导航栏

×
范文大全 > 教案

[精选教案] 解二元一次方程组教学反思精选一篇

时间:2022-10-24 二元一次方程组 二元一次方程组教案

每个老师为了上好课需要写教案课件,撰写教案课件是每位老师都要做的事。写好了完备的教案课件,才能让学生更加快速地理解各知识点。其他人的优质教案课件是怎么写成的呢?以下是小编收集整理的“[精选教案] 解二元一次方程组教学反思精选一篇”,欢迎您参考,希望对您有所助益!

“解二元一次方程组”是“二元一次方程组”一章中很重要的知识,占有重要的地位。通过本节课的教学,使学生会用加减消元法解二元一次方程组,进一步了解“消元”的思想。加减法解二元一次方程组的基本思想与代入法相同,仍是“消元”化归思想,通过代入法、加减法这些手段,使二元方程转化为一元方程,从而使“消元”化归这一转化思想得以实现。因此在设计教学过程时,注重化归意识的点拨与渗透,使学生在学习中逐步体会理解这种具有普遍意义的分析问题、解决问题的思想方法。

教学后发现,大部分学生能够较快学会加减消元法解二元一次方程组。教学一开始给出了一个二元一次方程组,在例题选取上把有方程组的同一个未知数的系数分别为1和—1的二元一次方程组交给学生,学生利用自己已有的知识解决这一问题,先让学生用代入法求解,再把两个方程直接相加达到消元的目的,从而引出本节课的主题。既复习了旧知识,又引出了新课题,引发学生探究的兴趣。通过学生的观察、发现,理解加减消元法的原理和方法,使学生明确使用加减法的条件,体会在一定条件下使用加减法的优越性。之后,通过展示两个书写较好学生的练习来帮助学生规范书写,同时明确用加减法解二元一次方程组的步骤。接下来,通过一系列的练习来巩固加减消元法的应用,并在练习中摸索运算技巧,培养能力,训练学生思维的灵活性及分析问题、解决问题的综合能力。同学们对加减法解二元一次方程组有较浓厚的兴趣,解答答起来也特别得心应手,但有个别同学在方程相减时出现负号的运算上比较容易出错,运用的灵活性掌握得不太好,解答起来速度较慢,我想只要多加练习,一定会又快又准确的,这一点在许多学生身上已经得到印证。

jk251.coM小编推荐

2025解二元一次方程组的教案


我们听了一场关于“解二元一次方程组的教案”的演讲让我们思考了很多。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。经过阅读本页你的认识会更加全面!

解二元一次方程组的教案 篇1

教学建议

1.教材分析

(1)知识结构

(2)重点、难点分析

重点:本小节的重点是使学生学会用加减法解二元一次方程组.这也是一种全新的知识,与在一元一次方程两边都加上、减去同一个数或同一个整式,或者都乘以、除以同一个非零数的情况是不一样的,但运用这项知识(这里也表现为一种方法),有时可以简捷地求出二元一次方程组的解,因此学生同样会表现出一种极大的兴趣.必须充分利用学生学会这种方法的积极性.加减(消元)法是解二元一次方程组的基本方法之一,因此要让学生学会,并能灵活运用.这种方法同样是解三元一次方程组和某些二元二次方程组的基本方法,在教学中必须引起足够重视.

难点:灵活运用加减法的技巧,以便将方程变形为比较简单和计算比较简便,这也要通过一定数量的练习来解决.

2.教法建议

(1)本节是通过一个引例,介绍了加减法解方程组的基本思想和解题过程.教学时,要引导学生观察这个方程组中未知数系数的特点.通过观察让学生说出,在两个方程中y的系数互为相反数或在两个方程中x的系数相等,让学生自己动脑想一想,怎么消元比较简便,然后引出加减消元法.

(2)讲完加减法后,课本通过三个例题加以巩固,这三个例题是由浅入深的,讲解时也要先让学生观察每个方程组未知数系数的特点,然后让学生说出每个方程组的解法,例题1老师自己板书,剩下的两个例题让学生上黑板板书,然后老师点评.

(3)讲解完本节后,教师应引导学生比较代入法与加减法这两种方法,这两种方法虽有不同,但实质都是消元,即通过消去一个未知数,把“二元”转化为“一元”.也就是说:

这时学生对解题方法比较熟悉,但还没有上升到理论的高度,这时教师应及时点拨、渗透化归转化的思想,并指出这是具有普遍意义的分析问题、解决问题的思想方法.?

教学设计示例

(第一课时)

一、素质教育目标

(一)知识教学点

解二元一次方程组的教案 篇2

1 在方程2x+3y=5中,如果x=y,则x=_____, y=_________.

2 如果x=2a,y=3a.则2x+3y=__________.

3 设第一个数是第二个数的2倍,第一个数与第二个数的2倍之和为20,求这个数?

(设第一个数为x,第二个数为y,则有 ,所以)

三 利用投影:一个苹果和一个梨的质量合计这个苹果的质量加上一个问苹果和梨的质量各为多少克?

☆ 教师评语:在这个问题中如果设苹果和梨的质量分别为x克和y克,同学们能列出几个方程,请同学们把它们写出来(x+y=

☆ 教师然后解释:方程x+y=200和方程y=x+10中,x ,y都分别表示同一个未知数,也就是说,X,y的值必须同时满足上述两个方程,因此可以把这两个方程合起来,写成

☆ 教师归纳:像这样由两个一次方程组成,并且含有两个未知数的方程组叫作二元一次方程组。

△ 课堂练习P(让学生填表格,然后教师将表中答案说明

2 分四个小组将①②③④个二元一次方程组的结果填入相应的位置

☆ 教师归纳:同时满足二元一次方程组中各个方程的解叫作二元一次方程组的解。

例如 就是这个二元一次方程组 的`解。

例:小聪全家外出旅游,估计需要胶卷底片120张,商店里有两种型号的胶卷:A型每卷36张底片,B型每卷12张底片。小聪一共买了4卷胶卷,刚好有120张底片,如果两种胶卷分别买x卷和y卷,请根据问题中的条件列出关于x,y的方程组,并且列表尝试的方法求两种胶卷的数量。

分析:(1)审题,该问题情境涉及哪些量?哪些是已知的,哪些是未知的?

所求的是哪两个量?问题情境中两种胶卷及底片的总数有什么要求?

(2)分析数量关系,该问题情境主要数量关系有:

每卷胶卷底片的张数×胶卷数=底片总张数:

A,B两种胶卷的总卷数=4

A,B两种胶卷的底片总张数=120

(3)建立数学模型,选择二元一次,则有

△ 课堂练习P91第1,第2题分组合作讨论完成。

△ 探究活动 :略

四 归纳小结,反思提高

1 通过本课的探讨学习,你获得了哪些新知识,你认为有哪些方面的进步。

(让学生进行总结,通过学生个人回顾、合作交流,总结本节课的所作所听所感,让知识系统化、合理化。)

的概念。

3 让学生体验对于含有两个未知数的实际问题可以用方程组来解。

分析数量关系,让学生选择数学模型。

解二元一次方程组的教案 篇3

第五章 一元一次方程

2.解方程(二)

山西省实验中学 贾麟香

一、学生起点分析: 学生在上一节已经掌握了用移项法则解一元一次方程,用等式的基本性质二将方程中未知数的系数化为1,从而转化方程为x=a(a为常数)的形式,也做的很好.

二、学习任务分析:

第一课时要求学生完成用等式基本性质一解方程,分析、观察、归纳出用移项法则,从而简化解方程的步骤.第二课时,让学生体会当方程左右两边含有括号时,如何通过去括号法则将方程化简再运用等式的基本性质一、二使方程变形到“x=a(a为常数)”的形式.

三、教学目标

知识与技能:

1、学习含有括号的一元一次方程的解法.2、进一步体会解方程是运用方程解决实际问题重要环节.过程与方法:通过观察、思考,使学生探索方程的解法,经历和体验用多种方法解方程,提高解决问题的能力.情感态度与价值观:通过对与学生生活贴近的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,体会学习数学的实用性.

四、教学过程设计:

环节一:小组讨论,引入课题

内容:设置问题串,请同学回答

1.上课时解一元一次方程的题型有什么特点? 2.本节课的一元一次方程有什么特点?与上课时的题型差异何在?

1 / 4 目的:因为解一元一次方程不同类型的方程简化方程到“x=a(a为常数)”的手段不同,所以必须培养学生善于分析观察题中所给信息的习惯及能力. 我们知道,一个优秀学生的首要标志就是“不惧生”,即对生面孔的题目总有自己的分 析方式,处理策略,解决办法,那么这些能力的培养是离不开教师在教学过程中,尽可能多地设置让学生自主发现、独立探索思考的机会的.即便错误很多,只要思考就是好的开始. 实际效果:

同学能很清楚地用自己的语言说出自己的看法.认为:

1.课时的内容与课本上的内容有承接关系. 2.本课时增加了方程中含有括号的表达形式,需先去括号,这样就化成上课时所学内容了. 3.去括号要注意括号系数为负系数的问题.

环节二:合作学习

内容:请同学们分析理解156页图解题.1.由同学根据图示编出一道合理的应用题.2.比较此题与本章节第一节引例的实际问题有何区别?

目的:进一步让学生体会数学中问题的提出大都是因人们的生活实践需要,因社会的发展需要,实际问题的“数学化”,数学服务于生活实际随处可见. 在学生由图示内容编题过程中,让学生强化“三种语言”的互话能力.即:文字语言,符号语言和图例语言之间的互相转化.学生着方面能力的培养在教师授课的过程中需要引起关注,将是一个事半功倍的方法,尤其是设法充分利用教材中所呈现内容这一资源,显得尤为重要. 调动学生自主分析及合作学习的积极性,由学生观察分析得出本例与以前北京题目的差

异,发展学生的自主分析能力及强化差异意识,不失为此例的一个功能,即使应给予关注.实际效果:

1、同学完整编出此题:

小林到超市,准备买1听果奶和4听可乐,小明告诉他一听可乐比一听果奶贵5角钱, 小林给了营业员20元钱,找回了3元,大家帮助小林算算一听果奶,一听可乐各是多少钱?

完成的过程体现出学生对图例中已知、未知等相关方面的信息掌握全面,梳理清晰,表达准确.

