导航栏

×
范文大全 > 教案

最新小学平均数教案

时间:2023-03-25 平均数教案

【热】最新小学平均数教案(精选9篇)。

每位老师不可或缺的课件是教案课件,因此在写的时候就不要草草了事了。教案是课堂教学的支柱。栏目小编为您准备了最新小学平均数教案,欢迎阅读,希望对你有帮助!

最新小学平均数教案【篇1】

[教学内容]苏教版〈义务教育课程标准实验教科书数学〉三年级下册第92-94页。

[教学目标]

1.在具体问题情境中,理解平均数的意义。

2.探索求平均数的方法,鼓励解决问题策略的多样化。

3.联系实际,灵活运用平均数解决些问题,培养学生学好数学的信心。

[教学过程]

一、创设情境,激趣导入

师:小猴子最喜欢吃桃了,一天,猴妈妈摘了一些又大又红的桃子,分给它的3个孩子,老大2个,老二3个,老三4个。(贴图片)同学们,你对猴妈妈的分法有什么看法呢

生:不公平,老大少了,老三多了。

师:那怎样就公平呢生把这些桃合起来再平均分给3个孩子,每人3个。

生:老大少了,老三多了,把老三的桃拿一个给老大。

师:谁愿意上来分一分

(教师根据学生的移动过程板书:

师:大家看,现在就(公平了),平均每个孩子(3个桃)。这个3,在数学上就叫2,3、4这一组数的平均数。在生活中经常要用到平均数,同学们,我们今天就来探索研究平均数。

评析:从故事情境中引入学习内容,既符合学生的年龄特点和认知心理规律,又让学生在已有知识经验的基础上初步感悟到平均数的意义。这样的导入,不仅激活了学生想学平均数的欲望,焕发了学习情智,而且为一节课的顺利进行创设了良好的环境。

二、自主探究,理解新知

师:三年级第一小组的4个男生和5个女生进行套圈比赛,每人套15个圈,把套中的个数用统计图表示出来。(屏幕显示例题图)看一看,你从图中知道了什么

师:你们都有双善于发现的眼睛,真了不起!既然是比赛,老师就想问:是男生套得准一些,还是女生套得准些猜猜看。

生:女生。

师:都说是女生,可是猜想毕竟是猜想,到底事实情况怎样我们必须想个方法来验证,请你们开动脑筋,有了想法后相互交流。(交流中出现了两种意见)

意见l算出女生共套中多少个和男生一共套中多少个,进行比较。

意见2算出男生平均每人套中多少个,女生平均每人套中多少个,然后再比较。(两种不同的方法,引发了争论)

师:在刚才的争论中,我们明白了参加比赛的人数不样多,算总数不好比,也不公平,就不能用这种方法,只有求出男生平均每人套中多少个圈,女生平均每人套中多少个圈,才能一比胜负。

评析:以学生喜欢的有着活动经验的比赛情境作为背景,设计有趣的问题,引导学生讨论、争论、辩论,最终得出求平均数是解决问题的行之有效的方法,让学生感受到学习平均数的作用,体验了自主学习过程的快乐。

师:男生平均每人套中多少个圈呢先独立思考,然后交流。

生:把张明的9个移1个给李小钢,1+6=7,张明还有8个,再移1个给程晓杰,1+6=7,最后大家都是7个。

师:想到这种方法或在他的启发下明白了这种方法的请举手。(都举起了手)都很了不起|这是一种好方法,老师把它写下来:

通过把多的移一些补给少的,使平均每个人都一样多。谁能给这种方法起个名字,让我们记住这种方法

生:移多补少。

师:多形象啊!还有不样的方法吗

生;6+9+7+6=28(个),28+4=7(个)。

师:这种方法是先求出什么,再怎样的

生:先求出总数,再除以人数,得到平均每人套中的个数。

师:我们把这种方法叫做先求和再平均分。(齐读)

师:不管用什么方法,最后都求出了男生平均每人套中7个圈,反映了男生套中的平均水平。那么女生平均每人套中多少个圈呢请你们独立解决。

生:1+4+7+5+4=30(个),30+5=6(个)。

师:刚才男生中用总数除以4,到了女生中,怎么就除以57呢

生:因为女生是5个人。

师;一语中的,解释得真好1因为女生是5个人套中的个数相加,所以要除以5。都是这样做的吗为什么不用移多补少的方法呢

生:不好移。

师:是啊|刚才我发现有几位同学开始想用移多补少的方法,可是移来移去不好移,后来又选择了先求和再平均分的方法。确实,数学的思考要从实际出发,灵活选择解决问题的方法。

师,女生平均每人套中6个圈。这个6表示每个女生真的都套中6个吗

(生摇头)

师:都摇头,认为不是,那你怎么理解这个6的意思呢

生:6是平均数。

师:6确实不表示每个女生真的都套中6个圈,是1、4、7、5、4这一组数的平均数,反映了女生套中的平均水平。通过算平均成绩,现在你能比较出是男生套得准些还是女生套得准一些了吧|

生:男生。

师:什么理由

生:因为76。

师:同学们,回想这道题,由于参加比赛的人数不等,算总数不好比,也不公平,后来是谁帮了我们的忙啊

生:平均数。

师:现在你想对平均数说什么

生:平均数真公平。

生:人数不等时,可以用平均数比较。

生:平均数的作用很大。

评析:启发学生自主探索求平均数的不同方法,鼓励多渠道解决问题,既有利于抓住本质去思考问题,也有利于理解记忆。通过疑问、解释的过程,既让学生学会灵活选择方法求平均数,又加深了对平均数意义的理解。整个过程学生主动参与、善于思考,学得朴实有效。

师:是啊,老师从生活中收集了些平均数的信息,和你们一起来分享。

师:三年级女生平均身高130厘米,男生平均身高12厘米。(追问三年级所有女生身高都是130厘米,所有男生身高都是132厘米吗)

生:不是。

师:那你怎么理解

生:这是平均数,实际上可能有一个女生身高是128厘米呢!

生:还有可能有一个男生身高135厘米呢!

师:理解得真透彻!再请看(多媒体出示画面),我们通过调查、统计、测算,发现严重缺水地区平均每人每天用水量约3千克,而我们这儿的小明家平均每人每天用水量约85千克。同学们,两者相比,相差多大呀,此时此刻你有什么心里话要说

生:小明家太浪费水了。

生:我发现两地平均每人每天的用水量相差很大,有的地方严重缺水。

生:我们要节约用水。

师:说得真好|希望你们从自身做起,节约每一滴水。其实,我们国家正在搞南7北调的工程,南边水资源丰富,北边严重缺水,南水北调,目的是让更多地方的人都能喝上用上好的水。

师:平均数在生活中的应用这么广泛,说说你在哪儿遇到过或用过平均数

生:我家平均每月用水8吨。

生:我们班期中考试语文平均成绩是93.5分,数学平均成绩是93分。

师:只要你们留心观察生活,发现平均数就在我们身边。

评析:通过举例,让学生在实例中进一步理解平均数的意义,并向学生有机渗透节约的思想,同时让学生感受到数学与生活的联系,促使学生以后学好数学,关注生活。

三、联系生活,灵活运用

1.用合适的方法求平均数。(93页第1题和94页第2题)

2.判断。投篮比赛,在规定的时间内

红队5人,每人投中的个数分别为1、12、15、18、20,平均每人投中1个。()

蓝队4人,每人投中的个数分别为:1、15、20、22,平均每人投中22个。()

(判断并说理后,请学生估计平均数的值,在交流过程中学生初步感知到了平均数比一组数中最小的数大,比最大的数小,而旦最接近中间大小的那个数。)

师:我们对平均数又有了更加深刻的了解,请带着你的智慧走进生活。

(1)95页第1题。(运用平均数的意义,联系生活实际解释问题)

(2)下面是王老板卖出苹果和椅子的数量。

师:王老板平均每天卖出苹果和桶子各多少箱请你们独立解决。

生:王老板平均每天卖出苹果16箱,卖出桶子12箱。

师:根据这两个数据,你对王老板有什么建议

生:建议王老板多进一些苹果,因为每天卖出的苹果多。

师:是啊!通过算平均数,知道平均每天卖出的苹果多,就建议王老板多进一些苹果。说明平均数对我们做决策或预测未来事件的发展有着非常重要的作用。

评析:有层次地设计练习,让学生进一步掌握知识,形成技能,发展智力。注重练习的新颖性,让学生的思维不停留在简单的重复练习中,而是通过判断、说理、估算、解释、推测等思维活动,让学生对平均数加深理解,丰富内涵,从中促进了创造性思维的发展。

四、总结提升,质疑拓展

师:今天学习了平均数,请你们静静地想一想,你有哪些收获

生:

师:老师想问一个问题目在我校五节歌咏比赛时,各位评委为参加比赛的选手打分,最后去掉一个最高分和一个最低分,再算出选手的平均得分。这是为什么呢(学生茫然)

师:这个问题,我们把它延伸到课后,请你们和家长一起研讨,可以举出些数据来揭开其中的奥秘。

师:今天,我们认识了平均数,知道平均数在生活中有很大的作用,希望你们在生活中学会利用平均数解决问题,同时也希望你们像平均数样,堂堂正正做人,公平公正做事。

评析:在总结回想中,提升认识。一方面让学生对所学知识有清晰的认识;另一方面培养学生质疑问难的精神;再者让学生在情感、态度、价值观方面受到良好的教育,让学生感受到既要学会学习,又要学会做人,促进学生情智并进,和谐发展。

[总评]

教学的基本出发点是促进学生全面、持续、和谐的发展。学生只有动情地、积极地投入到学习中,才能入目、入耳、入脑。为此,教者为学生创设了愉悦和谐的环境,启发他们或静静思考、或神情飞扬、或切磋商讨、或争论不休促进他们的情感、知识、智慧交互生成,多元智力并进发展。具体有以下几点感触:

一、营造了愉悦和谐的氛围

学生在良好的环境下学习,心理安全、自由,敢于大胆地发表自己的意见,能说出心里话,有利于形成真实有效的课堂。在课的导入中,教者以故事激趣;在新知的教学中,以问题激疑;在巩固练习中,题型新颖,让学生亲近数学。每一个环节的设计和教学语言都讲究艺术,营造种愉悦和谐的氛围,努力去感染和激励学生,使他们产生求知欲,使课堂达到事半功倍的效果。

二、构建了互动交流的方式

教者在课堂上充分以学生为主体,多给学生提供机会,经常通过启发性的语言,如你知道吗你有不一样的方法吗你有什么心里话要说等,使学生感受到自己是学习的主人,增强参与的主动性,不断地去思考、探索、讨论、交流,在经历知识的形成过程中,不断休验成功的快乐,在认知与情感的交互作用下,学得积极主动,形成一个真实有效的课堂。

三、设计了丰实有效的练习

认知心理学认为:学生的学习过程,是一个把教材知识结构转化为自己认知结构的过程。完成这个过程,仅靠新课的教学是不够的,还要通过有效的练习,才能把新知识同原有知识结构更加紧密地融为一体,并贮存下来,从而使所形成的认识结构更加充实完善。教者把平均数和生活联系起来,通过有层次的设计练习,让学生在练习中丰富了对平均数内涵的深刻理解,既让学生学得扎实灵活,又让学生的创造性思维得到发展,让他们既长知识,又长智慧。

最新小学平均数教案【篇2】

教学目标:

1、通过具体情境使学生理解平均数的意义和作用,会计算平均数,会利用平均数解决实际问题。

2、经历收集数据、整理数据、运用数据描述信息,作出合情推断的过程,使学生认识到数据的作用和统计对决策的作用。

3、通过平均数的学习,初步认识数学与人类生活的密切联系,体会数据可能产生误导,进而形成尊重事实、用数据说话的态度。

教学重点:经历收集数据、整理数据、运用数据描述信息,作出合情推断的过程,使学生理解加权平均数的意义和作用,会计算加权平均数。

教学难点:运用数据描述信息,作出合情推断,体会数据可能产生误导,进而形成尊重事实、用数据说话的态度。

教学过程:

一、创设情境,揭示课题。(5分钟左右)

1、出示图片:我班学生在大街上捡拾白色垃圾。

谈话: 白色垃圾对于我们的生活危害很大。出示相关数据。我校也要求学生调查自己家的情况。那么谁说说,你们家一周大约丢弃多少个塑料袋?

学生分别说。(三个)

2、看过一篇报道,城镇某校一个班平均每周丢弃塑料袋28个之多,大多数用于买菜,丢垃圾用。谁能说说平均数怎样算?

板书关系式:总数量÷总份数=平均数

3、看到这个信息你最想做什么吗?(到底城镇用的多,还是我们农村用得多?)如果以我班为农村调查对象。

4、比较什么呢?这节课我们就学习统计中的平均数。(板书)

二、 在活动中,自主建构概念

到底我们班的同学平均每家一周丢弃多少个呢?看来要得到平均数只知道几家的数据还不行,你们最想知道什么吗?

