步理解三角形的高。三角形的底和高是三角形里的重要概念,为了让学生自己感受底和高,教材用人字梁为素材,利用学生在生活中对人字梁“高度”的认识进行测量,感受三角形人字梁的高,以此为基础引入三角形高的概念。第24页例题、“试一试”以及“想想做做”里的部分习题把三角形高的教学分成四步进行:

第一步让学生量出人字梁图形的高度是多少厘米。这里讲的“高”度还是生活中的高,是从上往下竖直的距离。虽然与数学里的高含义不同,但也有相似的地方——垂直的、最短的。设计这一步教学的目的是唤醒已有的生活经验,营造认识三角形高的基础。第二步结合图形讲述三角形的高。学生对教材里的一段话,既要联系人字梁的高来体会,又要超越人字梁这个具体实物比较概括地理解。联系人字梁的高能降低理解概念内涵的难度,超越人字梁具体实物才能形成真正的数学概念。教材表述的是三角形高的描述式定义,描述了高的位置,描述了画高的方法。教学时可以把教师边画边讲与学生边描边体会相结合,重在对概念的理解,不要死记硬背。第三步通过“试一试”扩大概念的外延。数学里平面图形的高的本质属性是“垂直”而不是“竖直”,竖直是“从上往下”,垂直是“相交成直角”。例题教学三角形的高先从竖直的位置讲起,“试一试”举出各种摆放位置的、不同类型的三角形以及不同边上的高,要求学生测量三角形的高和底的长度,使学生在操作中进一步体会高的概念,认识只要是从一个顶点到对边的垂直线段就是三角形的高,感受底和高的相应关系,进一步理解三角形底和高的意义。这样让学生准确地理解概念的内涵,全面地把握概念的外延,深刻地体会高与底之间的对应联系。第四步通过“想想做做”P25第1题的画高练习,进一步感受描述式定义,巩固对高的理解。其中最右边的是直角三角形,它的两条直角边互为高和底,学生在画高的时候能够体会到这一点。另外让学生阅读资料了解三角形的稳定性三角形的稳定性是其重要特性,教材安排了“你知道吗”,让学生通过阅读并做实验体会这一特性。这里注意一点本册教材知识要求学生画请指定底边的高,这些高都是在三角形里面的,三角形外的高不做要求。还有就是在作图的时候一定要注意一些作图规范。

(2)联系对直角、锐角、钝角的认识,引导学生探索三角形的分类。三角形的分类教学,必须使学生在充分的感知中体会三个内角大小有几种情况,理解三角形分类的方法及分类的合理性。第26页例题让学生在给角分类的活动中体会三角形的分类。首先呈现了6个不同形状的三角形,要求学生仔细观察各个三角形的每个角是什么角,并把观察结果填在预设的表格里。然后引导学生分析研究表格里的数据信息,发现有些三角形的三个角都是锐角,有些三角形里有一个直角和两个锐角,有些三角形里有一个钝角和两个锐角,从而引发可以给三角形按角分类,获得直角三角形、锐角三角形和钝角三角形的认识,掌握不同三角形的特点。准确而精炼的语言总结了什么样的三角形是锐角三角形、直角三角形和钝角三角形。最后还用集合图表达三角形的分类以及各类三角形与三角形整体的关系。

教学三角形的分类要特别注意三点:第一,必须组织学生积极参与分类活动,在独立思考的基础上合作交流,逐渐形成共识。第二,要扣紧概念的关键,让学生理解为什么锐角三角形强调三个角都是锐角,直角三角形和钝角三角形只讲一个直角或一个钝角,从而掌握判断时的思考要点。如第33页第2题里左边和中间的三角形能确定它们分别是钝角三角形和直角三角形,因为在图中分别看到了1个钝角和1个直角。右边的三角形只看到1个锐角,不能确定它是什么三角形。第三,要用好第27页“想想做做”第3~7题,让学生在图形的变换中加强对各类三角形的认识。认识了三角形的分类,还要通过具体的观察、判断和操作、画图等活动进一步巩固对不同三角形的认识。教材在这方面有比较多的安排。例如P27的“想想做做”第3~7题,分别让学生判断各是什么三角形,巩固对各类三角形的认识;围出、折出、剪出和画出指定的三角形,使各类三角形的表象再现。特别是第7题是一道开放题,可以让学生通过画一画、说一说,互相交流,加深对各类三角形的认识,掌握各类三角形的`特征。

3、从特殊到一般,通过实验得出三角形的内角和是180°。

让学生“了解三角形的内角和是180°”是《标准》规定的教学内容和教学要求,这里讲的“了解”不是接受和知道,而是发现并简单应用。教材安排三角形内角和的学习,主要让学生由特殊到一般,通过自己的探索活动认识与掌握三角形内角和是180°。

(1)第28页教学三角形的内角和,采用了“质疑——解疑”的教学策略,实验是策略的核心,是解疑的手段。

首先计算同一块三角尺上的3个角的度数和。由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°。并由此产生疑问:其他三角形的内角和也是180°吗?由此产生学习的愿望。接着安排学生通过实验解疑,用实验的方法验证、确认三角形内角和的结论。把一个三角形的3个角拼在一起,从拼成的是平角得出3个角的度数和是180°。教材要求小组合作,剪出不同类型的三角形进行实验,通过实验获得直接认识,验证自己的猜想,从而确认三角形的三个内角的和是180°,得出结论。因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。学生会完全信服三角形的内角和是180°这一普遍规律。最后并通过“试一试”,应用三角形内角和求未知角的度数,巩固三角形内角和的结论。