2 / 4 3、本例及本章节的背景问题,学生们发现设问中的未知量由原来的一个增加到现在的两个,并给出完整的解答过程。这些方面学生都能很完整、准确地给予书面语言的表达,完成得非常好,为后续课程的学习奠定了很好的基础.

环节三:探索交流,深化认识

内容:1.课本157页,例4解方程 -2(x-1)=学生自编一个类似例4的题目,用不同的方法给予解答.目的:一方面让学生继续巩固含括号的一元一次方程的解法;另一方面让学生感受将(x-1)或其他的未知数的代数式看成整体的数学思想.实际效果:

学生在解答此类问题时,总是习惯先去括号,转化成第一课时的方程形式求解,用整体的观念解方程还不够熟练. 编题:解方程:

1、1-(x+1)=、2(2x-1)-1=3(2x-1)+、

32(1?x)?3?(1?x)?有些学生在编题过程中能表现出他们对此类问题理解的准确性与深刻性;知识体系自建的合理性与健全性.知识内化的深入与到位也是非常令人高兴的.

环节四:巩固提高

内容:课本175页随堂练习 方式:条测

实际效果:学生基本能够准确解答此类含括号的一元一次方程,用整体的思想解答问题,这一点学生使用的比较习惯,说明学生对此处渗透的接受程度较高.

环节五:课堂小结

内容:学生之间交流后,将课堂小结誊写在笔记本上.目的:学生的课堂小结看似简单,但是却反映学生知识内化的重要方面,这个过程的实现,通过学生的书面表达完成,更能体现了学生的综合能力.

3 / 4

环节六:布置作业

课后反思: 创造性地使用教材,是教师的主导作用的体现.本课时教材在使用时至少有三处贯穿了这样的思想.教师这个“教练”、“导演”应该引导学生充分利用其课文内在的资源,使其发挥最大的作用.如:

(1)开始引例“图示”的内容,让学生用其素材编题.(2)本例解题过程回答题中两个未知量的解答环节.(3)通过让学生自编用整体思想解答的方程.这些环节的设置,对系统地、全面地培养学生捕捉信息、分析信息和处理信息的能力有非常大的作用,对学生课上反思、课上内化知识的能力提高.作为教师,应该长期坚持与学生在这方面切磋、探索,把课堂充分还给学生,充分尊重学生的个性思维,引导学生构建自己的认知结构,并给予适时调控和指导.

4 / 4

解二元一次方程组的教案 篇4

教学目的

1.使学生了解二元一次方程,二元一次方程组的概念。

2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含

难点;了解二元一次方程组的解的含义。

导学提纲:

1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?

2.阅读教材问题1思考下列问题

⑴.能否用我们已经学过的知识来解决这个问题?

用算术法解答

用一元一次方程解答

解后反思:既然是求两个未知量,那么能不能同时设两个未知数?

⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)

⑶.对于方程x十y=73x+y=17请思考下列问题

①它们是一元一次方程吗?

②这两个方程有没有共同特点/若有,有河共同特点?

③类比一元一次方程的概念,总结二元一次方程的概念

3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)

注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量

4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念

注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.

(2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的解.

5.思考讨论在方程组①②③④

⑤⑥中,属于二元一次方程组的有

达标检测:

1.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:

(1)甲数的比乙数的2倍少7:_____________________________;

(2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;

(3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.

2.下列方程是二元一次方程的是()

A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

3.下列不是二元一次方程组的是()

x+3y=5m+3m=152x+3x=0m+n=5

A、B、C、D、

2x-3x=3+=3-5y=02m+n=6

x=2

4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.

y=-3

5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.

解二元一次方程组的教案 篇5

1学情分析

本节内容是在学生掌握了二元一次方程组的解法,能列二元一次方程组解较简单的应用题的基础上安排的,其中的“牛饲料问题”“种植计划问”“成本与产出问题”是具有一定综合性的问题,涉及到估算与精确计算的比较、开放地探索设计方案、根据图表信息列方程组等问题形式。由于本节需要探究的问题比较复杂,所以在教学的过程中,一方面需要设置部分台阶减小坡度、分散难点,另一方面需要用一些具体的方法引导学生学会分析和表达,还要留给学生充足的思考、交流、整理、反思的时间。在解决问题的过程中,使学生体会到方程组应用的广泛性与有效性,提高分析解决问题的能力。

根据我校农村学校学生的具体学习情况和认知特点,本节内容设计为3个教学课时,第一课时主要引导学生探索列方程组解应用题的步骤和基本思路;第二课时主要进行综合性应用问题的探索;第三课时主要进行思维拓展和巩固提高。

2教学目标

(一)知识与技能

1、会用二元一次方程组解决生产生活中的实际问题;

2、用方程组的数学模型刻画现实生活中的实际问题。

(二)过程与方法

1、培养学生应用方程解决实际问题的意识和应用数学的能力;

2、将解方程组的技能训练与解决实际问题融为一体,进一步提高解方程组的技能。

(三)情感态度与价值观

1、体会方程组是刻画现实世界的有效模型,培养应用数学的意识。

2、在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。

3、结合实际问题,培养学生关注生产劳动、热爱生活的意识,让学生重视数学知识与实际生活的联系。

3重点难点

教学重点:根据题意找出等量关系,列二元一次方程组。

教学难点:正确找出问题中的两组等量关系。

4教学过程

4.1第一学时

教学活动

活动1【导入】活动一:逛公园。

公园一角三个学生的对话:甲:昨天,我们一家8个人去公园玩,买门票花了34元。乙:哦,那你们家去了几个大人?几个小孩呢?丙:真笨,自已不会算吗?成人票5元每人,小孩3元每人啊!

(设计说明:利用学生熟悉的公园购票设计一个简单的问题,在解决这个问题的同时,使学生熟悉列方程解应用题的一般步骤,以及解二元一次方程组常用的方法,为下一步的探究做好准备。)

解:设大人为x人,小孩为y人,依题意得

x+y=8 ①

5x+3y=34 ②

解得

x=5

y=3

答:大人5人,小孩3人。

注:对列出的不同形式的方程组及其解法作简要的比较说明,有意识的引导学生体会解决问题方法的多样性及方法选择的重要性。

(教学说明:以此活动创设一个学生感兴趣的情景,教师提出问题,学生尝试解答,两名学生板演,结合板演订正,提醒学生注意选择简单的方法解方程组,避免重列轻解现象的发生。)

活动2【讲授】活动二:参观农场——合作探究。

养牛场原有30只大牛和15只小牛,1天约需要饲料675kg;一周后又购进12只大牛和5只小牛,这时1天约需要饲料940kg。饲养员李大叔估计平均每只大牛1天约需饲料18至20kg,每只小牛1天约需要饲料7至8kg。请你通过计算检验李大叔的估计是否正确?

问题1:怎样判断李大叔的估计是否正确?

(设计说明:引导学生探寻解题思路,并对各种方法进行比较,方法一主要是要估算的运用,而方法二是方程思想的应用学生在比较探究后发现用方法二较简便,思路明确之后进一步考虑具体解答问题)

判断李大叔的估计是否正确的方法有两种:

1、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验。

2、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确。

(教学说明:教师提出问题,让学生讨论交流,在此过程中可以逐步理解题意,找到解决问题的方法)

问题2 思考:题目中有哪些已知量?哪些未知量?等量关系有哪些?

(设计说明:利用思考中的问题,引导学生分析题目中的数量关系,逐步将学生的思维引向问题的核心,从而顺利解决问题。)

分析:本题的等量关系是

(1)30只母牛和15只小牛一天需用饲料为675kg

(2)(30+12)只母牛和(15+5)只小牛一天需用饲料为940kg

(教学说明:教师先让学生自己阅读思考,然后同学之间互相交流,最后师生共同得出结论)

问题3 如何解这个应用题?

(设计说明:在学生正确理解题意,把握题中数量关系的基础上写出解答过程,一方面可以进一步梳理思路,熟悉解答过程,另一方面把想和做统一起来,在做的过程中发展计算、表达等多种能力。)

解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程组,得

30x+15y=675 ①

(30+12)x+(15+5)y=940 ②

化简得

2x+y=45

2.1x+y=47

解这个方程组得

x=20

y=5

答:每只母牛和每只小牛1天各需用饲料为20kg和5kg,因此,饲养员李大叔对大牛的食量估计较准确,对小牛的食量估计偏高。

(教学说明:学生在写解答过程时,教师重点关注学习有困难的学生,同时平时做事不认真规范的同学也是重点关注对象。完成之后针对出线的问题及时点评,使学生形成良好的学习习惯。)

问题3 总结:列方程组解应用题的一般步骤及需要注意的问题。

(设计说明:问题解决之后及时回顾反思,能更清晰的发现存在的问题及需要改进的地方,便于学生自查、自悟,找到适合自己的学习方法)

审:弄清题目中的数量关系;

设:设出两个未知数;

列:分析题意,找出两个等量关系,根据等量关系列出方程组;

解:解出方程组,求出未知数的值;

验:检验求得的值是否正确和符合实际情形;

答:写出答案(有时要分别作答)。

活动3【练习】活动三:工厂锻炼——知识应用。

(设计说明:通过不同形式的情境设置,从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,形成初步技能。针对学习后进的学生降低了解方程组的难度,有利于这部分学生把主要精力用于学习列方程组的方法步骤上。)

1、长18米的钢材,要锯成10段,而每段的长只能取“1米或2米”两种型号之一,小明估计2米的有3段,你们认为他估计的是否正确?为什么呢?

那2米和1米的各应多少段?

解:设2米的有x段,1米的有y段,根据题意,得

x+y=10 ①

2x+y=18 ②

解得

x=8

y=2

答:小明估计不准确,2米长的8段,1米长的2段。

活动4【练习】活动四:大显身手——拓展提高。

(说明:通过从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,巩固初步形成的技能。要求学生自主解决,以此检验学生掌握情况和本堂课的教学效果,为第二课时教学奠定基础。)

有大小两种货车,2辆大车与3辆小车一次可以运货15.50吨,5辆大车与6辆小车一次可以运货35吨。求:3辆大车与5辆小车一次可以运货多少吨?

活动5【活动】课堂小结

1、本节课你学习了什么?(利用列二元一次方程组解决实际问题。)

2、列二元一次方程组解决实际问题的主要步骤是什么?(审、设、列、解、验、答。)

3、列二元一次方程组解决实际问题应注意哪些问题?

