9.2实际问题与一元一次不等式(一)教学目标:1.会解一元一次不等式.2.会用不等式来表示实际问题中的不等关系.教学重点、难点:教学过程:复习提问:解一元一次不等式的一般步骤是什么?新课:例1解不等式3(1-x)-3о•-30这个不等式的解集在数轴上表示如下:归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa)的形式.练习:p140练习1、2例2XX年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到XX年这样的比值要超过70%,那么XX年空气质量良好的天数要比XX年至少增加多少?讨论XX年北京空气质量良好的天数是多少?用x表示XX年增加的空气质量良好的天数,则XX年北京空气质量良好的天数是多少?与x有关的哪个式子的值应超过70%?这个式子表示什么?例3某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?练习:p140-3p141-5、6作业:p141习题9.2――7、8、9
一元一次不等式和它的解法
一、教学目标:
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用
数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入
对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的
方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式
的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作
的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经
历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使
学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系
起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法
解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的
思维。
四、教具:计算机辅助教学.
五、教学流程:
(一)、复习:
教学环节
教师活动
学生活动
设计意图
导
入
新
课
1.给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤)
2.学生回忆不等式的性质,并说出解不等式的关键在哪里。
3.让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。
4.新课导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。
1.学生练习,并说出解一元一次方程的步骤。
2.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。(出示课件第2页)
3.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。
4.明确本课目标,进入对新课的学习。
1.复习解一元一次方程的解法和步骤。
2.让学生回顾性质,以加强对性质的理解、掌握。
3.运用类比思维
4.自然过度,出示课件第3、4张
(二)、新授:
教学环节
教师活动
学生活动
设计意图
探
究
一
元
一
次
不
等
式
的
解
法
1、学生观察课本第61页例3,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。
2.分析学生的解答,提醒学生在解不等式中常见的错误:不等式两边同乘(除)同一个负数不等号方向要改变。
3.激励学生完成对(2)解答,并找学生上讲台演示。
4.强调在数轴上表示解集时的关键(出示课件第8页)
5.出示练习(出示课件第9页)
6.鼓励学生讨论课本第61页的例4。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页)
7.指导学生归纳步骤。
8.补充适当的练习,以巩固学生所学。(出示课件第12页)
1.类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。
2.学生类比解一元一次方程的步骤
与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页)
3.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。
4.理解、体会在数轴上表示解集的方法和关键。
5.学生组内讨论完成。
6.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。.
7.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页)
8.认真完成练习。
1.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张)
2.巩固对一般解法的理解、掌握。
3.通过类比归纳,提高学生的自学能力。(出示课件第7页)以订正学生解答。
4.让学生明白不等式的解集是一个范围,而方程的解是一个值。
5.培养学生的扩展能力。
6.类比一元一次方程的解法以加深对一元一次不等式解法的理解。
7.通过动手、动脑使所学知识得到巩固。
8.巩固所学。
(三)、小结与巩固:
教学环节
教师活动
学生活动
设计意图
小
结
与
巩
固
1.引导学生对本课知识进行归纳。
2.学生完成后(出示课件第13、14页)。
3.练习与巩固。
1.学生组内讨论小结,组长帮助组员对知识巩固、提升。
2.学生加强理解。
3.完成练习:书63页第4题,第5(2、4)题。
1.培养学生总结、归纳的能力。
2.点拨学生对知识的理解与掌握。
3.巩固本课所学。
教学建议
一、知识结构
二、重点难点分析
本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.
1﹒一元一次不等式和一元一次方程概念的异同点
相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.
不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.
(3)同方程类似,我们把或叫做一元一次不等式的标准形式.
2﹒一元一次不等式和一元一次方程解法的异同点
相同点:步骤相同,二者都是经过变形,把左边变成,右边变为一个常数.
