导航栏

×
范文大全 > 教案

今日教案: “数的奇偶性”教案怎么写

现在,很多教师需要用到教案,教案在我们教师的教学中非常重要,在教案中总结好经验与教训,我们才能逐步成熟起来。如何才能写好教案呢?为了帮助大家,下面是由小编为大家整理的今日教案: “数的奇偶性”教案怎么写,仅供参考,欢迎大家阅读。

一、旧知巩固、引入课题

1.师:同学们,我们已经学习了质数和合数。大家能不能举例说一说什么是质数和合数?什么是奇数和偶数?数的奇偶性有哪些?

要求学生以小组为单位,在组内交流、回顾质数和合数的相关知识。

2.教师说明本节课的练习内容和练习目的。(板书课题)

二、师生互动、解决问题

1.出示教材第16页“练习四”第一题。

(1)让学生理解题意以后,独立完成。

(2)全班反馈。反馈时让学生说说判断的理由。

2.出示教材第16页“练习四”第二题。

让学生理解题意后独立完成,最后全班反馈。

3.出示教材第16页“练习四”第三题。

(1)让学生以小组为单位,用合作交流的方式解决问题。

(2)全班反馈。反馈时让学生说说思考的过程。

4.出示教材第16页“练习四”第四题。

(1)让学生以小组为单位进行探索。

(2)组织交流引导学生发现规律性

奇数×奇数=奇数

奇数×偶数=偶数

偶数×偶数=偶数

(3)让学生举例验证自己的发现。

三、巩固练习

1.出示教材第17页练习四第7题。

四、课堂小结

同学们,在本节课学习中你有什么收获?你有什么疑难问题吗?

jK251.com其他人还在看

指数函数、函数奇偶性


指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得

如图所示为a的不同大小影响函数图形的情况。

可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

注图:(1)为奇函数(2)为偶函数

1.定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

2.奇偶函数图像的特征:

定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称

点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

3.奇偶函数运算

(1).两个偶函数相加所得的和为偶函数.

(2).两个奇函数相加所得的和为奇函数.

(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.

(4).两个偶函数相乘所得的积为偶函数.

(5).两个奇函数相乘所得的积为偶函数.

(6).一个偶函数与一个奇函数相乘所得的积为奇函数.

今日课件: 小学英语教案怎么写


无论何时,教案都是我们准备教学的一种最好的方式,通过不断的写教案,我们可以提高自己的语言组织能力,用心编写教案才能促进我们的教学进一步发展,有没有可以参考的教案呢?这篇《今日课件: 小学英语教案怎么写》应该可以帮助到您。

课前准备

1.教学挂图。

2.教学投影片。

3.教学录音磁带。

4.学生画图用白纸(教师准备)。

教学内容

A Listen and find.

1.本部分提供了一幅迷宫游戏图。

2.学生根据图和录音材料,找出图中人物要去的地方,并划线表示出来。

3.本部分通过听和找的活动,检测学生对本单元学习内容的听和认的情况。

4.为了降低听力材料的难度,每一项听力材料都是由两句话组成,先说某人去哪儿,再说乘什么交通工具。

5.图中的路线可以重复画。

B Let's make a mural and talk.

1.本部分是一项学生自主活动。学生以小组为单位,画一幅街道的图画(mural意为:壁画;天花板的装饰画)。

2.本部分提供了一幅学生画习作,供学生小组活动时参考。

3.学生绘画结束后,应对本组的作品集体进行描述,以此来检测自己对本单元学习内容的说的情况。

教学建议

1.教师出示本课教学挂图,要求学生用“I can see....”语句对图画进行简单描述。

2.教师请学生猜一猜画面上人物要去哪儿,引导学生说出在本单元学到的交际用语(注意:说本单元交际用语时需要换人称,教师可以帮助学生说,如:教师说前半句Andy is,学生接后半句going to the supermarket.)。

3.学生听录音并画线。该练习做完后要有反馈,教师要帮助学生核对答案。核对答案时学生可以互相交换课本,以逐步学会互相检查。

4.教师将学生分成4至5人一组,每组发一张白纸,要求学生以组为单位,画出想象中的街道。教师也可以给出街道示意图(如下图),请学生添加画面。

这项练习的另外一个做法是:课前布置任务,学生同样以组为单位,收集有关街道建筑、设施、车辆的图片,并将图片剪下来带到课堂。课堂活动时,大家有选择的将自己收集到的图片贴在一起,组成街道拼贴画。为防止大家都找同一类型的图片,布置任务时教师可以指导学生进行分工。

5.图画作品完成后,让学生先在组内用英语对图画进行描述。

6.然后让学生以小组为单位,在全班展示图画。展示时,要求每位学生用英语说一说自己画的或收集的部分。以此种方法为每一位学生提供说话的机会。

7.录音材料:

A项:MONOLOGUE

Teacher: Andy is going to the school.He is going by bus.