(1)认真审题,用数学语言或式子表示题目中的数量关系。

(2)解出方程组时要选择适当的方法,运算速度要快,准确度要高。

(3)要按要求写出答案。

活动6【导入】布置作业

课外作业:p101复习巩固第1题、第2题、第3题。

活动7【活动】课后反思

在这节课之前的学习中,学生已经了解了一些用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。因此,这一节课共安排了四个贴近实际问题的情境活动:活动一:逛公园,提起学生兴趣导入实际问题,数量关系较为简单;活动一:参观农场,帮助李大叔计算验证,数量关系的难度有所提高,活动中总结列二元一次方程组解决实际问题的主要步骤,同时含有关注农业生产的思想;活动三:工厂锻炼——知识应用和活动四:大显身手——拓展提高。主要通过从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,巩固初步形成的技能。

这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。

在此教学过程中,要熟练掌握多媒体课件的使用流程,充分发挥图片资料创设情境和提高学生学习兴趣的作用。

解二元一次方程组(一)的教学方案


教学目标:1.能熟练地用代入消元法解简单的二元一次方程组2.从解方程的过程中体会转化的思想方法教学重点:用代入消元法解二元一次方程组教学难点:用含有一个未知数的代数式表示另一个未知数教学过程:一、情境创设根据篮球比赛规则;赢一场得2分,平一场得1分,在某次中学篮球联赛中,某球队赛了12场,赢了x场,输了y场,共各20分.可以得出方程组:x+y=122x+y=20(学生思考,列出方程)二、新课讲授如何解上面的二元一次方程组呢?x+y=12①2x+y=20②(学生主动探索,尝试,体会消元的方法)解:由①得:y=12-x③将③代入②得:2x+12x-x=20解这个二元一次方程,得x=8将x=8代入③,得y=4所以原方程组的解是x=8y=4注:①二元一次方程组的解是一对数值,而不是一个单纯的x值或y值.②算出结果后要做心算检验,以养成习惯问题:(引导思维拓展)①你是如何解方程组的?②每一步的依据是什么?③还有其它的方法吗?(能否通过消去x解方程?)代入消元法:将方程组的一个方程中的某个未知数据用含有另一个未知数的代数式表示,并代入另一个方程,从而消去一个未知数,把解二元一次方程转化为解一元一次方程,这种解方程组的方法,称为代入消元法,简称代入法.(学生归纳、总结、并理解)点评:用代入消元法解二元一次方程组方法不唯一,比如:上题中也可以用y来表示x,通过消去x来解方程.即:由①得:x=12-y……③,将③代入②得……即使用x来表示y,方法也不是唯一的,可以由①得y=12-x,也可以由②得y=20-2x……三、例题教学:解方程组x+3y=03x+2y=92(板书示范,学生思考回答)步骤1.用一个未知数表示另一个未知数;2.将表示后的未知数代入方程;3.解此方程4.求方程组的一对解.四、学生练习p1101、2、3(学生板演)五、拓展延伸1.解方程组3x=1-2y3x+4y=-7(整体代入法)2.已知x+y=k2x+3y=k六、课时小结:1.用代入法解二元一次方程组的步骤?2.任意一个二元一次方程都能用代入消元法解吗?举例说明.七、作业p1121、(1)(4)2、3、

用代入法解二元一次方程组教案模板


教学建议

一、重点、难点分析

本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

二、知识结构

三、教法建议

1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

一、素质教育目标

(一)知识教学点

1.掌握的步骤.

2.熟练运用代入法解简单的二元一次方程组.

(二)能力训练点

1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

2.训练学生的运算技巧,养成检验的习惯.

(三)德育渗透点

消元,化未知为已知的数学思想.

(四)美育渗透点

通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

二、学法引导

1.教学方法:引导发现法、练习法,尝试指导法.

2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法.

三、重点、难点、疑点及解决办法

(-)重点

使学生会.

(二)难点

灵活运用代入法的技巧.

(三)疑点

如何“消元”,把“二元”转化为“一元”.

(四)解决办法

一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

四、课时安排

一课时.

五、教具学具准备

电脑或投影仪、自制胶片.

六、师生互动活动设计

1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如等.

2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

七、教学步骤

(-)明确目标

本节课我们将学习用代入法求二元一次方程组的解.

(二)整体感知

从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

(三)教学步骤

1.创设情境,复习导入

(1)已知方程,先用含的代数式表示,再用含的代数式表示.并比较哪一种形式比较简单.

(2)选择题:

二元一次方程组的解是

A.B.C.D.

【教法说明】第(1)题为打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.

通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

这样导入,可以激发学生的求知欲.

2.探索新知,讲授新课

香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

设买了香蕉千克,那么苹果买了千克,根据题意,得

设买了香蕉千克,买了苹果千克,得

上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到③,把方程②中的转换成,也就是把方程③代入方程②,就可以得到.这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出了.

解:由①得:③

把③代入②,得:

把代入③,得:

【教法说明】解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

上面解二元一次方程组的方法,就是代入消元法.你能简单说说的基本思路吗?

学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

例1解方程组

(1)观察上面的方程组,应该如何消元?(把①代入②)

(2)把①代入②后可消掉,得到关于的一元一次方程,求出.

(3)求出后代入哪个方程中求比较简单?(①)

学生活动:依次回答问题后,教师板书

解:把①代入②,得

把代入①,得

如何检验得到的结果是否正确?

学生活动:口答检验.

教师:要把所得结果分别代入原方程组的每一个方程中.

【教法说明】给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.

例2解方程组

要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中的系数是1,比较简单.因此,可以先将方程②变形,用含的代数式表示,再代入方程①求解.

学生活动:尝试完成例2.

教师巡视指导,发现并纠正学生的问题,把书写过程规范化.

解:由②,得③

把③代入①,得

把代入③,得

检验后,师生共同讨论:

(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

(2)把代入①或②可以求出吗?(可以)代入③有什么好处?(运算简便)

学生活动:根据例1、例2的解题过程,尝试总结的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.

教师板书:

(1)变形()

(2)代入消元()

(3)解一元一次方程得()

(4)把代入求解

练习:P131.(1)(2);P142.(1)(2).

3.变式训练,培养能力

①由可以得到用表示.

②在中,当时,;当时,,则;.

③选择:若是方程组的解,则()

A.B.C.D.

(四)总结、扩展

1.解二元一次方程组的思想:.

2.的步骤.

3.的技巧:①变形的技巧②代入的技巧.

通过这节课的学习,我们要熟练运,并能检验结果是否正确.

八、布置作业

(一)必做题:P151.(2)(4),2.(1)(2)(3)(4).

(二)选做题:P15B组1.

参考答案

(一)1.(2)(4)

2.(1)(2)(3)(4)

(二),

初中数学二元一次方程组教案


作为一名教职工,时常要开展教学设计的准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。教学设计应该怎么写呢?以下是小编收集整理的二元一次方程组教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

初中数学二元一次方程组教案 篇1

一.教学目标

(一)教学知识点

1.代入消元法解二元一次方程组.

2.解二元一次方程组时的消元思想,化未知为已知的化归思想.

(二)能力训练要求

1.会用代入消元法解二元一次方程组.

2.了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想.

(三)情感与价值观要求

1.在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心.

2.培养学生合作交流,自主探索的良好习惯.

二.教学重点

1.会用代入消元法解二元一次方程组.

2.了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想.

三.教学难点

1.消元的思想.

2.化未知为已知的化归思想.

四.教学方法

启发自主探索相结合.

教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程.二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤.

五.教具准备

投影片两张:

第一张:例题(记作7.2 A);

第二张:问题串(记作7.2 B).

六.教学过程

Ⅰ.提出疑问,引入新课

[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组 成人和儿童到底去了多少人呢?

[生]在上一节课的做一做中,我们通过检验 是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出 是方程组 的解.所以成人和儿童分别去了5个人和3个人.

[师]但是,这个解是试出来的.我们知道二元一次方程的解有无数个.难道我们每个方程组的解都去这样试?

[生]太麻烦啦.

[生]不可能.

[师]这就需要我们学习二元一次方程组的解法.

Ⅱ.讲授新课

[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?

[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:

5x+3(8-x)=34

解得x=5

将x=5代入8-x=8-5=3

答:成人去了5个,儿童去了3个.

[师]同学们可以比较一下:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?

[生]列二元一次方程组设出有两个未知数成人去了x个,儿童去了y个.列一元一次方程设成人去了x个,儿童去了(8-x)个.y应该等于(8-x).而由二元一次方程组的一个方程x+y=8根据等式的性质可以推出y=8-x.

[生]我还发现一元一次方程中5x+3(8-x)=34与方程组中的第二个方程5x+3y=34相比较,把5x+3y=34中的y用8-x代替就转化成了一元一次方程.

[师]太好了.我们发现了新旧知识之间的联系,便可寻求到解决新问题的方法即将新知识转化为旧知识便可.如何转化呢?

[生]上一节课我们就已知道方程组的两个未知数所包含的意义是相同的.所以将 中的①变形,得y=8-x ③我们把y=8-x代入方程②,即将②中的y用8-x代替,这样就有5x+3(8-x)=34.二元化成一元.

[师]这位同学很善于思考.他用了我们在数学研究中化未知为已知的化归思想,从而使问题得到解决.下面我们完整地解一下这个二元一次方程组.

解:

由①得 y=8-x ③

将③代入②得

5x+3(8-x)=34

解得x=5

把x=5代入③得y=3.

所以原方程组的解为

下面我们试着用这种方法来解答上一节的谁的包裹多的问题.

[师生共析]解二元一次方程组:

分析:我们解二元一次方程组的第一步需将其中的一个方程变形用含一个未知数的代数式表示另一个未知数,把表示了的未知数代入未变形的方程中,从而将二元一次方程组转化为一元一次方程.

解:由①得x=2+y ③

将③代入②得(2+y)+1=2(y-1)

解得y=5

把y=5代入③,得

x=7.

所以原方程组的解为 即老牛驮了7个包裹,小马驮了5个包裹.

[师]在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用其中一个未知数的代数式表示另一个未知数,然后代入第二个未变形的方程,从而由二元转化为一元而得到消元的目的.我们将这种方法叫代入消元法.这种解二元一次方程组的思想为消元思想.我们再来看两个例子.

出示投影片(7.2 A)

[例题]解方程组

(1)

(2)

(由学生自己完成,两个同学板演).