不同点:在进行第(1)步去分母和第(5)步将项的系数化为1的变形时,要根据同乘(或同除)的数的正负,决定是否要改变不等号的方向.当然,如果不能确定同乘(或同除)的数的符号时,就要进行讨论.这正是解不等式时最容易发生错误的地方.
注意:(1)解方程的移项法则对解不等式同样适用.
(2)解不等式时,上述的五个步骤不一定都能用到,并且也不一定按照自上而百的顺序,要根据不等式形式灵活安排求解步骤.熟练后,步骤及检验还可以合并简化.
三、教法建议
在讲一元一次不等式的解法时,应突出抓住与方程解法不同的地方,加强“去分母”和“系数化成l”这两个步骤的训练,因为这两个步骤会出现“在不等式两边都乘以(或除以)同一个负数,不等号的方向改变”的情况,为此可以同一元一次方程对照着讲.
解不等式的过程就是将不等式进行同解变形的过程,这也是一种运算.新大纲规定:“运算能力包括会根据法则公式等正确地进行运算,理解运算的算理,能根据题目条件寻求合理,简捷的运算途径.”要培养解不等式的能力首先要使学生理解和掌握算理,即掌握不等式的基本性质,正确理解不等式、不等式的解集等有关概念.
这节课是在复习一元一次方程的基本思想和步骤中学习解一元一次不等式的.要突出不等式基本性质3,这是解不等式容易出错的地方.同时还要反复提醒同学注意克服解方程变形中常犯的错误,在解不等式中也要重现.
(一)
一、素质教育目标
(一)知识教学点
1.了解一元一次不等式的定义.
2.掌握一元一次不等式的解法.
(二)能力训练点
1.培训学生运用类比方法处理相关内容的能力.
2.培养学生用所学知识解决实际问题的能力.
(三)德育渗透点
通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立学生辩证唯物主义的思想方法.
(四)美育渗透点
通过本节课的学习,渗透不等式解集的奇异的数学美.
二、学法引导
1.教学方法:类化法、引导实践法、练习法.
2.学生学法:抓住解方程的一般解题步骤,归纳出解不等式的一般步骤.
三、重点·难点·疑点及解决方法
(一)重点
掌握一元一次不等式的解法、步骤并准确地求出解集.
(二)难点
正确运用不等式的基本性质3,避免变形中出现错误.
(三)疑点
弄清一元一次不等式与一元一次方程的异同.
(四)解决方法
观察比较一元一次方程与一元一次不等式解题步骤的区别及注意点,从而更准确地掌握一元一次不等式的解题步骤并重视易出错的环节.
四、课时安排
一课时.
五、教具学具准备
直尺、投影仪或电脑、胶片.
六、师生互动活动设计
1.通过复习一元一次方程的概念及一般解题步骤,为本节课新授一元一次不等式的求解打下良好的坚实基础.
2.通过类比的办法引入一元一次不等式的概念及求解方法.教师一边示范一边提问让学生通过观察、类比从而加深对一元一次不等式求解的理解.
3.通过反复的练习,让学生掌握常见含字母的不等式的求解办法.从而达到熟能生巧的目的.
七、教学步骤
(一)明确目标
本节课将学习一元一次不等式的求解办法,并能熟练地解之.
(二)整体感知
让学生通过类比的方法既复习了一元一次方程的求解,又快捷地掌握一元一次不等式的求解,从而能更好地区分一元一次方程和一元一次不等式的求解过程的差异.
(三)教学过程
1.创设情境,复习引入
(1)提问:①什么叫一元一次方程?
②它的标准形式是什么?
③解一元一次方程的一般步骤是什么?
④一元一次方程一定有解吗?有几个解?
(2)解下列方程:①.
②,并在数轴上表示它们的解.
(3)指出不等式的解集,并在数轴上表示出来.
学生活动:第(1)题口答,第(2)题、第(3)题在练习本上完成,指定三个学生板演,完成后由学生判断是否正确.
