导航栏

×
范文大全 > 教案

不在同一直线上三点作圆数学的教后感精选

时间:2022-03-31 过三点的圆 凌晨三点的句子

《不在同一直线上三点作圆》数学的教后感

1、课堂教学方法上出现了一个亮点。

在新课程理念的指导下,教师在教育教学过程中要突破传统教学中教学环节、教学模式的桎梏,要创设丰富的教学环境,激发学生的学习动机,培养学生的学习兴趣,实现教学方式和教学活动的多样化,真正发挥学生的主体作用。使他们能体会数学是人们生活、劳动和学习必不可少的工具,它来源于生活、生产,并服务于社会。要培养学生的空间想象能力,从立体图形到平面图形,让学生通过观察,探究,交流,得到从不同方式展开有不同的表面展开图。特别是采用实验教学、开放式教学,让学生参与课堂的实践。引导学生在亲身的做和行动中获取知识,领悟道理,学会方法,发展能力,陶冶情操,塑造人格。

2、课堂教学氛围又出现了一个亮点。

在教学过程中,要构建民主、平等、和谐的师生关系,形成一个学习共体,充分挖掘和拓展学科教学的价值,教师教学不仅要传授知识、发展学生的能力,还要注重培养学生的情感、态度、兴趣、价值观及行为规范,使学生养成良好的行为习惯、思维习惯、学习习惯。如在牛刀小试的活动中,我们体会到两句话:你们真的太帮了!坚持到底就是胜利!它是激励同学们努力学习,树立远大的理想,得到知识与情感双丰收的效果。教学中执教者始终站在学生中间,有问题一起探讨,一起解决,与学生打成一片,这样的课堂效率,明显是最佳的。jK251.coM

3、课堂教学中突出学生的主体地位成了第三个亮点。

以学生为主体尊重学生的个体差异,尊重各层次学生的创新思维和创新劳动成果,鼓励学生大胆的猜想,求异思维,使学生的思维充满活力,闪现出迷人的火花。在教学中教师以欣赏学生的态度,对学生的回答进行认真的分析,同时引导全班同学一道去进行操作,探究,肯定正确的部分,分析错误的原因。使提出这种大胆想法的同学体验到成功的喜悦,同时也使其他同学得到欣赏和鼓励。在本节课教学中,教师给学生充分提供表现、操作、探究、创造的空间,相信所有的学生都能学习,都会学习,学生的潜能就会像空气一样,放在多大的空间里,它就会有多大。

jK251.COm精选阅读

过三点的圆初中教案精选


第一课时

(一)学习活动设计:

(二)学习载体设计:

(1)实践:(a)过一点A是否可以作圆?如果能作,可以作几个?

(b)过两个点A、B是否可以作圆?如果能作,可以作几个?……(发现新问题).

(2)实验:应用电脑动画,使学生观察、发现新问题.

(3)作图:已知:不在同一条直线上的三个已知点A、B、C(如图)

求作:⊙O,使它经过点A、B、C.

(4)应用和拓展:给弧找圆心、三角形的外接圆.不在同一条直线上的四个点能否作圆,什么情况下能?什么情况下不能?

(三)学生交流、师生对话活动设计:

学生交流与师生对话,在上课之前无法确定,要根据学生学习中的需要,但在两处必须要进行:(1)在实践(或实验)中发现的问题;(2)解决问题的方法.

探究活动

确定圆的个数

1、如图1,直线上两个不同点A、B和直线外一点P可以确定一个圆;如图2,直线上三个不同点A、B、C和直线外一点P可以确定三个圆;……;那么直线上n个不同点A1、A2、A3……An和直线外一点P可以确定多少个圆?

……

2、如图4,直线上n个不同点A1、A2、A3……An和直线外两个不同的点P、Q,则这(n+2)个点最多可以确定多少个圆?

3、如图5,在⊙O上的n个不同点A1、A2、A3……An和P,可以确定多少个圆?

参考答案:

1、可以确定个圆;

2、分类求解

(1)取P点和直线上两个点,一共可以确定个圆;

(2)取Q点和直线上两个点,一共可以确定个圆;

(3)取P、Q两点和直线上一个点,一共n个圆;

∴最多可以确定个圆.

3、可以确定个圆.