解:(1)将②代入①,得

3 +2y=8

3y+9+4y=16

7y=7

y=1

将y=1代入②,得

x=2

所以原方程组的解是

(2)由②,得x=13-4y ③

将③代入①,得

2(13-4y)+3y=16

-5y=-10

y=2

将y=2代入③,得

x=5

所以原方程组的解是

[师]下面我们来讨论几个问题:

出示投影片(7.2 B)

(1)上面解方程组的基本思路是什么?

(2)主要步骤有哪些?

(3)我们观察例1和例2的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?

(由学生分组讨论,教师深入参与到学生讨论中,发现学生在自主探索、讨论过程中的独特想法)

[生]我来回答第一问:解二元一次方程组的基本思路是消元,把二元变为一元.

[生]我们组总结了一下解上述方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,把它变形为用一个未知数的代数式表示另一个未知数.

第二步:把表示另一个未知数的代数式代入没有变形的另一个方程,可得一个一元一次方程.

第三步:解这个一元一次方程,得到一个未知数的值.

第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.

第五步:用{把原方程组的解表示出来.

第六步:检验(口算或笔算在草稿纸上进行)把求得的解代入每一个方程看是否成立.

[师]这个组的同学总结的步骤真棒,甚至连我们平时容易忽略的检验问题也提了出来,很值得提倡.在我们数学学习的过程中,应该养成反思自己解答过程,检验自己答案正确与否的习惯.

[生]老师,我代表我们组来回答第三个问题.我们认为用代入消元法解二元一次方程组时,尽量选取一个未知数的分数是1的方程进行变形;若未知数的系数都不是1,则选取系数的.绝对值较小的方程变形.但我们也有一个问题要问:在例2中,我们选择②变形这是无可厚非的,把②变形后代入①中消元得到的是一元一次方程系数都为整数也较简便.可例1中,虽然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不简便,有没有更简捷的方法呢?

[师]这个问题提的太好了.下面同学们分组讨论一下.如果你发现了更好的解法,请把你的解答过程写到黑板上来.

[生]解:由②得2x=y+3 ③

③两边同时乘以2,得

4x=2y+6 ④

由④得2y=4x-6

把⑤代入①得

3x+(4x-6)=8

解得7x=14,x=2

把x=2代入③得y=1.

所以原方程组的解为

[师]真了不起,能把我们所学的知识灵活应用,而且不拘一格,将2y整体上看作一个未知数代入方程①,这是一个科学的发明.

Ⅲ.随堂练习

课本P192

1.用代入消元法解下列方程组

解:(1)

将①代入②,得

x+2x=12

x=4.

把x=4代入①,得

y=8

所以原方程组的解为

(2)

将①代入②,得

4x+3(2x+5)=65

解得x=5

把x=5代入①得

y=15

所以原方程组的解为

(3)

由①,得x=11-y ③

把③代入②,得

11-y-y=7

y=2

把y=2代入③,得

x=9

所以原方程组的解为

(4)

由②,得x=3-2y ③

把③代入①,得

3(3-2y)-2y=9

得y=0

把y=0代入③,得x=3

所以原方程组的解为

注:在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,不必强调解答过程统一.

Ⅳ.课时小结

这节课我们介绍了二元一次方程组的第一种解法代入消元法.了解到了解二元一次方程组的基本思路是消元即把二元变为一元.主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程的解.

Ⅴ.课后作业

1.课本习题7.2

2.解答习题7.2第3题

Ⅵ.活动与探究

已知代数式x2+px+q,当x=-1时,它的值是-5;当x=-2时,它的值是4,求p、q的值.

过程:根据代数式值的意义,可得两个未知数都是p、q的方程,即

当x=-1时,代数式的值是-5,得

(-1)2+(-1)p+q=-5 ①

当x=-2时,代数式的值是4,得

(-2)2+(-2)p+q=4 ②

将①、②两个方程整理,并组成方程组

解方程组,便可解决.

结果:由④得q=2p

把q=2p代入③,得

-p+2p=-6

解得p=-6

把p=-6代入q=2p=-12

所以p、q的值分别为-6、-12.

七.板书设计

7.2 解二元一次方程组(一)

一、希望工程义演

二、谁的包裹多问题

三、例题

四、解方程组的基本思路:消元即二元一元

五、解二元一次方程组的基本步骤

初中数学二元一次方程组教案 篇2

一、说教材

首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。

二、说学情

接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能

掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。

(二)过程与方法

通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。

(三)情感态度价值观

感受数学与生活的密切联系,培养学习数学的兴趣。

四、说教学重难点

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。

五、说教法和学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

六、说教学过程

下面我将重点谈谈我对教学过程的设计。

(一)新课导入

首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?

根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的'课题《二元一次方程组》

这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。

(二)新知探索

接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。

活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。

学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。

此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。

教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。

活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。

在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。

师生共同总结出二元一次方程与二元一次方程组的定义。

列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。

活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。

在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。

教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。

得到方程组的解,回归情景得出实际问题的答案。

设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。

(三)课堂练习

接下来是巩固提高环节。

练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。

加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?

设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。

(四)小结作业

在课程的最后我会提问:今天有什么收获?

引导学生回顾:二元一次方程组的定义与二元一次方程组的解。

本节课的课后作业我设计为:

思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。

设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。

七、说板书设计

初中数学二元一次方程组教案 篇3

教学目标

1、会列二元一次方程组解简单的应用题并能检验结果的合理性。

2、提高分析问题、解决问题的能力。

3、体会数学的.应用价值。

教学重点

根据实际问题列二元一次方程组。

教学难点

1、找实际问题中的相等关系。

2、彻底理解题意。

教学过程

一、引入。

本节课我们继续学习用二元一次方程组解决简单实际问题。

二、新课。

例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?

探究: 1. 你能画线段表示本题的数量关系吗?

2、填空:(用含S、V的代数式表示)

设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米

3、列方程组。

4、解方程组。

5、检验写出答案。

讨论:本题是否还有其它解法?

三、练习。

1、建立方程模型。

(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度

(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?

2、P38练习第2题。

3、小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。

四、小结。

本节课你有何收获?

初中数学二元一次方程组教案 篇4

教学目标

1、会列出二元一次方程组解简单应用题,并能检验结果的合理性。

2、知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型

3、引导学生关注身边的数学,渗透将来未知转达化为已知的`辩证思想。

教学重点

1、列二元一次方程组解简单问题。

2、彻底理解题意

教学难点

找等量关系列二元一次方程组。

教学过程

一、情境引入。

小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?

二、建立模型。

1、怎样设未知数?

2、找本题等量关系?从哪句话中找到的?

3、列方程组。

4、解方程组。

5、检验写答案。

思考:怎样用一元一次方程求解?

比较用一元一次方程求解,用二元一次方程组求解谁更容易?

三、练习。

1、根据问题建立二元一次方程组。

(1)甲、乙两数和是40差是6,求这两数。

(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

(3)已知关于求x、y的方程,

是二元一次方程。求a、b的值。

2、P38练习第1题。

四、小结。

小组讨论:列二元一次方程组解应用题有哪些基本步骤?

五、作业。

P42。习题2.3A组第1题。

后记:

2.3二元一次方程组的应用(2)

初中数学二元一次方程组教案 篇5

教学目标

1.会用代入法解二元一次方程组;

2.体会解二元一次方程组的 “消元思想”和“化未知数为已知”的化归思想.

3.通过对方程中未知数特点的观察和分析明,确解二元一次方程组的主要思路 是 “消元思想”和“化二元为一元”的化归思想.

教学重难点

1.熟练的用代入法解二元一次方程组。

2.探索如何用代入法将“二元”转化为“一元”的消元过程。

教学过程

一、创设问题,引入新课

1.问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜、负场数分别是多少?

解:设胜场数是x则负的场数是20-x 列方程为:2x+(20-x)=38.解得x=18,则负的场数为

20-x=20-18=2

2.问题2:在上述问题中,我们可以设出两个未知数,列出二元一次方程组,若设胜的场数是x,负的场数是y,则

x+y=20

2x+y=38

那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系呢?

设计意图:通过创设同一问题分别列出一元一次方程与二元一次方程组 ,引导学生对两者关联认识,为后续代入消元法解二元一次方程作铺垫。

二、学生探索,尝试解决

交流问题2:可以发现,二元一次方程组中第一个方程x+y=20可的到y=20-x,将第2个方程2x+y=38中y换为20-x,这个方程就化为一元一次方程2x+(20-x)=38.

归纳:

二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一个未知数.这种将未知数的个数由多化少、逐一解决的思想方法,叫做消元思想.

归纳小结:上面的解法,是把二元一次方程组中一个方程中的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的 解.这种方法叫做代入消元法,简称代入法.

设计意图:通过交流问题2,引导学生将心中所想显现出来,代入消元法的步骤和功效逐步显现出来。

三、典例交流,揭示规律

例1:用代入法解二元一次方程组x=y+3(1)

3x-8y=14(2)

解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,

所以这个方程组的解是 x=2,

y=-1

思考下列问题

(1)选择哪个方程代入另一个方程?目的是什么?

(2)为什么能代入?目的达到了吗?

(3)只求出 y=-1 ,方程组解完了吗? 把y=-1 代入哪个方程求x的值较简单?

(4)怎样知道你运算的结果是否正确?

反思:需检验,将 x=2,y=-1分别代入方程①②,看方程的左右两边是否相等,可以口算,也可以在 草稿纸上验算.【例2】用代入法解二元一次方程组x-y=3(1)

3x-8y=14(2)

思考:

(1)例1与例2有什么不同?(例1是用①直接代入②的,而例2的两个方程都不具备这样的条件.)

(2)如何变形?(把其中一个方程变形为例1中①的形式.)

(3)选择哪个方程变形较简单?(方程①中的x的系数为1,故可以将方程①变形得x=3+y.)

(学生口述,教师板书完成)

用代入消元法解二元一次方程组的步骤:

(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(变)

(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(代)

(3)解所得到的'一元一次方程,求得一个未知数的值.(求)

(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.(解)

设计意图:进一步加强利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步骤提高学生的分析能力。

四、变式训练,深化提高

用代入法解下面方程组

设计意图:通过学生演练展示,帮助学生巩固用代入法解二元一次方程组的步骤。

五、师生共进,反思小结1、本节主要学习用代入法解二元一次方程组

2、主要的解题思想方法是消元思想。

3、代入消元法解二元一次方程组需要注意的问题.