Lily and Yaoyao are going to the park.They are going by taxi.

Bill and his dad are going to the zoo.They are going by bicycle.

Ted is going to the book store.He is going by van.

Binbin is going to the hospital.He is going by car.

Joy is going to the supermarket.She is going by subway.

B项:MONOLOGUE

Teacher: I can see a taxi, a bus, a van, a bicycle in the streets.I can see a school, a park, a book store in the streets.There is a zoo next to the traffic lights.There is a supermarket next to the bus stop.The bus is red.The car is white.I'm going to the zoo by bus.

【教案参考】 有理数教学设计怎么写


一名优秀的教师肯定有一份准备充分的教案,撰写教案有利于教研活动的开展,高质量的教案对孩子的成长有促进作用,那么如何写一份教案?下面是小编特地为大家整理的“【教案参考】 有理数教学设计怎么写”。

一、知识点回顾

1、掌握有理数的概念和分类。

2、知道有理数与数轴上的点的关系。掌握数轴的定义,会用数轴上的点表示有理数,理解有理数的有序性,会比较两个有理数的大小。

3、利用数轴理解数的绝对值和一对相反数的意义。

4、掌握有理数的运算法则。

5、有理数的乘方。了解底数、指数、幂等概念。

6、掌握有理数的运算律。

7、熟练进行有理数的混合运算。运算时可合理运用运算律,使运算简便。

8、掌握科学计数法。

二、典型例题分析

1、计算

(1)、 (2)、(- 2 )+ 1 + 1 + (- 5 )

(3)、-150(- )-250.125+50(- ) (4)、(+3 )(3 -7 ) (5)、3 (- )-(- )2 - (- )

(6)- ( + - )

(7)、{1+[ -(- )](-2)}(- - -0.05)

(8)、

(9)、

(10)、

(11)、已知|x|= ,|y|= ,且xy0,求代数式5x+7y-9的值。

(12)、

(13)、

(14)、已知 的值。

2、实数 在数轴上的位置如图,化简:

3、已知a、b互为相反数,c、d互为倒数,求 的值;

4、已知有理数a、b、c满足 + + = -1 求 的值。

5、用计算器计算下列各式,并将结果填写在横线上。

①1715873=

②2715873=

③3715873=

④4715873=

⑴你发现了什么规律?把你发现的规律用简练的语言写出来;

⑵不用计算器,请你直接写出9715873的结果。

6、任意写出一个数3的倍数,把它的各个数位上数字分别立方,再把这些立方数相加,得到一个新的数;接着,把这个新得到的数的各个数位上的数字分别立方,再把这些立方数相加,又得到一个新的数;,如此重复做下去,你发现了什么规律?请借助计算器进行探索。

7、欢欢在一家玩具厂里测量了20个底座是圆形玩具的底座直径,测得直径如下(单位 mm):25、 25、 24、 24、 23、 24、 24、 25、 26、 25、 23、 23、 24、 25、 25、 24、 24、 26、 26、 25。 试计算这20个玩具的直径总和以及平均直径。你能找出比较简单的计算方法吗?如果请叙述你的方法。

9、一口水井,水面比井口低3m,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.42m ,却下滑了0.15m;第二次往上爬了0.5m后又往下滑了0.1m;第三次往上爬了0.7m又下滑了0.15m;第四次往上爬了0.75m又下滑0.1m,第五次往上爬了0.55m,没有下滑;第六次蜗牛又往上爬了0.48m没有下滑,问蜗牛有没有爬上井口?

有理数及其运算 测试与练习部分

一、选择题

1.下列说法中正确的是( )

(A)一个数的倒数必小于这个数 (B)一个数的相反数必小于这个数

(C)一个数的立方必大于这个数的平方(D)一个数的绝对值必不小于这个数

2. 6.07 是( )

(A)17位数 (B)18位数 (C)19位数 (D)20位数

3.下列各式中正确的是( )

(A) (B)- (C) (D)-

4.两个不为零的数互为相反数,则它们的商为( )

(A)-1 (B)1 (C)0 (D)不能确定

5.10 (n是正整数)表示的数是( )

(A)10个n相乘的积 (B)n个10相乘的积 (C)1后面有n-1个零

(D)1后面有n+1个零

6.下列判断错误的( )

