正方形的教学方案
时间:2022-01-27 花卉正方形 用正方形的花卉教学建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:
1.正方形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。
2.正方形在现实中的实例较多,在讲解正方形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.
3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.
4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
5.由于正方形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.
6.在正方形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。
教学引入
师:前面我们已经学习过平行四边形、矩形和菱形,知道矩形和菱形都是特殊的平行四边形,他们都具有平行四边形的性质,同时又都具有各自独特的性质。
师:现在我们来学习一种新的特殊的平行四边形----正方形。
讲授新课
师:正方形我们在小学就已经接触过,首先我们来看正方形的定义。
动画演示:
场景一:正方形定义
师:正方形的定义我们可以分成俩部分来理解:
(1)有一个角是直角的平行四边形叫做正方形。
(2)有一组邻边相等的平行四边形叫做正方形。
师:根据这两部分我们会想起什么?
[学生活动:积极思考,回想学过定义,大部分学生会想起矩形和菱形,小声议论甚至抢答。]
生:有一个角是直角的平行四边形是矩形,(1)说的是矩形;有一组邻边相等的平行四边形是菱形,(2)说的是菱形。
生:正方形既是矩形又是菱形。
生:正方形还是平行四边形。
师:大家想得都不错。正方形既是矩形又是菱形,根据定义,他还是平行四边形。
师:正方形是特殊的平行四边形、矩形、菱形。
动画演示:
场景二:正方形与平行四边形、矩形、菱形的关系
师:正方形、平行四边形、矩形、菱形他们之间的关系还可以用图1来表示:
图1
师:请同学们回想一下,我们在学习矩形、菱形时,知道矩形和菱形都是特殊的平行四边形,他们都具有平行四边形的性质,同时又都具有各自独特的性质。
师:那么,根据正方形与平行四边形、矩形、菱形的关系,正方形应具有什么样的性质?
[学生活动:回忆矩形、菱形的性质,并逐个验证在正方形上。]
师在学生活动时要注意观察学生的情况,有疑惑时要注意及时反馈。
师:我们来归纳总结正方形的性质。
动画演示:
场景三:矩形的性质
场景四:菱形的性质
¿场景五:正方形的性质
例题讲解
例1在已知锐角三角形ABC外边作正方形ABDE和正方形ACFG,求证:BG=CE
分析:据已知条件画出图形,如图2所示,要证明线段相等,与图形可以证明二个三角形全等,即只需证明△ABG≌△AEC.
证明:∵四边形ABDE和ACFG都是正方形
∴AB=AE,AG=AC
∠BAE=∠CAG=90°
∴∠BAE+∠BAC=∠CAG+∠BAC
即∠BAG=∠EAC
∴△ABG≌△AEC∴BG=CE
图2
说明:应用正方形的性质,可以为证明全等提供条件,要注意等式性质的应用,这与向锐角三角形ABC外作等边三角形的结论完全相同,证法是可以借鉴的。
巩固练习
巩固练习题目可有教师根据学生情况自主选择。
讲解新课
师:正方形是特殊的平行四边形、矩形、菱形,那么根据平行四边形、矩形、菱形和正方形它们之间的关系,怎么判定一个矩形是正方形?
生:证一组邻边相等。
师:怎么判定一个菱形是正方形?
生:证有一个角是直角。
师:怎么判定一个平行四边形是正方形?
生:根据定义,证有一组邻边相等且有一个角是直角。
师:那么,刚才的结论如果用图来表示,是不是如图3所示?
师:图3表现出由平行四边形、矩形、菱形分别得到正方形的三种方法。这是我们根据平行四边形、矩形、菱形和正方形它们之间的关系得到的,但似乎有缺憾,能不能同样根据平行四边形、矩形、菱形和正方形它们之间的关系把图3补全?
[学生活动:积极思考,部分学生疑惑不解。]
师点取上等学生回答问题,根据回答得图4。
生恍然大悟。
学生思路得到启发,中上等及上等学生意犹未尽,鼓励他们根据矩形、菱形的判定方法直接得到正方形的判定思路,并要求其举出简单示例。
就势跟进,要求学生思考,给定四边形,有什么样的边、角、对角线条件可判定四边形是正方形?要求给出简单图例,并说出相应证明思路。
为进一步理解正方形的判定方法,可研究以下几个问题:
(3)对角线相等的菱形是正方形吗?