(1)用代入法解二元一次方程组时,常选用系数比较简单的方程变形,这有利于正确、简捷地消元.

(2)由一个方程变形得到的只含有一个未知数的代数式必须代入到另一个方程中去,否则会出现一个恒等式.

(3)方程组解的表示方法,应该用大括号把一对未知数的值连在一起,表示同时成立,不要写成x=?y=?

六、布置作业:

习题8.2 1,2题

七、板书设计

初中数学二元一次方程组教案 篇6

一、内容和内容解析

1.内容

代入消元法解二元一次方程组

2.内容解析

二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,

在平面直角坐标系中求两直线交点坐标等。

解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。

本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元。

二、目标和目标解析

1.教学目标

(1)会用代入消元法解一些简单的二元一次方程组

(2)理解解二元一次方程组的思路是消元,体会化归思想

2.教学目标解析

(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,

(2)要让学生经历探究的过程。体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想

三、教学问题诊断分析

1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路

2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。

本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。

四、教学过程设计

1.创设情境,提出问题

问题1

篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

x=6,则胜6场,负4场

教师追问:你能根据问题中的等量关系列出二元一次方程组吗?

师生活动:学生回答:能。设胜x场,负y场。根据题意,得

我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4。显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?

这节课我们就来探究如何解二元一次方程组。

设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫。

问题2 对比方程和方程组,你能发现它们之间的关系吗?

师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。

师生活动:根据上面分析,你们会解这个方程组了吗?

学生回答:

由①,得y=10-x ③

把③代入②,得2x+(10-x)=16 x=6

设计意图:共同探究,体会消元的过程。

问题3 教师追问:你能把③代入①吗?试一试?

师生活动:学生回答:不能,通过尝试,x抵消了。

设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点。

教师追问:你能求y的值吗?

师生活动:学生回答:把x=6代入③得y=4

教师追问:还能代入别的方程吗?

学生回答:能,但是没有代入③简便

教师追问:你能写出这个方程组的解,并给出问题的答案吗?

学生回答:x=6,y=4,这个队胜6场,负4场

设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。

师生活动:先让学生独立思考,再追问。在这种解法中,哪一步最关键?为什么?

学生回答:代入这一步

教师总结:这种方法叫代入消元法。

教师追问:你能先消x吗?

学生纷纷动手完成。

设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫。

2. 应用新知,拓展思维

例 用代入法解二元一次方程组

师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。

设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法。

3.加深认识,巩固提高

练习 用代入法解二元一次方程组

设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组。

4.归纳总结,知识升华

师生活动,共同回顾本节课的学习过程,并回答以下问题

1. 代入消元法解二元一次方程组有哪些步骤?

2. 解二元一次方程组的基本思路是什么?

3.在探究解法的过程中用到了哪些思想方法?

4.你还有哪些收获?

设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力。

5. 布置作业

教科书第93页第2题

五、目标检测设计

用代入法解下列二元一次方程组

设计意图:考查学生对代入法解二元一次方程组的掌握情况。

初中数学二元一次方程组教案 篇7

一、教材分析

本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。

二、教学目标

1.使学生学会用代入消元法解二元一次方程组.

2.理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想.

三、教学重难点

1.重点:用代入法解二元一次方程组.

2.难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。

四、教学过程

(1)复习引入

在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?

设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。

(2)探究新知

此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。

一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的'思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。

播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。

(3)例题讲解

让学生尝试解答

设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。

预想大部分学生例2会存在这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题:

(1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x)

(2)选择哪个方程变形比较简便呢?

再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,

让学生清楚的知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。

五、课堂小结

1.这节课你学到了哪些知识和方法?

2.你还有什么问题或想法需要和大家交流分享?

六、课后作业布置:

xxx

七、课后反思

通过洋葱视频辅助教学,使得学生容易体会到“消元”思想的渗透,学生能够学会规范解题。通过视频的讲解能够准确的选择要变形的方程,如果是传统的教学方式可能会出现很多学生不理解的地方,但通过洋葱数学短小精辟的视频讲解一下子让学生理解透!

初中数学二元一次方程组教案 篇8

【教学目标】

知识目标:

①使学生初步理解二元一次方程与一次函数的关系。

②能根据一次函数的图象求二元一次方程组的近似解。

能力目标:

通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。

情感目标:

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。

重点要求:

1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

难点突破:

经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。

【教学过程】

一、学前先思

师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?

生:代入消元法、加减消元法。

师:请你猜测还有其他的解法吗?

生:(小声议论,有人提出图象解法)

师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?

生:二元一次方程组怎么会有图象?它的图象应该怎样画?

生:二元一次方程组的图象解法怎么做?

师:同学们都问得很好!那你有喜欢的二元一次方程组吗?

生:(比较害羞)

师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。让我们带着同学们提出的问题从二元一次方程开始今天的学习。

二、探究导学

题目:

判断上面几组解中哪些是二元一次方程的解?

生:和不是,其余各组均是方程的解。

师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

生:我发现二元一次方程的解就是相对应的一次函数图象上的点的坐标。

师:很好!反过来,请问:一次函数图象上的点的坐标是否是与其相对应的二元一次方程的解呢?

生:是的。并且二元一次方程的解中的、的值就是相对应的一次函数图象上点的横、纵坐标的值。

三、巩固基础

师:非常好!那下面的题目你会解吗?

(学生读题)题目:方程有一个解是,则一次函数的图象上必有一个点的坐标为______

生:(2,1)

(学生读题)题目:一次函数的图象上有一个点的坐标为(3,2),则方程必有一个解是_________

生:

师:你能把下面的二元一次方程转化成相应的一次函数吗?

(学生读题)把下列二元一次方程转化成的形式:

(1)(2)

生:第(1)题利用移项,得到,所以

第(2)题利用移项,得到,两边同时除以2,所以

四、感悟提升

师:如果将和组成二元一次方程组,你能用代入消元法或者加减消元法求出它的解吗?

生:能,我算出

师:很好!你能在同一直角坐标系中画出一次函数与的图象吗?

生:可以。(动手在学案上画图)

师:观察两条直线的位置关系,你有什么发现?

生:我发现这两条直线相交,并且交点坐标是(2,1)。

师:通过以上活动,你能得到什么结论?

生:我发现刚刚求出的二元一次方程的解刚好就是一次函数与的图象的交点坐标(2,1)。

师:很好!你能抽象成一般的结论吗?

生:如果两个一次函数的图象有一个交点,那么交点的坐标就是相应的二元一次方程组的解。

师:非常好!用一次函数的图象解二元一次方程组的方法就是我们今天要学习的二元一次方程组的图象解法。

师:你能学以致用吗?

y=2x-5

y=-x+1

题目:如图,方程组的解是___________

生:根据图象可知:一次函数与的图象的交点是(2,-1),因此,方程组的解是。

师:回答得真棒!

五、例题教学

例题:利用一次函数的图象解二元一次方程组。

师:请大家在学案的做中感悟栏内上大胆地写出解题过程。

生:(投影展示解题过程)略。

师:很好!让我们一起来看一下老师准备的解题过程(略)

师:你能就此归纳出二元一次方程组的图象解法的一般步骤吗?

生:先将二元一次方程组中的方程化成相应的一次函数,然后画出一次函数的图象,找出它们的交点坐标,就可以得出二元一次方程组的解。

师:非常好!我们可以用12个字的口诀来记住刚才同学的步骤:变函数,画图象,找交点,写结论。

师:接下来请同学们在学案上的巩固强化栏内利用图象解法求出你心里埋你所喜欢的二元一次方程组的解。

生:(各自动手操作,教师展示学生求解过程)

师:观察你作的图象,你有什么发现吗?

生:我发现有些一次函数图象的交点比较容易看出来,而有些一次函数图象的交点不容易看出来是多少。

师:是的,所以在这里老师需要说明的是我们用图象法求解一元二次方程组的解得到的是近似解。

师:请大家比较一下,二元一次方程组的图象解法和我们以前学过的代数解法——代入消元法、加减消元法相比,那种方法简单一些?

生:代入消元法、加减消元法简单。

师:二元一次方程组的图象解法既不比代数解法简单,且得到的解又是近似的,为什么我们还要学习这种解法呢?原因有以下几个方面:一是要让我们学会从多种角度思考问题,用多种方法解决问题;二是说明了“数”与“形”存在着这样或那样的密切联系,有时我们要从“数”的角度去考虑“形”的问题,有时我们又要从“形”的角度去考虑“数”的问题,这里是从“形”的角度来考虑“数”的问题;三是为了以后进一步学习的需要。

师:看来大家都很爱动脑筋,那么接下来我们将例题加以变化。

六、例题变式

题目:用图象法求解二元一次方程组时,两条直线相交于点(2,-4),求一次函数的关系式。

师:请一位同学来分析一下。

生:由两条直线的交点坐标(2,-4)可知,二元一次方程组的解就是,把代入到二元一次方程组中,可得:,解得,所以一次函数的关系式为。

师:非常好!

七、感悟归纳

师:再请同学们思考,如果二元一次方程组转化成的一次函数的图象没有交点,那么所对应的二元一次方程组的解是什么呢?

生:我想如果二元一次方程组转化成的一次函数的图象没有交点,那么所对应的二元一次方程组应该无解。

八、拓宽提升

题目:不画函数的图象,判断下列两条直线是否有交点?它们的位置关系如何?每组一次函数中的有什么关系?

(1)与;

(2)与

师:你会怎样分析这道题?

生:我们只要求解一下由这两个一次函数所组成的二元一次方程组的解的情况就可以判断两条直线的位置关系。如果方程组有解,那么相应的两条直线就是相交,如果方程组无解,那么相应的两条直线就是平行的位置关系。

师:很好!抽象成一般结论怎样叙述?

生:对于直线与,当时,两直线平行;当时,两直线相交。

九、例题再探

题目:利用一次函数的图象解二元一次方程组

问:(1)这两条直线有什么特殊的位置关系?

(2)这两个一次函数的有何特殊的关系?

(3)由此,你能得出怎样的结论?

师:哪位同学来尝试一下?

生:(1)这两条直线是垂直的位置关系;

(2)这两个一次函数的相乘的结果等于-1;

(3)仿照刚才的结论,我得出的结论是:对于直线与,当时,两直线垂直。

师:太棒了!那下面的这一题你会做吗?