过三点的圆的教学方案


1、教材分析

(1)知识结构

(2)重点、难点分析

重点:①确定圆的定理.它是圆中的基础知识,是确定圆的理论依据;②不在同一直线上的三点作圆.“作圆”不仅体现在证明“确定圆的定理”的重要作用,也是解决实际问题中常用的方法;③反证法证明命题的一般步骤.反证法虽是选学内容,但它是证明数学命题的重要的基本方法之一.

难点:反证法不是直接以题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明原命题正确,又因为矛盾的多样化,学生刚刚接触,所以反证法不仅是本节的难点,也是本章的难点.

2、教学建议

本节内容需要两个课时.在第一课时的教学中:

(1)把课堂活动设计的重点放在如何调动学生的主体和发现问题、解决问题的能力上.让学生作图、观察、分析、概括出定理.

(2)组织学生开展“找直角、锐角和钝角三角形的外心”的位置活动,在激发学生的学习兴趣中,提高作图能力.

(3)在教学中,解决过已知点作圆的问题,应紧紧抓住对圆心和半径的探讨,已知圆心和半径就可以作一个圆,这是从圆的定义引出的基本思路,因此作圆的问题就是如何根据已知条件去找圆心和半径的问题.由于作圆要经过已知点,如果圆心的位置确定了,圆的半径也就随之确定,因此作圆的问题又变成了找圆心的问题,是否可以作圆以及能作多少个圆,都取决于能否确定圆心的位置和圆心的个数.

在第二课时反证法的教学中:

(1)对于A层的学生尽量使学生理解并会简单应用,对B层的学生使学生了解即可.

(2)在教学中老师要精讲:①为什么要用反证法;②反证法的基本步骤;③精讲精练.

第123页

数学教案-过三点的圆的教学方案


第一课时过三点的圆

(一)学习活动设计:

(二)学习载体设计:

(1)实践:(a)过一点A是否可以作圆?如果能作,可以作几个?

(b)过两个点A、B是否可以作圆?如果能作,可以作几个?……(发现新问题).

(2)实验:应用电脑动画,使学生观察、发现新问题.

(3)作图:已知:不在同一条直线上的三个已知点A、B、C(如图)

求作:⊙O,使它经过点A、B、C.

(4)应用和拓展:给弧找圆心、三角形的外接圆.不在同一条直线上的四个点能否作圆,什么情况下能?什么情况下不能?

(三)学生交流、师生对话活动设计:

学生交流与师生对话,在上课之前无法确定,要根据学生学习中的需要,但在两处必须要进行:(1)在实践(或实验)中发现的问题;(2)解决问题的方法.

探究活动

确定圆的个数

1、如图1,直线上两个不同点A、B和直线外一点P可以确定一个圆;如图2,直线上三个不同点A、B、C和直线外一点P可以确定三个圆;……;那么直线上n个不同点A1、A2、A3……An和直线外一点P可以确定多少个圆?

……

2、如图4,直线上n个不同点A1、A2、A3……An和直线外两个不同的点P、Q,则这(n+2)个点最多可以确定多少个圆?

3、如图5,在⊙O上的n个不同点A1、A2、A3……An和P,可以确定多少个圆?

参考答案:

1、可以确定个圆;

2、分类求解

(1)取P点和直线上两个点,一共可以确定个圆;

(2)取Q点和直线上两个点,一共可以确定个圆;

(3)取P、Q两点和直线上一个点,一共n个圆;

∴最多可以确定个圆.

3、可以确定个圆.

经典初中教案过三点的圆


第一课时

(一)学习活动设计:

(二)学习载体设计:

(1)实践:(a)过一点A是否可以作圆?如果能作,可以作几个?

(b)过两个点A、B是否可以作圆?如果能作,可以作几个?……(发现新问题).

(2)实验:应用电脑动画,使学生观察、发现新问题.

(3)作图:已知:不在同一条直线上的三个已知点A、B、C(如图)

求作:⊙O,使它经过点A、B、C.

(4)应用和拓展:给弧找圆心、三角形的外接圆.不在同一条直线上的四个点能否作圆,什么情况下能?什么情况下不能?

(三)学生交流、师生对话活动设计:

学生交流与师生对话,在上课之前无法确定,要根据学生学习中的需要,但在两处必须要进行:(1)在实践(或实验)中发现的问题;(2)解决问题的方法.