(4)对角线互相垂直的矩形是正方形吗?
(5)对角线互相垂直且相等的四边形是正方形吗?若不是,还需增加什么条件?
(6)能说“四条便都相等的四边形是正方形吗?”
(7)四个角都相等的四边形是正方形吗?
小结:证明正方形的思路,总体讲三种思路,如图4所示;遇到具体条件要学会具体分析,规定条件和隐含条件不外乎边、角、对角线,或者把他们搅和在一起。这是一定要都要冷静,学会去分析。
动画演示:
场景六:正方形的判定
F例题讲解
例2如图所示,在正方形ABCD中,E、F分别是BC、AB的中点,DE、CF相交于M,
求证:AD=AM。
分析:欲证AD=AM,只需证明∠1=∠2,但要根据题目条件直接证明∠1=∠2比较困难,考虑到E、F是正方形的两边中点,容易证明得:△BCF≌△CDF,得∠3=∠4,而∠4+∠BCF=90°.由此DE⊥CF,这是要证AD=AM,是否想到与直角有关的等腰三角形?只需延长CF、DA交于N,即可出现直角三角形MND,只要证明A是ND中点即可。这是是否发现△BCF≌△ANF?由AN=BC=AD,从而A是ND中点,MA是直角三角形MND的斜边ND上的中线。问题得证。
证明:略。
说明:将此题中的中点E、F进行变化:E、F分别为正方形ABCD的边BC、AB上的点,且BE=AF,则有DE⊥CF。这个变化后的图形在正方形中常常出现,要注意隐含的这个垂直条件。
课堂练习题及课后作业可由教师根据学生情况自主选择。
Jk251.com相关文章推荐
数学教案-正方形相关教学方案
教学建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:
1.正方形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。
2.正方形在现实中的实例较多,在讲解正方形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.
3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.
4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
5.由于正方形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.
6.在正方形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。
教学引入
师:前面我们已经学习过平行四边形、矩形和菱形,知道矩形和菱形都是特殊的平行四边形,他们都具有平行四边形的性质,同时又都具有各自独特的性质。
师:现在我们来学习一种新的特殊的平行四边形----正方形。
讲授新课
师:正方形我们在小学就已经接触过,首先我们来看正方形的定义。
动画演示:
场景一:正方形定义
师:正方形的定义我们可以分成俩部分来理解:
(1)有一个角是直角的平行四边形叫做正方形。
(2)有一组邻边相等的平行四边形叫做正方形。
师:根据这两部分我们会想起什么?
[学生活动:积极思考,回想学过定义,大部分学生会想起矩形和菱形,小声议论甚至抢答。]
生:有一个角是直角的平行四边形是矩形,(1)说的是矩形;有一组邻边相等的平行四边形是菱形,(2)说的是菱形。
生:正方形既是矩形又是菱形。
生:正方形还是平行四边形。
师:大家想得都不错。正方形既是矩形又是菱形,根据定义,他还是平行四边形。
师:正方形是特殊的平行四边形、矩形、菱形。
动画演示:
场景二:正方形与平行四边形、矩形、菱形的关系
师:正方形、平行四边形、矩形、菱形他们之间的关系还可以用图1来表示:
图1
师:请同学们回想一下,我们在学习矩形、菱形时,知道矩形和菱形都是特殊的平行四边形,他们都具有平行四边形的性质,同时又都具有各自独特的性质。
师:那么,根据正方形与平行四边形、矩形、菱形的关系,正方形应具有什么样的性质?
[学生活动:回忆矩形、菱形的性质,并逐个验证在正方形上。]
师在学生活动时要注意观察学生的情况,有疑惑时要注意及时反馈。
师:我们来归纳总结正方形的性质。
动画演示:
场景三:矩形的性质
场景四:菱形的性质
¿场景五:正方形的性质
例题讲解
例1在已知锐角三角形ABC外边作正方形ABDE和正方形ACFG,求证:BG=CE
分析:据已知条件画出图形,如图2所示,要证明线段相等,与图形可以证明二个三角形全等,即只需证明△ABG≌△AEC.