题目:已知直线和直线

(1)若,求的值;

(2)若,求垂足的坐标。

师:谁来试一下?

生:由前面的结论我们可以得出,如果,则,解得:;如果,则,解得,将代入二元一次方程组,可得,求出方程组的解就可以得出垂足的坐标。

十、学会创新

师:请你根据这节课中的例题(或习题)在学案中编(或出)一道题。看谁出的题新颖、精妙!

生:(畅所欲言,踊跃尝试)

十一、小结与思考

师:(1)这节课你学到了什么?

(2)你还存在哪些疑问?

生:(分组讨论,代表发言总结)

【设计说明】

本节课的两个知识点:二元一次方程和一次函数的关系,二元一次方程组的图象解法对于学生来说都是难点。就本节课而言,前者较为重要,后者难度较大。确定本节课的重点为前者,是因为学生必须首先理解二元一次方程和一次函数在数与形两方面的联系,在此基础上才能解决好后面的难点。在重难点的处理上,为了解决学生对重点的理解,用一组二元一次方程组串起一节课,加以变式,既使得学生理解了重点内容,又为后面的难点突破留下了一定的时间和空间。本节课的教学,主要以问题为线索,注重引导学生仔细观察、独立思考、认真操作、分组讨论、合作交流、师生互动,这对本节课的重难点的突破还是有效的,同时也体现了新课改提倡的学生的“自主、合作、探究”的学习方式的培养。另外,对利用二元一次方程组的解判断直线的位置关系作为补充,渗透数形结合思想,也对教学目标中的情感态度和价值观的又一方面体现。

【教学反思】

这节课以“回顾、先思”为先导,以“操作、思考”为手段,以“数、形结合”为要求,以“引导探究,变式拓宽”为主线,从旧知引入,自然过渡、不落痕迹。首先提出学生所熟知的二元一次方程并讨论其解的情况,为后面探究二元一次方程与一次函数之间的关系作了必要的准备,结构安排自然、紧凑。在操作中,提出问题、深化认识。一切知识来自于实践。只有实践,才能发现问题、提出问题;只有实践,才能把握知识、深化认识。先让学生画出一次函数的图象,在画图的过程中发现:“以二元一次方程的解为坐标的点都在相应的函数图象上。”在应用结论探索一元二次方程组的图象解法时,也是在操作中来发现问题。这样,就给了学生充分体验、自主探索知识的机会;使他们在自主探索、合作交流中找到了快乐,深化了认识。以能力培养为核心,引导探究为主线,数、形结合为要求。能力培养,特别是创新能力的培养是新课程关注的焦点。能力培养是以自主探究为平台。“自主”不是一盘散沙,“探究”不是漫无边际。要提高探究的质量和效益必须在教师的引导下进行。为达到这一目的,教案中设计了“探究导学”、“例题变式”、“例题再探”、“学会创新”和“拓展提升”。新课程理念指出:教师是课程的研究者和开发者。这就要求我们:在新课程标准的指导下,认真研究教材,体会教材的编写意图。在此基础上,设计出既体现课程精神,又适合本班学生实际的教学案例。本节课前半部分时间有些慢,后半部分例题再探和学会创新时间不够。建议有针对性的学生板演多一点,进一步加强双基的落实。

【同伴点评】

本节课教师创设问题情境,引导学生观察、思考、操作、探究、合作交流。问题的设计层层递进,通过问题的逐一解决,师生最终形成共识,达到了揭示二元一次方程组与一次函数的图象关系的目的。(李晓红)

在例题教学及学生动手尝试时,教师在学生大胆尝试之后给出解题过程,强调了解题的规范性,有利于培养学生的严谨认真的学习态度。同时强调了由于二元一次方程组的图象解法得到的解往往是近似的,因此必须检验。教师对学习二元一次方程组的图象解法的必要性的解释,是非常有必要的,这一解释解决了学生的疑惑,同时也渗透了数形结合思想,也是教学目标中的情感态度和价值观的体现。对于这一解释,相当一部分教师在这一节课中并没有很好解决。这一处理方法值得他人借鉴。(丁叶谦)

本节课老师准备充分,教学环节紧紧相扣。授课老师充分体现了课题:“先思后导,变式拓宽教学设计”的精神,不断地创设问题情境,引导学生学习新知,在探索二元一次方程组的图象解法时给了学生充分体验、自主探索知识的机会,使他们在自主探索、合作交流中找到了快乐,深化了认识。同时对例题连续的再利用,不断变化,让学生在变式中不断丰富对二元一次方程组图象解法的认识,充分认识二元一次方程组图象解法的实用性,学会创新环节的设计更是极大地调动学生学习的积极性。教师教态亲切,语言生动,娓娓道来。

二元一次方程组课件十一篇


老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“二元一次方程组课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

二元一次方程组课件 篇1

一、说教材分析

1、教材的地位和作用

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、说教法说明

对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、说教学过程

(一)感知身边数学

多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0。05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

(二)享受探究乐趣

1、探究一次函数与二元一次方程的关系

填空:二元一次方程 可以转化为 ________。

思考:

(1)直线 上任意一点 一定是方程 的解吗?

(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

2、探究一次函数与二元一次方程组的关系

(1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

(2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?

进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

[设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车

例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。

解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦

1、抢答题

(1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。

(2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。

2、旅游问题

古城荆州历史悠久,文化灿烂。今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

二元一次方程组课件 篇2

2、灵活运用代入法的技巧.

1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的.思想,叫做____________。

2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。

1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。

2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。

3、若 的解,则a=______,b=_______。

4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。

5、用代人法解方程组 ①②,把____代人____,可以消去未知数______。

6、已知方程组 的解也是方程组 的解,则a=_______,b=________ ,3a+2b=___________。

7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。

8、当k=______时,方程组 的解中x与y的值相等。

A. B. C. D.

2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。

3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。

4、对于关于x、y的方程y=kx+b,k比b大1,且当x= 时,y= ,则k、b的值分别是( )

6、如果(5a-7b+3)2+ =0,求a与b的值。

7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m

8、若方程组 与 有公共的解,求a,b.

二元一次方程组课件 篇3

一、说教材分析

1、教材的地位和作用

二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

2、教学目标

知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

3、重点、难点

重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

难点:在实际生活中二元一次方程组的应用。

二、教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

三、学法

“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

四、教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分、负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,

胜场积分+负场积分=总积分。

这两个条件可以用方程

x+y=22

2x+y=40

表示:

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程、

把两个方程合在一起,写成

x+y=22

2x+y=40

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

二元一次方程组课件 篇4

各位专家、领导上午好!我是黄淮学院数学科学系数学与应用数学专业的06级学生,今天的*号选手,很荣幸能站在这里参加本次教学技能大赛。我说课的内容是义务教育课程标准试验教科书人教版七年级下册第八章第一节的内容《二元一次方程组》。(板书8.1二元一次方程组)下面我将从以下七个环节对本节课的教学设计进行说明:(幻灯片)

一、教材分析

首先是教材的地位和作用。《二元一次方程组》是九年制义务教育课本七年级数学下册第八章第一节的内容。在此之前,学生已学习了《一元一次方程》,这为过渡到本节的学习起着铺垫作用。本节内容是二元一次方程组的前沿部分,在教材中起着占据承上启下的地位。

其次是教材的编写特点。教材从学生的年龄特征和知识的实际水平出发,让学生用“观察、猜想、操作、验证、归纳”的方法探索二元一次方程。这样符合学生的认知规律,同时也培养了学生主动探求知识的精神和思维的条理性。

二、教学目标

作为一名教师除了把知识教给学生,更重要的是应该教给学生学习的方法,培养他们的自主探究、合作创新的意识,使他们会学。因此根据新课标的要求、教材的特点及学生的实际情况,我制定了如下目标:

(1)知识目标:了解二元一次方程概念,会判断一组数是不是某个二元一次方程组的解。

(2)能力目标:在经历分析实际问题中数量关系过程中,使学生进一步体会方程是刻画现实世界的数学模型。通过自由思考与小组合作交流,培养学生的探讨能力

(3)情感目标:培养学生的发现意识和探究能力,使其具有强烈的好奇心和求知欲。认识知识的独立性。

三、重点难点

基于以上对教材和教学目标的分析,本着课程标准,在吃透教材基础上,我得出本节课的重点与难点。本节课的重点是:通过与一元一次方程的类比来来认识二元一次方程,通过列表求解、讨论掌握二元一次方程的解。本节课的难点是:引导学生运用“实际问题----数学问题的”建模意识来理解和探索二元一次方程的解。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

四、教法学法

在教法方面,结合课程标准的相关理念及七年级学生思维特征,针对本节课的特点,在教学中我主要采用了讲授式教学、合作式教学、探究式教学、自主式教学等教学方法。在教学过程中特别注意创设思维情境,坚持(学生为主体,教师为主导)的二主方针。并在教学中借助多媒体进行演示,以增加课堂容量和教学的直观性。

在学法指导上,教给学生科学的学习方法,培养良好的学习习惯是最终目的。在本节课的教学中要帮助学生学会运用观察猜想、合作交流、抽象概括、总结归纳等方法来解决问题的方法,将知识传授和能力培养融为一体,使学生不仅学到科学探究的方法,同时体验到探究的甘苦,领会到成功的喜悦。

下面,我来具体谈一谈这一堂课的教学过程:

五、教学过程

为突出重点、突破难点,达到教学目标,根据学生的认知规律和学习心理,在本节课的教学中我设定教学过程如下:(一)、情境导入(二)、探究新知(三)、跟踪反馈(四)、收获园地(五)、布置作业

(一)、情境导入

创设情境——篮球比赛积分问题,这是学生熟悉和感兴趣的问题,让学生尝试列出二元一次方程。当然本课开始并不是让学生能够熟练列出二元一次方程,而是让学生明白有些问题可以用二元一次方程来解决。为今后学习数学问题解决实际问题作铺垫。对有些学生我们可以直接给他列出方程,让他感知二元一次方程的好处。从而体现新课标下人人学有价值的数学,不同的人在数学上得到不同的发展。由情境得出本课新的知识点是:从问题到方程。自然的过渡到第二个教学环节:探究新知。