(一)活动1:初估平均数。(3分钟)

1、出示数据,初估平均数。

学生面对分散而且毫无规律的数据,迟疑一下,在教师的鼓励下有的学生会大概猜一猜。但是数据不统一。

2、 “为什么不好估?有什么困难?”,“怎样就比较容易估算了?”两个问题的讨论,引出学生要对数据进行整理的需求。

3、 “怎么整理?”,这一问题又引发学生观察数据的特点,最后得到根据相同数据及其个数进行整理。

6、小结:看来平均数与每一个数据都有关系,其实这正是它为什么能广泛应用的原因,那就是用平均数描述问题更全面。

三、在应用中巩固概念。

1、出示要解决的问题 (9分钟)

学校要给五年级四个班数学竞赛颁奖,奖给谁?比较什么?1班34人平均分87、7分;2班33人平均分89、9分;3班人90、5分;4班35人85、5分

如果要给教这两个班的两位教师颁奖呢?颁给那位教师?

生交流,师问:哪个更科学公平呢?

2、学生应用计算器计算两个班的平均数再比较。

四、回顾总结 (5分钟)

在统计中应用平均数分析数据,说明问题是很重要的手段,今天我们学习的统计中的平均数和以往的平均数有什么相同点和不同点?

五、作业布置

板书设计: 平均数

(5+4+7+5+9)÷5 总数量÷总份数=平均数

=30÷5

=6(个)

答:这5次平均每次记住数字的个数为6个。

课后反思:

最新小学平均数教案【篇3】

一、教学目标:

1、初步建立平均数的基本思想(即移多补少的统计思想),理解平均数的概念。

2.掌握简单的求平均数的方法,并能根据具体情况灵活选用方法进行解答。

3.培养学生估算的能力和应用数学知识解决实际问题的能力。

二、教材分析:

求平均数是新教材统计与概率领域内容的一部分。它与我们的现实生活紧密联系,现代社会的公共媒体大量使用统计图表表示信息,所以看懂统计图表是现代公民必备的数学素养。基于此本课教学把重点放在运用平均数的理念分析数据、理解数据的意义上,放在根据数据做出必要推断上。

三、学校及学生状况分析:

我校是一所农村小学,大多数孩子来自农村,因此我在教学时选材尽量贴近孩子们的生活,我在课堂中运用了多媒体辅助教学,让学生能在直观形象的情境中学到知识。兴趣是最好的老师,新课程标准指出:数学教学必须注意从学生感兴趣的事物出发为学生创造成功的机会,使他们体会到数学就在身边,对数学产生亲切感。在这一理念下,为他们创造一个发现、探究的空间,使学生能更好地去发现、去创造。

教学重点:灵活选用求平均数的方法解决实际问题。

教学难点:平均数的意义。

四、课堂实录:

(一)故事导入:

课件出示;一个老猴子在森林中摘了12个桃子,回到家后叫来了三只小猴分桃子给他们,猴一7个、猴二4个、猴三1个。

师:对老猴分桃这件事,你有什么话想说吗?

生:三只猴分的桃子不一样多。

生:应该三只猴分的一样多

根据学生的回答板书:不一样多一样多

(二)探究新知:

1、用磁性小圆片代替桃子(老师将磁性小圆片按照7、4、1、分别排列在黑板上)

请同学们仔细观察,四人小组讨论一下,你们能用哪些方法可以使每组的个数一样多。

2、交流反馈

(1)引出移多补少、(2)(7+4+1)3

师:观察移动后的小圆片,思考:移动后什么变了,什么没有变?

板书:总数不变

一样多不一样多

3、小结,并揭示课题

师:刚才我们通过移一移,算一算的方法,得出了一个同样的数4,这个数就叫平均数

(板书课题)

4、刚才有同学用(7+4+1)3=4的方法算出了他们的平均数,现在老师再摆一组为8个,这时平均数又是多少呢?会吗?

生:会。(生自己完成)

反馈(7+4+1+8)4=5

比较归纳得出:总数份数=平均数

(三)应用数学

《一》、教师课件出示列举生活中的平均数问题,学生自己阅读这些信息

1、国家旅游局关于20xx年十一黄金旅游周旅游信息的公告

(1)上海东方明珠平均每天的门票收入为130万元,北京故宫平均每天门票收入为200万元

(2)南京中山陵平均每天接待游客70000人,北京故宫平均每天接待游客50000人。

2、春暖花开北京连续5天日平均气温超过10℃。

3、三年级1班平均身高为136厘米。

最新小学平均数教案【篇4】

教学目标:

1.学生在具体的情境中,感受平均数是解决一些实际问题的需要,体会平均数的意义,学会计算简单数据的平均数。(结果是整数)

2.运用平均数的知识解释简单的生活现象,能解决简单的实际问题。

3.操作、交流的过程中,建立学习数学的信心,发展统计观念。

教学重点:理解平均数的意义,学会求简单数据的平均数。

学具准备:移动学具板、作业纸

教具准备:移动示范板、课件

教学过程:

一、放情景录像,预设认知冲突

1.谈话导入、回顾情景。

2.读懂统计图,获取相关信息

从这两幅图中你能知道哪些信息?

3.提出预设问题

这一组同学在套圈比赛中,谁获得了胜利?是男生套得准一些,还是女生套得准一些呢?

二、自主探索方法,理解平均数的意义

1.引起争议,探求公正的策略

当两组人数不相等时,怎样判断哪组套的更准一些?你们有没有公平的办法?

2.萌发求平均数的需求,得出有效途径求平均成绩

3.小组动手操作,探索求平均数的方法

那我们应该怎样求男生、女生各组的平均成绩呢?

4.全班交流,感知方法

(1)移多补少

(2)一般方法

男生:6+9+7+6=28(个)284=7(个)

女生:10+4+7+5+4=30(个)305=6(个)

男生组算式中的9、6、7、6和28各代表什么呢?

为什么女生求出的总数30除以5,而不是除以4呢?

5.理解平均数的意义

我们求出男生组平均每人套中7个,是不是每个男生都套中7个,女生组平均每人套中6个,是不是每个女生都套中6个呢?那7和6分别是指什么?

小结:7是男生组的平均成绩,也就是6、9、7、6这组数的平均数。6是女生组的平均成绩,也就是10、4、7、5、4这组数的平均数。

6.新课小结,揭示课题,体会求平均数是解决这类问题的有效方法之一

三、感受平均数与生活的联系,体会平均数的作用

平均数的用途可大了;我们的学习、生活、工作中,处处要用到平均数,你们瞧!这里是有关平均数的一些资料。

1.盐城去年全年平均气温在18摄氏度。

2.盐城市某小学三年级有10个班,平均每班人数为47人。

3.小明的语、数、外,三门考试,平均成绩为92分。

4.盐城市某小学三(5)班同学平均年龄为8岁。

现在我们就带着新朋友平均数,来解决我们生活中的实际问题吧!

四、巩固强化,拓展应用

1.移铅笔(93页第1题)

目的:体会移多补少的思想,加深对平均数意义的理解。

2.三条丝带的平均长度(94页第2题)

目的:体会一般方法的优越性,上升数学的真正特征,自主领悟平均数一定在最大值和最小值之间。

3.辨析题(第94页第3题)

目的:加深理解平均数的意义

4.综合性训练:

目的:进一步理解平均数的意义,训练学生根据问题收集相关信息、分析数据、有根据预测的能力。

五、全课总结(略)

最新小学平均数教案【篇5】

教学目标:1、知道平均数的意义。

2、掌握求平均数应用题的数量关系和解题方法。

3、会正确解答简单的平均数应用题。

4、初步建立平均数的统计思想。

5、用求平均数的方法解决问题。

教学过程:

一、复习

1、要求下列问题,必须已知哪两个条件,并说出数量关系式。

(1)平均每天加工零件多少个?

(2)平均每人植树多少棵?

(3)平均每组分到几本书?

(4)平均每筐重多少千克?

2、导入

(1)象以上这些问题都是要求平均每一份是多少。类似题

称之为求平均数。所谓平均数,就是把不相等的几个数量,在其总量不变的前提下,通过移多补少的方法,使其相等。

揭示课题:平均数

(2)求平均数用什么方法?

求平均数首先从问题中判断:把什么作为总数平均分;

是按什么平均分的,即与总数对应的总份数是什么;然

后用总数总份数=平均数,求出平均数。

二、探究

1、例1:

有4组小长方体,第一组有9个,第二组有5个,

第三组有7个,第四组有3个。平均每组有多少个?

(1)默读题目,想一想这到题的数量关系式

长方体的总个数组数=平均每组的个数

总数份数

(2)生列式,并说明是怎样想的?

(9+5+7+3)4

问:平均每组的个数会不会比最多一组9个多,会不会

比最少一组3个少,为什么?

(3)阅书P116的例1

2、例2:

陈小红期中考试成绩,数学和英语都是98分,语文

96分,自然常识100分。她的平均成绩多少分?

(1)自学例2的解题过程:

A.你有什么问题要问吗?

(括号中为什么会出现两个98相加?

总份数为什么是4?)

B.你能完整说说这题的数量关系式吗?

总分科数=平均成绩

(2)练习:

书P117的练一练的1、2(只列式)

三、运用

1、根据问题找总数、总份数

(1)平均每辆车运煤多少吨?

(2)平均每季度生产多少台?

(3)平均每人踢毽子多少个?

(4)平均每组踢毽子多少个?

(5)平均每次踢毽子多少个?

2、列式解答

(1)第一组植树12棵,第二、第三小组共植树20棵。平均

每组植树多少棵?

(12+20)3

括号中只有两个数字相加,后面为什么要除以3,不除以2?

(2)书P117的试一试

书P118/2

最新小学平均数教案【篇6】

【教学内容】

苏教版《义务教育课程标准实验教科书数学》三年级(下册)第92~94页。

【教学目标】

1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。

2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

3.进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

【教具、学具准备】

教具:课件、男女生套圈成绩图。

学具:每四位学生一副男女生套圈成绩学具板。

【教学过程】

一、创设情境,激趣导入。

谈话:很多同学都知道套圈游戏,一起来看。(媒体出示:三年级一班的男女生进行套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。)想请大家来当裁判,愿意吗?可要比比哪个裁判最公正哦!

二、合作探索,解决问题。

(一)两队人数相同,每人套中的个数不同。

屏幕出示第一小组男、女生套圈成绩统计图。

提问:要知道男生套得准一些还是女生套得准一些,你认为可以比什么呢?

学生回答后教师相机引导并小结。

(二)两队人数不同,每队中每人套中的个数相同。

屏幕出示第二小组男、女生套圈情况统计图。

请学生一起回答是哪个队套得准一些。

提问:有同学认为可以比比他们套中的总个数,你们觉得公平吗?

结合媒体演示小结。

(三)两队人数不同,每人套中的个数也不完全相同。

1.提出问题,自主探究。

出示第三小组的套圈成绩图(例题),引导比较,得出与第二小组套圈成绩图的异同。

小小组四位同学利用学具板探索解决问题的方法,教师巡视。

全班交流比的结果。

指出:其实,象这样移了以后再比,是分别求出了男、女生平均每人套中的个数再去比的。

结合电脑演示教师讲解揭示平均数的含义。

2.提问:你还能用其他方法求出男生平均每人套中了几个吗?女生呢?

指名列式并说说想法。

3.理解平均数的意义。

谈话引导学生观察、比较,加深对平均数意义的理解。

4.小结。

三、巩固深化,拓展应用

1.辨一辨、说一说。

2.移一移、估一估、算一算。

(1)想想做做第1题。

(2)想想做做第2题。(三条丝带的长度分别改成6厘米、44厘米、13厘米。)

3.想一想,选一选。

四、全课总结

最新小学平均数教案【篇7】

一、建立意义

师:你们喜欢体育运动吗

生:(齐)喜欢!

师:如果张老师告诉大家,我最喜欢并且最拿手的体育运动是篮球,你们相信吗

生:不相信。篮球运动员通常都很强壮,就像姚明和乔丹那样。张老师,您也太瘦了点。

师:真是哪壶不开提哪壶啊。不过还别说,和你们一样,我们班上的小强、小林、小刚对我的投篮技术也深表怀疑。就在上星期,他们三人还约我进行了一场1分钟投篮挑战赛。怎么样,想不想了解现场的比赛情况

生:(齐)想!

师:首先出场的是小强,他1分钟投中了5个球。可是,小强对这一成绩似乎不太满意,觉得好像没有发挥出自己的真实水平,想再投两次。如果你是张老师,你会同意他的要求吗

生:我不同意。万一他后面两次投中的多了,那我不就危险啦!