证明:∵四边形ABDE和ACFG都是正方形
∴AB=AE,AG=AC
∠BAE=∠CAG=90°
∴∠BAE+∠BAC=∠CAG+∠BAC
即∠BAG=∠EAC
∴△ABG≌△AEC∴BG=CE
图2
说明:应用正方形的性质,可以为证明全等提供条件,要注意等式性质的应用,这与向锐角三角形ABC外作等边三角形的结论完全相同,证法是可以借鉴的。
巩固练习
巩固练习题目可有教师根据学生情况自主选择。
讲解新课
师:正方形是特殊的平行四边形、矩形、菱形,那么根据平行四边形、矩形、菱形和正方形它们之间的关系,怎么判定一个矩形是正方形?
生:证一组邻边相等。
师:怎么判定一个菱形是正方形?
生:证有一个角是直角。
师:怎么判定一个平行四边形是正方形?
生:根据定义,证有一组邻边相等且有一个角是直角。
师:那么,刚才的结论如果用图来表示,是不是如图3所示?
师:图3表现出由平行四边形、矩形、菱形分别得到正方形的三种方法。这是我们根据平行四边形、矩形、菱形和正方形它们之间的关系得到的,但似乎有缺憾,能不能同样根据平行四边形、矩形、菱形和正方形它们之间的关系把图3补全?
[学生活动:积极思考,部分学生疑惑不解。]
师点取上等学生回答问题,根据回答得图4。
生恍然大悟。
学生思路得到启发,中上等及上等学生意犹未尽,鼓励他们根据矩形、菱形的判定方法直接得到正方形的判定思路,并要求其举出简单示例。
就势跟进,要求学生思考,给定四边形,有什么样的边、角、对角线条件可判定四边形是正方形?要求给出简单图例,并说出相应证明思路。
为进一步理解正方形的判定方法,可研究以下几个问题:
(3)对角线相等的菱形是正方形吗?
(4)对角线互相垂直的矩形是正方形吗?
(5)对角线互相垂直且相等的四边形是正方形吗?若不是,还需增加什么条件?
(6)能说“四条便都相等的四边形是正方形吗?”
(7)四个角都相等的四边形是正方形吗?
小结:证明正方形的思路,总体讲三种思路,如图4所示;遇到具体条件要学会具体分析,规定条件和隐含条件不外乎边、角、对角线,或者把他们搅和在一起。这是一定要都要冷静,学会去分析。
动画演示:
场景六:正方形的判定
F例题讲解
例2如图所示,在正方形ABCD中,E、F分别是BC、AB的中点,DE、CF相交于M,
求证:AD=AM。
分析:欲证AD=AM,只需证明∠1=∠2,但要根据题目条件直接证明∠1=∠2比较困难,考虑到E、F是正方形的两边中点,容易证明得:△BCF≌△CDF,得∠3=∠4,而∠4+∠BCF=90°.由此DE⊥CF,这是要证AD=AM,是否想到与直角有关的等腰三角形?只需延长CF、DA交于N,即可出现直角三角形MND,只要证明A是ND中点即可。这是是否发现△BCF≌△ANF?由AN=BC=AD,从而A是ND中点,MA是直角三角形MND的斜边ND上的中线。问题得证。
证明:略。
说明:将此题中的中点E、F进行变化:E、F分别为正方形ABCD的边BC、AB上的点,且BE=AF,则有DE⊥CF。这个变化后的图形在正方形中常常出现,要注意隐含的这个垂直条件。
课堂练习题及课后作业可由教师根据学生情况自主选择。
数学教案-正方形
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
动画演示:
场景五:平行四边形、矩形、菱形、正方形之间的关系
场景六:平行四边形、矩形、菱形、正方形之间的性质关系
师:当然平行四边形、矩形、菱形和正方形它们之间的关系还可以用下图(图1)表示:
图1
师:请同学们把平行四边形、矩形、菱形和正方形它们之间的关系以及平行四边形、矩形、菱形和正方形它们之间的性质关系整理在笔记本上。
例题讲解
例1在已知锐角三角形ABC外边作正方形ABDE和正方形ACFG,求证:BG=CE
分析:据已知条件画出图形,如图2所示,要证明线段相等,与图形可以证明二个三角形全等,即只需证明△ABG≌△AEC.