(2)为了让学生深刻地理解三角形内角和的规律。在认识三角形内角和以后,教材通过应用促进学生掌握这一内容,并应用解决问题。如P29.“想想做做”1~3题,应用三角形内角和求未知角的度数,在三角形的变换中判断内角和各是多少,巩固所获得的结论;。“想想做做”巧妙地设计了两道辨析题一道是第2题:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?另一道是第3题:正方形内角和360°,对折出的三角形内角和180°,再对折成的小三角形内角和又是多少呢?解答这两道题时,学生的思考会在180°和360°以及180°和90°不同答案上碰撞,碰撞的结果是进一步认识三角形的内角和是一个普遍规律,不因三角形的大小而改变,不因拼、折等图形变换而改变。另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是解释为什么直角三角形里只有1个直角,钝角三角形里只有1个钝角。第6题,通过思考一个三角形中最多有几个钝角或直角,并应用三角形内角和的知识合理解释,加深认识三角形内角和及钝角三角形、直角三角形的特征。

4、注意三角形知识的内在联系

三角形的分类是按角的大小为标准的,而等腰三角形和等边三角形是以边的长度特点来定义的。不同特征的三角形中又存在内在联系,认识三角形应该让学生了解这些联系。在P31~32第2~4题里,就让学生了解等腰三角形可以同时是直角三角形、锐角三角形或钝角三角形,体会等腰三角形都是轴对称图形。P33第2题通过判断,进一步认识钝角三角形、直角三角形分别只有一个钝角或直角,而每类三角形都有锐角,即只看一个锐角无法判断是什么三角形。第3题使学生体会两个一样的直角三角形,可以拼成三角形,也可以拼成四边形,而且可以有不同的拼法。第5题需要综合本单元学习的三角形知识,依据三角形边长之间的关系,选择小棒按要求摆出等腰三角形和等边三角形。第6题,要应用对等边三角形特征的认识进行解释,第7题,让学生观察三角形判断各是什么三角形,感受可以从不同角度判定一个三角形是什么三角形,体会知识之间的内在联系。

5.注意培养学生的空间观念

观察、举例、做图形感受三角形

在P22例题里,引导学生先观察情景中的三角形,举出日常生活里接触过的三角形,加强三角形的表象,同时还要求学生做一个三角形,P23第1题也要求学生画三角形,把表象转化成具体的三角形再现出来,形成三角形的空间形象。

学生在看、围、折、剪等活动中获得各类三角形特征的直接体验

在空间与图形的学习中,引导学生实际操作,具体感受所学图形,积累对其形状、大小、位置关系的的感性认识,可以发展空间观念。教材在P27第2题通过观察、判断加强不同三角形形状的直接感受,第3~6题让学生围、折、剪图形,依据头脑里的表象再现出相应的图形,可以培养空间观念。第7题,需要依据三角形的特点进行分析、判断,知道可以分成两个怎样的三角形,才能有不同的分法。这些都有利于空间观念的发展。

让学生折一折、剪一剪、画一画掌握等腰三角形和等边三角形的直观形象

同样地,在认识等腰三角形和等边三角形时,也注重学生的动手实践,促进空间观念的发展。如P30、P31例中折一折、剪一剪,得出相应的图形,进一步体验各自的特点;P31“想想做做”第2~4题,也是动手剪一剪、画一画图形,并运用对图形特点的认识辨析相关图形,也是加强空间观念的手段与方法。

三角形课件(篇10)

教学目标

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

3、结合实例体会反证法的含义。

教学重点

等腰三角形的关性质定理和判定定理。

教学难点

能够用综合法证明等腰三角形的关性质定理和判定定理。

教学方法

教学后记

教学内容及过程

教师活动学生活动

一、等腰三角形性质的探究

1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。

2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。

3.分别演示:

∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。

4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。

5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。

6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。

7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。

8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。

9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。

10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。

11.小结这两个课时的内容。

作业:

同步练习

板书设计:

1.积极思考,回忆以前所学知识,联想新问题。

2.认真观看例1图形中线段的关系,积极思考,认真听讲。

3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的.启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。

4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。

5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。

6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。

7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。

8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。

9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。

10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。

11.体会老师的讲解,并根据小结记忆掌握知识。

(学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)

三角形课件(篇11)

等腰三角形判定

教学目标

(一)教学知识点

探索等腰三角形的判定定理.

(二)能力训练要求

通过探索等腰三角形的判定定理 及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

(三)情感与价值观要求

通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的.理解.从而培养学生利用已有知识解决实际问题的能力.

教学重点

等腰三角形的判定定理的探索和应用。

教学难点

等腰三角形的判定与性质的区别。

教具准备

作图工具和多媒体课件。

教学方法

引以学生为主体的讨论探索法;

教学过程

Ⅰ.提出问题,创设情境

1.等腰三角形性质是什么?

性质1 等腰三角形的两底角相等.(等边对等角)

性质2等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.

(等腰三角形三线合一)

2、提问:性质1的逆命题是什么?

如果一个三角形有两个角相等, 那么这个三角形是等腰三角形。 这个命题正确吗?下面我们来探究: Ⅱ.导入新课

大胆猜想:

如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

[例1]已知:在△ABC中,∠B=∠C(如图).

求证:AB=AC. 教师可引导学生分析:

BA12DC联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. (学生板演证明过程)

证明:作∠BAC的平分线AD. 在△BAD和△CAD中

??1??2,? ??B??C,

?AD?AD,? ∴△BAD≌△CAD(AAS).

∴AB=AC.

提问:你还有不同的证明方法吗?(由学生口述证明过程)

等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).