生:我会同意的。做老师的应该大度一点。

师:呵呵,还真和我想到一块儿去了。不过,小强后两次的投篮成绩很有趣。

(师出示小强的后两次投篮成绩:5个,5个。生会心地笑了)

师:还真巧,小强三次都投中了5个。现在看来,要表示小强1分钟投中的个数,用哪个数比较合适

生:5。

师:为什么

生:他每次都投中5个,用5来表示他1分钟投中的个数最合适了。

师:说得有理!接着该小林出场了。小林1分钟又会投中几个呢我们也一起来看看吧。

(师出示小林第一次投中的个数:3个)

师:如果你是小林,会就这样结束吗

生:不会!我也会要求再投两次的。

师:为什么

生:这也太少了,肯定是发挥失常。

师:正如你们所说的,小林果然也要求再投两次。不过,麻烦来了。(出示小林的后两次成绩:5个,4个)三次投篮,结果怎么样

生:(齐)不同。

师:是呀,三次成绩各不相同。这一回,又该用哪个数来表示小林1分钟投篮的一般水平呢

生:我觉得可以用5来表示,因为他最多,二次投中了5个。

生:我不同意川、强每次都投中5个,所以用5来表示他的成绩。但小林另外两次分别投中4个和3个,怎么能用5来表示呢

师:也就是说,如果也用5来表示,对小强来说

生:(齐)不公平!

师:该用哪个数来表示呢

生:可以用4来表示,因为3、4、5三个数,4正好在中间,最能代表他的成绩。

师:不过,小林一定会想,我毕竟还有一次投中5个,比4个多1呀。

生:(齐)那他还有一次投中3个,比4个少1呀。

师:哦,一次比4多1,一次比4少1

生:那么,把5里面多的1个送给3,这样不就都是4个了吗

(师结合学生的交流,呈现移多补少的过程,如图1)

师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫移多补少。移完后,小林每分钟看起来都投中了几个

生:(齐)4个。

师:能代表小林1分钟投篮的一般水平吗

生:(齐)能!

师:轮到小刚出场了。(出示图2)小刚也投了三次,成绩同样各不相同。这一回,又该用几来代表他1分钟投篮的一般水平呢同学们先独立思考,然后在小组里交流自己的想法。

生:我觉得可以用4来代表他1分钟的投篮水平。他第二次投中7个,可以移1个给第一次,再移2个给第三次,这样每一次看起来好像都投中了4个。所以用4来代表比较合适。

(结合学生交流,师再次呈现移多补少过程,如图3)

师:还有别的方法吗

生:我们先把小刚三次投中的个数相加,得到12个,再用12除以3等于4个。所以,我们也觉得用4来表示小刚1分钟投篮的水平比较合适。

[师板书:3+7+2=12(个),123=4(个)]

师:像这样先把每次投中的个数合起来,然后再平均分给这三次(板书:合并、平分),能使每一次看起来一样多吗

生:能!都是4个。

师:能不能代表小刚1分钟投篮的一般水平

生:能!

师:其实,无论是刚才的移多补少,还是这回的先合并再平均分,目的只有一个,那就是

生:使原来几个不相同的数变得同样多。

师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里(出示图1),我们就说4是3、4、5这三个数的平均数。那么,在这里(出示图3),哪个数是哪几个数的平均数呢在小组里说说你的想法。

生:在这里,4是3、7、2这三个数的平均数。

师:不过,这里的平均数4能代表小刚第一次投中的个数吗

生:不能!

师:能代表小刚第二次、第三次投中的个数吗

生:也不能!

师:奇怪,这里的平均数4既不能代表小刚第一次投中的个数,也不能代表他第二次、第三次投中的个数,那它究竟代表的是哪一次的个数呢

生:这里的4代表的是小刚三次投篮的平均水平。

生:是小刚1分钟投篮的一般水平。

(师板书:一般水平)

师:最后,该我出场了。知道自己投篮水平不怎么样,所以正式比赛前,我主动提出投四次的想法。没想到,他们竟一口答应了。前三次投篮已经结束,怎么样,想不想看看我每一次的投篮情况

(师呈现前三次投篮成绩:4个、6个、5个,如图4)

师:猜猜看,三位同学看到我前三次的投篮成绩,可能会怎么想

生:他们可能会想:完了完了,肯定输了。

师:从哪儿看出来的

生:你们看,光前三次,张老师平均1分钟就投中了5个,和小强并列第一。更何况,张老师还有一次没投呢。

生:我觉得不一定。万一张老师最后一次发挥失常,一个都没投中,或只投中一两个,张老师也可能会输。

生:万一张老师最后一次发挥超常,投中10个或更多,那岂不赢定了

师:情况究竟会怎么样呢还是让我们赶紧看看第四次投篮的成绩吧。

(师出示图5)

师:凭直觉,张老师最终是赢了还是输了

生:输了。因为你最后一次只投中1个,也太少了。

师:不计算,你能大概估计一下,张老师最后的平均成绩可能是几个吗

生:大约是4个。

生:我也觉得是4个。

师:英雄所见略同呀。不过,第二次我明明投中了6个,为什么你们不估计我最后的平均成绩是6个

生:不可能,因为只有一次投中6个,又不是次次都投中6个。

生:前三次的平均成绩只有5个,而最后一次只投中1个,平均成绩只会比5个少,不可能是6个。

生:再说,6个是最多的一次,它还要移一些补给少的。所以不可能是6个。

师:那你们为什么不估计平均成绩是1个呢最后一次只投中1个呀!

生:也不可能。这次尽管只投中1个,但其他几次都比1个多,移一些补给它后,就不止1个了。

师:这样看来,尽管还没得出结果,但我们至少可以肯定,最后的平均成绩应该比这里最大的数

生:小一些。

生:还要比最小的数大一些。

生:应该在最大数和最小数之间。

师:是不是这样呢赶紧想办法算算看吧。

[生列式计算,并交流计算过程:4+6+5+1=16(个),164=4(个)]

师:和刚才估计的结果比较一下,怎么样

生:的确在最大数和最小数之间。

师:现在看来,这场投篮比赛是我输了。你们觉得问题主要出在哪儿

生:最后一次投得太少了。

生:如果最后一次多投几个,或许你就会赢了。

师:试想一下:如果张老师最后一次投中5个,甚至更多一些,比如9个,比赛结果又会如何呢同学们可以通过观察来估一估,也可以动笔算一算,然后在小组里交流你的想法。

(生估计或计算,随后交流结果)

生:如果最后一次投中5个,那么只要把第二次多投的1个移给第一次,很容易看出,张老师1分钟平均能投中5个。

师:你是通过移多补少得出结论的。还有不同的方法吗

生:我是列式计算的。4+6+5+5=20(个),204=5(个)。

生:我还有补充!其实不用算也能知道是5个。大家想呀,原来第四次只投中1个,现在投中了5个,多出4个。平均分到每一次上,每一次正好能分到1个,结果自然就是5个了。

师:那么,最后一次如果从原来的1个变成9个,平均数又会增加多少呢

生:应该增加2。因为9比1多8,多出的8个再平均分到四次上,每一次只增加了2个。所以平均数应增加2个。

生:我是列式计算的,4+6+5+9=24(个),244=6(个)。结果也是6个。

二、深化理解

师:现在,请大家观察下面的三幅图,你有什么发现把你的想法在小组里说一说。

(师出示图6、图7、图8,三图并排呈现)

(生独立思考后,先组内交流想法,再全班交流)

生:我发现,每一幅图中,前三次成绩不变,而最后一次成绩各不相同。

师:最后的平均数

生:也不同。

师:看来,要使平均数发生变化,只需要改变其中的几个数

生:一个数。

师:瞧,前三个数始终不变,但最后一个数从1变到5再变到9,平均数

生:也跟着发生了变化。

师:难怪有人说,平均数这东西很敏感,任何一个数据的风吹草动,都会使平均数发生变化。现在看来,这话有道理吗(生:有)其实呀,善于随着每一个数据的变化而变化,这正是平均数的一个重要特点。在未来的数学学习中,我们将就此作更进一步的研究。大家还有别的发现吗

生:我发现平均数总是比最大的数小,比最小的数大。

师:能解释一下为什么吗

生:很简单。多的要移一些补给少的,最后的平均数当然要比最大的小,比最小的大了。

师:其实,这是平均数的又一个重要特点。利用这一特点,我们还可以大概地估计出一组数据的平均数。

生:我还发现,总数每增加4,平均数并不增加4,而是只增加1。

师:那么,要是这里的每一个数都增加4,平均数又会增加多少呢还会是1吗

生:不会,应该增加4。

师:真是这样吗课后,同学们可以继续展开研究。或许你们还会有更多的新发现!不过,关于平均数,还有一个非常重要的特点隐藏在这几幅图当中。想不想了解

生:想!

师:以图6为例。仔细观察,有没有发现这里有些数超过了平均数,而有些数还不到平均数(生点头示意)比较一下超过的部分与不到的部分,你发现了什么

生:超过的部分和不到的部分一样多,都是3个。

师:会不会只是一种巧合呢让我们赶紧再来看看另两幅图(指图7、图8)吧

生:(观察片刻)也是这样的。

师:这儿还有几幅图,(出示图1和图3)情况怎么样呢

生:超过的部分和不到的部分还是同样多。

师:奇怪,为什么每一幅图中,超出平均数的部分和不到平均数的部分都一样多呢

生:如果不一样多,超过的部分移下来后,就不可能把不到的部分正好填满。这样就得不到平均数了。

生:就像山峰和山谷一样。把山峰切下来,填到山谷里,正好可以填平。如果山峰比山谷大,或者山峰比山谷小,都不可能正好填平。

师:多生动的比方呀!其实,像这样超出平均数的部分和不到平均数的部分一样多,这是平均的第三个重要特点。把握了这一特点,我们可以巧妙地解决相关的实际问题。

(师出示如下三张纸条,如图9)

师:张老师大概估计了一下,觉得这三张纸条的平均长度大约是10厘米。(呈现图10)不计算,你能根据平均数的特点,大概地判断一下,张老师的这一估计对吗

生:我觉得不对。因为第二张纸条比10厘米只长了2厘米,而另两张纸条比10厘米一共短了5厘米,不相等。所以,它们的平均长度不可能是10厘米。

师:照你看来,它们的平均长度会比10厘米长还是短

生:应该短一些。

生:大约是9厘米。

生:我觉得是8厘米。

生:不可能是8厘米。因为7比8小了1,而12比8大了4。

师:它们的平均长度到底是多少,还是赶紧口算一下吧。

三、拓展展开

师:下面这些问题,同样需要我们借助平均数的特点来解决。瞧,学校篮球队的几位同学正在进行篮球比赛。我了解到这么一份资料,说李强所在的快乐篮球队,队员的平均身高是160厘米。那么,李强的身高可能是155厘米吗

生:有可能。

师:不对呀!不是说队员的平均身高是160厘米吗

生:平均身高160厘米,并不表示每个人的身高都是160厘米。万一李强是队里最矮的一个,当然有可能是155厘米了。

生:平均身高160厘米,表示的是篮球队员身高的一般水平,并不代表队里每个人的身高。李强有可能比平均身高矮,比如155厘米,当然也可能比平均身高高,比如170厘米。

师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影,图略)画面中的人,相信大家一定不陌生。

生:姚明!

师:没错,这是以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米

生:不可能。

生:姚明的身高就不止2米。

生:姚明的身高是226厘米。

师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数

生:那就一定有人身高不到平均数。

师:没错。据老师所查资料显示,这位队员的身高只有178厘米,远远低于平均身高。看来,平均数只反映一组数据的一般水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看池塘的平均水深。

(师出示图11)

师:冬冬来到一个池塘边。低头一看,发现了什么

生:平均水深110厘米。

师:冬冬心想,这也太浅了,我的身高是130厘米,下水游泳一定没危险。你们觉得冬冬的想法对吗

生:不对!

师:怎么不对冬冬的身高不是已经超过平均水深了吗

生:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。所以,冬冬下水游泳可能会有危险。

师:说得真好!想看看这个池塘水底下的真实情形吗

(师出示池塘水底的剖面图,如图12)

生:原来是这样,真的有危险!

师:看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。这不,前两天,老师从最新的《健康报》上查到这么一份资料。

(师出示:《20xx年世界卫生报告》显示,目前中国男性的平均寿命大约是71岁)

师:可别小看这一数据哦130年前,也就在张老师出生那会儿,中国男性的平均寿命大约只有68岁。比较一下,发现了什么

生:中国男性的平均寿命比原来长了。

师:是呀,平均寿命变长了,当然值得高兴喽。可是,一位70岁的老伯伯看了这份资料后,不但不高兴,反而还有点难过。这又是为什么呢

生:我想,老伯伯可能以为平均寿命是71岁,而自己已经70岁了,看来只能再活1年了。

师:老伯伯之所以这么想,你们觉得他懂不懂平均数。

生:不懂!

师:你们懂不懂(生:懂)既然这样,那好,假如我就是那位70岁的老伯伯,你们打算怎么劝劝我

生:老伯伯,别难过。平均寿命71岁,并不是说每个人都只能活到71岁。如果有人只活到六十几岁,那么,你不就可以活到七十几岁了吗

师:原来,你是把我的幸福建立在别人的痛苦之上呀!(生笑)不过,还是要感谢你的劝告。别的同学又是怎么想的呢

生:老伯伯,我觉得平均寿命71岁反映的只是中国男性寿命的一般水平,这些人中,一定会有人超过平均寿命的。弄不好,你还会长命百岁呢!

