2.2从古老的代数书说起的教学方案
时间:2022-01-17 平行线的性质教学设计方案 民国时期的文化教学设计方案2.2从古老的代数书说起---一元一次方程的讨论(3)
【教学目标】1.熟练应用合并(同类项)及移项,解"ax+bx=c"及"ax+b=cx+d"类型的一元一次方程;2.进一步感受如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;3.初步体会一元一次方程的应用价值,感受数学文化.〖练习〗p85.习题9〖探索1〗(1)有一列数,按一定的规律排成1,-3,9,-27,81,-243…,如果其中有一个数是x,那么跟在它后面的两个数依次为______,______.如果其中有一个数是y,那么它前面的哪个数是______,后面的那个数是______.(2)有一列数,按一定的规律排成1,-3,9,-27,81,-243…,其中某三个相邻数的和是567,这三个数各是多少?相信你能自己解决这个问题了!〖例题学习〗p81.例2想一想:如果设这三个相邻数中的第二个数为y,怎么列方程?解是多少?〖探索2〗(1)“全球通”移动电话的计费方法是:月租费50元/月,本地通话费0.40元/分.一个月内,若通话200分,需交费_________元;若通话x分,需交费__________元.(2)李老师5月份“全球通”移动电话消费130元,求通话的时间是多少分.全球通神州行月租费50元/月0本地通话费0.40元/分0.60元/分〖探索3〗“全球通”和“神州行”两种移动电话的收费方式如表:用“全球通”每月收月租费50元/月,此外根据累计通话时间按0.40元/分加收通话费.用“神州行”,不收月租费,根据累计通话时间按0.60元/分收通话费.(1)若一个月内在本地通话100分,按两种计费方式各需交多少元?选择哪一种计费方式比较便宜?通话时间若是300分呢?(2)若累计通话t分,则用“全球通”要收费__________元;用“神州行”要收费__________元.(3)当本地通话时间是多少分时,两种收费方式的收费一样?(4)你认为在什么条件下选择“神州行”更便宜?(5)请为你的家长在“全球通”和“神州行”两种移动电话的收费方式中选择一种,并说明理由.〖补充作业〗1.国庆节前几天,两家商店的同一种彩电的价格相同.国庆节两家商店都有降价促销活动.甲商店的这种彩电降价500元,乙商店的这种彩电打9折.若原价是2000元/台,到哪一家商店买便宜?若原价是20000元呢?当原价是多少时,降价后的价格仍然相等?2.某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问当一年内累计消费多少元时,买卡与不买卡要花一样的钱?什么情况下买卡合算?
Jk251.com相关文章推荐
代数式的教学方案
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解的概念,使学生能说出一个所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对的概念课文没有直接给出,而是用实例形象地说明了的概念。对的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)中并不要求数和表示数的字母同时出现,单独的一个数和字母也是.如:2,都是.
(3)是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个有几种运算和运算顺序。不含表示关系的符号,如等号、不等号.如,,等都是,而,,,等都不是.
3.教学难点分析:能正确说出一个的数量关系,即用语言表达的意义,一定要理清中含有的各种运算及其顺序。用语言表达的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出7(a-3)的意义。
分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写的注意事项:
(1)中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.如,应写作或写作,应写作或写作.带分数与字母相乘,应把带分数化成假分数,如应写成.数字与数字相乘一般仍用“×”号.
(2)中有除法运算时,一般按照分数的写法来写.如:应写作
(3)含有加减运算的需注明单位时,一定要把整个式子括起来.
5.对本节例题的分析:
例1是用表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的的意义.因为中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是,理清中的运算和运算顺序,才能正确说出一个所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个所表示的数量关系。
教学设计示例
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解的概念,使学生能说出一个所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.
教学重点和难点
重点:用字母表示数的意义
难点:学会用字母表示数及正确地说出所表示的数量关系
课堂教学过程设计
一、从学生原有的认知结构提出问题
1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律a+b=b+a;
(2)乘法交换律a·b=b·a;
(3)加法结合律(a+b)+c=a+(b+c);
(4)乘法结合律(ab)c=a(bc);
(5)乘法分配律a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?
3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,以及a2等等都叫.那么究竟什么叫呢?的意义又是什么呢?这正是本节课我们将要学习的内容.