证明:∵四边形ABDE和ACFG都是正方形
∴AB=AE,AG=AC
∠BAE=∠CAG=90°
∴∠BAE+∠BAC=∠CAG+∠BAC
即∠BAG=∠EAC
∴△ABG≌△AEC∴BG=CE
图2
说明:应用正方形的性质,可以为证明全等提供条件,要注意等式性质的应用,这与向锐角三角形ABC外作等边三角形的结论完全相同,证法是可以借鉴的。
巩固练习
巩固练习题目可有教师根据学生情况自主选择。
讲解新课
师:正方形是特殊的平行四边形、矩形、菱形,那么根据平行四边形、矩形、菱形和正方形它们之间的关系,怎么判定一个矩形是正方形?
生:证一组邻边相等。
师:怎么判定一个菱形是正方形?
生:证有一个角是直角。
师:怎么判定一个平行四边形是正方形?
生:根据定义,证有一组邻边相等且有一个角是直角。
师:那么,刚才的结论如果用图来表示,是不是如图2所示?
师:图3表现出由平行四边形、矩形、菱形分别得到正方形的三种方法。这是我们根据平行四边形、矩形、菱形和正方形它们之间的关系得到的,但似乎有缺憾,能不能同样根据平行四边形、矩形、菱形和正方形它们之间的关系把图3补全?
[学生活动:积极思考,部分学生疑惑不解。]
师点取上等学生回答问题,根据回答得图4。
生恍然大悟。
学生思路得到启发,中上等及上等学生意犹未尽,鼓励他们根据矩形、菱形的判定方法直接得到正方形的判定思路,并要求其举出简单示例。
就势跟进,要求学生思考,给定四边形,有什么样的边、角、对角线条件可判定四边形是正方形?要求给出简单图例,并说出相应证明思路。
为进一步理解正方形的判定方法,可研究以下几个问题:
(1)对角线相等的菱形是正方形吗?
(2)对角线互相垂直的矩形是正方形吗?
(3)对角线互相垂直且相等的四边形是正方形吗?若不是,还需增加什么条件?
(4)能说“四条便都相等的四边形是正方形吗?”
(5)四个角都相等的四边形是正方形吗?
小结:证明正方形的思路,总体讲三种思路,如图4所示;遇到具体条件要学会具体分析,规定条件和隐含条件不外乎边、角、对角线,或者把他们搅和在一起。这是一定要都要冷静,学会去分析。
动画演示:
场景七:正方形的判定
例题讲解
例2如图所示,在正方形ABCD中,E、F分别是BC、AB的中点,DE、CF相交于M,
求证:AD=AM。
分析:欲证AD=AM,只需证明∠1=∠2,但要根据题目条件直接证明∠1=∠2比较困难,考虑到E、F是正方形的两边中点,容易证明得:△BCF≌△CDF,得∠3=∠4,而∠4+∠BCF=90°.由此DE⊥CF,这是要证AD=AM,是否想到与直角有关的等腰三角形?只需延长CF、DA交于N,即可出现直角三角形MND,只要证明A是ND中点即可。这是是否发现△BCF≌△ANF?由AN=BC=AD,从而A是ND中点,MA是直角三角形MND的斜边ND上的中线。问题得证。
证明:略。
说明:将此题中的中点E、F进行变化:E、F分别为正方形ABCD的边BC、AB上的点,且BE=AF,则有DE⊥CF。这个变化后的图形在正方形中常常出现,要注意隐含的这个垂直条件。
课堂练习题及课后作业可由教师根据学生情况自主选择。
经典初中教案正方形
教学建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:
1.正方形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。
2.正方形在现实中的实例较多,在讲解正方形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.
3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.
4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
5.由于正方形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.