师:谢谢你的祝福!不过,光这么说,好像还不足以让我彻底放心。有没有谁家的爷爷或是老太爷,已经超过71岁的如果有,那我可就更放心了。

生:我爷爷已经78岁了。

生:我爷爷已经85岁了。

生:我老太爷都已经94岁了。

师:真有超过71岁的呀!猜猜看,这一回老伯伯还会再难过吗

生:不会了。

师:探讨完男性的平均寿命,想不想了解女性的平均寿命有谁愿意大胆地猜猜看

生:我觉得中国女性的平均寿命大约有65岁。

生:我觉得大约有73岁。

(师呈现相关资料:中国女性的平均寿命大约是74岁)

师:发现了什么

生:女性的平均寿命要比男性长。

师:既然这样,那么,如果有一对60多岁的老夫妻,是不是意味着,老奶奶的寿命一定会比老爷爷长

生:不一定!

生:虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。

师:说得真好!走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!

最新小学平均数教案【篇8】

说教材:

1、教材简析

《平均数》是数学义务教育课程标准实验教科书第六册第十单元统计的教学内容。

2、求平均数是分析数据的一种重要方法,在日常生活中,特别是在工农业生产中经常要用到平均数是在学生已具有一定的收集和整理数据能力的基础上教学比较简单的求平均数问题的。通过本课的学习,让学生感受平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数,是进一步学习较复杂的平均数应用题的基础。

3、教材的知识结构

例题紧密结合学生的生活经验,教材先放手让学生从多种角度用数据描述各组套中的情况,在尝试中促使学生产生求平均数的心理需求。再倡导让学生自主探索平均数的意义和计算方法,有利于突出平均数在解决问题中的作用,引导学生进一步感受到统计对解决问题的价值。

4、根据《数学课程标准》的基本理念,根据教材特点和学生实际。

我将本课的教学目标确定为

1、在丰富的具体情景中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数。

2、经历研究的具体过程,进一步积累分析和处理数据的方法,发展统计观念。

3、体验运用已学的统计知识解决问题的乐趣,激发主动学习的积极性。进一步发展与他人合作交流的意识与能力。

4、基于以上的分析,我确定本课的教学重点是:理解平均数的意义,学会计算简单数据的平均数。

教学难点是:感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义。

说教学程序:

本课的教学我是这样设想的

一、创设情境,激发兴趣

1.谈话:同学们,你玩过套圈的游戏吗?如果每次限套15次,你能套中几个?

他们谁套的准些?学生任意猜一猜。出示场景,发现问题。

观察三年级第一小组男、女同学套圈的统计图。从图中你知道了什么?

学生观察后提出一些数学问题?

设计意图是:激发学生学习兴趣,激起学生探究欲望,使学生积极主动的投入到学习活动中去。

二、自主探索,学习新知

提问:怎样才能说明男生套得准些还是女生套得准些?学生小组内说说自己的想法,及理由。故意设疑:如果把男生和女生套中的个数分别加起来比总数可以吗?学生各抒己见,自由发言。怎样求出男生平均每人套中的个数?学生小组讨论、交流想法。女生平均每人套中多少个?现在你能回答男生套得准些还是女生套得准些?学生根据平均数判断。

讨论:为什么要求平均数?平均数表示什么意思?怎样计算平均数?求出的平均数说明了什么?学生先在小组内说说,再集体交流。

设计意图是在丰富的具体情景中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数。经历研究的具体过程,进一步积累分析和处理数据的方法,发展统计观念培养积极参与数学活动的意识,激发主动学习的积极性。

进一步发展与他人合作交流的意识与能力。

三、巩固深化,实践应用

1、完成想想做做第1题。学生明确活动要求。独立计算后汇报。想做做做第2题。独立解答后集体交流。想做做做第3题。小组讨论后交流想法,说说理由。完成想做做做第4题。先回答第一个问题,再你还能提出什么问题?

设计意图是:通过活动进一步加深对平均数的认识,能运用知识解决实际问题,体验运用已学的统计知识解决问题的乐趣,激发主动学习的积极性。

四、总结概括,拓展延伸。

今天这节课,你学到了什么知识?有什么收获?

设计意图是:既完善了学生的知识体系,又培养了学生对自己所经历的事情进行总结回顾的习惯和能力。

总之,本节课我努力遵照新课程标准所提出的新理念,充分利用教材上提供的素材,创造性地使用教材,真正发挥教材的导向功能,创设学生感兴趣的生活情境,让学生在活动中体验、感悟。让学生在活动中感受到数学探究和合作学习的无穷乐趣。

以上说课仅仅是我对本课的一种教学欲设,在实际的课堂教学中,我将努力调动学生的主动性、发展性和创造性,及时调控学习过程,促进学生对知识的动态生成。

我今天说课的内容是,小学数学苏教版三年级下册第十一单元《认识小数》。

说教材分析:

(一)、分析教材

本单元是在学生掌握了万一内数的认识和加、减运算,以及初步认识分数的基础上进行教学的。这是学生第一次接触小数,教材首先初步认识小数的含义,仅限于一位小数(小数点的右边只有一个数位),而且和买东西、量长度等具体事件联系起来,便于学生结合生活经验,学习其中的数学内容。教学内容包括一位小数的意义、读写方法;比较两个或几个一位小数的大小;一位小数加法和减法。在这些内容中,小数的意义是重点,它是比较大小和加减计算的思考基础。教材编排比较小数的大小与小数加减计算,也是为了加强小数的意义。初步认识小数,不给小数下定义,不揭示比较大小和加减计算的法则,都是联系实际情境和现实问题的体验积累。

全单元内容分四部分编排。第100~101页教学小数的意义,第102~103页比较小数的大小,第104~105页小数加法和减法,第106~107页单元练习。

(二)、确定教学目标

1、知识与技能目标

结合具体内容认识小数,知道以元为单位,以米为单位的小数的实际含义,能认、读写小数部分是一位的小数,认识小数各部分的名称。

2、过程与方法目标

1.能运用生活经验,对小数作出解释,学会运用小数来描述有关的现象。

2.有与同伴合作解决问题的体验。

3、情感态度与价值目标

了解可以用小数来描述某些现象,感受数学与日常生活的密切联系。

(三)、教学重点、难点

教学重点:认识小数。

教学难点:知道十分之几可以用一位小数表示,百分之几可以用两位小数表示

三、说教法、学法

(1)、说教法。(教学方式多样,才能使学生主动学习,个性得到发扬)

本节课采用开放式的教学方法,让学生感受到玩中学,学中玩。教师引导学生发现生活中的数学知识,与同学交流比较,对生活中有用的信息有用的信息进行加工处理,主动进行探索,获得知识。在本节课中要为学生创设一个生动活泼,适合学生情感体验、主动探索、合作交流的环境。本节课上,教师一定要把握和发挥评价的作用,尤其是在学生智慧火花闪现之时,教师给予充分的肯定和表扬。尽可能使师生、生生间的评价目标多元、方法多样。

(2)、说学法。(学生是学习的主人,有效的学习形式使学生感受获取知识的快乐)

《数学课程标准》指出:教师要激发学生的学习积极性,而与之相适应的教学组织形式就是小组合作。合作交流成为了学生学习数学的重要方式。从图中找信息、提问,学生的互相提问,增强了学生的互动交流。《小数的意义和读写》是一节和学生生活实际有联系的新授课,例如买东西,找零钱,测量等生活,因此在教学中采用自主学习、合作学习、探究学习、拓展学习的形式,让学生用自己的眼睛去观察,用言语去与学生交流,在交流中比较和选择,去收集对学习有用的信息。在探索知识时用心去感悟,用自己的头脑去思考,通过自己的生活经验去体验小数在生活中的应用,最终用学到的数学知识应用到生活中去.

四、说教学程序

我分为四步骤来教学:激趣导入新知,探究新知,练习巩固,课堂小结。

(一)、联系生活,引入新课

谈话:你们喜欢游公园、逛超市吗?那你们喜欢买什么物品呢?今天老师陪你们一起逛超市,好吗?(播放课件)

面对琳琅满目的商品,请选出你最喜欢的,并说说它的价格。

揭示课题:刚才同学们说的这些数都是小数,今天我们就来和小数交个朋友,一起来学习、认识小数。板书课题:小数的初步认识。

通过生活情景,让学生对生活中的数学问题感兴趣,并且为今天学习新的知识打好基础。

(二)探究新知

这部分内容,我又分为三步骤来教学:教学例1;教学例2;区别分类、揭示概念。

1、教学例1

这部分我主要运合作交流的教学方法,从学生生活实际出发,首先通过提问,把学生注意力集中到思考5分米和4分米如果用米做单位分别是几分之几米上,然后告诉学生呢感,这两个分数可以写成另外的形式,并指导学生练习这两个小数的读写方法。

2、教学例2

这部分我主要运用自主探索、教师引导的教学方法,我可以提出问题让学生自己探索。如能不能想刚才那样,把几元几角写成以元作单位的数?同时可以启发学生先想2角是多少元,再想1元2角是多少元。在学生认识这个基础上再想3元5角是多少元。

3、区别分类、揭示概念

这部分我主要运用自主探索与合作交流的教学方法,我先让比较例1的这些分数和小数的区别,说说他们的不同,让学生在小组中交流,并回报交流结果。接着让学生在比较小数的整数部分和小数部分,注意区别哪些是整数,哪些是小数,最后总结揭示小数的概念。

(三)练习巩固

这部分内容我主要运用练习法,让学生巩固小数的认识,以及通过练习进一步理解小数各部分的名称。

1、完成练一练第1题。

让学生独立在书上完成,然后再汇报自己的想法,交流时教师应强调平均分

2、完成练一练第2题。

先让学生在书上独立完成,可以引导学生想分数来过度,最后在全班校对,

3、完成练一练第3题

先让学生独立完成,再说一说思考过程,要说清楚,强调每组的分数和小数是相对应的。

五、评价总结,激励进步

在今天这节课中,你有什么收获?如果100分表示满分,你会给自己打多少分?

小数在我们的生活、生产中处处可见,同学们要学会用数学的眼睛观察生活,用数学知识解决生活中的实际问题。

说板书设计:

小数的意义和读写

3.5

最新小学平均数教案【篇9】

教学内容:教科书第3233页的第47题,练习八的第5、6题。

教学目的:通过整理和复习所学知识,使学生进一步理解三步应用题的数量关系和解

答方法;掌握数据整理及求平均数的基本方法;提高综合运用知识的能力。

教具准备:小黑板。

一、整理和复习三步应用题。

1.教师在黑板上并列出示教科书第32页第4题和第5题。

请两位学生读题后,分别说一说题里的条件和问题。然后,让全班学生用两种方法解答。集体订正后,指名让学生回答问题;

教师提问:第4题和第5题有什么相同点?有什么不同点

为什么这两题都可以用简便算法计算

2.教师先出示题目:同学们抬水浇树。三年级浇45棵,四年级比三年级多浇lo棵,五年级浇的棵数等于四年级的2倍。五年级浇树多少棵?

请一位学生读题后,让学生自己解答。

接着,教师出示教科书第32页第6题。读题后,让学生说一说题里的条件和问题,并且让学生画出线段图帮助理解。然后,指名让学生回答教师的问题。

教师提问:这一题与上面一题比较有什么相同的地方有什么不同的地方(上面一

题是两步应用题,下面一题是三步应用题。)

让学生独立解答,集体订正。

教师:我们这一册所学习的三步应用题都是在两步应用题的基础上发展来的。把两步应用题改编成三步应用题主要有2种方法:增加条件、改变条件的叙述方式、改变问题。第6题是从上面的两步题改变问题而变来的。现在,大家试一试用另外两种方法把上面的两步题改编成三步题。

鼓励学生改编题,集体订正所改编的题。

3.做练习八的第5、6题。

教师让学生独立做题,教师巡视,个别辅导,做完集体订正。

二、整理和复习数据整理及求平均数

教师让学生打开教科书第33页,默读第7题,理解题意。(教师也可用小黑板出示这一题。)然后看图回答教师的问题。

教师提问:这个条形统计图中的一个格代表多少千克

哪个年级采的最多?

五年级比三年级多采多少千克?

然后,让学生自己做第(3)、(4)小题。做完以后,指名让学生回答问题。

教师提问:求平均数的方法是什么在这一题里,求平均数的算式是什么

接着,让学生自己想根统计图中的数据填写下面的统计表。填写之前,教师提问:

下面的统计表是统计什么的每个格里要填什么

学生做题时,教师巡视,个别辅导。

让学有余力的学生做练习八的第7*题。这道题先算出每种车的数量,然后才能填表,制成条形统计图。这是一道需要综合运用知识的题目,对于提高学生综合运用知识的能力很有帮助。

JK251.com延伸阅读

平均数教案9篇


教师范文大全搜索并整理了“平均数教案”,以下是相关内容,希望本文能够解答您的疑惑让您更加明白。老师根据事先准备好的教案课件内容给学生上课,每个老师都需要细心筹备教案课件。 教案和课件的完善是落实素质教育的关键。

平均数教案 篇1

教学设计

平均数

(第一课时)

一、内容和内容解析

本节教学内容源于人教版八年级下册“平均数”第一课时.统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节.平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念.本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”.尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础.基于上述分析,确定本节教学重点是:

以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题.二、目标和目标解析

1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.三、教学问题诊断分析

1.教师教学可能存在的问题:(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高.2.学生学习中可能出现的问题:(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情.

鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用.四、教学支持条件分析

在教学中要实现使学生理解加权平均数的意义和“权”的作用,恰当利用PPT的演示功能、Excel的数据处理功能,以及几何画板的动画和计算功能,通过设计简单的程序,直观、形象地展现“权”的意义和作用,感受过程的真实性,增强学生的参与程度.五、教学过程设计

活动一:创设情景,建立模型,揭示概念

问题1 以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义.在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:

(1)谈谈表格中“86分”所反映的实际意义.(2)求这两个班的平均成绩,并和同伴交流你的计算方法.预设:问题(2)可能会出现下面两种解法:学生对比、分析、讨论,初步理解权的意义.引导

设计目的:问题(1)中,86分是七年级1班46名学生的数学成绩“取长补短”均衡的结果,反映该班46名学生数学成绩的一般“平均水平”,设计的目的是引导并体会平均数的统计意义.问题(2)中,以“任务布置──发现问题──生成问题──研究问题──解决问题”为教学程序,经历操作、观察、对比、分析、交流等探索活动,初步了解“权”的意义,解释计算加权平均数的理论依据,为概念的引入作铺垫.活动方式:以实际问题为研究载体,以自主参与、交流合作为教学形式,以多媒体动画演示辅助为教学手段,引导学生积极参与数学探究活动,发展数学思维.本活动中,教师应关注学生:①参与数学活动的主动性和数学思维的深刻性;②实际问题中体验平均数的统计意义和初步了解权的意义;③体会算术平均数与加权平均数的区别与联系.学生归纳:1.平均数反映的是数据的平均水平,;2.“权”反映了数据的相对“重要程度”;3.算术平均数与加权平均数的本质一致的,算术平均数是各数据的权为1的加权平均数,当数据的权相同时,加权平均数与算术平均数是相同的;当数据的权数不同时,加权平均数能更好地反映数据的平均水平,应当计算加权平均数.问题2 某市三个郊县的人数与人均耕地面积如下表:

求这个市三个郊县的人均耕地面积(精确到公顷).追问1:用算术平均数的方法求三郊县的人均耕地面积合理吗?为什么?

追问2: 、和这三个数中,那个数对总人均耕地面积的影响更大一些,你是怎么看出来的?这三个数的权分别是什么?你如何计算该市三个郊县的人均耕地面积的?

设计目的:以求三郊县人均耕地面积为研究载体,进一步引导学生认识加权平均数,渗透平均数的统计意义,理解权的意义以及为什么要采用加权平均数;在具体问题情景中,逐步建立并抽象出加权平均数这一数学模型;通过两种不同计算方法的比较,进一步体会算术平均数和加权平均数的区别与联系.活动方式:独立完成本问题任务,认真思考两个追问问题,交流看法和意见,教师做必要的指导或点拨,加深对权的意义的理解和用加权平均数计算的合理性;建立数学模型,抽象出加权平均数的计算方法.学生归纳:

(1)上例中15,7,10分别是、0.

21、三个数据的权,平均数称为三个数0.

15、0.

21、的加权平均数,反映三个郊县人均耕地面积的平均水平.

活动二:实例分析,指导应用,体验概念

1.统计某一植树小组所有同学的植树情况,其中有5人各植树8棵,有3人各植树7棵,有2人各植树10棵,求平均每人植树的棵数.

思考:各项的权分别是多少?如何计算植树的平均棵树?

2.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:

如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?

问题3 招聘口语能力强的翻译时,公司侧重于哪些方面的成绩?给出的比值是否能体现这些方面更加“重要”?听、说、读、写四种成绩的权分别是多少?数据对应的权表示的含义是什么?

设计意图:在变式中理解权的含义.问题4 如果现在要招聘一名笔译翻译,你能给各数据制定一个合适的权吗?制定的依据是什么?最后计算的结果与你设想的一样吗?试一试,比较你与其他同学设计的不同结果,谈谈你对数据权的作用的新认识.设计意图:在系统中整体理解数据、权和平均数.通过解决实际问题,加深对权的作用的理解,探究权对平均数的影响.此处,借助于Excel的数据处理功能,给数据赋以不同的权,展示出现的不同计算结果,便于学生观察分析,从而更好地体现权的“掌控”作用.问题5 若听、说、读、写的成绩分别按20%、20%、30%、30%的比例计入总成绩,如何计算应试者的平均成绩(百分制)?与(2)相比,数据权的表现形式发生了怎样的变化?

设计意图:进一步体会数据权的不同表现形式.(自主合作,共同比较,交流分析,体会权的“掌控”能力.)

活动三:拓展创新,我来决策,感悟概念

一家广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:

平均数教案 篇2

教学要求

使学生进一步理解求平均数的意义,学会较复杂的求平均数的方法。

教学重点

学会较复杂的求平均数的方法。

教学用具

投影仪(片)

教学过程

一、创设情境

投影显示第13页的复习题,让学生思考并回答:

(1)这题要求的是什么?

(2)必须要知道什么?

(3)怎样列式解答?

计算的结果能说明什么问题?它有什么用?

思考:全班同学上美术课每个人都带了些“橡皮泥”做手工用,为了使大家都拥有有等量的“橡皮泥”,我们该用什么办法把我们手中的“橡皮泥”平均一下呢?

今天这节课我们将继续学习求平均数(板书课题)

二、探索研究

小组合作讨论:研究例1。

1、观察比较:例1与复习题有什么相同处与不同处?

2、思考并回答:

(1)这题求的是什么的平均数?

(2)必须要知道什么?

(3)你会解答这道题吗?

(先让学生分小组试着做一做,再选几名学生代表,讲一讲他们是怎样做的,老师将学生说的解题过程板书出来后集体订正)

①全班一共投中多少个?28+33+23=84(个)

②全班一共有多少人?10+11+9=30(人)

③全班平均每人投中多少个?84÷30=2.8(个)

列成综合算式是

(28+33+23)÷(10+11+9)=2.8(个)

答:全班平均每人投中2.8个。

小组合作学习:研究例2。

1、观察比较:例1与例2的条件与问题又有什么相同点和不同点?

2、思考并解答:你能联系例1的解题思路计算出这题的结果吗?

放手让学生尝试做一做,再讲一讲是怎样做的,老师将学生说的解题过程板书出来,使学生明白:条件与与问题不同,计算方法和步骤也就不同,最后集体订正。

①全班一共投中多少个?2.5×12+3×11+3.2×10=95(个)

②全班一共有多少人?12+11+10=33(人)

③全班平均每人投中多少个?95÷33≈2.9(个)

列成综合算式是:

(2.5×12+3×11+3.2×10)÷(12+11+10)

=95÷33

≈2.9(个)

答:全班平均每人投中2.9个。

三、课堂实践

做教材第14页的“做一做”

四、课堂

学生今天学习的内容。

五、课堂作业

1、练习三的第2题。

2、练习三的第1、3、4题

平均数教案 篇3

《平均数》教学设计

教材分析:

这节课的教学目的有以下3点:1、让学生经历平均数产生的过程,理解平均数的概念,了解平均数的特点和作用,掌握求简单平均数的方法。2、在解决问题的过程中培养学生的分析、综合、估算和说理能力。3、渗透统计初步思想。理解平均数的意义是本课的重点。学情分析:

学生的数感是从生活中得来的,所学的知识也是为了解决问题。学生理解了平均数的意义之后,让学生应用所学的知识去解决身边、生活中的实际问题,体会数学与生活的密切联系,产生学习数学的兴趣,感受成功的喜悦。教学内容: 人教版小学《数学》第八册 教学目标: 1、感悟平均数的意义,建构平均数的概念。

2、探究平均数的多种方法,鼓励解决问题策略的多样化。

3、感受平均数概念所蕴涵的丰富、深刻的统计与概率的背景,能

针对数据分析结果做出简单推断和预测。

4、体会平均数在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识与能力。 教学过程:

一、创设情境,提出问题。 1、师:元旦快到了,为了庆祝新年的到来,我们将举行元旦晚会,你们准备怎样布置教室呢? 生:挂彩带、画画、挂气球……

2、师:那我们就举行一场吹气球比赛,你们看怎么样?男女生每个组派出4名同学,限时20秒吹气球。 比赛开始……

二、解决问题,探究问题。 1、感受平均数的产生

(1)每对先推选一名队员参赛,比赛的结果:女队的成绩:4个

男队的成绩:7个,男队获胜。

生:不行,一个人不能代表大家的水平……

(2)学生讨论后要求所有的队员参赛,继续比赛……

(3)女队的成绩:2、3、5,,男队的成绩:5、8、4,男队获胜,女生情绪低落。

(4)师:我看你们玩得那么高兴,我也想参加欢迎吗?我是女生就加入女队,师吹了6个后,让学生重新计算女队的成绩,最后的结果是女队获胜。

(5)生:这不公平,男队4人,女队有5人……

(6)师:看来人数不相等,就没办法用比较总数的方法来比较哪队的水平高,这可怎么办呢?

生:把这几个数匀一下…… 2、探索求平均数的方法(1)师:我们怎样求平均数呢?(2)生讨论并交流方法。

(3)小结:女队:(4+2+3+5+6)/5=4,男队(7+5+8+4)/4=6.通过求平均数,得出男队获胜。3、理解平均数的意义

(1)师:男生队的平均数是6,你怎样认识理解6这个数?(2)生:6是它们的平均数

有的人成绩比6大,有的人的成绩比6小……

(3)师:平均数不是一个人具体的吹气球的数量,它代表的是几个人吹气球的平均水平。平均数是一个虚拟的数,比最小的数大,比最大的数小些,在它们中间 4、学生举出生活中平均数的例子。

三、联系实际,拓展应用。 1、课件出示宁夏科技馆十一期间的门票统计图,让学生讨论两个问题:

(1)师:估算一下,这7天中平均每天售出门票大约多少张?(2)师:如果你是馆长,看到这个信息,你会有什么想法? 2、小强会遇到危险吗?

(1)课件出示图中的平均水深和小强的身高。(2)讨论:小强会遇到危险吗?为什么? 3、课件出示小明家去年4、5、6三个月用电量的统计表

(1)求出平均每月的用电量。(2)请你们估计出下个月小明家的用电量,并说明理由。四、全课小结。

平均数教案 篇4

2、教材分析:

随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。

平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。

在学生计算出平均数的基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的'情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:

知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。

能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。

情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。

二、说教法:

“求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。

三、说学法:

在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。

四、说教学过程:

平均数教案 篇5

素质教育目标:

1、知识目标:使学生理解平均数的含义,初步学会简单的求平均数的方法。

2、能力目标:理解平均数在统计上的意义。

3、情感目标:体会数学与生活的密切联系,培养学生的实践能力。

重点难点

重点:理解平均数的含义。

难点:初步学会简单的求平均数的方法。

教具准备:多媒体课件

教学过程

一、创设情境,提出问题

上周的作业,有三位同学做得最好,今天老师带来些铅笔想奖励给他们。大家看统计图,哪三位做得最好,分别获得了几支铅笔?(叶雨7支、叶茹5支、李新3支)(课件展示)

师:你们觉得这样分公平吗?怎样才能公平?

学生讨论,指名汇报。

(把叶雨的7支拿2支给李新,这样每人都是5支。课件展示)

很好。谁能给这种方法取个名字?(“移多补少法”。板书)

(先把三个人的铅笔全合起来有15支,再平均分给这3个人,这样每个人都是5支。)

这种方法也很好!我们也给它取个名字。(“先合再分”板书)。

刚才我们用不同的方法,都能使这三个人铅笔的支数从不等变成相等,都是5。

教师指出:这里的“5”就是“7、5、3”这三个数的平均数。板书课题:平均数

通过刚才的学习,同学们能简单的说一说什么是平均数吗?(学生思考或者讨论,教师在听取汇报后总结。)

几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。

师:说到平均数,同学们能联想到我们以前学的哪个数学概念。(平均分)是呀,平均数是5,那么他们每人的铅笔支数应该都是5,是这样吗?(质疑,区分平均数和平均分)

师:难道,老师真的不公正吗?他们的铅笔到底要不要重新平均分配呢?告诉你们,不能。这样做是因为叶雨书写最干净,而且明显进步,而李新最近书写有些下降了。同学们觉得老师做得公平吗?刚才的平均数只是一个反映今天奖品发放总体情况的数,不是真的把奖品平均分了。

同学们在生活中还听到过哪些平均数?说一说。(见课件)

看来平均数的用处还真大,同学们要好好学习哟!