教师活动:纠正,强调解方程时的常见错误及“·”与“。”的使用区别.然后指出,解不等式与解一元一次方程相比,最大的区别就是式子两边乘或除以同一个负数时,“不等号”需改变方向,“等号”不改变.除此之外的对式子进行的任何其他变形都是完全相同的.
【教法说明】由于一元一次不等式与一元一次方程在诸多方面都有联系,因此,教学时光复习一元一次方程的有关内容,然后引入一元一次不等式的相应内容,通过仿同求异对比来学习,这样既降低了学习难度,又强化了对新知识的理解.
2.探索新知,讲授新课
大家知道,不等式的解集是,变形的理论依据是不等式基本性质1,相当于解方程的移项法则,实际上,解不等式就是运用不等式的三条基本性质,对不等式进行适当变形(去分母、去括号、移项、合并同类项、化系数为1)最终将不等式变形为或的形式,即求出不等式的解集.
大家知道,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程,例如.一元二次方程的标准形式是.类似地,只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式,例如.
一元一次不等式的标准形式为或
注意问题:判断一个不等式是否为一元一次不等式,应先将它化成最简形式,再用定义判断.形如的不等式不是一元一次不等式,而是矛盾不等式.
解一元一次不等式与解一元一次方程有类似的步骤,但一定要注意当不等式的两边同乘(或除以)同一个负数时,不等号要改变方向.
例1解不等式,并把它们的解集在数轴上表示出来.
例2解不等式,并把它们的解集在数轴上表示出来.
师生活动:教师板书例1,学生板书例2.(同桌交换练习,指出对方错误井纠正)
(1)解方程:
解:去括号,得
移项,得
合并同类项,得
化系数为1,得
方程的解在数轴上表示如下:
例1解不等式:
解:去括号,得
移项,得
合并同类项,得
化系数为1,得
不等式的解在数轴上表示如下:
(2)解方程:
解:去分母,得
去括号,得
移项,得
合并同类项,得
化系数为1,得
方程的解在数轴上表示如下:
例2解不等式
解:去分母,得
去括号,得
移项,得
合并同类项,得
化系数为1,得
不等式的解在数轴上表示如下:
【教法说明】①通过对比一元一次不等式与一元一次方程的解题步骤,一方面加深学生对相同点的认识,另一方面强化学生对不同点的理解、认识和记忆.
②教学时,教师要注意强调不等式性质3的应用、方程变形中常见的错误,及实心圆点与空心圆圈的区别.
3.尝试反馈,巩固知识
解下列不等式:
①②③④
⑤(并在数轴上表示其解集)
答案:①②③④⑤
解⑤:去分母,得
去括号,得
移项,得
合并同类项,得
系数化为1,得
不等式的解集在数轴上表示如下:
【教法说明】教学时,①、②小题可作抢答题,③、④小题在练习本上完成,然后与投影出示的正确答案进行对比.⑤小题学生口述,这样既锻炼了学生的运算能力,强化了竞争意识,同时也检验了学生解不等式的能力.
4.变式训练,培养能力
(1)解下列不等式,并把它们的解集在数轴上表示出来.
①②
答案:①②
师生活动:首先学习练习,教师巡视,了解做题情况.接着与正确解题过程进行对比,最后教师对练习中的共性错误进行纠正和强调.
(2)单项选择题:
①下列各式中,是一元一次不等式的是()
A.B.
C.D.
②不等式的解集是()
A.B.C.D.
③在解不等式的过程中,①去分母得②移项得③合并得④解集为:
其中错误的是()
A.①B.②C.③D.④
④下列不等式中,解集不同的是()
A.与B.与
C.与D.与
答案:D,C,D,D.
学生活动:分析思考,讨论完成,指名回答并说出理由.
教师活动:纠正错误及强调注意事项.
【教法说明】通过同桌(或前后桌)的分析讨论,各抒己见,即激发了学生的学习兴趣又强化了学生思维的灵敏性、科学性、主动性.
