导航栏

×
范文大全 > 教案

人教版八年级上册数学教案全册课件

人教版八年级上册数学教案全册课件(推荐4篇)。

人教版八年级上册数学教案全册课件 篇1

一、内容和内容解析

1.内容

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

二、目标和目标解析

1.教学目标

(1)理解三角形的高、中线与角平分线等概念;

(2)会用工具画三角形的高、中线与角平分线;

2.教学目标解析

(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

(3)掌握三角形的高、中线与角平分线的画法.

(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

三、教学问题诊断分析

三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

人教版八年级上册数学教案全册课件 篇2

教学目标

1.理解并掌握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。

2.培养学生的分析能力和类推能力。

3.体验所学知识与现实生活的联系,能应用所学知识解决生活中简单的问题,从中获得价值体验。

教学重难点

教学重点:理解并掌握除数是整数的小数除法的计算方法。

教学难点:理解商的小数点定位问题。

教学工具

ppt课件

教学过程

一、复习引入

1.填空:(PPT课件)

2.(PPT课件出示)

(1)引导学生列式:224÷4

(2)为什么这样列式?(路程÷时间=速度)

(3)说一说:224÷4这道题是怎样计算的?(教师板演)

【设计意图】通过复习整数除法,唤醒学生对整数除法计算方法和计算步骤的回忆,为新知的教学打好基础。

二、探究新知

(一)教学例1

1.出示例1,引导理解题意。(PPT课件演示。)

(1)题目中告诉了我们什么?(坚持晨练可以锻炼身体,王鹏坚持晨练,他计划4周跑步22.4 km。)

(2)题目中要我们求什么?(按计划他平均每周应跑多少千米?)

2.尝试列式,分析数量关系。

(1)要求“他平均每周应跑多少千米”,应该怎样列式?(学生口头列式,教师板书或PPT课件演示:22.4÷4。)

(2)引导思考:为什么用“22.4÷4”?(路程÷时间=速度)

3.揭示新课,感受学习价值。

(1)请同学们观察这道除法算式,和我们前面复习的除法计算有什么不同?(除数还是整数,但被除数是小数。)

(2)揭示课题:看来,在实际生活中常常遇到需要用小数除法计算的问题,这节课我们就来研究新的课题──除数是整数的小数除法。

(3)板书课题:除数是整数的小数除法。

4.提出问题,自主思考算法。

(1)提出问题:我们已经会计算整数除法,那想一想,被除数是小数的除法该怎样计算呢?

(2)学生先独立思考,再在小组里交流自己的想法。(教师巡视,了解学生思维活动,参与小组交流,给予适当指导。)

5.教师引导,交流不同算法。

(1)我们已经会计算整数除法,在不改变商的大小的前提下,怎样把小数变成整数呢?谁来说一说你的想法?

(2)指名学生回答。(教师PPT课件演示。)

(3)我们小数除法还可以列竖式计算。下面我们就一起来探讨列竖式计算小数除法的方法。

(4)指导学生列出除法竖式。(教师板书)

6.交流两种算法和感受:

引导学生比较列竖式计算和将22.4 km改写成22 400m计算的结果,提问:这两种算法的结果相同吗?(相同)哪种算法比较简便?(算法二计算过程比较麻烦,算法一比较简便。)

7、算一算,比一比。

(1)42÷3= 4.2÷3=

(2)学生独立计算,教师巡视。

(3)教师PPT课件演示。

(4)这两道题有哪些相同点和不同点?学生讨论,交流。

(相同点:整数除以整数与小数除以整数计算方法相同;不同点:小数除以整数要把商的小数点与被除数的小数点对齐。)

【设计意图】例1的教学是本节课的重点、难点所在,通过例1的教学要使学生理解并掌握除数是整数的小数除法的计算方法,要理解商的小数点如何定位。在本环节的教学中,先让学生结合具体情境,在解决实际问题中引出计算问题,感受学习除数是整数的小数除法的必要性。在解决计算问题时,教师先放手学生自主探索计算方法,再引导学生用已有知识和经验解释竖式计算过程,结合数的含义理解商的小数点要和被除数的小数点对齐的道理,理解除数是整数的小数除法的一般计算方法,为学生下一环节的学习做好充分的铺垫。

(二)教学例2

1.出示例2。(PPT课件演示。)

2.引导学生理解题意,列出算式。(教师PPT课件演示:28÷16)

3.教师板演竖式计算过程,让学生明确算理和算法。(教师板书)

(1)除到被除数的末尾还有余数时,为什么可以添0继续除?