(A)负数的偶次方是正数 (B)有理数的偶次方是正数

(C)-1的任何次方的绝对值都是1 (D)有理数的偶次方不是负数

7.有加法交换律可得,a-b+c=( )

(A)a-c-b (B)c+a-b (C)a-c+b (D)c-a-b

8.如果两个有理数的差是正数,那么这两个数( )

(A)都是正数 (B)都不是正数 (C)不都是正数 (D)以上都可能

9.计算(-2) +(-2) 所得结果是( )

(A)2 (B)-1 (C)-2 (D)-2

10、绝对值 小于7而大于3的所有整数的和是 ( )

A、15 B、-15 C、0 D、30

11、若│a │=7 ,b的相反数是2,则a+b的值是 ( )

A、-9 B、-9或+9 C、+5或-5 D、+5或-9

12、在(-5)-( )= -7中的括号里应填( )

A、-2 B、2 C、-12 D、12

13、下列说法中错误的有( )

①若两数的差是正数,则这两个数都是正数

②若两个数是互为相反数,则它们的差为零

③零减去任何一个有理数,其差是该数的相反数

A、0个 B、1个 C、2个 D、3个

14、减去一个正数,差一定 ( ) 被减数。

A、大于 B、等于 C、小于 D、不能确定谁大

15、若M+|-20|=|M|+|20|,则M一定是( )

A、任意一个有理数 B、任意一个非负数

C、任意一个非正数 D、任意一个负数

16、两个负数的和为a,它们的差为b,则a与b的大小关系是( )

A、a>b B、a=b C、a<b D、ab

17 、数m和n,满足m为正数,n为负数,则m,m-n,m+n的大小关系是( )

A、m>m-n>m+n B、m+n>m>m-n

C、m-n>m+n>m D、m-n>m>m+n

18、若 =a+b-c-d, 则 的值是( )

A、4 B、-4 C、10 D、-10

19、计算:-1.9917的结果是( )

A、33.83 B、-33.83 C、-32.83 D、-31.83

20、如果两个有理数的积小于零,和大于零,则这两个有理数( )

A、符号相反 B、符号相反且负数的绝对值大

C、符号相反且绝对值相等 D、符号相反且正数的绝对值大

21、在计算( - + )(- 36)时,可以避免通分的运算律是( )

A、加法交换律 B、分配律 C、乘法交换律 D、加法结合律

22、定义运算:对于任意两个有理数a、b,有a*b=(a-1)(b+1) 则计算-3*4的值是( )

A、12 B、-12 C、20 D、-20

23、已知0>a>b,则 与 的大小是( )

A、 > B、 = C、 < D、无法判定

24、若 = -1,则a是( )

A、正数 B、负数 C、非正数 D、非负数

25、已知a与b互为倒数,m与n互为相反数,则 ab-3m-3n的值是( )

A、-1 B、1 C、- D、

二、填空题

1.减去一个数,等于加上 ,除以一个数,等于乘以_______________.

2.用科学记数法表示138000000得_____________

3.绝对值小于4的整数的积是__________

4.比较大小:-0.1 ___________ (-0.1)

5.一个数的平方等于它的绝对值,则这个数是____________________

6.列式计算:3的二次幂与- 的积的相反数______________________________

7.已知 =4, =3,当ab0时,a-b=______________

8、小丽沿着东西方向的道路行走,她先向正东方向走77米,再向正西方向走108 米,最后小丽停在出发点 方向 米处。

9、当x、y 满足 时,│x│+│y│=│x+y│成立。

10、(- 4 )+( )= -2 ( )-(-6 )=2

11、已知有理数a.b在数轴上的对应点位置如图所示: ? ? ?

b o a

化简:①│a│-a= ③│a│+│b│=

②│a+b│= ④│b-a│=

12、3.141 +0.314 -31.40.2= 。

13、两个有理数相乘,若把其中一个因数换成它的相反数,则所得的积是原来的积的 。

14、已知3a是一个负数,则a是 数

15、数b与它的倒数 相等,则b= 。

16、(1)绝对值不大于20xx的所有整数的和是 ,积是 。

17、 的0.12倍等于-14.4

三、解答题

1、- 2、

3.-1.53 4、 -2

5、 6、(- )

7、( - + )(- 63) 8、-150(- )-250.125+50(- )

9、3 (- )-(- )2 - (- )

10、{1+[ -(- )](-2)}(- - -0.05)

11、(1)已知a、b互为相反数,c、d互为倒数,求 的值;

本文网址:http://m.jk251.com/jiaoan/45478.html

相关文章
最新更新

热门标签