(四)归纳、扩展
1.本节重点:
一元一次不等式的概念及其解法.
2.注意问题:
①不等式性质3的正确使用.
②避免不等式变形中常见的错误(去分母时不要漏乘,移项要变号,书写不能连写不等号等).
八、布置作业
(一)必做题:P73A组1.(1)(2)(4)(5).
(二)选做题:P73~P74A组2.(2)(4)(6);B组1.
参考答案
(一)1.(1)(2)(4)(5)
(二)2.(2)(4)(6)
1.
九、板书设计
6.3(一)
一、一元一次不等式
1.概念:只含有一个未知数且未知数次数为1,系数不为0的不等式叫一元一次不等式.
注意:针对最简形式而言.
2.标准形式或(其中)
二、解法(与一元一次方程进行对比)
1.例1
解:解:
2.例2
解:解:
三、小结
注意:1.不等式性质3.
2.变形中常见错误.
9.2.1实际问题与一元一次不等式
[学习目标]
1.会解一元一次不等式.
2.会用不等式来表示实际问题中的不等关系.
[学习重点]掌握解一元一次不等式的步骤;会用一元一次不等式解决简单的实际问题.
[学习难点]寻找实际问题中的不等关系,建立数学模型.
[学习过程]
一、春耕
1.不等式的基本性质有哪些?
2、解下列不等式,并把解集在数轴上表示出来
(1)3x3.
.二、夏耘:
例甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?
这个问题较复杂,从何处入后考虑它呢?
甲商店优惠方案的起点为购物款达___元后;
乙商店优惠方案的起点为购物款过___元后.
我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
三、秋收:
1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙.分别计算两家旅行社的收费(建立表达式);
(2)当学生数是多少时,两家旅行社的收费一样?
(3)就学生数x讨论哪家旅行社更优惠.
2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:
(1)买一只茶壶送一只茶杯;
(2)按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).
请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?
3.某人的移动电话(手机)可选择两种收费办法中的一种,甲种收费办法是,先交月租费50元,每通一次电话再收费0.40元;乙种收费办法是,不交月租费,每通一次电话收费0.60元.问每月通话次数在什么范围内选择甲种收费办法合适?在什么范围内时选择乙种收费办法合适?
四、冬藏(补充练习):
1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费.问这批货在月初还是月末售出好.
2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元.如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元.问该单位是用自来水公司的水合算,还是自建水泵房抽水合算.
3.错题回顾
9.2实际问题与一元一次不等式(二)教学目标:1.会解一元一次不等式.2.会用不等式来表示实际问题中的不等关系.教学重点、难点:教学过程:新课:例甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?这个问题较复杂,从何处入后考虑它呢?甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的起点为购物款过___元后.我们是否应分情况考虑?可以怎样分情况呢?(1)如果累计购物不超过50元,则在两店购物花费有区别吗?(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?(3)如果累计购物超过100元,那么在甲店购物花费小吗?练习:1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙.分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样?(3)就学生数x讨论哪家旅行社更优惠.2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?3.某人的移动电话(手机)可选择两种收费办法中的一种,甲种收费办法是,先交月租费50元,每通一次电话再收费0.40元;乙种收费办法是,不交月租费,每通一次电话收费0.60元.问每月通话次数在什么范围内选择甲种收费办法合适?在什么范围内时选择乙种收费办法合适?
补充练习:1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费.问这批货在月初还是月末售出好.2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元.如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元.问该单位是用自来水公司的水合算,还是自建水泵房抽水合算.