(二)、探究新知

“探究一”——生活中的实例问题,“李明和妈妈买苹果和梨各多少千克?”。探究一的设计意图是:从实例中引入二元一次问题,引导学生讨论尝试用数学语言表述现实问题。培养学生的方程思想,在用数学语表述现实问题的过程中,强化学生对方程现实意义的理解,让学生感受到数学与我们生活的密切联系,激发学生的学习热情。

“探究二”例题分析引导学生类比一元一次方程的求解方法,由重量、总重量,价格、花费入手设未知量、列方程。列好方程后,引导学生用等量关系得出二元一次方程组后让学生利用已有知识,采用代入法求解。这一点并不难,让所有的学生都参与其中,体验学习数学的乐趣和成功的喜悦。

“探究三”在例题讲解中,教师要注意讲清楚要怎样解、为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。让学生感受到数学的严谨性、确定性,方程思想的进一步渗透,培养了学生的归纳、概括能力,突出了教学的重点。

(三)、跟踪反馈

新课标指出“在素质教育的大前提下,及时适量的的巩固与练习仍然是是帮助学生掌握新知提升能力的必要途径”故而,我设计了层次递进的三道巩固例题。教师引导学生审题,学生弄清题意后,师生共同解题,由教师示范解题过程,期间适当对题目进行引申,通过“变式延伸、引申重构”加入与概念相关的深层次题目,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。及时的训练能帮助学生巩固新知,自觉运用所学知识与解题思想方法。

(四)收获园地

在此,通过总结结论、强化认识,引导学生认识二元一次方程是刻画现实世界的有效数学模型。提问:“你从上面的学习中体会到解方程组的基本思路是什么吗?主要步骤有那些吗?”以加深学生对代入法的掌握。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

(五)、布置作业

在本环节,我将课后作业的布置分为两个层次,一是数学练习即课后习题作业的布置,旨在让学生通过及时地巩固练习加深对所学知识内容的理解与掌握。二是数学思考即写一篇数学日记,让学生将本堂课所获得经验体会写成一篇数学日记,同学相互交流。旨在提高学生对数学来源于生活的认识,唤醒学生亲近数学的热情,帮助学生强化数学知识的记忆,逐步拉近他们观念中数学与生活的联系,激发学生学习数学的兴趣。

六、板书设计

在此,我以直观、系统为主旨,针对本节课的具体内容,设计了重难点突出、简洁明了的课堂板书,配合多媒体的教学方式,最大化的利用教学资源的同时也体现了时代要素在教学中的运用。

七、反思评价

按照“以人为本、以学定教”的教学理念,本节课的重点是如何“引导”学生自主探索、合作交流,使学生在经历数学知识的形成与应用过程中,加深对所学知识的理解,从而突破重难点、达到教学目标。整节课还应做到全程关注每一个学生的学习状态,引导学生学会欣赏自己、欣赏同伴,彼此学习,在共同学习中掌握知识、发展能力。

在教学中应始终坚持“注重数学思想方法的教学,加强数学学习方法的指导,为学生终生学习打下坚实基础”为主旨,同时努力推行“成功教育、快乐教育”的理念,把握评价的时机与尺度,实现评价主体和形式的多样化,从而激发学生的学习兴趣,激活课堂气氛,提高课堂教学的效率与效果。促使学生主动参与并“卷入”到“做”数学的活动中,从而更加深刻的认识平行四边形的性质。

以上是我说课的全部内容,请给各评委老师批评指正!

结束:以上,我仅从说教材、说目标、说教学法、说重难点、说教学程序、说板书及反思评价几个方面上,说明了“教什么”和“怎么教”,阐明了“为什么这样教”。以上是我对本节课的一些初浅的认识和想法,有不足之处,希望各位委评老师批评指导。

二元一次方程组课件 篇5

【教学目标】

知识目标: 1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。

过程与方法:通过与一元一次方程的比较,加强学生的类比的思想方法。

情感态度与价值观:通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

【教学重点、难点】

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

【教学过程】

一、 复习引入:

(1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?

(2) 合作学习:

①小红到邮局寄挂号信,需要邮资3元8角。小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?

这个问题中有几个未知数,能列一元一次方程求解吗?

如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?

二、 新课教学

这就是我们今天要学习的4、1二元一次方程(板书课题)

(1) 观察上述两个方程,归纳特点

(2) 讨论选择正确概念

① 含有两个未知数的方程叫二元一次方程。

② 含有两个未知数,且含有未知数的项的次数都是1次的`方程叫二元一次方程。

(3) 做一做P86——1,2

(4) 例:已知方程3x+2y=10

① 用关于x的代数式表示y (分析:只要把方程3x+2y=10看作未知数是y的一元一次方程,解关于y的方程)

② 求当x=-2,0,3时,对应的y的值

(提问:把x=-2,y=8代入方程3x+2y=10,能否使其左右两边相等?

回忆方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一个解,记作 。

同理试写出该方程的两个解(注意写法格式)

思考:方程3x+2y=10的解有多少个?

师归纳:二元一次方程解具不定性和相关性

(5) 练习:P88——课内练习1,2

(6) 补充练习:P89---作业题4(说明:方程的解须是正整数)

已知 ,是方程2x+3y=5的一个解,那么由此可知道些什么?

(说明:1.本例是根据教科书P89---B组第5题改编。原题要求a的值,但学

生常常有困难,因此这里把原题改为开放式命题,看起来似乎比原

题要求高了,其实有利于各类学生参与并寻求结论。

三、 课堂小结:

二元一次方程的意义及二元一次方程的解的概念(注意书写格式)

二元一次方程解的不定性和相关性

会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式

四、 作业 :

课堂作业本

二元一次方程组课件 篇6

教学目的

1.使学生了解二元一次方程,二元一次方程组的概念。

2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含

难点;了解二元一次方程组的解的含义。

导学提纲:

1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?

2.阅读教材问题1思考下列问题

⑴.能否用我们已经学过的知识来解决这个问题?

用算术法解答

用一元一次方程解答

解后反思:既然是求两个未知量,那么能不能同时设两个未知数?

⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)

⑶.对于方程x十y=73x+y=17请思考下列问题

①它们是一元一次方程吗?

②这两个方程有没有共同特点/若有,有河共同特点?

③类比一元一次方程的概念,总结二元一次方程的概念

3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)

注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量

4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念

注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.

(2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的解.

5.思考讨论在方程组①②③④

⑤⑥中,属于二元一次方程组的有

达标检测:

1.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:

(1)甲数的比乙数的2倍少7:_____________________________;

(2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;

(3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.

2.下列方程是二元一次方程的是()

A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

3.下列不是二元一次方程组的是()

x+3y=5m+3m=152x+3x=0m+n=5

A、B、C、D、

2x-3x=3+=3-5y=02m+n=6

x=2

4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.

y=-3

5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.

二元一次方程组课件 篇7

教学目标:

1使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用

2通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性

3体会列方程组比列一元一次方程容易

4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力

重点与难点:

重点:能根据题意列二元一次方程组;根据题意找出等量关系;

难点:正确发找出问题中的两个等量关系

课前自主学习

1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()

2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:

(1)方程两边表示的是()量

(2)同类量的单位要()

(3)方程两边的数值要相符。

3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否( ),更重要的是要检验所求得的结果是否( )

4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有( ),兔有( )

新课探究

看一看

问题:

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)()

(2)()

解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg

根据题意列方程,得

解这个方程组得

答:每只母牛和每只小牛1天各需用饲料为( )和( ),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。(“有”或“没有”)

练一练:

1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

小结

用方程组解应用题的一般步骤是什么?

8.3实际问题与二元一次方程组(2)

教学目标:

1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力

重点与难点:

重点:能根据题意列二元一次方程组;根据题意找出等量关系;

难点:正确发找出问题中的两个等量关系

课前自主学习

1.甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为()元和()元。

2.在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40,则原有篮球()个,排球()个。

3.现在长为18米的钢材,要据成10段,每段长只能为1米或2米,则这个问题中的等量关系是(1)1米的段数+()=10(2)1米的钢材总长+()=18

二元一次方程组课件 篇8

教学目标

1.认识二元一次方程和二元一次方程组。

2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。

重点、难点

重点:理解二元一次方程组的解的意义

难点:求二元一次方程的正整数解

教学过程

一、复习导入

什么是一元一次方程?“元”指什么?“次”指什么?

什么是方程的解?

设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。

二、观看视频

观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。

视频内容

设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

三、探究新知

根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

把两个二元一次方程合在一起,就组成了一个二元一次方程组。

提问:对比两个方程,你能发现它们之间的关系吗?

师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组。

探究二元一次方程组的解:

满足x+y=10的值有哪些?请填入表中:

使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作。

满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:

不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。

归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解。

思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?

带着问题让学生观看洋葱数学视频二元一次方程组的解

视频内容

设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

四、例题讲解

例、若方程2x2m+3+3y3n-7=0是关于x、y的二元一次方程,求m+n的值。

例2、暴风雨即将来临,一群蚂蚁正忙着搬家。其中有大蚂蚁和小蚂蚁,已知大小蚂蚁总共有1 00只,小蚂蚁一次只能搬一粒食物,大蚂蚁一次能搬两粒,一场忙碌过后,洞里的160粒食物刚好一次被安全转移,求大小蚂蚁各有几只?

例3、

学生思考,试着解答,最后共同宣布答案。

设计意图:在例题讲解过程中,让学生充分活动起来,通过例题探究来进行总结,不要让学生死记硬背,重点在理解,会灵活运用。

五、随堂练习

1.下列方程中,是二元一次方程的是( )

A.3x-2y=4z B.6xy+9=0

C.+4y=6 D.4x=

2.下列方程组中,是二元一次方程组的是( )

A. B.

C. D.

3.在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程为关于x,y的二元一次方程,则k值为( )

A.-2 B.2或-2 C.2 D.以上答案都不对

4.二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( )

A、 B、 C、 D、

5.二元一次方程组的解为( )

A. B. C. D.

6、为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )

A.1种B.2种C.3种D.4种

设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识

六、拓展延伸

1.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是( )

A. B.

C. D.

2.甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试计算a2 016+(-b)2 017.

设计意图:这个环节是巩固本课知识点,通过设置练习,来检测学生的掌握情况,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦。

七、课堂小结

以提问进行:

(1)、二元一次方程(组)的特征是什么?

(2)、二元一次方程组的解要满足什么条件?