(2)“120”表示120个()分之一?除得的7为什么写在十分位上?

(3)“80”表示80个()分之一?除得的5为什么写在百分位上?

4.计算除数是整数的小数除法要注意什么?

(1)商的小数点要和被除数的小数点对齐;

(2)如果有余数,要添0再除。

(三)教学例3

1.出示例3。(PPT课件演示。)

2.引导学生理解题意,列出算式。(教师PPT课件演示:5.6÷7)

3.引导学生观察被除数和除数有什么特点?(被除数比除数小);商会出现什么情况?怎样商?(不够商1,用0占位)

4.让学生把题补充完整。

5.引导学生自己尝试验算。

(1)引导:要检验小数除法的计算结果是否正确,可以怎么办?

(2)学生自主验算。

(3)教师板演。

【设计意图】例2和例3是除数是整数的小数除法中的两种特殊情况,例2是除到被除数的末尾仍有余数,需要添0继续除;例3是被除数比除数小,整数部分不够商1。在例2、例3的教学中,重点关注学生的数学思维发展,放手让学生探讨、交流,在解释每步计算的含义中找到解决问题的方法,在相互交流中强化对算理和算法的深入理解。通过引导学生自主验算,既帮助学生加深对乘除法之间关系的理解,又强化学生验算的意识和习惯。

三、智慧城堡

1、下面各题的商哪些是小于1的?在括号里画“√”

5.04÷6 76.5÷45 45÷36 0.84÷28

( ) ( ) ( ) ( )

(1)引导学生判断。

(2)引导学生想一想,什么情况下得到的商比1小?

2、

(1)引导学生判断对错。

(2)这道题的7应该商在哪位上?

3、

(1)引导学生理解题意。

(2)引导学生根据“一共花的钱÷分钟数=每分钟花的钱”的数量关系列式。

(3)学生列竖式计算,然后展台展示学生做题情况。

四、我的收获是……

引导学生说出这节课的收获。

(1)按整数除法的方法去除。

(2)商的小数点要和被除数的小数点对齐。

(3)整数不够除,商0,点上小数点。如果有余数,要添0再除。

人教版八年级上册数学教案全册课件 篇3

教学目标

知识与技能:

在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。

过程与方法:

通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。

情感态度与价值观:

通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。

教学重难点

教学重点:

掌握平行四边形的面积计算公式,并能正确运用。

教学难点:

平行四边形面积计算公式的推导。

教学工具

多媒体课件,平行四边形纸片,剪刀,学具袋

教学过程

教学过程设计

1复习旧知

请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)

2情境引入

(一)、故事激趣

同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)

(二)、学生思考、猜测

学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积

3探究新知

(一)利用方格,初步探究

1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。

课件出示:比较两个图形的大小,然后引进格子图。

师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)

2、同桌交流方法

3、生汇报想法

4、通过数方格你发现了什么?

生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等

5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?

如果,我用数方格的方法得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?

(二)动手操作,深入探究

1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?

2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。

师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。

(板书:割补法)

3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。

4、展示学生作品:不同的方法将平行四边形变成长方形。

提问:观察拼出的长方形和原来的平行四边形,你发现了什么?

平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。

引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S = ah

(边说边板书)

4学以致用

(一).课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

(板书:S=ah=6×4=24㎡)

(二).课件出示练习题,学生独立完成。

1.有一块地近似平行四边形,底43米,高20.1米,面积是多少平方米?

2.填表

3.判断:

(1)平行四边形的底是7米,高是4米,面积是2 8米。 ( )

(2) a=5分米,h=2米,S=100平方分米。 ( )

4.下面对平行四边形面积的计算对吗?

6×3=18(平方米) ( )

5.下面对平行四边形面积的计算对吗?

8×7=56(平方分米) ( )

6.思考题:你有几种方法求下面图形的面积?

课后小结

回想一下刚才我们的学习过程,你有什么收获?

计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推

板书

平行四边形的面积

长方形的面积=长×宽

↓ ↓ ↓

平行四边形的面积=底×高

人教版八年级上册数学教案全册课件 篇4

一、教学目标

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形.

二、重点、难点

1.重点:理解分式的基本性质.

2.难点:灵活应用分式的基本性质将分式变形.

3.认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.

三、练习题的意图分析

1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.P11习题16.1的`第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

四、课堂引入

1.请同学们考虑:与相等吗?与相等吗?为什么?

2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质.

五、例题讲解

P7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

P11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

P11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.

本文网址:http://m.jk251.com/jiaoan/205194.html

相关文章
最新更新

热门标签