教学目标1.使学生掌握含有以常数为分母的一元一次方程的解法;2.培养学生观察、分析、归纳及概括的能力,加强他们的运算能力.教学重点:含有以常数为分母的一元一次方程的解法.教学难点:正确地去分母.(一)情境创设:与书同(二)探索活动由情景问题入手,引导学生审清题意,根据等量关系:学生总数的+学生总数的+学生总数的+3=学生总数列出方程.即设毕达哥拉斯的学生有x名,想一想由题意得+++3=x.学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较.思考:(1)怎样才能将它化成上节课中所学的方程的类型?(去分母)(2)如何去分母?(方程的每一项都乘以分母的最小公倍数)(三)自学例题1、解方程-=-1解:(本题应如何去分母?学生答)去分母,得4(2x-1)-(10x+1)=3(2x+1)-12,去括号,得移项,得合并同类项,得-8x=-4,系数化1,得x=(1)为了去分母,方程两边应乘以什么数?.(2)去分母应注意什么?.例2、解方程=+1例3、(2x-5)=(x-3)-去分母时须注意:(1)(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体.建议进行专项训练,如,-乘以6,8……例4、-=3总结:解方程的一般步骤:1、去分母;2、去括号;3、移项;4、合并同类项;5、系数化为1(四)、教学小结:首先,应让学生思考以下问题,并回答:1.形式上比较复杂的一元一次方程是怎样求解的?2.它的解法的主要思路是什么?3.它的解法的主要步骤是什么?在计算或变形时,要养成良好的教学习惯,注意书写格式的规范性,避免在去分母,去括号、移项时易犯的错误.
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是的概念及在数轴上表示的方法.难点为的概念.
1.不等式的解与方程的解的意义的异同点
相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.
不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如,能使不等式成立,那么是不等式的一个解,类似地等也能使不等式成立,它们都是不等式的解,事实上,当取大于的数时,不等式都成立,所以不等式有无数多个解.
2.不等式的解与解集的区别与联系
不等式的解与是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.
注意:必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.
3.不等式解集的表示方法
(1)用不等式表示
一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式的解集是.
(2)用数轴表示
如不等式的解集,可以用数轴上表示4的点的左边部分表示,因为包含,所以在表示4的点上画实心圆.
如不等式的解集,可以用数轴上表示4的点的左边部分表示,因为包含,所以在表示4的点上画实心圈.
注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
一、素质教育目标
(一)知识教学点
1.使学生了解、解不等式的概念,会在数轴上表示出.
2.知道不等式的“解集”与方程“解”的不同点.
(二)能力训练点
通过教学,使学生能够正确地在数轴上表示出,并且能把数轴上的某部分数集用相应的不等式表示.
(三)德育渗透点
通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.
(四)美育渗透点
通过本节课的学习,让学生了解可利用图形来表达,渗透数形结合的数学美.
二、学法引导
1.教学方法:类比法、引导发现法、实践法.
2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示,在数轴上表示时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
三、重点·难点·疑点及解决办法
(一)重点
1.不等式解集的概念.
2.利用数轴表示.
(二)难点
正确理解不等式解集的概念.
(三)疑点
弄不清与方程的解的区别、联系.
(四)解决办法
弄清楚不等式的解与解集的概念.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片、直尺.
六、师生互动活动设计
(一)明确目标
本节课重点学习,解不等式的概念并会用数轴表示.
(二)整体感知
通过枚举法来形象直观地推出,再给出不等式解集的概念,从而更准确地让学生掌握该概念.再通过师生的互动学习用数轴表示,从而为今后求不等式组的解集打下良好的基础.
(三)教学过程
1.创设情境,复习引入
(1)根据不等式的基本性质,把下列不等式化成或的形式.
①②
(2)当取下列数值时,不等式是否成立?
l,0,2,-2.5,-4,3.5,4,4.5,3.
学生活动:独立思考并说出答案:(1)①②.(2)当取1,0,2,-2.5,-4时,不等式成立;当取3.5,4,4.5,3时,不等式不成立.
大家知道,当取1,2,0,-2.5,-4时,不等式成立.同方程类似,我们就说1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3这些使不等式不成立的数就不是不等式的解.