符号语言:在△ABC中 ∵ ∠B=∠C ∴ AB=AC (等角对等边)

4、等腰三角形的性质与判定有区别吗? 性质是:等边 等角 判定是:等角 等边

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.

(演示课件)

[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

这个题是文字叙述的证明题,?我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).

求证:AB=AC.

同学们先思考,再分析.(由学生完成)

要证明AB=AC,可先证明∠B=∠C.

接下来,可以找∠B、∠C与∠

1、∠2的关系.

(演示课件,括号内部分由学生来填)

证明:∵AD∥BC,

∴∠1=∠B(两直线平行,同位角相等),

∠2=∠C(两直线平行,内错角相等).

又∵∠1=∠2,

∴∠B=∠C,

∴AB=AC(等角对等边).

看大屏幕,同学们试着完成这个题.

(课件演示)

已知:如图,AD∥BC,BD平分∠ABC.

求证:AB=AD.

(投影仪演示学生证明过程)

证明:∵AD∥BC,

∴∠ADB=∠DBC(两直线平行,内错角相等).

又∵BD平分∠ABC,

∴∠ABD=∠DBC,

∴∠ABD=∠ADB,

∴AB=AD(等角对等边).

下面来看另一个例题.

(演示课件)

? 例

2、已知等腰三角形的底边等于a,底边上的高等于b,你能用尺规作图的方法作出

EA12DBCADBCM A

这个等腰三角形吗? a

b

作法:(1)作线段BC,使BC=a;

(2)作BC的垂直平分线MN,交BC于D; (3)在MN上截取DA=h,得A点;

(4)连结AB、AC,则△ABC即为所求等腰三角形。

3、思考:在△ABC中,已知,BO平分∠ABC,CO平分∠ACB.过点O作直线EF//BC交AB于E,交AC于F.(1)请问图中有多少个等腰三角形?说明理由.(2)线段EF和线段EB,FC之间有没有关系?若有是什么关系?

Ⅲ.随堂练习

(一)课本P79

1、

2、

3、4.

Ⅳ.课时小结

1、等腰三角形的判定方法有下列几种: ①定义,②判定定理。

2、等腰三角形的判定定理与性质定理的区别是:条件和结论刚好相反。

3、运用等腰三角形的判定定理时,应注意 在同一个三角形中。 Ⅴ.作业布置:

学力水平:必做42页 1------7题

选做 42页 8-----10题

4 12.

3.1.2 等腰三角形判定

小班数学《认识三角形》说课稿8篇


在实际教学活动中,教案起着十分重要的作用。有了教案的支持可以让同学听的快乐,教案应该怎么写才合适呢?小班数学《认识三角形》说课稿是我们从网络收集和整理的,也许本文能为您提供一定帮助!

小班数学《认识三角形》说课稿【篇1】

活动背景:

不同形状的三角形,使得幼儿很感兴趣。通过动手操,将3根一样长或不一样长的小棍,拼做三角形,使幼儿进一步认识到了有三个角,三条边的就是三角形。

活动目标:

1、认识三角形,知道三角开有三条边,三个角,复习手口一致点数。

2、培养幼儿的观察和比较能力。

3、激发幼儿学习图形的兴趣。

4、体会数学的生活化,体验数学游戏的乐趣。

5、能与同伴合作,并尝试记录结果。

教学重点、难点:

1、认识三角形,并知道三角形有许多形状

2、区分三角形与正方形

活动准备:

PPT课件、教具实物(三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。够每个幼儿做1-2个三角形的小棍(长短不同),正方形彩纸一张)

活动过程:

小班数学教案详案及教学反思《认识三角形》含PPT课件

教师小结:

正方形有四条边,三角形有三条边,正方形的四条边一样长,三角形的三条边不一样长;正方形有四个角,三角形有三个角;正方形的四个角一样大,三角形的三个角可以不一样大。(教师边说边演示)

4、它们都是三角形吗?

教师PPT出示各种三角形,请幼儿说说它们是不是三角形,为什么?(幼儿只要答出“是三角形,因为它们都有三条边,三个角”就可以了。

教师小结:

①、三角形有三条边,三个角

②、三角形有许多兄弟,它们虽然长得不一样,可是它们都有三条边,三个角

③、三角形的三条边可以不一样长,三个角可以不一样大

④、只要一个图形有三条边,三个角,它们就是三角形

5、让幼儿寻找常见实物中有什么东西像三角形(出示PPT)

6、幼儿操作。

将许多长短不同的小棍发给幼儿,让幼儿数3根小棍做三角形(可以找一样长的小棍也可以找不一样长的;做得快的可以做第二个,第三个)。

教学反思:

我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了:

1、三角形有三个角、三条边

2、三角形的三条边可以不一样长,三个角可以不一样大。

小班数学《认识三角形》说课稿【篇2】

活动目标:

1、复习圆、三角形、正方形,知道这三种图形的基本特征。

2、引发幼儿学习图形的兴趣。

3、培养幼儿比较和判断的能力。

4、引导幼儿积极与材料互动,体验数学活动的乐趣。

5、引发幼儿学习的兴趣。

活动准备:

地上画圆、三角形、正方形,每种图形都有4种不同的尺寸,分别标1―4个点,图形标上几个点,图形内就可以站几个人。作业卡。

活动过程:

1、幼儿分成3组,每组分别站进圆、正方形、三角形内。音乐响起,游戏开始,幼儿在场内自由活动。一声令下,幼儿迅速站进自己的图形里,动作又快又准确的组为优胜组。各组互相轮换,再做三次,使每人都有机会站到不同的图形里。

2、指导幼儿做练习:

(1)将图形分类计数,并将数量用圆点表示出来。

(2)将图形分类计数,并比较多少,找出最多和最少的图形,并分别涂上不同的颜色。

(3)启发幼儿动脑筋,想办法,用所给图形拼成适当的图案。

活动反思:

小班幼儿的思维具有具体性、形象性的特点,认识过程中,注意较易转移,如何在有限的时间里,科学、有效地完成教育任务、实现教育目标,是小班教学活动组织的难点。本活动设计尝试以趣味性、直观形象的游戏情境贯穿全程,使幼儿在轻松、愉快、自主的状态下,通过操作实践与周围的物质环境发生作用,动手动脑掌握数学知识。

小班数学《认识三角形》说课稿【篇3】

活动目标

认识三角形,知道三角开有三条边,三个角,复习手口一致点数到了。

培养幼儿的观察和比较能力。

引导幼儿积极与材料互动,体验数学活动的乐趣。

乐意参与活动,体验成功后的乐趣。

教学重点、难点

1、认识三角形,并知道三角形有许多形状

2、区分三角形与正方形

活动准备

教具:三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。够每个幼儿做1-2个三角形的小棍(长短不同),正方形彩纸一张

活动过程

1、 三角形是什么样子的?老师出示一个等腰三角形,告诉幼儿这是一个三角形,。请幼儿数一数三角形有几条边?几个角?

教师小结:这是一个三角形,三角形有三条边,三个角,凡是有三条边,三个角的图形,我们都把它叫做三角形。

2、 复习对三角形的认识。教师出示一个直角三角形,请幼儿想一想这是什么形状?为什么?

3、 和正方形比一比,看有什么不同。教师一个正文形请幼儿说出名称,并找出正方形和三角形有哪些不同的地方?

教师小结:

正方形有四条边,三角形有三条边,正方形的四条边一样长,三角形的三条边不一样长;正方形有四个角,三角形有三个角;正方形的四个角一样大,三角形的三个角可以不一样大。(教师边说边演示)

4、 它们都是三角形吗?教师出示各种三角形,请幼儿说说它们是不是三角形,为什么?(幼儿只要答出“是三角形,因为它们都有三条边,三个角”就可以了。

教师小结:

①、三角形有三条边,三个角

②、三角形有许多兄弟,它们虽然长得不一样,可是它们都有三条边,三个角

③、三角形的三条边可以不一样长,三个角可以不一样大

④、只要一个图形有三条边,三个角,它们就是三角形

5、让幼儿寻找常见实物中有什么东西像三角形

6、幼儿操作。将许多长短不同的小棍放在幼儿数3根小棍做三角形(可以找一样长的小棍也可以找不一样长的;做得快的可以做第二个,第三个)。

教学反思

我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3 根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了1、三角形有三个角、三条边2、三角形的三条边可以不一样长,三个角可以不一样大。

小班数学《认识三角形》说课稿【篇4】

【活动目标】

1.认识三角形的特征,知道三角形由3条边,三个角。

2.能将三角形和生活中常见实物进行比较,找出和三角形相似的物体。

3.发展幼儿观察力,空间想象力。

【活动准备】

1.PPT一份,大三角板一个,长短不同的小棒,雪糕棒等

【活动过程】

一.导入:手指游戏:快乐的小鱼

二.学习三角形特征

1、认识三角形

(1)出示魔法线昨天张老师得到了一根魔法线,我今天把他带来了,让我们一起把它叫出来。123,请出来。

(PPT出现一根红色的魔法线)提问:它是什么颜色的?

(2)第一次变化这跟魔法线他会变,让我们一起喊123,看他会变成什么?(孩子们一起喊123,PPT出现三根红线)提问:数一数变成了几根线,(3)第二次变化(孩子们一起喊123,PPT出现一个的三角形)又变成了什么?(三角形)

(4)触摸三角形老师这里也有一个大的三角形,我请小朋友们来摸一摸,他是不是有三条边,三个角。

(5)又一次变化一个三角形又变出了好多的三角形,虽然它们的大小不同,但他们都是三角形。

2、巩固三角形特征

(1)引导幼儿观察图形,发现三角形的特征。

前几天张老师去旅游。到了一个神奇的国家,三角形王国,他们这里的东西都是三角形的,老师把他拍了下来今天和你们一起来分享(继续看PPT,出示各种各样的三角形物品)A钟表店B食品店C帽子店

(2)再来找一找王国里还有哪些东西是三角形的(许多小旗子,屋顶,冰淇淋,标志牌等)

(3)引导幼儿在活动室里找一找三角形的物品3、.老师小结三角形特征,使幼儿获得的知识完整化。(出示最后一张PPT)今天你们表现真棒,找到了这么多三角形的物品,他们虽然长得不一样,(不同形状,不同大小)但都有三条边,三个角;有三条边,三个角的图形都是三角形。

三.复习三角形的特征提供冰糕棒、小木棒供幼儿拼三角形,巩固认识其三角形。

【活动反思】

小班幼儿的思维是具体形象思维,用变魔术的形式引出开头吸引孩的注意,通过变一边、摸一摸、看一看、找一找、摆一摆等,做了三角形等一系列活动,使每位幼儿在广阔的活动和认识空间在拼拼摆摆的过程中加深对三角形的认识,老师及时的小结使孩子获得知识的完整性。虽然生活中属于三角形的物体少一些,但孩子们能积极参与并观察,找到了好多的环境中的三角形。

小班数学《认识三角形》说课稿【篇5】

【活动目标】

1.教幼儿知道三角形和生活的名称和主要特征,知道三角形由3条边,三个角。

2.教幼儿把三角形和生活中常见实物进行比较,能找出和三角形相似的物体。

3.发展幼儿观察力,空间想象力。培养幼儿的动手操作能力。

【活动准备】

1.大小尺寸不同的三角形6个。

2.图形组成的实物图片4张。

3.孩子人手3个三角形若干.