三、讲授新课
1
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫.学习代数,首先要学习用表示数量关系,明确代数上的意义
2举例说明
例1填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m
例2说出下列的意义:
(1)2a+3(2)2(a+3);(3)(4)a-(5)a2+b2(6)(a+b)2
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(3)的意义是c除以ab的商;(4)a-的意义是a减去的差;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3用表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用表示用语言叙述的数量关系要注意:①弄清中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
解:(1);(2)(m-5n)2(3)2x+y;(4)3tν3
四、课堂练习
1填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____
2说出下列的意义:(投影)
(1)2a-3c;(2);(3)ab+1;(4)a2-b2
3用表示:(投影)
(1)x与y的和;(2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和
五、师生共同小结
首先,提出如下问题:
1本节课学习了哪些内容?2用字母表示数的意义是什么?
3什么叫?
教师在学生回答上述问题的基础上,指出:①实际上就是算式,字母像数字一样也可以进行运算;②在和运算结果中,如有单位时,要正确地使用括号
六、作业
1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长
2张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3飞机的速度是汽车的40倍,自行车的速度是汽车的,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4a千克大米的售价是6元,1千克大米售多少元?
5圆的半径是R厘米,它的面积是多少?
6用表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长
从“买布问题”说起初中教案精选
2.3从“买布问题”说起---一元一次方程的讨论(2)(四)【教学目标】1.熟练掌握一元一次方程的解法;2.进一步感受列方程的一般思路;3.进一步培养学生的建模能力及创新能力.4.通过观察、实践、讨论等活动经历从实际中抽象数学模型的过程.【对话探索设计】〖探索1〗一项工程,甲要做12天才能做完.如果把总工作量看作1,那么,根据工作效率=________÷________,得甲一天的工作量(工作效率)为________.他做3天的工作量是__________.〖探索2〗一项工程,甲单独做要6天,乙单独做要3天,两人合做要几天?(1)你能估算出答案吗?(2)试一试,怎样用直线型示意图寻求答案:如图,线段ab表示总工作量1,怎样在线段ab上分别表示甲、乙一天的工作量?通过示意图,能够很直观地看出答案吗?如图,用整个圆的面积表示全部工作量1,怎样用扇形的面积分别表示甲、乙两人一天的工作量?通过示意图,能够很直观地看出答案吗?与直线型示意图相比,你更乐意用哪一种图形分析?〖探索3〗一项工程,甲单独做要12天,乙单独做要18天,两人合做要几天?解:把总工作量看作1,那么,根据工作效率=________÷________,得甲一天的工作量(工作效率)为______;乙一天的工作量为______;设两人合做要x天,那么,甲的总工作量为________;乙的总工作量为________;这工作由两个人完成,根据两人完成的工作量之和等于1,可列方程:_____________________.解这个方程得________________.答:_____________________.把这道题的解法与小学时的算术解法进行比较,你有什么发现?〖探索4〗整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?(p92例5)解:把总工作量看作1,那么,根据工作效率=________÷________,得人均效率(一个人1小时的工作量)为________.设先安排x人工作4小时,那么,这x个人4小时的工作量为_______________(可化简为_________).显然,再增加2人后,参加工作的人数为x+2,这(x+2)个人工作8小时的工作量为___________________(可化简为_________).这工作分两段完成,根据两段完成的工作量等于1可列方程:________________________.解得_______.答:_________________.想一想:如果不是把总工作量看作是1,而是把一个人一小时的工作量看作是1,该如何解这道题?比较两种解法,你有什么感受?教师本身要认真备课,要敢于质疑,要不失时机地培养学生独立思考的习惯.〖作业〗p93.习题3(3),(4);p94,8,9