对于不等式,除了上述解外,还有没有解?解的个数是多少?将它们在数轴上表示出来,观察它们的分布有什么规律?
学生活动:思考讨论,尝试得出答案,指名板演如下:
【教法说明】启发学生用试验方法,结合数轴直观研究,把已说出的不等式的解2,0,1,-2.5,-4用“实心圆点”表示,把不是的解的数值3.5,4,4.5,3用“空心圆圈”表示,好像是“挖去了”.
师生归纳:观察数轴可知,用“实心圆点”表示的数都落在3的左侧,3和3右侧的数都用空心圆圈表示,从而我们推断,小于3的每一个数都是不等式的解,而大于或等于3的任何一个数都不是的解.可以看出,不等式有无限多个解,这无限多个解既包括小于3的正整数、正小数、又包括0、负整数、负小数;把不等式的无限多个解集中起来,就得到的解的集会,简称不等式的解集.
2.探索新知,讲授新课
(1)
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个.
①以方程为例,说出一元一次方程的解的情况.
②不等式的解的个数是多少?能一一说出吗?
(2)解不等式
求的过程,叫做解不等式.
解方程求出的是方程的解,而解不等式求出的则是,为什么?
学生活动:观察思考,指名回答.
教师归纳:正是因为一元一次方程只有惟一解,所以可以直接求出.例如的解就是,而不等式的解有无限多个,无法一一列举出来,因而只能用不等式或揭示这些解的共同属性,也就是求出.实际上,求某个就是运用不等式的基本性质,把原不等式变形为或的形式,或就是原不式的解集,例如的解集是,同理,的解集是.
【教法说明】学生对一元一次方程的解印象较深,而不等式与方程的相同点较多,因而易将与“方程的解”混为一谈,这里设置上述问题,目的是使学生弄清与“方程的解”的关系.
(3)在数轴上表示
①表示不等式的解集:()
分析:因为未知数的取值小于3,而数轴上小于3的数都在3的左边,所以就用数轴上表示3的点的左边部分来表示解集.注意未知数的取值不能为3,所以在数轴上表示3的点的位置上画空心圆圈,表示不包括3这一点,表示如下:
②表示的解集:()
学生活动:独立思考,指名板演并说出分析过程.
分析:因为未知数的取值可以为-2或大于-2的数,而数轴上大于-2的数都在-2右边,所以就用数钢上表示-2的点和它的右边部分来表示.如下图所示:
注意问题:在数轴上表示-2的点的位置上,应画实心圆心,表示包括这一点.
【教法说明】利用数轴表示不等式解的解集,增强了解集的直观性,使学生形象地看到不等式的解有无限多个,这是数形结合的具体体现.教学时,要特别讲清“实心圆点”与“空心圆圈”的不同用法,还要反复提醒学生弄清到底是“左边部分”还是“右边部分”,这也是学好本节内容的关键.
3.尝试反馈,巩固知识
(1)与有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.
(2)在数轴上表示下列.
①②③④
(3)指出不等式的解集,并在数轴上表示出来.
师生活动:首先学生在练习本上完成,然后教师抽查,最后与出示投影的正确答案进行对比.
【教法说明】教学时,应强调2.(4)题的正确表示为:
我们已经能够在数轴上准确地表示出,反之若给出数轴上的某部分数集,还要会写出与之对应的来.
4.变式训练,培养能力
(1)用不等式表示图中所示的解集.
【教法说明】强调“·”“°”在使用、表示上的区别.
(2)单项选择:
①不等式的解集是()
A.B.C.D.
②不等式的正整数解为()
A.1,2B.1,2,3C.1D.2
③用不等式表示图中的解集,正确的是()
A.B.C.D.
④用数轴表示正确的是()
学生活动:分析思考,说出答案.(教师给予纠正或肯定)
【教法说明】此题以抢答形式茁现,更能激发学生探索知识的热情.
(四)总结、扩展
学生小结,教师完善:
1.本节重点:
(1)了解的概念.