【活动过程】

一.复习3的数数

引领幼儿手口一致点数3的物体。

通过点的横排、竖排,及三点随意排的点数让幼儿手口一致的数数,并引出通过三点连线形成三角形。

二.学习三角形特征

1.引导幼儿观察比较图形,幼儿每人一个三角形。

通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。

2.引导幼儿观察几个不同形状,不同大小的三角形,通过验证得出三角形三条边,三个角;有三条边,三个角的图形都是三角形。

3.老师小结三角形特征,使幼儿获得的知识完整化。

三.复习巩固三角形的特征

1.给图形宝宝找朋友,让幼儿从众多几何图形卡片中找出三角形。

请幼儿一一找出三角形,并说出为什么?

2.请幼儿从图形拼图中找出三角形,将图片一一出示。

请幼儿观察说出这些图象什么?

哪些部分是用三角形拼成的?用了几个三角形?

3.请幼儿在周围环境中找出象三角形的东西。

延伸活动:在区角里添置冰糕棒、吸管供幼儿拼三角形,巩固认识其三角形。

小班数学《认识三角形》说课稿【篇6】

活动目标:

1.培养幼儿对图形的兴趣和数学活动常规。

2.初步发展幼儿的观察力、分析能力和概括能力。

3.感知并说出三角形的基本特征,能找出和三角形相似的物体。

活动准备:多媒体、课件各一,图形若干。

活动分析:观察、对比是孩子们探究的过程,通过图形的对比引导幼儿感知三角形的基本特征,作为本次活动的重点。活动中运用课件直观、形象的特点,通过多种游戏形式,采用启发法、提示法,引导幼儿进一步掌握并概括三角形的基本特征,从而突破难点部分。活动的结束之际,组织幼儿进一步从生活环境中找出像三角形的物体,作为活动的延伸环节,自然结束。

活动过程:

一.导入。

采用观察法,通过课件中图形宝宝的口吻引出三角形。

二.展开。

1.采用游戏法引导幼儿在众图形中寻找三角形。

2.引导幼儿观察三种三角形的共同特征,发现三角形有三条边、三个角。

3.动手操作。

a.幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌握三角形特征。

b.观察并说出三角形像什么。

4.游戏猜猜我是谁。

组织幼儿根据图形渐渐露出部分猜测出图形,进一步巩固幼儿对图形特征的认识。

5.游戏捉迷藏

幼儿从简单的画面中找出三角形。

6.引导幼儿观察并找出活动室中那些物品像三角形。

三.延伸。

请幼儿到生活环境中进一步寻找三角形的踪迹。

小班数学《认识三角形》说课稿【篇7】

活动目标

1、认识三角形的特征,知道三角形由3条边,三个角。

2、能将三角形和生活中常见实物进行比较,找出和三角形相似的物体。

3、发展幼儿观察力,空间想象力。

4、培养幼儿边操作边讲述的习惯。

5、引导幼儿积极与材料互动,体验数学活动的乐趣。

活动准备

1、PPT一份,大三角板一个,长短不同的小棒,雪糕棒等

活动过程

一、导入:手指游戏:快乐的小鱼二、学习三角形特征

1、认识三角形

(1)出示魔法线昨天张老师得到了一根魔法线,我今天把他带来了,让我们一起把它叫出来。123,请出来。

(PPT出现一根红色的魔法线)提问:它是什么颜色的?

(2)第一次变化这跟魔法线他会变,让我们一起喊123,看他会变成什么?(孩子们一起喊123,PPT出现三根红线)提问:数一数变成了几根线,

(3)第二次变化(孩子们一起喊123,PPT出现一个的三角形)又变成了什么?(三角形)

(4)触摸三角形老师这里也有一个大的三角形,我请小朋友们来摸一摸,他是不是有三条边,三个角。

(5)又一次变化一个三角形又变出了好多的三角形,虽然它们的大小不同,但他们都是三角形。

2、巩固三角形特征

(1)、引导幼儿观察图形,发现三角形的特征。

前几天张老师去旅游。到了一个神奇的国家,三角形王国,他们这里的东西都是三角形的,老师把他拍了下来今天和你们一起来分享

(继续看PPT,出示各种各样的三角形物品)A钟表店B食品店C帽子店(2)再来找一找王国里还有哪些东西是三角形的(许多小旗子,屋顶,冰淇淋,标志牌等)(3)引导幼儿在活动室里找一找三角形的物品

3、老师小结三角形特征,使幼儿获得的知识完整化。(出示最后一张PPT)今天你们表现真棒,找到了这么多三角形的物品,他们虽然长得不一样,(不同形状,不同大小)但都有三条边,三个角;有三条边,三个角的图形都是三角形。

二、复习三角形的特征提供冰糕棒、小木棒供幼儿拼三角形,巩固认识其三角形。

活动反思

小班幼儿的思维是具体形象思维,用变魔术的形式引出开头吸引孩的注意,通过变一边、摸一摸、看一看、找一找、摆一摆等,做了三角形等一系列活动,使每位幼儿在广阔的活动和认识空间在拼拼摆摆的过程中加深对三角形的认识,老师及时的小结使孩子获得知识的完整性。虽然生活中属于三角形的物体少一些,但孩子们能积极参与并观察,找到了好多的环境中的三角形。

小班数学《认识三角形》说课稿【篇8】

活动目标:

1、引导幼儿在探索操作活动中,初步感知三角形,知道其名称和形状特征,认识三角形的多样性;