音乐教案-从童年情景欣赏教学中得到的启示的教学方案
案例描述:
六年级的学生虽然外表已经长大成人,但他们的内心还有天真,稚气的一面,所以我们在音乐教学中要顾及到他们的两面性。例如,在《童年情景》的欣赏中,一位老师是这样安排的:
首先谈话引入:我们每个人都要经历一个人生的历程,这就是童年——少年——青年——老年,同学们已经经历了童年时期,现在正值少年时期,今天我们一起作一个回忆:童年的时候你曾经喜欢哪些游戏?最难忘的事是什么?童年时候有梦想吗?你的梦想是什么?这样就勾起了大家对童年的回忆,同学们非常兴奋,完全沉浸在童年的幸福生活中。
讨论后,他让大家听《梦幻曲》和《捉迷藏》,让学生在音乐中体会童年生活。然后提问:这两首曲子速度一样吗?请你联系歌名,说说他们各自表达了怎样的情绪?孩子们在讨论中结合歌曲,同时也联系了实际发表了不同的看法,课堂气氛也活跃了起来。有的同学说,《捉迷藏》是一种快乐的游戏,小朋友你追我赶,所以他的旋律应该是欢快的,活泼的,而《梦幻曲》主要描述的是梦的意境,而做梦让人感觉的是虚无飘渺,不着边际的,是在睡梦中进行的,所以整个环境应该是柔和的,优美的……从这里可以看出,学生对乐曲的理解已经有所进步。
紧接着,他让学生用线条描绘出《梦幻曲》旋律的起伏变化,有些学生有一定的难度,他就让学生随音高画点,然后将这些点连线,直观体会《捉迷藏》的旋律起伏变化。同时,让学生观看投影(捉迷藏)并欣赏音乐,闭上眼睛欣赏《梦幻曲》,帮助学生进一步感悟音乐的涵义。
最后,让学生一起来做做游戏(捉迷藏的戏),一起体会童年生活的快乐。从活动中,游戏中重现童年情景,学生的学习积极性也就更高了。轻松地掌握了教学内容。
反思与研究
二十一世纪是创造的时代,我们要培养创造型人才,要从小对学生进行高层次思维方法的开发。音乐是“大脑的体操”,在音乐教学中要培养发展学生的想象与联想能力,特别是与之相关的非智力因素——热情、毅力、信心,活泼开朗的个性。在音乐教学中,我们首先要注重学生学习兴趣的培养。学生的学习兴趣是求知的兴奋感和成功感的结晶,是在教师的不断引趣、启发、联系、创造、反馈的过程中形成和发展的。在欣赏课教学中,如果我们不拘于专业知识的学习和讲解,鼓励他们自由想象,冲破常规的思想意识,必将有利于他们理解歌曲,更有利于他们的个性发展。
那么,如何把欣赏课变得生动有趣呢?
1.引导学生引起与主题有关的共鸣
作为一名教育工作者,我们除有必要了解学生心理学等理论知识外,实践中也要走进他们的生活,走进他们的心灵世界,破解他们的心理密码,吸取他们天天都在生长着的鲜活生动的聪明和智慧。在此课的教学中,通过提问,激起同学们对童年生活的回忆,引导他们想象捉迷藏,从而,让他们轻松地体会曲子的意境。
2.感性与理性相结合,淡化知识性。
在小学阶段,学生还不具备严密的逻辑思维,只局限在既懂又不懂,既合逻辑又不合逻辑的感性层面上。“越是学生熟悉的就越容易被孩子们接受和喜爱。”卓许娅老师说:“个人只要能从音乐欣赏中获得积极的教益,无论这种教益是理性思考、情绪体验、经验或形象的联想,对音响形成的赞叹或迷恋,还是感官或机体的娱悦,都应承认其是音乐欣赏的正当价值。”通过这节课的教学,学生主动、愉悦地参与欣赏,并初步了解其情绪和旋律走向,最后参与活动,使学生受益非浅。综上所述:小学的音乐欣赏课应撵弃传统的灌输式的以掌握知识为目的的教学方式,重在让学生主动参与和感受,愉悦地学习,潜移默化深入作品。以取得更大的进步。案例点评:教师利用学生的亲身经历,吸引学生全神贯注地投入音乐,帮助他们从整体上去感知音乐作品,去学习体验音乐的情景,最后通过游戏,使他们与音乐融为一体,这是一节成功的音乐欣赏课。
从种到界相关教学方案
第二节从种到界
一、教学目标1、说出生物分类的七个等级。2、概述生物分类的依据和意义。二、重点难点让学生了解生物分类的单位。三、课前准备教师:制作cai课件,增加教学的直观性和趣味性;动物类群分类的挂图或投影片。学生:四人一组,准备一副扑克。四、课时分配一课时五、--学习内容学生活动教师活动分类的依据根据生物之间的相似程度,把它们分成不同等级的分类单位。分类单位界(将生物分为植物界、动物界和其他几个界)界以下又分为:门、纲、目、科、属、种。每个种里只有一种生物,这个等级中生物的共同特征最多。所以,种是最基本的分类单位,同种生物的亲缘关系是最亲密的。分类的意义使每个物种在生物分类上的位置一目了然。四人一组,根据游戏要求,将扑克牌进行分类。小组讨论,归纳分类的依据,发解分类的等级不同,分类的结果就不同。相互交流,质疑答疑。对存在问题,在教师的帮助指导下,由师生共同解惑,得出结论,明白生物分类的依据。四人一组,根据提纲,进行分析,归纳整理,表述交流,质疑答疑,得出结论。根据问题,看书思考,表述交流,相互补充,对存在的问题,在教师的帮助指导下,由师生共同解惑,得出结论。根据提纲,自主学习,汇报交流,达成共识,得出结论。根据问题,认真看书,思考分析,表述交流,归纳整理,得出结论。创设情景:善于观察、勤于思考,是学好生物学的最基本方法。以小组为单位,组织学生根据要求做游戏。将一副扑克牌按照红色、黑色分开;按照桃花、梅花、方块、红心分开、然后,再按照红桃、黑桃等分开。质疑:在游戏中,你发现分开后的扑克牌有什么特性?它们的分类等级一样吗?指导学生思考、总结。对存在问题,由教师点拨指导,从而得出结论。质疑:重量单位有克、公斤、吨;长度单位有毫米、厘米、分米、米等。那么,生物有没有分类单位?从小到大的顺序是什么?其中,最基本的分类单位、最重要的分类单位是什么?指导学生看书,得出结论。出示提纲,指导学生看书,分析思考,得出结论。质疑:同种中的生物个体之间的亲缘关系近,还是同界中生物个体之间的亲缘关系近?对生物进行分类有什么意义?组织学生看书,进行分析,得出结论。
