教学目标:
1、会用分解因式法(提公因式,公式法)解某些简单的数字系数的一元二次方程。
2、能根据具体的一元一次方程的特征灵活选择方法,体会解决问题方法的多样性。
教学程序:
一、复习:
1、一元二次方程的求根公式:x=(b2-4ac≥0)
2、分别用配方法、公式法解方程:x2-3x+2=0
3、分解因式:(1)5x2-4x(2)x-2-x(x-2)(3)(x+1)2-25
二、新授:
1、分析小颖、小明、小亮的解法:
小颖:用公式法解正确;
小明:两边约去x,是非同解变形,结果丢掉一根,错误。
小亮:利用“如果ab=0,那么a=0或b=0”来求解,正确。
2、分解因式法:
利用分解因式来解一元二次方程的方法叫分解因式法。
3、例题讲析:
例:解下列方程:
(1)5x2=4x(2)x-2=x(x-2)
解:(1)原方程可变形为:
5x2-4x=0
x(5x-4)=0
x=0或5x=4=0
∴x1=0或x2=
(2)原方程可变形为
x-2-x(x-2)=0
(x-2)(1-x)=0
x-2=0或1-x=0
∴x1=2,x2=1
4、想一想
你能用分解因式法简单方程x2-4=0
(x+1)2-25=0吗?
解:x2-4=0(x+1)2-25=0
x2-22=0(x+1)2-52=0
(x+2)(x-2)=0(x+1+5)(x+1-5)=0
x+2=0或x-2=0x+6=0或x-4=0
∴x1=-2,x2=2∴x1=-6,x2=4
三、巩固:
练习:P62随堂练习1、2
四、小结:
(1)在一元二次方程的一边为0,而另一边易于分解成两个一次因式时,就可用分解因式法来解。
(2)分解因式时,用公式法提公式因式法
五、作业:
P62习题2.71、2
六、教学后记:
一、教学目标
1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;
2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;
3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;
4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;
5.通过利用一元二次方程根的知识来分解因式,渗透知识间是普遍联系的数学美。
二、重点·难点·疑点及解决办法
1.教学重点:用公式法将二次三项式因式分解。
2.教学难点:一元二次方程的根与二次三项式因式分解的关系。
3.教学疑点:一个二次三项式在实数范围内因式分解的条件。
4.解决办法:二次三项式能分解因式
二次三项式不能分解
二次三项式分解成完全平方式
三、教学步骤
(一)教学过程
1.复习提问
(1)写出关于x的二次三项式?
(2)将下列二次三项式在实数范围因式分解。
①;②;③。
由③感觉比较困难,引出本节课所要解决的问题。
2.新知讲解
(1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。
①;
解:原式变形为。
∴,
②;
解原方程可变为
观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。
(2)推导出公式
设方程的两个根为,那么,
∴
这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成
教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。
(3)公式的应用
例1把分解因式
解:∵方程的根是
教师板书,学生回答。
由①到②是把4分解成2×2分别与两个因式相乘所得到的,目的是化简①。
练习:将下列各式在实数范围因式分解。
(1);(2)
学生板书、笔答,评价。
例2用两种方程把分解因式。
方法一,解:
方法二,解:,
方法一比方法二简单,要求学生灵活选择,择其简单的方法。
练习:将下列各式因式分解。
学生练习,板书,选择恰当的方法,教师引导,注意以下两点:
(1)要注意一元二次方程与二次三项式的区别与联系,例如方程,可变形为;但将二次三项式分解因式时,就不能将变形为。
例如用求根公式求得的两个根是后,得出这就错了,这是因为丢掉了系数2。
(2)还要注意符号方面的错误,比如下面的例子如果写成也是错误的。
(3)一元二次方程当时,方程有两个实根。当时,方程无实根。这就决定了:当时,二次三项式在实数范围内可以分解;当时,二次三项式在实数范围内不可以分解。
(二)总结、扩展
1.用公式法将二次三项式因式分解的步骤是先求出方程的两个根,再将写成形式。
2.二次三项式因式分解的条件是:当,二次三项式在实数范围内可以分解;时,二次三项式在实数范围内不可以分解。
3.通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律。
四、布置作业
教材P38A1,2。
五、板书设计
因式分解的简单应用一、教学目标1、会运用因式分解进行简单的多项式除法。2、会运用因式分解解简单的方程。二、教学重点与难点教学重点:因式分解在多项式除法和解方程两方面的应用。教学难点:应用因式分解解方程涉及较多的推理过程。三、教学过程(一)引入新课1、知识回顾(1)因式分解的几种方法:①提取公因式法:ma+mb=m(a+b)②应用平方差公式:–=(a+b)(a-b)③应用完全平方公式:a±2ab+b=(a±b)(2)课前热身:①分解因式:(x+4)y-16xy(二)师生互动,讲授新课1、运用因式分解进行多项式除法例1计算:(1)(2ab-8ab)÷(4a-b)(2)(4x-9)÷(3-2x)解:(1)(2ab-8ab)÷(4a-b)=-2ab(4a-b)÷(4a-b)=-2ab(2)(4x-9)÷(3-2x)=(2x+3)(2x-3)÷[-(2x-3)]=-(2x+3)=-2x-3一个小问题:这里的x能等于3/2吗?为什么?想一想:那么(4x-9)÷(3-2x)呢?练习:课本P162——课内练习12、合作学习想一想:如果已知()×()=0,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢?(让学生自己思考、相互之间讨论!)事实上,若A×B=0,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0试一试:你能运用上面的结论解方程(2x+1)(3x-2)=0吗?3、运用因式分解解简单的方程例2解下列方程:(1)2x+x=0(2)(2x-1)=(x+2)解:x(x+1)=0解:(2x-1)-(x+2)=0则x=0,或2x+1=0(3x+1)(x-3)=0∴原方程的根是x1=0,x2=则3x+1=0,或x-3=0∴原方程的根是x1=,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1,x2等练习:课本P162——课内练习2做一做!对于方程:x+2=(x+2),你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x+4)-16x=0解:将原方程左边分解因式,得(x+4)-(4x)=0(x+4+4x)(x+4-4x)=0(x+4x+4)(x-4x+4)=0(x+2)(x-2)=0接着继续解方程,5、练一练①已知a、b、c为三角形的三边,试判断a-2ab+b-c大于零?小于零?等于零?解:a-2ab+b-c=(a-b)-c=(a-b+c)(a-b-c)∵a、b、c为三角形的三边∴a+c﹥ba﹤b+c∴a-b+c﹥0a-b-c﹤0即:(a-b+c)(a-b-c)﹤0,因此a-2ab+b-c小于零。6、挑战极限①已知:x=2004,求∣4x-4x+3∣-4∣x+2x+2∣+13x+6的值。解:∵4x-4x+3=(4x-4x+1)+2=(2x-1)+2>0x+2x+2=(x+2x+1)+1=(x+1)+1>0∴∣4x-4x+3∣-4∣x+2x+2∣+13x+6=4x-4x+3-4(x+2x+2)+13x+6=4x-4x+3-4x-8x-8+13x+6=x+1即:原式=x+1=2004+1=2005(三)梳理知识,总结收获因式分解的两种应用:(1)运用因式分解进行多项式除法(2)运用因式分解解简单的方程(四)布置课后作业1、作业本6.42、课本P163作业题(选做)四、教学反思