探究活动

确定圆的个数

1、如图1,直线上两个不同点A、B和直线外一点P可以确定一个圆;如图2,直线上三个不同点A、B、C和直线外一点P可以确定三个圆;……;那么直线上n个不同点A1、A2、A3……An和直线外一点P可以确定多少个圆?

……

2、如图4,直线上n个不同点A1、A2、A3……An和直线外两个不同的点P、Q,则这(n+2)个点最多可以确定多少个圆?

3、如图5,在⊙O上的n个不同点A1、A2、A3……An和P,可以确定多少个圆?

参考答案:

1、可以确定个圆;

2、分类求解

(1)取P点和直线上两个点,一共可以确定个圆;

(2)取Q点和直线上两个点,一共可以确定个圆;

(3)取P、Q两点和直线上一个点,一共n个圆;

∴最多可以确定个圆.

3、可以确定个圆.

过三点的圆相关教学方案


第一课时

(一)学习活动设计:

(二)学习载体设计:

(1)实践:(a)过一点A是否可以作圆?如果能作,可以作几个?

(b)过两个点A、B是否可以作圆?如果能作,可以作几个?……(发现新问题).

(2)实验:应用电脑动画,使学生观察、发现新问题.

(3)作图:已知:不在同一条直线上的三个已知点A、B、C(如图)

求作:⊙O,使它经过点A、B、C.

(4)应用和拓展:给弧找圆心、三角形的外接圆.不在同一条直线上的四个点能否作圆,什么情况下能?什么情况下不能?

(三)学生交流、师生对话活动设计:

学生交流与师生对话,在上课之前无法确定,要根据学生学习中的需要,但在两处必须要进行:(1)在实践(或实验)中发现的问题;(2)解决问题的方法.

探究活动

确定圆的个数

1、如图1,直线上两个不同点A、B和直线外一点P可以确定一个圆;如图2,直线上三个不同点A、B、C和直线外一点P可以确定三个圆;……;那么直线上n个不同点A1、A2、A3……An和直线外一点P可以确定多少个圆?

……

2、如图4,直线上n个不同点A1、A2、A3……An和直线外两个不同的点P、Q,则这(n+2)个点最多可以确定多少个圆?

3、如图5,在⊙O上的n个不同点A1、A2、A3……An和P,可以确定多少个圆?

参考答案:

1、可以确定个圆;

2、分类求解

(1)取P点和直线上两个点,一共可以确定个圆;

(2)取Q点和直线上两个点,一共可以确定个圆;

(3)取P、Q两点和直线上一个点,一共n个圆;

∴最多可以确定个圆.

3、可以确定个圆.

直线圆的位置关系


教学目标:

1.使学生理解直线和圆的相交、相切、相离的概念。

2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。

3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。

重点难点:

1.重点:直线与圆的三种位置关系的概念。

2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。

教学过程:

一.复习引入

1.提问:复习点和圆的三种位置关系。

(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)

2.由日出升起过程中的三个特殊位置引入直线与圆的位置关系问题。

(目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)

二.定义、性质和判定

1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。

(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。

(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。

(3)直线和圆没有公共点时,叫做直线和圆相离。

2.直线和圆三种位置关系的性质和判定:

如果⊙O半径为r,圆心O到直线l的距离为d,那么:

(1)线l与⊙O相交d<r

(2)直线l与⊙O相切d=r

(3)直线l与⊙O相离d>r

三.例题分析:

例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。

①当r=时,圆与AB相切。

②当r=2cm时,圆与AB有怎样的位置关系,为什么?

③当r=3cm时,圆与AB又是怎样的位置关系,为什么?

④思考:当r满足什么条件时圆与斜边AB有一个交点?

四.小结(学生完成)

五、随堂练习:

(1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。

(2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。

①当d=5cm时,直线L与圆的位置关系是;

②当d=13cm时,直线L与圆的位置关系是;

③当d=6.5cm时,直线L与圆的位置关系是;

(目的:直线和圆的位置关系的判定的应用)

(3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L与⊙O至少有一个公共点,则d应满足的条件是()

(A)d=3(B)d≤3(C)d3

(目的:直线和圆的位置关系的性质的应用)

(4)⊙O半径=3cm.点P在直线L上,若OP=5cm,则直线L与⊙O的位置关系是()

(A)相离(B)相切(C)相交(D)相切或相交

(目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)

想一想:

在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,

思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)

六、作业:P100—2、3

本文网址://m.jk251.com/jiaoan/23299.html

相关文章
最新更新

热门标签