6.在正方形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。
教学引入
师:前面我们已经学习过平行四边形、矩形和菱形,知道矩形和菱形都是特殊的平行四边形,他们都具有平行四边形的性质,同时又都具有各自独特的性质。
师:现在我们来学习一种新的特殊的平行四边形----正方形。
讲授新课
师:正方形我们在小学就已经接触过,首先我们来看正方形的定义。
动画演示:
场景一:正方形定义
师:正方形的定义我们可以分成俩部分来理解:
(1)有一个角是直角的平行四边形叫做正方形。
(2)有一组邻边相等的平行四边形叫做正方形。
师:根据这两部分我们会想起什么?
[学生活动:积极思考,回想学过定义,大部分学生会想起矩形和菱形,小声议论甚至抢答。]
生:有一个角是直角的平行四边形是矩形,(1)说的是矩形;有一组邻边相等的平行四边形是菱形,(2)说的是菱形。
生:正方形既是矩形又是菱形。
生:正方形还是平行四边形。
师:大家想得都不错。正方形既是矩形又是菱形,根据定义,他还是平行四边形。
师:正方形是特殊的平行四边形、矩形、菱形。
动画演示:
场景二:正方形与平行四边形、矩形、菱形的关系
师:正方形、平行四边形、矩形、菱形他们之间的关系还可以用图1来表示:
图1
师:请同学们回想一下,我们在学习矩形、菱形时,知道矩形和菱形都是特殊的平行四边形,他们都具有平行四边形的性质,同时又都具有各自独特的性质。
师:那么,根据正方形与平行四边形、矩形、菱形的关系,正方形应具有什么样的性质?
[学生活动:回忆矩形、菱形的性质,并逐个验证在正方形上。]
师在学生活动时要注意观察学生的情况,有疑惑时要注意及时反馈。
师:我们来归纳总结正方形的性质。
动画演示:
场景三:矩形的性质
场景四:菱形的性质
¿场景五:正方形的性质
例题讲解
例1在已知锐角三角形ABC外边作正方形ABDE和正方形ACFG,求证:BG=CE
分析:据已知条件画出图形,如图2所示,要证明线段相等,与图形可以证明二个三角形全等,即只需证明△ABG≌△AEC.
证明:∵四边形ABDE和ACFG都是正方形
∴AB=AE,AG=AC
∠BAE=∠CAG=90°
∴∠BAE+∠BAC=∠CAG+∠BAC
即∠BAG=∠EAC
∴△ABG≌△AEC∴BG=CE
图2
说明:应用正方形的性质,可以为证明全等提供条件,要注意等式性质的应用,这与向锐角三角形ABC外作等边三角形的结论完全相同,证法是可以借鉴的。
巩固练习
巩固练习题目可有教师根据学生情况自主选择。
讲解新课
师:正方形是特殊的平行四边形、矩形、菱形,那么根据平行四边形、矩形、菱形和正方形它们之间的关系,怎么判定一个矩形是正方形?
生:证一组邻边相等。
师:怎么判定一个菱形是正方形?
生:证有一个角是直角。
师:怎么判定一个平行四边形是正方形?
生:根据定义,证有一组邻边相等且有一个角是直角。
师:那么,刚才的结论如果用图来表示,是不是如图3所示?
师:图3表现出由平行四边形、矩形、菱形分别得到正方形的三种方法。这是我们根据平行四边形、矩形、菱形和正方形它们之间的关系得到的,但似乎有缺憾,能不能同样根据平行四边形、矩形、菱形和正方形它们之间的关系把图3补全?
[学生活动:积极思考,部分学生疑惑不解。]
师点取上等学生回答问题,根据回答得图4。
生恍然大悟。
学生思路得到启发,中上等及上等学生意犹未尽,鼓励他们根据矩形、菱形的判定方法直接得到正方形的判定思路,并要求其举出简单示例。
就势跟进,要求学生思考,给定四边形,有什么样的边、角、对角线条件可判定四边形是正方形?要求给出简单图例,并说出相应证明思路。
为进一步理解正方形的判定方法,可研究以下几个问题:
(3)对角线相等的菱形是正方形吗?
(4)对角线互相垂直的矩形是正方形吗?
(5)对角线互相垂直且相等的四边形是正方形吗?若不是,还需增加什么条件?