天河中学七年级下册思想品德教学设计:
课题《法不可违》
【教材分析】
教学重点:使学生能够认清合法与非法行为,初步具有守法观念。
教学难点:行政违法行为、民事违法行为、刑事违法行为三者的区别
【学生分析】
初中生正处在身心发展、成长过程中,其情绪、情感、思维、意志、能力及性格还极不稳定和成熟,具有很大的可塑性和易变性。他们既可以在良好的教育影响下走向品学兼优、健康向上的道路,也可以在不良的环境影响下走向道德败坏、违法犯罪的道路。近年内,青少年犯罪总数已经占全国刑事犯罪总数的70%以上,其中十五六岁少年犯罪案件又占了青少年犯罪总数的70%以上,其中缺乏法律知识的现象非常严重。因此让学生了解哪些行为是违法行为,使他们懂得什么行为是合法的,什么行为是违法犯罪的,懂得什么样的行为会带来什么样的法律后果,以及相应地要受到怎样的法律制
【综合设计思路】
由复习上节课的知识导入,意在引起学生的共鸣。接着以“故事发展”的手法将各种不同的法律知识分接阶段展开在学生面前,学生能通过对案例的分析和思考,让学生在形象的真实情景中,通过喜闻乐见亲身参与的活动,自主学习,合作学习,深切体味、掌握知识,提高对法律的认识,提高尊重法律的觉悟。
【教学过程:】
导入:温故知新(“社会规则的种类于区别”知识的复习)并由此引出课题。
新知识的教授:以两兄弟的自己和身边的人所发生的法律故事展开学习:第1集:身边的法律小事
第2集:兄弟二人参加法律学习班
第3集:表哥出事了
第4集:学法改变人生路。
(在故事的发展过程中,学生分阶段地思考并掌握:违法行为的含义;违法行为的分类;犯罪行为的特征;刑罚的种类)
最后重点知识归纳:学生四人小组为单位进行思考归纳:
“一般违法行为与犯罪行为的关系”(解决好这个问题,学生必须以掌握前面的基础知识为前提,这样的活动以能达到巩固知识的作用,也能发挥小组合作学习的功效,事半功倍)。
【课后教学反思:】
这个教学课的内容十分的繁多,并且专业性较强。对于初一学生来说,难度较大。因此必须要将这个知识发生背景与生活拉近,才能调动学生的学习积极性。并且鉴于思想品德课的课程安排的问题,在这节教授课中新知识必须要有在本课堂上学生消化检测的环节,否则学生的知识遗忘率是十分惊人的。所以在最后的“小组合作”环节的设计是必要和有效的。但教学完毕后,仍然感觉知识点组织较为松散,不够紧凑,如果能将四集故事浓缩成一到二个情节,背景更加清晰,学习效果更好。
第1教时
教学内容:12.1用公式解一元二次方程(一)
教学目标:
知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
过程与方法目标:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。
教学重、难点与关键:
重点:一元二次方程的意义及一般形式.
难点:正确识别一般式中的“项”及“系数”。
教辅工具:
教学程序设计:
程序
教师活动
学生活动
备注
创设
问题
情景
1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.
2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?
教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
学生看投影并思考问题
通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.
探
究
新
知
1
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
(3)什么叫做分式方程?
2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?
引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.
整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.
一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.
3.练习:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
(4)6x2=x;
(5)2x2=5y;
(6)-x2=0
4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.
一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.
5.例1把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?
教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.
讨论后回答
学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,
独立完成
加深理解
学生试解
问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫
反馈
训练
应用
提高
练习1:教材P.5中1,2.
练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:.
(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.
教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.
要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.
小结
提高
(四)总结、扩展
引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?
1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.
3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.
学生讨论回答
布置
作业
1.教材P.6练习2.
2.思考题:
1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”
2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).
反
思
本文网址://m.jk251.com/jiaoan/8478.html
上一篇:关于位移时间的关系的高中教案推荐