二、寻找方法,解决问题。

同学们,上个月我们班每个同学都通过自己的努力,获得了很多小红星。我们来看一下第一小组和第二小组的统计结果。

第一小组上月获小红星个数统计表

单位:个

叶茹李新吴玉刘超

14111013

第二小组上月获小红星个数统计表

单位:个

叶雨付涛张新江南夏丽

15128119

其中,叶雨的个数最多,我宣布第二小组为优胜组,你们同意吗?

生1:不同意,她一个人怎能代表全组,就算叶雨最多,可是张新才8个。

师:那你们说怎么比呢?

生2:可以把每个组的个数加起来,看哪个组的个数最多,哪个组就好。

生3:可第一小组比第二小组少了一个人呀!怎么能比?

同学们认为怎样比最合适呢?(平均数)

对,把几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,也就是把两个小组的平均数分别求出来再比较。(大家领悟到比较平均数最公平,从而认识平均数在统计中的用处。)

下面,我们就各显神通,先求出第一小组的平均数吧!

小组讨论、汇报。

(将叶茹多的两个分给吴玉,刘超多的一个分给李新,这样,她们每个人都得到了12个,也就是第一小组的平均数是12个。)

不错,方法很简洁,他用的什么方法?有不同的方法吗?

(先求出四个人的总个数,再求出平均每人的个数。)

他用的方法就是——先合再分法。

看来,大家都非常聪明,第二小组的平均个数会求吗?

你们觉得这时我们求平均数用哪种方法比较合适?为什么?

学生在练习本上计算,指名板演,集体订正。

为什么这里求得的总数除以的是5而不是4?

(先合再分法)

小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少法比较简单;人数多,差距大,用先合再分的方法比较简单。

我们看,第一小组的平均数是12,可是14、11、13、10这几个数里,没有一个是12的,它们有的比12大,有的比12小;第二小组的平均数是11,可是15、12、8、11、9这几个数里面也只有一个11,并不是每一个数都是11,它们有的比11大,有的比11小。所以说平均数反映的是一组数据的总体情况。

平均数教案 篇6

教学目标:

1、使学生经历探索小数加减法计算方法的过程,体会小数加减法与整数加减法在算理上的联系,初步掌握小数加减法的计算方法。

2、使学生进一步增强运用已有知识和经验探索并解决新问题的意识,不断体验成功的乐趣。

教学重点、难点:

掌握小数加减法的计算方法。

教学方法与手段:

使学生经历探索小数加减法计算方法的过程,体会小数加减法与整数加减法在算理上的联系,探索小数加减法的计算方法。

教具学具:多媒体光盘。

教学过程:教师活动。

学生活动。

设计意图。

一、导入。

1、出示例1的情境图。

谈话:这是同学们在文具商店购物的画面。你能从中了解到哪些信息?

学生交流后提问:根据这些信息,你能提出一些用加减法计算的问题吗?

根据学生的回答,相机板书下面的问题及相应的算式:

(1)小明和小丽一共用了多少元?

(2)小明比小丽多用多少元?

(3)小明和小芳一共用了多少元?

(4)小芳比小明少用多少元?

(5)三个人一共用多少元?

2、揭示课题。

谈话:怎样计算小数加减法呢?这就是我们今天要研究的问题。(板书课题:小数加法和减法)。

二、探究。

1、教学例1的第(1)问。

谈话:你能用竖式计算“4.75+3.4”吗?先试一试,再和小组内的同学交流。

讨论:你是怎样计算的?又是怎样想的?

围绕学生采用的算法进行比较,要求学生具体地解释思考过程。

小结:用竖式计算小数加法时,要把两个加数的小数点对齐,然后把相同数位上的数分别相加。

2、教学例1的第(2)问。

小结:通过刚才的学习,你知道了什么?

3、教学“试一试”。

谈话:这里还有两道题,你能用刚才学到的计算方法自己算出结果吗?

学生计算后,再要求说一说是怎样算、怎样想的。然后提出把计算结果化简的要求,让学生说一说化简的结果和依据。

4、总结和归纳。

学生活动,教师参与学生的活动。然后组织机交流。

三、练习。

1、完成“练一练”第1题。

学生独立完成后,让学生说一说计算中需要注意的地方。

2、完成“练一练”第2题。

先让学生通过独立思考找出每道题中的错误,再分别改正,并组织交流。

3、完成练习八第1题。

4、完成练习八第2题。

根据学生完成的情况适当加以点评。

5、完成练习八第3题。

让学生独立列式计算;。

根据题中的数量关系,还可以自己补充问题:问学生你还想到了什么?

四、总结。

通过今天的学习,你知道了什么?有哪些收获?你认为自己今天学得怎么样?

五、延伸。

同学们在开始上课的时候,提出了许多用小数加减法解决的问题,这些问题都很有价值。其中,有些问题我们已经解决,剩下的问题下节课在继续研究。

六、课堂作业。

《补充习题》p。

学生回答。

学生根据条件提出相应的数学问题。

学生口答算式。

学生思考、交流后回答:算式中都用小数。

学生用竖式计算,并在小组内交流。(同时指名板演)。

学生说出自己的想法。

同学间交流自己想法。

学生独立计算,指名板演。

学生交流后明确学生独立计算,并说说自己的想法。

同学们自己想一想,再和小组内的同学交流。

引导学生归纳:小数加减法和整数加减法都要把相同计数单位上的数分别相加、减,都要从低位算起。计算小数加减法时,需要把小数点对齐后再算,最后在得数里对齐横线上的小数点,点上小数点。

学生各自在书上填出得数,并回答。

学生独立完成,

结合线段图学生说说对前3个问题的理解。

学生交流。

问题的提出来自学生本身的思索,这让学生更有兴趣去探索、尝试。

围绕学生采用的算法进行比较,要求学生具体地比较“数位对齐”、“相同数位对齐”和“小数点对齐”,最终让学生明白“小数点对齐”也就是“相同数位对齐”。

这一环节让学生自己尝试解决。教师鼓励分小组相互交流,然后全班交流,进而探讨小数加、减法的基本算理。这样学生在轻松愉悦的氛围中既掌握了知识,同时也培养学生自主探索的精神,引导学生学会学习。

联系以前学过的整数加、减法,沟通新旧知识间的联系,使学生对小数加、减法的笔算方法形成比较完整的认识。

通过一系列的练习,既巩固了本课的相关知识点,又提高了学生灵活计算的能力。

4.75+3.4=8.15(元)4.75-3.4=1.35(元)。

4.754.75。

-3.4-3.4。

8.151.35。

平均数教案 篇7

一、内容和内容解析

本节教学内容源于人教版八年级下册“20.1.1平均数”第一课时.

统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节.平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念.

本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”.尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础.

基于上述分析,确定本节教学重点是:

以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题.

二、目标和目标解析

1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.

2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.

3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.

三、教学问题诊断分析

1.教师教学可能存在的问题:(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高.

2.学生学习中可能出现的问题:(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情.

鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用.

四、教学支持条件分析

在教学中要实现使学生理解加权平均数的意义和“权”的作用,恰当利用PPT的演示功能、Excel的数据处理功能,以及几何画板的动画和计算功能,通过设计简单的程序,直观、形象地展现“权”的意义和作用,感受过程的真实性,增强学生的参与程度.

五、教学过程设计

活动一:创设情景,建立模型,揭示概念

问题1 以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义.

在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:

(1)谈谈表格中“86分”所反映的实际意义.

(2)求这两个班的平均成绩,并和同伴交流你的计算方法.

平均数教案 篇8

教学目标:

解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、使学生进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的.信心。

教学重点:体会平均数的意义,掌握求平均数的方法。

教学难点:理解平均数的意义。

教学过程:

一、 创设情境,提出问题

1、 同学们,喜欢玩套圈游戏吗?前几天我校三(1)班举行了套圈比赛,想不想去看看?

师说:现在是第一小组的男女生进行比赛,每个人套他套中几个?(套中几个?(四人同时走出来,同时套,这次比赛,几个男生?几个女生?谁套得准一些?为什么?(女同学为我们女生鼓鼓掌。第三场团体比赛开始了,哇,来了这么多同学,男生有几个人?女生有几个人?谁获胜?谁先说就先鼓掌。鼓掌完了问:你们男生有没有意见?有意见。(如果学生说因为,老师赶紧引过来你直接告诉大家你有没有意见?你认为哪个队获胜?)看来这场比赛情况比较复杂,怎样可以知道哪个队获胜呢?这就是我们今天要研究的内容。(三次比赛的数据不能一样。)(套圈图淡去,统计图渐出。)

平均数教案 篇9

大家都听过小猫钓鱼的故事吧?今天老师也要讲一段小猫钓鱼的故事。

1、在一个天气晴朗的午后,大虎、二虎和小虎三位猫兄弟到河边钓鱼。两个小时以后他们每人数了数自己的鱼,大虎钓到7条鱼,二虎也钓到6条鱼,只有小虎才钓到2条鱼,你能用圆形代替鱼,摆出他们钓鱼的条数吗?(竖排或横排摆都可以)。

3、怎样才能让每个人的鱼同样多呢?用圆片摆一摆再在小组内说说你的方法。

方法二:大虎拿出两条鱼给小虎,二虎拿出1条鱼给小虎,这样每个人都有5条鱼,这种方法叫做移多补少。

5条是大虎钓鱼的条数吗?是二虎和三虎钓鱼的`条数吗?我们给他起个名字,5条就是大虎、二虎、小虎钓鱼的平均数,我们可以说他们平均每人钓了5条鱼。

1、大虎、二虎、小虎在回家的路上遇到花花姐妹,原来她们也去钓鱼了,花花姐妹可是钓鱼的高手。大虎:“你们平均每个人钓了多少条鱼?”

2、这是花花姐妹钓鱼的条数,你估计一下花花姐妹平均每人大约钓到多少条鱼?

3、你能算出花花姐妹到底平均每人钓了多少条鱼呢?

1、森领卡拉ok大赛就要开始了,许多小动物都赶着去观看比赛呢!

3、你知道谁是这次比赛的冠军吗,想一想、算一算,然后在小组里说说你的理由。

4、黄鹂是4位评委打出的分数,而百灵鸟是3位评委打出的分数,因为评委的人数不同,所以算总分是不公平的,这个时候只有算平均分才公平。在现实生活中你知道哪些比赛是取平均分来决定比赛成绩的。

看完卡拉ok比赛,三位猫兄弟觉得天气太热,就派大虎到小熊冷饮店买冰糕。咦!小熊遇到什么难题了?(小熊:星期四该进多少雪糕呢?)。

这是小熊冷饮店本周前三天卖出冰糕的情况,小熊星期四该进多少箱冰糕合适呢?

小学平均数教案精选


严于己,而后勤于学生,这个无愧为教师的天职。课前准备好教案,是每一位教师的必备工作,写教案对于老师来说是必不可少的东西,如何让教案在课堂上更具备力量呢?经过搜索和整理,教师范文大全编辑为大家呈上小学平均数教案,供大家借鉴和使用,希望大家分享!

小学平均数教案【篇1】

教学内容:教材第12l页求平均数和练一练,练习二十三第8~14题。

教学要求:使学生进一步认识平均数的含义和求平均数的数量关系,能根据已知条件求出相应的平均数。

教学过程:

一、揭示课题

我们在进行统计或分析统计结果时,经常要用到平均数。(板书课题)这节课,重点复习求平均数。

二、复习求平均数

1.平均数的含义。

(1)提问:谁能举例说说什么是几个数量的平均数吗

(2)下面说法对不对

①前3天平均每天织布200米,就是实际每天各织200米。

②身高1.5米的人在平均水深1.2米的池塘里没有危险。

2.提问:那么,求几个数量的平均数需要哪些条件平均数要怎样求(板书:总数量总份数=平均数)

3.做练练第1题。

让学生读题。指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一部分求的是什么。

4.做练一练第2题。

学生默读题目。指名学生说一说题意。让学生在练习本上列出算式。提问学生怎样列式的,老师板书。让学生说明每一步求的是什么。提问:这两题在解题方法上有什么相同的地方为什么列式不一样说明:按照求平均数的数量关系解题时,要注意找准总数量与总份数之间的对应关系,再根据数量关系式正确列式解答。(板书:注意:找准总数量与总份数的对应关系)

三、综合练习

1.做练习二十三第11题。

指名一人板演,其余学生做在练习本上。集体订正,让学生说说是按怎样的数量关系列算式的,(总路程除以时间等于平均速度)每一步求的什么数量。追问:为什么总路程是1402?为什么时间是4.5加5.5的和指出:解答时要认真看题,弄清题意,理解条件和问题的意思。

2.做练习二十三第12题。

让学生默读题目。提问:三人的平均成绩是110分是什么意思怎样才能求出另一位同学的成绩是多少分指名学生口答算式,老师板书。追问:1103表示什么为什么三人的总分数要用110乘3?