(6)能说“四条便都相等的四边形是正方形吗?”
(7)四个角都相等的四边形是正方形吗?
小结:证明正方形的思路,总体讲三种思路,如图4所示;遇到具体条件要学会具体分析,规定条件和隐含条件不外乎边、角、对角线,或者把他们搅和在一起。这是一定要都要冷静,学会去分析。
动画演示:
场景六:正方形的判定
F例题讲解
例2如图所示,在正方形ABCD中,E、F分别是BC、AB的中点,DE、CF相交于M,
求证:AD=AM。
分析:欲证AD=AM,只需证明∠1=∠2,但要根据题目条件直接证明∠1=∠2比较困难,考虑到E、F是正方形的两边中点,容易证明得:△BCF≌△CDF,得∠3=∠4,而∠4+∠BCF=90°.由此DE⊥CF,这是要证AD=AM,是否想到与直角有关的等腰三角形?只需延长CF、DA交于N,即可出现直角三角形MND,只要证明A是ND中点即可。这是是否发现△BCF≌△ANF?由AN=BC=AD,从而A是ND中点,MA是直角三角形MND的斜边ND上的中线。问题得证。
证明:略。
说明:将此题中的中点E、F进行变化:E、F分别为正方形ABCD的边BC、AB上的点,且BE=AF,则有DE⊥CF。这个变化后的图形在正方形中常常出现,要注意隐含的这个垂直条件。
课堂练习题及课后作业可由教师根据学生情况自主选择。
经典初中教案数学教案-正方形
课题:§4.6正方形(一)
教学目的:使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”
教学重点:正方形的定义.
教学难点:正方形与矩形、菱形间的关系.
教学方法:双边合作如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考:
(1)对角线相等的菱形是正方形吗?为什么?
(2)对角线互相垂直的矩形是正方形吗?为什么?
(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?
(4)能说“四条边都相等的四边形是正方形”吗?为什么?
(5)说“四个角相等的四边形是正方形”,对吗?
教学过程:
让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.
问:所得的图形是矩形吗?它与一般的矩形有什么不同?
所得的图形是菱形吗?它与一般的菱形有什么不同?
所得的图形在小学里学习时称它为什么图形?它有什么特点?
由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
(一)新课
由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质.
请同学们推断出正方形具有哪些性质?
性质1、(1)正方形的四个角都是直角。
(2)正方形的四条边相等。
性质2、(1)正方形的两条对角线相等。
(2)正方形的两条对角线互相垂直平分。
(3)正方形的每条对角线平分一组对角。
例1求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:四边形ABCD是正方形,对角线AC、BD相交于点O.
画方形圆形图形相关教学方案
当我们提起初中教学,你印象最深刻的一定是教案吧。多写教案能够提升我们的策划能力,高质量的教案对初中生的成长有促进作用,你是否在烦恼初中教案怎么写呢?希望《画方形圆形图形相关教学方案》能够为您提供帮助。
教学目的和要求
1、习圆、矩形、圆角矩形、多边形工具的使用方法。
2、让学生能运用画图工具作简单的规则图形。
教学重点:进一步认识“圆”、“矩形”、“圆角矩形”“多边形”等画图工具
教学难点:“圆”、“矩形”、“圆角矩形”“多边形”等画图工具的使用方法。
教学准备:。计算机、网络及辅助教学软件
教学过程
一、复习
提问:工具箱中的工具名称
教师指工具,学生口答
二、新课导入
1、出示图例:
师:请同学们看屏幕上有些什么简单的图形?如果老师将这些图形移动一下,就拼成了一个什么图形?
出示:其实许多规则的图形
都是由正方形、长方形、多边形、圆形、椭圆形等基本图形构成的。
同学想和老师一起用这些简单的图形去画出漂亮的图形吗?