2、能不受其他图形干扰找出三角形;

3、培养幼儿的动手操作能力,发展思维的灵活性。

活动准备:

教具:

1、各种不同的三角形;数字卡;

2、星星、正方形、菱形各1。

学具:

1、3条长度不同的纸条(幼儿每人一套);

2、各种图形:圆形、正方形、长方形、三角形若干;

3、图形拼图;

4、胶垫人手一块

活动过程:

一、探索操作:

1、请幼儿拿3条不同长度的纸条拼摆图形。幼儿探索活动,教师指导。

2、幼儿展示自己的图形,教师集体说说,摆了什么样的图形,用了几条纸条,有几个角;

二、认识三角形的特征

1、小朋友真棒!现在我们请出今天的图形客人。出示三角形引导幼儿数数三角形的角与边各有多少?(教案出自:教案网)(教师根据幼儿数出的角、边,在三角形上标上数字)2、出示星星、正方形、菱形、让幼儿分辨它们是否三角形?

2、出示各种图形,让幼儿把三角形归类放到一边。(二次操作,巩固对三角形特征的认识)

3、操作:幼儿人手一图形拼画,请幼儿找出画中的三角形,涂色。

4、向爸爸妈妈展示自己的画。

三、活动结束。

小班数学教学设计三角形1000字


不为明天做好准备的人是没有未来的,作为一幼儿园的老师,我们需要让小朋友们学到知识,为了防止学生抓不住重点,教案就显得非常重要,教案可以让同学们很容易的听懂所讲的内容。幼儿园教案的内容要写些什么更好呢?由此,小编为你收集并整理了小班数学教学设计三角形1000字仅供参考,欢迎阅读。

一、说教材

认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。根据本班幼儿的年龄特点,我制定了以下目标一、

二、说目标:

1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。

2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。

3、发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。

围绕教学目标根据小班幼儿的认知特点,我认为本节课的重点是认识三角形的特征,难点是三角形的特征有三条边、三个角。

三、说活动准备。

经验准备:3以内的点数

材料准备:1、圆形、三角形娃娃各一个。2、图形拼图、3、彩笔(长的)

四、说教学方法。

为了让幼儿更好的掌握知识,充分发挥教与学的互动作用,更好地完成教学任务,我将采用游戏法和启发探究法,体现教师为主导,幼儿为主体的师生双边活动。

五、说教学方法

为了学习过程中更好地突出重点,突破难点取得较好的教学效果,我准备分以下几个步骤完成教学任务:

1、复习3的数数

设计这一环节的的是为了在下步学习三角形特征时幼儿能更好地学习掌握,能准确感知图形特征这一环节,采用体态动作一集体复习的形式进行。

2、学习三角形特征:这一环节是本节课的重点难点所在,我准备分以下几步完成,以突出重点、突破难点。

⑴引导幼儿观察比较圆形娃娃和三角形娃娃的不同,提供幼儿每人一三角形,通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。

⑵引导幼儿观察几个不同形状、不同大小的三角形,通过验证得出三角形都有三条边、三个角,有三条边、三个角的图形都是三角形。

3、复习巩固三角形的特征。在幼儿初步掌握三角形特征的基础上只有通过各种形式的练习才能得以巩固,准备分三步完成这一环节。

⑴给图形娃娃找朋友:目的是幼儿排除干扰从众多几何图形卡片中找出三角形。

⑵看图拼图找三角形:

图形拼图能进一步激发幼儿的学习兴趣通过让幼儿观察:

这些拼图像什么?哪些部分是用三角形拼成的?用了几个三角形?

⑶请小朋友想一想,在哪里还见过三角形呢?

六、说活动延伸:

小朋友都有自己的彩笔,请小朋友回到家跟爸爸妈妈拼个三角形吧!告诉他们三角形有几条边,几个角。

小班数学认识三角形说课稿简短(9篇)


作为一名合格的幼儿园老师,说课稿是我们工作中的一部分,持着每一堂课对每位学生都要尽职尽责的态度,我们都会事先准备好说课稿,一份优秀的说课稿可以让上课自己轻松的同时,学生也更好的消化课堂内容。如何才能将幼儿园说课稿的计划写得清晰而有条理呢?也许以下内容“小班数学认识三角形说课稿”合你胃口!建议你收藏本页和本站,以便后续阅读!

小班数学认识三角形说课稿【篇1】

活动目标:

1、正确区分圆形、三角形、正方形。

2、初步尝试进行分类游戏。

活动准备:

红、蓝、绿色三色图形(圆形、三角形、正方形)项链、红色、绿色和蓝色呼啦圈。

活动重点:

正确区分圆形、三角形、正方形。

活动难点:

初步尝试进行分类游戏。

活动过程:

1、送礼物:

——“这里有许多漂亮的项链,快选一根戴起来!”

看看、说说自己选的项链是什么形状,什么颜色的。

幼儿选择,佩戴。

2、找家:

按颜色分类

——“我们戴着漂亮的项链,回家去吧,猜猜你住在哪间房间里?”

(出示红、绿、蓝呼啦圈)引导幼儿发现项链的颜色与呼啦圈颜色比较的关系。

按图形分类(用粉笔在地上画出三种图形)

——“现在回到你和项链形状一样的家里吧!”