3.做练习二十三第13题。

指名学生说一说统计图的意思。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的。追问:为什么要用12做除数说明:要根据问题要求的结果,确定应该用哪个量做被除数,哪个量做除数。

4.做练习二十三第14题。

让学生观察统计图。提问:你从图里了解了哪些情况想到了哪些问题请大家在小组里估计一下,平均每月水费、电费大约各要多少元,并且说说怎样想的。指名学生交流估计的结果和想法。再让学生求出平均数。

四、课堂小结

通过这节课的复习,你进一步明确了哪些问题

五、课堂作业

练习二十三第8~10题。

小学平均数教案【篇2】

教学目标:

1.通过具体情境使学生理解加权平均数的意义和作用,会计算加权平均数,会利用加权平均数解决实际问题。

2.经历收集数据、整理数据、运用数据描述信息,作出合情推断的过程,使学生认识到数据的作用和统计对决策的作用。

3.通过加权平均数的学习,初步认识数学与人类生活的密切联系,体会数据可能产生误导,进而形成尊重事实、用数据说话的态度。

教学重点:

经历收集数据、整理数据、运用数据描述信息,作出合情推断的过程,使学生理解加权平均数的意义和作用,会计算加权平均数。

教学难点:

运用数据描述信息,作出合情推断,体会数据可能产生误导,进而形成尊重事实、用数据说话的态度。

教学准备:

(课件、挂图、资料收集等)

教学过程:

一、创设情境,揭示课题。(5分钟左右)

1.出示图片:我班学生在大街上捡拾白色垃圾.谈话:白色垃圾对于我们的生活危害很大。出示相关数据。我校也要求学生调查自己家的情况。那么谁说说,你们家一周大约丢弃多少个塑料袋?学生分别说。(三个)

2.看过一篇报道,城镇某校一个班平均每周丢弃塑料袋28个之多,大多数用于买菜,丢垃圾用。谁能说说平均数怎样算?板书关系式:总数量除以总份数=平均数

3.看到这个信息你最想做什么吗?(到底城镇用的多,还是我们农村用得多?)如果以我班为农村调查对象。

4.比较什么呢?这节课我们就学习统计中的平均数。(板书)

二、在活动中,自主建构概念

到底我们班的同学平均每家一周丢弃多少个呢?看来要得到平均数只知道几家的数据还不行,你们最想知道什么吗?

(一)活动1:初估平均数。(3分钟)

1.出示数据,初估平均数。

13、8、13、13、8、8、14、8、11、5、14、14、8、8、13、8、5、2114、13、5、8、5、8、14、8、13、8、13、8、8、14、8、8、14、14、

学生面对分散而且毫无规律的数据,迟疑一下,在教师的鼓励下有的学生会大概猜一猜。但是数据不统一。

2.为什么不好估?有什么困难?,怎样就比较容易估算了?两个问题的讨论,引出学生要对数据进行整理的需求。

3.怎么整理?,这一问题又引发学生观察数据的特点,最后得到根据相同数据及其个数进行整理。

小结:看来平均数与每一个数据都有关系,其实这正是它为什么能广泛应用的原因,那就是用平均数描述问题更全面。

三、在应用中巩固概念。

1.出示要解决的问题(9分钟)

学校要给五年级四个班数学竞赛颁奖,奖给谁?比较什么?1班34人平均分87.7分;2班33人平均分89.9分;3班人90.5分;4班35人85.5分如果要给教这两个班的两位教师颁奖呢?颁给那位教师?

预设

生1:颁给平均分最多的那个班。

生2:不公平,要算一算两个班的平均分,再比较。

问:哪个更科学公平呢?

2.学生应用计算器计算两个班的平均数再比较。

四、回顾总结(5分钟)

在统计中应用平均数分析数据,说明问题是很重要的手段,今天我们学习的统计中的平均数和以往的平均数有什么相同点和不同点?

五、作业布置

小学平均数教案【篇3】

教学内容:

人教版《义务教育课程标准实验教科书数学》三年级(下册)统计中求平均数例1.

教学目标:

1.在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

3.进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

教学重点、难点:

平均数的意义及求平均数的方法。

教学过程:

一、情境导入

阳光体育运动启动后男生和女生举行了一场趣味投篮比赛,想知道他们的得分情况吗?

课件出示统计图。

(1)看到统计图,你知道了什么?(板书每组每人得分)

(2)金灿灿的奖杯在那儿等着呢,请你来当裁判,这金灿灿的奖杯该被哪组捧走呢?

学生说出自己的裁判理由,其他同学可以发表自己的意见,也可以反驳他人的观点。

当学生讨论、交流出需要求出每组平均每人得多少分时,师板书出平均。

(3)刚才同学们通过讨论,认为用平均数来比较那个对的实力强一些比较公平,那什么是平均数呢?(指名学生回答)

师:那么什么是平均数呢?下面老师给大家做个小实验。

二、在操作中体验平均数的涵义。

1.课件演示:出示一个玻璃水槽,里面用三块挡水板平均分成四个部分,形成四个水柱高低不同的水柱。

师:四根水柱的高度一样吗?(指名回答)

2.师继续演示:如果拿开挡水板,会发生什么?(课件演示)

师:现在高度一样了吗?(指名回答)

师:这个一样的高度就是原来四个高度的什么数?(指名回答)

师:刚才老师是怎样使他们变得一样高的呢?(拿开挡水板,水会从高处流向低处)(指名回答)

师:你的意思是把多的一一部分给少的,使大家变得一样多。这种方法我们把它们叫做移多补少(板书)

师:在移多补少的过程中,水的总量有没有变?(指名回答)

师:下面我们就用移多补少的方法来求出男女队投篮比赛中各自的平均数。

3.请同学们拿出你手中的小圆片代替投中的个数在小组内进行移多补少的操作。

(1)。第一组和第二组操作男生队,第三组和第四组操作女生队,摆完后在小组内交流操作过程。

(2)指名汇报交流。

4.教师用课件演示投篮的移多补少过程。

5.课件出示小练习。

6.演示后小结:(课件出示)像这样,几个不相同的数,在总数不变的前提下,可以通过移多补少是他们变得相等,这个相等的数就是这几个数的平均数。(学生齐读)

师:理解了平均数的含义,那么平均数有什么特征呢?同学们想不想做个小游戏?

三、游戏中感悟平均数的特征。

1、出示:各装有3根小棒的红蓝两个纸袋(红带内平均每根长14厘米,蓝袋内平均每根长10厘米)课件出示两个纸袋。

2、师:猜一猜,如果从两个纸袋中各拿出一根小棒,哪个纸袋拿出的小棒长些?为什么?

师:下面我们来做个游戏,请几位同学上来,每位同学从两代中各抽出一根来比一比。(请三位同学上讲台操作)

3、师:从刚才抽的小棒中,我们发现蓝袋中的小棒不一定都比红袋中的小棒短,怎么会出现这种情况呢?

.先让学生在小组里讨论,然后全班交流。(平均数大一些,并不是说每一根都长一些。平均长14厘米,不一定每一根都是14厘米,也有可能比14厘米短的,也有可能比14厘米长的。平均长10厘米的小棒,有可能正好是10厘米,也有可能比10厘米短,还有可能比10厘米长。)

4、师:(课件演示)平均数和原来那些数相比,处在什么位置?(处在中间的位置,比最大的数要小,比最小的数要大。)(课件出示平均数的特点)

师:我们感悟了平均数的特点,敢不敢挑战一下?

5、挑战练习明辨是非

四、探索中建构平均数的算法。

1、师:前面我们用移多补少的方法求的男女队各自的平均数,知道了女队的实力强一些。如果现在要进行班与班之间的对抗赛,那么要计算什么的平均数呢?(要计算班级的平均数)

2、师:一个班有六十来名学生,如果还用移多补少的办法来获得平均数,你感觉怎么样?(指名交流)

3、师:是啊,移多补少的方法对数据较小或数据个数比较少时,还是挺管用的。但是当一组数据比较大,数据的个数有比较多的时候,这种方法就有局限性了。看来,我们需要探索一种更加通用的计算方法。

4、以小组为单位,让学生讨论计算方法:(1)平均分是怎样分的?平均分需要知道哪两个条件?(师举例:有12块糖平均分给3个小朋友,每个小朋友分几块?)

(2)哪个条件已经知道了?哪个条件还没知道?

(3)怎样求平均数?(师举例,3个小朋友一共有12块糖,平均每个孩子分几块?

(4))推出求平均数的公式。

(5)师:看来求平均数可以用公式来计算,计算时必须要知道哪两个条件?先要求出什么?

五、学习例1,巩固公式计算法。

1、出示主题图,先用移多补少的方法获得平均数。(课件演示)

2、让学生试着用公式计算例题中的平均数。

3、集体订正讲解。

六、生活中的平均数。(课件出示)

巩固练习:

1、算出三条彩带的平均长度。

2、算一算你们小组的平均体重。

课堂小结:

小学平均数教案【篇4】

【教学内容】

苏教版《义务教育课程标准实验教科书数学》三年级(下册)第92~94页。

【教学目标】

1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。

2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

3.进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

【教具、学具准备】

教具:课件、男女生套圈成绩图。

学具:每四位学生一副男女生套圈成绩学具板。

【教学过程】

一、创设情境,激趣导入。

谈话:很多同学都知道套圈游戏,一起来看。(媒体出示:三年级一班的男女生进行套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。)想请大家来当裁判,愿意吗?可要比比哪个裁判最公正哦!

二、合作探索,解决问题。

(一)两队人数相同,每人套中的个数不同。

屏幕出示第一小组男、女生套圈成绩统计图。

提问:要知道男生套得准一些还是女生套得准一些,你认为可以比什么呢?

学生回答后教师相机引导并小结。

(二)两队人数不同,每队中每人套中的个数相同。

屏幕出示第二小组男、女生套圈情况统计图。

请学生一起回答是哪个队套得准一些。

提问:有同学认为可以比比他们套中的总个数,你们觉得公平吗?

结合媒体演示小结。

(三)两队人数不同,每人套中的个数也不完全相同。

1.提出问题,自主探究。

出示第三小组的套圈成绩图(例题),引导比较,得出与第二小组套圈成绩图的异同。

小小组四位同学利用学具板探索解决问题的方法,教师巡视。

全班交流比的结果。

指出:其实,象这样移了以后再比,是分别求出了男、女生平均每人套中的个数再去比的。

结合电脑演示教师讲解揭示平均数的含义。

2.提问:你还能用其他方法求出男生平均每人套中了几个吗?女生呢?

指名列式并说说想法。

3.理解平均数的意义。

谈话引导学生观察、比较,加深对平均数意义的理解。

4.小结。

三、巩固深化,拓展应用

1.辨一辨、说一说。

2.移一移、估一估、算一算。

(1)想想做做第1题。

(2)想想做做第2题。(三条丝带的长度分别改成6厘米、44厘米、13厘米。)

3.想一想,选一选。

四、全课总结

小学平均数教案【篇5】

教学目标:

1、在具体问题情境中,感受求平均数是解决一些问题的需要,使学生进一步明确平均数的特点,丰富对平均数统计意义的理解和认识。

2、能运用平均数解释简单生活现象,掌握平均数计算方法,学会计算简单的平均数。

3、培养学生在解决实际问题过程中,进一步积累分析和处理数据的方法,发展学生的统计意识和观察。

教学重点:

在解决问题的过程中,理解平均数的意义,探索求平均数的方法,并体会到学习平均数的现实价值。

教学难点:

体会平均数在统计的意义上的理解。

一、创设情境,使学生产生需求

1、凭直觉体验平均数的代表性

师:咱们在美术课上学会了剪各种各样的窗花,上周有个班举行了剪五角星的比赛,这次比赛很激烈,你们想知道这次比赛的结果吗

生:(齐)想!

师:那么这节课老师就想把这次比赛的结果给大家说道说道,让大家帮老师参考参考。到底哪个小组该得冠军?

生:(齐)好的

师:剪纸班分成了四个小组,比赛就在这四个小组进行。首先是1小组,1小组有三个人,我呢就随便从这三个人中抽出了一个人。瞧,他一分钟剪了几个?生:5个。(出示ppt第一组)

(后一次点击)

师:我用这个人的成绩代表1小组1人1分钟剪纸的一般水平,合不合理?如果你是我,你会同意我这样做吗?

生:我不同意。万一其他人剪得比他多,那不是不输了。

师:呵呵,当时老师就让其余2个同学也参加了比赛,有趣的事情是他们的比赛成绩很有意思

(师出示后两次剪纸成绩:5个,5个)

师:还真巧,现在你觉得用几表示1组1分钟剪纸的一般水平比较合理了呢?

生:用5.

师:为什么这回用5就行了?

生:因为每个人都是在1分钟剪了5个,用5来表示他1分钟投中的个数最合适了。

2、通过两组求平均数方法,强化对平均数的概念的理解。

(第2组)师:说得有理!也就是说他们三个人剪纸剪得一样多,用5表示他们这1分钟的剪纸水平很合理。看着大家的剪纸水平产不多,在第二组我就随便点了一个参加比赛。我们也一起来看看

(师出示第一次投中的个数:3个)

师:如果你是第二组的,你有什么话想跟老师说吗?

生:凭什么让他剪,我也想剪,我剪得可能会比他多。

师:为什么?