设计意图:通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感。同时为以后的学习作知识储备。

八、教学反思

1、概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。

2、类比法的运用:二元一次方程及其解的意义类比一元一次方程学习,一方面加深学生对于方程中“元”与“次”的理解,另一方面易于理清一元一次方程与二元一次方程“解”的相关知识的异同,同时为二元一次方程组相关概念扫清障碍。

3、分层递进,循环上升:学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目的设计从单一知识点的直接运用,逐渐到多个知识点的灵活运用,给学生设计必要的台阶,使其一步步向前,最终达到教学目标。

二元一次方程组课件 篇9

(二)难点

灵活运用加减消元法的技巧.

(三)疑点

如何“消元”,把“二元”转化为“一元”.

(四)解决办法

只要将相同未知量前的系数化为绝对值相等的值即可利用加减法进行消元.

四、课时安排

一课时.

五、教具学具准备

投影仪、胶片.

六、师生互动活动设计

1.教师通过复习上节课代入法解二元一次方程组的方法及其解题思想,引入除了消元法还有其他方法吗?从而导入新课即加减法解二元一次方程组.

2.通过引例进一步让学生探究是用代入法还是用加减法解方程组更简单,让学生进一步明确用加减法解题的优越性.

3.通过反复的训练、归纳、再训练、再归纳,从而积累用加减法解方程组的经验,进而上升到理论.

七、教学步骤

(-)明确目标

本节课通过复习代入法从而引入另一种消元的办法,即加减法解二元一次方程组.

(二)整体感知

加减法解二元一次方程组的关键在于将相同字母的系数化为绝对值相等的值,即可使用加减法消元.故在教学中应反复教会学生观察并抓住解题的特征及办法从而方便解题.

(三)教学过程

1.创设情境,复习导入

(1)用代入法解二元一次方程组的基本思想是什么?

(2)用代入法解下列方程组,并检验所得结果是否正确.

学生活动:口答第(1)题,在练习本上完成第(2)题,一个同学说出结果.

上面的方程组中,我们用代入法消去了一个未知数,将“二元”转化为“一元”,从而得到了方程组的解.对于二元一次方程组,是否存在其他方法,也可以消去一个未知数,达到化“二元”为“一元”的目的呢?这就是我们这节课将要学习的内容.

【教法说明】由练习导入新课,既复习了旧知识,又引出了新课题,教学过程中还可以进行代入法和加减法的对比,训练学生根据题目的`特点选取适当的方法解题.

2.探索新知,讲授新课

第(2)题的两个方程中,未知数 的系数有什么特点?(互为相反数)根据等式的性质,如果把这两个方程的左边与左边相加,右边与右边相加,就可以消掉 ,得到一个一元一次方程,进而求得二元一次方程组的解.

解:①+②,得

把 代入①,得

学生活动:比较用这种方法得到的 、值是否与用代入法得到的相同.(相同)

上面方程组的两个方程中,因为 的系数互为相反数,所以我们把两个方程相加,就消去了 .观察一下, 的系数有何特点?(相等)方程①和方程②经过怎样的变化可以消去 ?(相减)

学生活动:观察、思考,尝试用①-②消元,解方程组,比较结果是否与用①+②得到的结果相同.(相同)

我们将原方程组的两个方程相加或相减,把“二元”化成了“一元”,从而得到了方程组的解.像这种解二元一次方程组的方法叫加减消元法,简称“加减法”.

提问:①比较上面解二元一次方程组的方法,是用代入法简单,还是用加减法简单?(加减法)

②在什么条件下可以用加减法进行消元?(某一个未知数的系数相等或互为相反数)

③什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)

【教法说明】这几个问题,可使学生明确使用加减法的条件,体会在某些条件下使用加减法的优越性.

例1  解方程组

哪个未知数的系数有特点?( 的系数相等)把这两个方程怎样变化可以消去 ?(相减)

学生活动:回答问题后,独立完成例1,一个学生板演.

解:①-②,得

把 代入②,得

(1)检验一下,所得结果是否正确?

(2)用②-①可以消掉 吗?(可以)是用①-②,还是用②-①计算比较简单?(①-②简单)

(3)把 代入①, 的值是多少?( ),是代入①计算简单还是代入②计算简单?(代入系数较简单的方程)

练习:P23  l.(l)(2)(3),分组练习,并把学生的解题过程在投影仪上显示.

小结:用加减法解二元一次方程组的条件是某个未知数的系数绝对值相等.

例2  解方程组

(1)上面的方程组是否符合用加减法消元的条件?(不符合)

(2)如何转化可使某个未知数系数的绝对值相等?(①×2或②×3)

归纳:如果两个方程中,未知数系数的绝对值都不相等,可以在方程两边部乘以同一个适当的数,使两个方程中有一个未知数的系数绝对值相等,然后再加减消元.

学生活动:独立解题,并把一名学生解题过程在投影仪上显示.

二元一次方程组课件 篇10

各位评委、老师大家好:

我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

一、说教材

(一)地位和作用

本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们较大的发挥空间。

(二) 课程学习目标

1、会用代入法解二元一次方程组。

2、初步体会解二元一次方程组的基本思想——“消元”。

3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想。

(三)教学重、难点:

用代入消元法解二元一次方程组 教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。

二、说教法

针对本节特点,在教学过程中采用自主探究、师友互助交流的教学方法,由教师提出明确问题,学生积极参思考与讨论探究、师友合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、师友合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。

三、说学法

本节学生在独立思考、自主探究中学习并对老师的问题展开有师友讨论与交流。如何用代入消元法将“二元”转化“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。整个过程可以通过自主探究和师友合作来实现课程目标,此外,教学中,各个环节主要采用独学,对学,群学的方法,随堂练习时应引导学生通过自我反省小组评价来克服解题时的错误,必要时教师给予规范矫正。

四、说教学流程

(一)简单复习

学师学友面对面,学友说给学师听,什么是二元一次方程(组)?说完后两组师友展示给全班同学听

(二)自主学习:

出示学习目标:学生齐读一下,对本课学习有一个大体了解。

学生认真学习课本P91例题1上面的内容,并回答以下两个问题(电子白板出示)

1.什么叫消元思想 2.代入消元法

学习完成之后学生举手回答,教师总结。

(三)合作探究

电子白板出示问题:

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

1.师友合作交流,探究新知

在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组

学生活动:分别列出一元一次方程和二元一次方程组,

设胜的场数是x 则负的场数为22-x,列方程得 2x+(22-x)=40

设胜的场数是x,负的场数是y,列方程组得

x+y=22

2x+y=40

2.自主探究,师友讨论

那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

3.学生归纳,教师作补充:

上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

把下列方程写成用含x的式子表示y的形式

(1)2x-y=5(2)4x+3y-1=0

学生活动:尝试自主完成,教师纠正。思考:能否用含y的式子来表示x呢?

4、教师来说方法:(2)用代入法解方程组

x-y=3

3x-8y=14

思路点拨:先观察这个方程组中哪一项系数较小,发现中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入消元。

解:由变形得 X=y+3

把代入,得3(y+3)-8y=14

解这个方程,得 y=-1

把y=-1代入,得X=2

所以这个方程组的解是 X=2

y=-1

如何检验得到的结果是否正确? 学生活动:口答检验。

总结步骤:变 代 求 写

(四)小试牛刀(给你一个展示的舞台)

解二元一次方程组

1、 2、

两名同学到黑板上板演,其他同学在练习本上认真做!(教师巡视学生)

完成后,教师总结:解二元一次方程组的方法步骤:

变 代 求 写

(五)归纳总结,知识回顾

1、通过这节课的学习活动,你有什么收获?

2、你认为在运用代入法解二元一次方程组时,应注意什么问题?

(六)布置作业

作业:中午:课本 第二题1、2小题

晚上:《作业与测试》。

二元一次方程组课件 篇11

一、课堂练习

教材P98练习1、2题,P99练习第3、4题

解下列方程组

(1)(2)(3)

二、作业布置

教材P103习题8.2第1、2、4、6题。

三、自我检验

(一)填空题

1、在方程中,若用x表示y,则y=__________________,若用y表示x,则x=____________.

2、用代入法解方程组较简单的解法步骤为:先把方程______变为_________________,再代入方程________,求得_______的值,然后再求_________的值。

3、二元一次方程组的解为_______________。

4、若是方程组的解,则m=_________,n=__________。

5、在方程中,若x与y互为相反数,则x=_______,y=___________。

6、从方程组中消去m,得x与y的关系式为_____________________。

7、如果方程组的解是方程的一个解,则m=________________。

8、用代入法解方程组由得到用x的式子表示y是:_______________________。

(二)选择题

1、用代入法解方程组使得代入后化简比较容易的变形是()

A、由得B、由得C、由得D、由得

2、用代入法解方程组时,代入正确的是()

A、B、C、D、

3、解方程组的最佳方法是()

A、由得再代入B、由得再代入

C、由得再代入D、由得再代入

4、方程的一个解与方程组的解相同,由m等于()

A、4B、3C、2D、1

5、如果是方程组的解,那之间的关系是()

A、B、C、D、

6、在式子中,当时,其值为3,当时,其值是4,当时,其值为()

A、B、C、D、

7、某校八年级学生在会议室开会,若每排坐12人,则有11人无处从,若每排从14人,则余1人独从一排,则这个年级的学生总数为()

A、133B、144C、155D、166

(三)解答题

1、用代入消元法解下列方程组:

(1)(2)(3)

2、已知方程组的解中x与y互为相反数,求m的值。

3、已知方程组的解是方程的一个解,求a的值。

4、已知方程组与方程组有相同的解,求a、b的值。

5、解下列方程组的过程中,是否有错误,如有错误,请指出来。

解方程组

解:由①得

把代入中,

∴y是任意数

∴x是任意数

因此方程组有无数个解

6、若求的值。

7、一个两位数,十位上的数字比个位数字大2,若将十位数了和个位数字交换位置,所得的数比原数的多3,求这个两位数。

8、甲、乙两人同解方程组,甲正确解得,乙因抄错C,解得,求A、B、C的值。

9、已知等式对于一切数都成立,求A、B的值。

10、根据有关信息求解:

(1)根据图中给出的信息,求每件T恤衫和每瓶矿泉水的价格。

(2)用八块相同的长方形地砖拼成了一个大长方形,求每块地砖的长和宽。

本文网址://m.jk251.com/jiaoan/55124.html

相关文章
最新更新

热门标签