小班数学认识三角形说课稿【篇2】

活动背景:

不同形状的三角形,使得幼儿很感兴趣。通过动手操,将3根一样长或不一样长的小棍,拼做三角形,使幼儿进一步认识到了有三个角,三条边的就是三角形。

活动目标:

1、认识三角形,知道三角开有三条边,三个角,复习手口一致点数。

2、培养幼儿的观察和比较能力。

3、激发幼儿学习图形的兴趣。

4、体会数学的生活化,体验数学游戏的乐趣。

5、能与同伴合作,并尝试记录结果。

教学重点、难点:

1、认识三角形,并知道三角形有许多形状

2、区分三角形与正方形

活动准备:

PPT课件、教具实物(三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。够每个幼儿做1-2个三角形的小棍(长短不同),正方形彩纸一张)

活动过程:

小班数学教案详案及教学反思《认识三角形》含PPT课件

教师小结:

正方形有四条边,三角形有三条边,正方形的四条边一样长,三角形的三条边不一样长;正方形有四个角,三角形有三个角;正方形的四个角一样大,三角形的三个角可以不一样大。(教师边说边演示)

4、它们都是三角形吗?

教师PPT出示各种三角形,请幼儿说说它们是不是三角形,为什么?(幼儿只要答出“是三角形,因为它们都有三条边,三个角”就可以了。

教师小结:

①、三角形有三条边,三个角

②、三角形有许多兄弟,它们虽然长得不一样,可是它们都有三条边,三个角

③、三角形的三条边可以不一样长,三个角可以不一样大

④、只要一个图形有三条边,三个角,它们就是三角形

5、让幼儿寻找常见实物中有什么东西像三角形(出示PPT)

6、幼儿操作。

将许多长短不同的小棍发给幼儿,让幼儿数3根小棍做三角形(可以找一样长的小棍也可以找不一样长的;做得快的可以做第二个,第三个)。

教学反思:

我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了:

1、三角形有三个角、三条边

2、三角形的三条边可以不一样长,三个角可以不一样大。

小班数学认识三角形说课稿【篇3】

【活动目标】

1、通过观察、操作认识三角形的特征并能找出和三角形相似的物体。

2、培养观察能力和操作能力。

3、培养对图形的兴趣和数学活动常规。

4、了解数字在日常生活中的应用,初步理解数字与人们生活的关系。

5、培养幼儿相互合作,有序操作的良好操作习惯。

【活动准备】

1、趣味练习:找相同形状1—17

2、ppt图形

【活动过程】

一、导入

教师游戏口吻引出三角形:有个图形宝宝来我们班做客,你们想知道是什么图形宝宝吗?

二、展开

1。趣味练习:找相同形状

采用游戏法引导幼儿在众物品中寻找三角形的物品。

(三角铁)

2。引导幼儿观察三种三角形的共同特征,发现三角形有三条边、三个角。

3。通过动手操作进一步掌握三角形的特征。

(1)引导幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌握三角形特征。

(2)引导幼儿观察并说出三角形像什么。

4。通过游戏进一步巩固所学内容。

(1)游戏“猜猜我是谁”?

组织幼儿根据图形渐渐露出部分猜测出图形,进一步巩固幼儿对图形特征的认识。

(2)ppt图形

幼儿从各种食物中找出三角形食物。(三明治,比萨。)

5。引导幼儿观察并找出活动室中那些物品像三角形。

三、活动延伸

教师小结后,请幼儿到生活环境中进一步寻找三角形的踪迹。

教学反思:

数学活动对于小朋友来说是个很愉快的课程,因为整节活动中游戏的时间多,而且小朋友动手操作的机会比较多,但是要让孩子们能真正的理解这节教学活动的内容,并做到熟练掌握、灵活运用却不是那么容易。

小班数学认识三角形说课稿【篇4】

活动内容:小鱼游(认识三角形)

活动目标:

1、知道三角形的.主要特征,即三角形有三条边三个角。 2、根据三角形的特征在图中找出形状与三角形相似的小鱼。 3、乐意动手操作,提高幼儿的观察力和空间想象力。

活动重点、难点:

认识三角形的主要特征

知道三角形的主要特征是三角形由三条边和三个角组成。

活动准备:

三角板、小黄兔2只、萝卜1个、蘑菇1个、三角形、正方形、圆形若干、正方形纸每人一张、幼儿每人一个三角形积木

活动过程:

1.故事导入:小黄兔过生日

师:今天是小黄兔的生日,早晨小黄兔高高兴兴地从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小黄兔拔起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。

2、观察小黄兔的出行路线

请小朋友将路线用线连起来,观察是什么图形(三角形)

3、引导幼儿观察比较图形,幼儿每人一个三角形。

(1)通过自己数一数,试一试,感知图形特征,充分让幼儿表述,得出图形的特征。

(2)教师小结:三角形有三条边,三个角组成。三角形的特征:有三条边,三个角

4、引导幼儿动手操作

幼儿每人一张正方形纸,通过自己对三角形的认识,用正方形的纸折叠成三角形。

5、复习三角形的特征

(1)结合图形宝宝找朋友,让幼儿从众多几何卡片中找出三角形。并一一出示三角形,说说为什么?

(2)观察图形拼图,找出三角形,数一数用了几个三角形? (3)请幼儿在周围环境中找出三角形物品。

(4)完成课本20页《小鱼游》找出小河里三角形的小鱼,并把三角形的小鱼圈出来。

活动延伸:

让幼儿回家后和爸爸、妈妈一起运用各种材料制作一个三角形。 课后小结:本节课以《小黄兔过生日》的故事引入课题,通过连接小黄兔所走的路线游戏以及其它操作活动让幼儿认识三角形的特征,知道三角形由三条边三个角组成。

小班数学认识三角形说课稿【篇5】

活动目标:

1.通过观察、操作认识三角形的特征。

2.培养幼儿的观察能力和操作能力。

活动准备:

1.三角形图形、画点的底图、水笔、三角形组合的挂图、教室周围布置三角形的实物。

2.正方形的蜡光纸、剪刀、胶水、图画纸。

活动过程:

1.导入:有个图形宝宝来我们班做客,你们想知道是什么图形宝宝吗?