从生活中选材不要忽视它的数学价值——绝对值的教学设计随想的教学方案
从生活中选材不要忽视它的数学价值——《绝对值》的教学设计随想
【主题】新课程改革提倡课堂教学与生活紧密相联,但决不是把生活情景原原本本地搬到课堂上来,否则这样的课有生活味而没有学科味了。《数学课程标准解读》中提到:“学习素材应尽量来源于自然、社会与科学中的现象和问题,而其中应当包含一定的数学价值。”倡导课堂教学与生活相联,目的是为了给教学注入活力。我们要把充满火热生命气息的生活原生态,改造为具备清晰而富有教育意义的再生态情景,为教学服务,为学生的发展服务。
【背景】苏科版数学七年级上册第二章第三节《绝对值与相反数(第1课时)》一课,是一堂概念课,与传统教材相比在内容与教学要求上并无太大差异,如何按照新课程标准的理念上好这一课,对我们一线教学的教师无疑是个挑战。笔者在这一课的教学中,创设了与学生生活紧密联系的教学情景,让学生借助生活经验理解了抽象的绝对值概念,并学会了绝对值的初步应用.
【设计】我校坐落在江宁区金箔路(东西走向)旁,90%的学生住校,对初一新生来说,第一次远离父母,迈入东山外国语学校,很多生活中的事情要由个人独立料理,开学初,许多家长在周六或周日来校看望自己的孩子。因而我就此组织绝对值的教学素材。从这个情境中学生认识到在金箔路上,与学校(门口)相距200米的地点有两处——金箔信用社、金宝装饰商场,如果要知道确切的地点,还需要指出它的方向。
【教学过程】
一、创设情景,引入课题:
情境:9月4日,李强的爸爸来学校,会见了老师,临走时叫老师把一个纸条转交给李强.老师在整理办公桌时,一不小心将墨汁沾在上面(如图)
从生活中选材不要忽视它的数学价值——《绝对值》的教学设计随想
如果无法下载,请右击使用迅雷下载(要先安装迅雷)
上一篇:苏科七上教案第2章2.2数轴2-1
下一篇:2.3绝对值与相反数(三)
2.2探索直线平行的条件(2)_教案模板
教学目标:
1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.
2、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.
3、会用三角尺过已知直线外一点画这条直线的平行线.
教学重点:
弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”.
教学难点:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”.
准备活动:
1、如图,a∥b,数一数图中有几个角(不含平角)
2、写出图中的所有同位角.
教学过程:
一、引入:
小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段ab(如图所示).他只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?
定义:1、内错角;2、同旁内角.
二、探索练习:
观察三线八角,内错角的变化和同旁内角的变化,讨论:
(1)内错角满足什么关系时,两直线平行?为什么?
(2)同旁内角满足什么关系时,两直线平行?为什么?
★结论:内错角相等,两直线平行.
同旁内角互补,两直线平行.
三、巩固练习:
1、如右图,∵∠1=∠2
∴_____∥_____,___________________________
∵∠2=_____
∴____∥____,同位角相等,两直线平行
∵∠3+∠4=180º
∴____∥_____,___________________________
∴ac∥fg,_______________________________
2、如右图,∵de∥bc
∴∠2=_____,___________________________
∴∠b+_____=180º,___________________
∵∠b=∠4
∴_____∥_____,________________________
∴____+_____=180º,两直线平行,同旁内角互补
小结:
会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”.
作业:
课本p58习题2.3:1、2、3.
教学后记:
初步了解内错角和同旁内角,但在三线八角图中,找同位角、内错角、同旁内角就有些混乱,不过能通过观察内错角、同旁内角度数的变化发现“内错角相等,两直线平行和同旁内角互补,两直线平行”.在实际应用中比较乱,出现“同旁内角相等,两直线平行”的错误.