生:这也太少了,肯定还要2个人会比他剪得多。

师:那老师应该同意那2个人参加比赛了吗?既然1组都有3个人参加了,2组也应该有3个人参加。那看看,另外2个人的剪纸情况

(出示后两次成绩:5个,4个)

这下你觉得用几表示2组的成绩比较合理呢?

(出示ppt第二组)

(第二次点击出示后两次成绩:5个,4个)

生:(齐)不同的答案有2345生:4

师:用4来表示你们的成绩,你们服气吗?

生:不服气,应该用5

师:在上节课,他们就是这样争论起来的。我就不明白了刚才用5表示一组的成绩大家都没有争论,表示2组成绩的时候怎么就有争论了呢?怎么回事

生:一组的成绩都是一样的,二组的成绩有的多有的少。

生:我觉得可以用5来表示,因为用最多的来表示。

生:我不同意用5来表示二组的成绩。另外两个人分别剪了4个和3个,怎么能用5来表示呢?

师:也就是说,如果也用5来表示,对一组来说

生:(齐)不公平!

生:可以用4来表示,因为3、4、5三个数,4正好在中间,最能代表他的成绩。

师:该用哪个数来表示二组的成绩,看二组的成绩看起来一样多,这样我们就没有争论了。

生:那么,把5里面多的1个送给3,这样不就都是4个了吗?

(师结合学生的交流,呈现移多补少的过程

师:那么,这个同学说,把多的拿走一个补给少的,这样就一样多了。数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫移多补少。移完后,二组每分钟看起来剪了几个?

生:(齐)4个。

师:能代表二组1分钟剪纸的一般水平吗?

生:(齐)能!

师:刚才有个人说4不合理,现在4怎么又合理了呢?刚才二组的不服气,现在二组的又服气了,说一说为什么二组又服气了呢?

生:这次他们一样多了

师:那么现在这个4(平均数4)和那个4(单个数4)(手指),他们表示的意义一样吗?

生:这个4表示一个人剪了4个,上面那个4表示移多补少,每个人剪了4个

师:表示一个组的整体水平,用一个人剪的4个来表示是不合理的。他剪得快,他剪得慢,快的补贴慢的,三个人匀一匀,看起来每个人都是几个呢?这样就比较合理了。

现在我们用4表示二组的成绩,看,一组和二组比谁赢?

生:1组

(第三组)

3、引入计算结果是小数的平均数,再次加深对平均意义和特征的理解

师:现在第三组出场,来看第三组的成绩。想一想有什么办法来表示第三组1分钟剪纸的整体水平?比较合理,没有争议。

(出示ppt第三组)

生:我觉得可以用4来代表二组1分钟的剪纸水平。第二个人7个,可以移1个给第一人,再移2个给第三个人,这样每一次看起来好像剪了4个。所以用4来代表比较合适。

(结合学生交流,师再次呈现移多补少过程,)

师:奇怪了,他们三个人没有一个人剪了4个,怎么用4来表示第三组的整体水平。这个4是谁剪的?

生:谁都没有剪,是移多补少来的。

师:那个这个4是不是谁剪了4个,是他们三个人剪得平均水平。这么参差不平的,那我们还可以有什么其他的方法吗?

生:我们先把第三组三次投中的个数相加,得到12个,再用12除以3等于4个。所以,我们也觉得用4来表示第三组1分钟剪纸的水平比较合适。

[师板书:3+7+2=12(个),123=4(个)]

师:像这样先把每次剪纸的个数合起来,然后再平均分给这三次(板书:合并、平分),能使每一次看起来一样多吗?

生:能!都是4个。

师:能不能代表第三组1分钟投篮的一般水平?

生:能!

师:其实,无论是刚才的移多补少,还是这回的先合并再平均分,目的只有一个,那就是

生:使原来几个不相同的数变得同样多。

师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里(出示图1),我们就说4是3、4、5这三个数的平均数。那么,在这里(出示图3),哪个数是哪几个数的平均数呢?在小组里说说你的想法。

生:在这里,4是3、7、2这三个数的平均数。

师:看来,用平均数表示这个组的一般水平比较合理。(师板书:一般水平)第一组的一般水平是5,第二组的一般水平是4,第三组的一般水平是4,那么,到底哪个赢就看第4组的一般水平?

4、借助具体问题体会平均数的特征

1、平均数大小与这组数据个数无关与每一个数据的具体大小密切相关

(第四组)师:第四组参加比赛有个小问题,他们是4个人。老师想让这4个人都参加比较,你们同意吗?

生:同意!不同意!他们都是3个人参加,四组4个人参加,我觉得不合理。

师:如果你是第4组你们想把谁刷下去,不要他比赛了。

生:我们想吧剪得最少的人刷下去

师:我觉得每个人都有参加比赛的权利,我就让4个人呢全上。觉得我偏心的人举下手。这么多人觉得我偏心啊?真正我偏不偏心,看下比赛的结果来说,现在我们来看。

(ppt)第一个人5第二个人7第三个人6

(出示ppt第四组)

师:你想说什么?

生:我觉得没有必要再让第4个人出来比赛了

生:我觉得可以让第4个人上场,万一第4个人剪得很差呢?

师:看,跟刚才的意见正好相反了,刚才说我偏心的人,现在还觉得我偏心吗?其实啊大家有没有体会,要算平均数的大小跟参加的人数有没有关系?(没有)是不是3个人参加一定输,4个人参加一定输呢?(不一定)那跟什么有关系?(跟每一个人的数字有关系)现在你想知道什么?

生:知道第4个人剪了多少个?

2、平均数介于这组数据中,最大数与最小数之间

师:第4个带着大家的期望隆重2出场了(出示ppt1个数)

生:(全班惊讶)我感觉第4组会输。

师:你先不算,你先估计下第四组的平均数是多少?

生:我觉得是23456

师:有没有可能是1,它最少的就是1其他随便给个什么数都比1大。有没有可能是7(没有可能)如果移多补少是话,有没有给7补了(没有)

师:这样看来,尽管还没得出结果,但我们至少可以肯定,最后的平均成绩应该比这里最大的数生:小一些。

生:还要比最小的数大一些。

生:应该在最大数和最小数之间。

师:是不是这样呢?赶紧想办法算算看吧。

[生列式计算,并交流计算过程:5+7+6+1=19(个),164=4.5(个)]

师:和刚才估计的结果比较一下,怎么样?

生:的确在最大数和最小数之间。

师:现在看来,在哪儿第4组没有战胜第1组,他们输在哪儿了?

生:最后一个太少了。

生:如果最后一次多几个,或许第4组就会赢了。

3、一组数据中任意一个数发生的变化,都会引起平均数的变化

师:试想一下:如果第4组最后一个人如果剪得稍微多一点,哪怕是2呢?张赛结果又会如何呢?同学们可以算一算(生估计或计算,随后交流结果)

生:如果最后一次剪了2个,那么只要把第二次多投的1个移给第一次,很容易看出,平均能剪5个。

师:你是通过移多补少得出结论的。还有不同的方法吗?

生:我是列式计算的。5+7+6+2=20(个),204=5(个)。

师:你们看一个数稍微有点变化,整体的平均数都会发生变化。

二、深化理解

师:现在,老师换下第4个人,我剪了10个。请问现在第4组的平均数增加了几个?

生:8个

生:10-2=884=2(个)

师:强化增加了2个不是8个,因为增加的8除以4个人,4份等于平均数增加了2个请大家观察下面的三幅图,你有什么发现?把你的想法在小组里说一说。(师出示第四组三图并排呈现)(生独立思考后,先组内交流想法,再全班交流)

生:我发现,每一幅图中,前三次成绩不变,而最后一次成绩各不相同。

师:最后的平均数

生:也不同。

师:看来,要使平均数发生变化,只需要改变其中的几个数?

生:一个数。

师:瞧,前三个数始终不变,但最后一个数从1变到2再变到10,平均数生:也跟着发生了变化。

师:难怪有人说,平均数这东西很敏感,任何一个数据的风吹草动,都会使平均数发生变化。现在看来,这话有道理吗?(生:有)其实呀,善于随着每一个数据的变化而变化,这正是平均数的一个重要特点。在未来的数学学习中,我们将就此作更进一步的研究。大家还有别的发现吗?

生:我发现平均数总是比最大的数小,比最小的数大。

师:能解释一下为什么吗?生:很简单。多的要移一些补给少的,最后的平均数当然要比最大的小,比最小的大了。

师:其实,这是平均数的又一个重要特点。利用这一特点,我们还可以大概地估计出一组数据的平均数。

生:我还发现,总数增加的数要除以4才是增加的平均数。

师:那么,要是这里的每一个数都增加4,平均数又会增加多少呢?还会是1吗?

生:不会,应该增加4.

4一组数据中每一个数与算术平均数之差(离均差)的总数为0

师:真是这样吗?课后,同学们可以继续展开研究。或许你们还会有更多的新发现!不过,关于平均数,还有一个非常重要的特点隐藏在这几幅图当中。想不想了解?

生:想!

师:以(图345)(图372)(图5762)为例。仔细观察,有没有发现这里有些数超过了平均数,而有些数还不到平均数?(生点头示意)比较一下超过的部分与不到的部分,你发现了什么

生:超过的部分和不到的部分一样多,都是3个。

师:会不会只是一种巧合呢?让我们赶紧再来看看另两幅图(指图7、图8)吧?

生:(观察片刻)也是这样的。

师:这儿还有几幅图,(出示图1和图3)情况怎么样呢?

生:超过的部分和不到的部分还是同样多。

师:奇怪,为什么每一幅图中,超出平均数的部分和不到平均数的部分都一样多呢?

生:如果不一样多,超过的部分移下来后,就不可能把不到的部分正好填满。这样就得不到平均数了。

师:像这样超出平均数的部分和不到平均数的部分一样多,这是平均的第三个重要特点。把握了这一特点,我们可以巧妙地解决相关的实际问题。

三练习

1、书上69页,男生女生示意图

2、在生活中还有什么地方可以用到平均数呢

生:一分钟我可以些多少个字

生:运动会中的平均成绩3

3、师:冬冬来到一个池塘边。低头一看,发现了什么?

生:平均水深110厘米。

师:冬冬心想,这也太浅了,我的身高是130厘米,下水游泳一定没危险。你们觉得冬冬的想法对吗?

生:不对!

师:怎么不对?冬冬的身高不是已经超过平均水深了吗?

生:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。所以,冬冬下水游泳可能会有危险。

师:说得真好!那池塘边平均水深是什么意思?想看看这个池塘水底下的真实情形吗?

(师出示池塘水底的剖面图、)请学。生指一指平均水深,处于最高点和最低点之间

生:原来是这样,真的有危险!

师:看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。

师:说得真好!走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!

小学平均数教案【篇6】

教学目标:1、知道平均数的意义。

2、掌握求平均数应用题的数量关系和解题方法。

3、会正确解答简单的平均数应用题。

4、初步建立平均数的统计思想。

5、用求平均数的方法解决问题。

教学过程:

一、复习

1、要求下列问题,必须已知哪两个条件,并说出数量关系式。

(1)平均每天加工零件多少个?

(2)平均每人植树多少棵?

(3)平均每组分到几本书?

(4)平均每筐重多少千克?

2、导入

(1)象以上这些问题都是要求平均每一份是多少。类似题

称之为求平均数。所谓平均数,就是把不相等的几个数量,在其总量不变的前提下,通过移多补少的方法,使其相等。

揭示课题:平均数

(2)求平均数用什么方法?

求平均数首先从问题中判断:把什么作为总数平均分;

是按什么平均分的,即与总数对应的总份数是什么;然

后用总数总份数=平均数,求出平均数。

二、探究

1、例1:

有4组小长方体,第一组有9个,第二组有5个,

第三组有7个,第四组有3个。平均每组有多少个?

(1)默读题目,想一想这到题的数量关系式

长方体的总个数组数=平均每组的个数

总数份数

(2)生列式,并说明是怎样想的?

(9+5+7+3)4

问:平均每组的个数会不会比最多一组9个多,会不会

比最少一组3个少,为什么?

(3)阅书P116的例1

2、例2:

陈小红期中考试成绩,数学和英语都是98分,语文

96分,自然常识100分。她的平均成绩多少分?

(1)自学例2的解题过程:

A.你有什么问题要问吗?

(括号中为什么会出现两个98相加?

总份数为什么是4?)

B.你能完整说说这题的数量关系式吗?

总分科数=平均成绩

(2)练习:

书P117的练一练的1、2(只列式)

三、运用

1、根据问题找总数、总份数

(1)平均每辆车运煤多少吨?

(2)平均每季度生产多少台?

(3)平均每人踢毽子多少个?

(4)平均每组踢毽子多少个?

(5)平均每次踢毽子多少个?

2、列式解答

(1)第一组植树12棵,第二、第三小组共植树20棵。平均

每组植树多少棵?

(12+20)3

括号中只有两个数字相加,后面为什么要除以3,不除以2?

(2)书P117的试一试

书P118/2

本文网址://m.jk251.com/jiaoan/84230.html

相关文章
最新更新

热门标签