2.出示三角形,让幼儿说出三角形的名称,然后让幼儿找出教室周围与三角形相似的实物。

3.提出问题:你怎么知道它们是和三角形宝宝一样的图形?引导幼儿用手摸摸三角形的角和边,体会三角形的外形三个角,三条边。

4.出示三角形组合的挂图:

1)引导幼儿找出挂图的图案都是三角形组成的。

2)请幼儿说说怎么知道是三角形组成的。

5.出示左图,请幼儿用直线与点连接起来成三角形。

6、老师与小朋友一起讲评连接三角形的情况。

7、剪贴花:

1)出示范例:引导幼儿观察老师的花是用什么图形粘贴的。

2)提出问题:没有三角形的蜡光纸怎么办?(引导幼儿用正方形折剪成三角形进行粘贴。

小班数学认识三角形说课稿【篇6】

活动目标:

1、引导幼儿在探索操作活动中,初步感知三角形,知道其名称和形状特征,认识三角形的多样性;

2、能不受其他图形干扰找出三角形;

3、培养幼儿的动手操作能力,发展思维的灵活性。

活动准备:

教具:

1、各种不同的三角形;数字卡;

2、星星、正方形、菱形各1。

学具:

1、3条长度不同的纸条(幼儿每人一套);

2、各种图形:圆形、正方形、长方形、三角形若干;

3、图形拼图;

4、胶垫人手一块

活动过程:

一、探索操作:

1、请幼儿拿3条不同长度的纸条拼摆图形。幼儿探索活动,教师指导。

2、幼儿展示自己的图形,教师集体说说,摆了什么样的图形,用了几条纸条,有几个角。

二、认识三角形的特征

1、"小朋友真棒!现在我们请出今天的图形客人。"出示三角形引导幼儿数数三角形的角与边各有多少?(教师根据幼儿数出的角、边,在三角形上标上数字)

2、出示星星、正方形、菱形、让幼儿分辨它们是否三角形?

3、出示各种图形,让幼儿把三角形归类放到一边。(二次操作,巩固对三角形特征的认识)

4、操作:幼儿人手一图形拼画,请幼儿找出画中的三角形,涂色。

5、向爸爸妈妈展示自己的画。

三、活动结束。

教学反思

我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了:

1、三角形有三个角、三条边;

2、三角形的三条边可以不一样长,三个角可以不一样大。

小班数学认识三角形说课稿【篇7】

目标:1、游戏鼓励幼儿大胆进行创造性折叠。

2、发展幼儿手肌肉群的灵活性。

3、培养幼儿对手工活动的兴趣。

准备:

三角形色纸、图画纸、水彩笔。

过程:

1、教师出示三角形纸,启发幼儿“变魔术”:

把三角形的底边往上折一下,可以变成什么?

(帽子、船……)

把三角形旁边两角向下折,这象什么?

(小狗、小猪……)

2、幼儿就在选择、创造折法,然后进行添画,将作品贴在画纸上。

3、手工作品欣赏。

小班数学认识三角形说课稿【篇8】

幼儿园小班数学教案:什么是三角形(图形)

有益的学习经验:

1、复习圆的知识。

2、初步建立三角形的概念。

准备:

1、黑板上画角一个,等边三角形一个,圆一个。

2、教学三角板一套。

活动与指导:

1、复习圆的基本特征。

2、教师指角,向幼儿解释:从一点发出的两条(射)线组成的图形叫角。

3、教师指等边三角形,引导幼儿数角的个数,得到三个角,由此引出三角形的定义。

4、引导幼儿数三角形的边,得到三角形的重要性质:三角形有三条边。

5、出示教学三角板,向幼儿讲述非等边三角形,并在黑板上边讲述边画出两个特殊的直角三角形。

6、边讲述边画出一般的锐角和钝角三角形。

7、小结:三角形有许多种,它们都有三个角三条边。

小班数学认识三角形说课稿【篇9】

活动目标:

1、引导幼儿在探索操作活动中,初步感知三角形,知道其名称和形状特征,认识三角形的多样性;

2、能不受其他图形干扰找出三角形;

3、培养幼儿的动手操作能力,发展思维的灵活性。

活动准备:

教具:

1、各种不同的三角形;数字卡;

2、星星、正方形、菱形各1。

学具:

1、3条长度不同的纸条(幼儿每人一套);

2、各种图形:圆形、正方形、长方形、三角形若干;

3、图形拼图;

4、胶垫人手一块

活动过程:

一、探索操作:

1、请幼儿拿3条不同长度的纸条拼摆图形。幼儿探索活动,教师指导。

2、幼儿展示自己的图形,教师集体说说,摆了什么样的图形,用了几条纸条,有几个角;

二、认识三角形的特征

1、小朋友真棒!现在我们请出今天的图形客人。出示三角形引导幼儿数数三角形的角与边各有多少?(教案出自:教案网)(教师根据幼儿数出的角、边,在三角形上标上数字)2、出示星星、正方形、菱形、让幼儿分辨它们是否三角形?

2、出示各种图形,让幼儿把三角形归类放到一边。(二次操作,巩固对三角形特征的认识)

3、操作:幼儿人手一图形拼画,请幼儿找出画中的三角形,涂色。

4、向爸爸妈妈展示自己的画。

三、活动结束。

本文网址://m.jk251.com/jiaoan/177398.html

相关文章
最新更新

热门标签