(2)会在数轴上表示.
2.注意事项:
弄清“·”还是“°”,是“左边部分”还是“右边部分”.
七、布置作业
必做题:P65A组3.(1)(2)(3)(4)
八、板书设计
6.2
一、1.:一般地,一个含有未知数的不等式的所有的解组成这个不等式的解的集合,简称.
2.解不等式:求不等式解的过程
二、在数轴上表示
1.2.
三、注意:(1)“·”与“°”;(2)“左边部分”与“右边部分”.
教学目标
1.使学生正确理解不等式的解,不等式的解集,解不等式等概念,掌握在数轴上表示不等式的解的集合的方法;
2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;
3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.
教学重点和难点
重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.
难点:不等式的解集的概念.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)
2.用不等式表示:
(1)x的3倍大于1;(2)y与5的差大于零;
3.当x取下列数值时,不等式x+3<6是否成立?
-4,3.5,4,-2.5,3,0,2.9.
(2、3两题用投影仪打在屏幕上)
二、讲授新课
1.引导学生运用对比的方法,得出不等式的解的概念
2.不等式的解集及解不等式
首先,向学生提出如下问题:
不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?
(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3<6的解的数值-4,-2.5,0,2.9用实心圆点画出,将不是x+3<6的解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)
然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的解的集合.简称不等式x+3<6的解集,记作x<3.
最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)
一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.
不等式一般有无限多个解.
求不等式的解集的过程,叫做解不等式.
3.启发学生如何在数轴上表示不等式的解集
我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x+3<6的解集x<3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)
在数轴上表示3的点的左边部分,表示解集x<3.如下图所示.
由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x=3这个点)
记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.
例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.
即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含X=-2,故其中表示-2的点用实心圆点表示.
此处,教师应强调,这里特别要注意区别是用空心圆圈“°”还是用实心圆点“·”,是左边部分,还是右边部分.
三、应用举例,变式练习
例1在数轴上表示下列不等式的解集:
(4)1≤x≤4;(5)-2<x≤3;(6)-2≤x<3.
解:(1),(2),(3)略.
(4)在数轴上表示1≤x≤4,如下图
(5)在数轴上表示-2<x≤3,如下图
(6)在数轴上表示-2≤x<3,如下图
(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视,遇到问题,及时纠正)
例2用不等式表示下列数量关系,再用数轴表示出来:
(1)x小于-1;(2)x不小于-1;
(3)a是正数;(4)b是非负数.
解:(1)x小于-1表示为x<-1;(用数轴表示略)
(2)x不小于-1表示为x≥-1;(用数轴表示略)
(3)a是正数表示为a>0;(用数轴表示略)
(4)b是非负数表示为b≥0.(用数轴表示略)
(以上各小题分别请四名学生回答,教师板书,最后,请学生在笔记本上画数轴表示)
例3用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)
解:(1)x<2;(2)x≥-1.5;(3)-2≤x<1.
(本题从另一侧面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)
练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.
(2)在数轴上表示下列不等式的解集:
①x>3;②x≥-1;③x≤-1.5;
(3)*观察不等式x-4<0的解集是什么?用不等式和数轴分别表示出来.它的正数解是什么?自然数解是什么?(*表示选作题)
四、师生共同小结
针对本节课所学内容,请学生回答以下问题:
1.如何区别不等式的解,不等式的解集及解不等式这几个概念?
2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.
3.记号“≥”、“≤”各表示什么含义?
4.在数轴上表示不等式解集时应注意什么?
结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的唯一标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“°”和实心圆点“·”.
五、作业
1.不等式x+3≤6的解集是什么?
2.在数轴上表示下列不等式的解集:
(1)x≤1;(2)x≥0;(3)-1<x≤5;
3.求不等式x+2<5的正整数解.
本文网址://m.jk251.com/jiaoan/5297.html
下一篇:简单的线性规划(二)