今天,老师就和大家一起学习“画规则图形”(投影出示课题)
三、教学新课
1、教学“矩形”画图工具
(1)教学画长方形
①选择矩形工具单击;
②将鼠标指针指向画图区合适的位置,先按下左键,再沿对角线拖动鼠标,屏幕上出现一个矩形;
③当矩形大小合适时,松开鼠标左键。即可绘制出矩形。
(2)教学画正方形
①选择矩形工具单击
②按下Shift键后,再将鼠标指针指向画图区合适的位置,按下左键,拖动鼠标,屏幕上出现一个正方形。
③当正方形大小合适时,松开鼠标左键。即可绘制出正方形。
2、教学“圆角矩形”画图工具
圆角矩形的画法同画直角矩形的画法方法一样,只是“圆角矩形”画出的长方形的四个角是圆角的。
3、教学“椭圆”画图工具
(1)教学画椭圆
引导:画椭圆和画矩形方法是相同的。请学生讲一下操作步骤
(2)教学画圆
说明:画圆方法和画正方形的方法是一致的。可以怎么画?
4、教学“多边形”画图工具
操作步骤:(师生讨论得出)
教学画45度和90度角的拐角。
5、教学画一幢房子。
引导学生观察分析图形的布局,提问:图形的组成以及每一部分是什么图形,可以用什么工具来实现?
(1)画房子的主体,用矩形工具
(2)画房子的门,用矩形工具
(3)画房子的窗户,用圆角矩形工具
(4)画房顶,用多边形工具
(5)画烟囱,用椭圆工具
6、练一练画出下面的图形
全课总结
这节课我们学习了哪些画图工具?
美术教案-正方体的教学过程初中教案精选
图解1:形体与点线面①图中a、b、;c、d;e、f、g、h均是立方体的点,美术教案-正方体的教学过程它们既表现空间的位置,也表示轮廓线的转折处。根据空间位置,我们自然能判断出基点、顶点、近点与远点了。美术教案-正方体的教学过程②②立方体的所有竖线是垂直于基面且相互平行。水平线相互平行于基面,斜线最后交于一点,这三组线是立方体造型的关键。另外被遮住的线就成为辅助线了,你完全可以体会到辅助线对于画出这个立方体的作用。美术教案-正方体的教学过程③这个角度中的立方体,只有一个面是正方形,其余的面看上去均不是正方形,但是综合起来看,这个立方体的每个面给我们的感觉都应该是正方形。图解2:比例与分割先确定ab,再根据ab确定a,b,,然后由ab分割c点,由a,b,分割c,点。 /font /p 图解3:特征与基本形立方体本身就是一个基本形体,因此具有一定的概括性。但是,我们仍然可对它进行基本形概括。这里选择了方形概括,甲乙两图都是根据立方体的外轮廓的上下左右四个位置点,用辅助线画出基本形,然后,甲图切去两角,乙图切去四角。图解4:轮廓与转折画准立方体,要处理好三组线的关系,即相互间的远近、轻重关系。每一组线中的三根线从前向后或者从上向下均要画出虚实轻重的变化,为了检验轮廓的准确性,可将相对的两个面对角线的交点连接起来。图解5:结构与构成立方体的每一个面都是正方形。可是在左图中,两种角度的立方体,只有一个面为正方形。这是视觉的局限性和透视现象所致。因此,绘画中,要掌握对象结构关系与画面形象诸因素的构成关系。正确画出立方体的结构关系,一要通过找中心点连线分析;二要对立方体所见面综合感觉,看看是否符合立方体的结构要求。图解6:空间与透视甲立方体呈平行透视,有一组线消失到心点,其它两组线呈平行状态。甲立方体的透视深度是经过a点与距点连线求得。乙立方体是为了与甲立方体对比说明而附加的。它只有一组线互相平行,其它两组线分别交于心点两侧的视平线上。它的透视深度分别由b、c两点与两测点连线而求得。图解7:光影与明暗这是一个置于桌面且受左上角来光照射的立方体。立方体的三个可见面甲、乙、丙分别呈黑、白、灰的变化,丙面自上而下,自右而左呈由浅至深的变化。乙面自前而后,自左而右呈现由浅至深的变化。甲面自右至左,自下至上由浅至深的变化。背景的色调与立方体的色调,正好呈对比变化。亮面背景因对比呈暗色调,暗面背景因对比呈亮色调。还有一个值得注意的地方是:靠近形体边缘的调子密集,画时应仔细观察。
§.的教学方案
§7.2转盘游戏
教学目标:
1.在试验中进一步体会不确定事件的特点;
2.通过试验总结不确定事件发生的等可能性;
3.通过转盘游戏进一步突出事件发生的可能性是有大小的,同时复习一些基本统计量的意义、运算和有理数的加减运算;
4.能列举简单事件所有可能发生的结果。
教学重点:1.不确定事件的特点和不确定事件发生的等可能性;
2.列举简单事件所有发生的可能结果。
教学难点:列举简单事件所有发生的可能结果。
教学过程:
一、复习引入:
指针指在什么颜色区域的可能性大?
