随着教师工作的不断熟练,我们需要撰写教案,我们可以通过教案来进行更好的教学,做好教案对我们未来发展有着很重要的意义,教案该怎么写?本站收集整理了一些“月度教案精选 《分数的基本性质》教学思考其八”,欢迎大家阅读,希望对大家有所帮助。
《分数的基本性质》是人教版小学五年级下册数学教材第的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习通分、约分、比的基本性质的基础,而通分、约分又是分数计算的基础,因此,理解分数的基本性质显得尤为重要。本节课与传统的概念教学相比,有很大的改进,体现了新的教学理念,主要表现在以下几个方面:
一、教师角色的把握非常准确。
《数学课程标准》指出:“教师是数学学习的组织者、引导者与合作者。”在本节课中,王老师很好的为我们诠释了这句话。王老师为学生提供了有趣的故事情境以及大量的数学素材,让学生去观察、感悟,及时精辟的启发点拨,加上极具亲和力的自然交流。这些都体面了教师是数学学习的组织者、引导者与合作者。从中也看出王老师那种超强的课堂驾驭能力。
二、构建自主探究、小组合作的课堂教学模式。
兴趣的是最好的老师,王老师充分的利用这一点,以一个精彩的智力故事:和尚分饼引入新课,直接为教学服务,给人以开门见山的感觉,给学生制造悬念,并引导学生自主探究、小组合作交流,在变与不变中发现规律、总结规律。
三、练习的设计颇具匠心。
在练习这一环节,王老师精心设计了由浅入深的题目,既巩固了新知有发展了学生的能力。
不管多么完美的课堂,总会留有小小的遗憾,这也是我们不断探究的动力。在本节课中王老师出示第二组分数时,如果让学生动手操作,既锻炼了学生的能力,又可从中感知分数的基本性质。
当我们提起教学,你印象最深刻的一定是教案吧。编写教案能够提高自己的教学研究能力,要想在教学中不断进取,其秘诀之一就是编写好教案。对于教案的撰写你是否毫无头绪呢?下面是由小编为大家整理的热搜教案: 分数的基本性质教学思考(篇三),仅供参考,欢迎大家阅读。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
第一课时
(一)教学过程
【复习提问】
1.分式的定义?
2.分数的基本性质?有什么用途?
【新课】
1.类比分数的基本性质,由学生小结出:
分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:
,
(其中是不等于零的整式.)
2.加深对分式基本性质的理解:
例1下列等式的右边是怎样从左边得到的?
(1);
由学生口述分析,并反问:为什么?
解:∵
∴.
(2);
学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)
解:∵
∴.
(3)
学生口答.
解:∵,
∴.
例2填空:
(1);
(2);
(3);
(4).
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.
例3不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.
(1);
分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?
解:.
(2).
解:.
例4判断取何值时,等式成立?
学生分组讨论后得出结果:
∴.
(二)随堂练习
1.当为何值时,与的值相等()
A.B.C.D.
2.若分式有意义,则,满足条件为()
A.B.C.D.以上答案都不对
3.下列各式不正确的是()
A.B.
C.D.
4.若把分式的和都扩大两倍,则分式的值
A.扩大两倍B.不变
C.缩小两倍D.缩小四倍
(三)总结、扩展
1..
2.性质中的可代表任何非零整式.
3.注意挖掘题目中的隐含条件.
4.利用将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件.
(四)布置作业
教材P61中2、3;P62中B组的1
(五)板书设计
本文网址:http://m.jk251.com/jiaoan/47476.html