条件:任写6个-10至10之间的数.
二、课堂活动:
1.游戏规则:
(1)任意抽一组数,算出这组数的平均数;
(2)自由转动转盘,当转盘停止转动后,指针落在某个区域;
(3)根据转动和刚才的计算得到结果.
2.议一议:
(1)这个转盘转到哪部分的可能性大?
(2)在做上述游戏的过程中,你如何调整卡片上的数据的?
(3)将各小组活动进行汇总,”平均数增大1”的次数占次数的百分比的多少?”平均数减少1”的呢?
(4)如果将这个实验继续做下去,卡片上所有数的平均数会增大还是减少?
3.试一试:
请设计一个转盘,使得它停止转动时,指针落在绿色区域的可能性比落在白色区域的大.小明设计的转盘有三种颜色,你觉得可能吗?
4.练一练:
下面是两个可以自由转动的转盘,分别转动这两个转盘,你认为转动哪种颜色的可能性最大?说明理由.
5.小结:
生活中有哪些现象是一定发生的、很可能发生的、可能发生的、不太可能发生的、不可能发生的?
6.作业:
1.见作业本.
2.书面设计一个对双方都公平的游戏.
的教学方案
2.1比0小的数(一)教学设计
江苏教育学院附属高级中学崔宁宁
【设计思路】本节课是第二章的起始课,也是学生进入初中的第一节概念课.因此,为了让学生感受数学就处处存在于我们生活周围,本节课以现实生活为素材,从学生的生活经验、经历和已有的知识出发,创设恰当的情境:气温的表示和一个小游戏的结果的表示,让学生意识到他们小学里所学的数已经不够用了,意识到引入其他新数的必要性.紧接着展现现实生活中常见的情境图片引进负数.
本节课的第二个处理点是将“有理数的分类”提前,而将“正、负数可以表示相反意义的量”放置第二课时,因为可以说“正、负数可以表示相反意义的量”是对正、负数的一个应用,这样在第二课时不仅可以对有理数进行复习,而且还对有理数进行应用,让学生感受学数学的目的是为了用数学.
本节课的第三点就是对有理数进行分类.这点主要是用指出有理数所包含的全部对象的方法给出有理数的定义及分类,而有理数的分类实际上是有理数的定义的另一种表达形式.这里让学生初步感受分类思想,也开始逐渐地培养学生的分类思想.
【教学过程】
一、教学目标
1.根据已有的知识经验,借助生活中的实例认识负数,理解正数、负数的不同意义,体会负数引入的必要性;
2.理解有理数的意义,并会将有理数分类;
3.初步培养学生的分类思想.
二、教学重点、难点
重点:1.辨别正数与负数,理解负数的意义;
2.有理数的分类.
难点:1.负数概念的建立;
2.有理数的两种分类方法.
三、教学方法及手段:讨论法、讲授法
四、教学工具:多媒体课件
五、教学过程
1、创设情境引入新课
首先引导学生回忆:小学学过哪些数?是不是我们生活中遇到的任何量都可以用它们来表示呢?(可先让学生举例回答)
由此创设下列情境:
情境一:据气象台播报,2005年1月12日,南京的最高气温为零上9度,最低气温为零下3度,问:若将零上9度记为9℃,零下3度能记为3℃吗?
情境二:某班举行数学竞赛评分标准是:答对一题加10分,答错一题扣10分,不回答得0分;四个代表队答题情况如下表:
下载完整版:2.1比0小的数(一)教学设计(如果不能下载,请右击用迅雷下载)
上一篇:2.1比零小的数(2)
下一篇:没有了
