导航栏

×
范文大全 > 初中教案

法不可违教学设计

提起教案,我相信大家都不陌生,教案是教师安排教学的依据,一份完整的教案有许多内容,写初中教案要注意哪些方面呢?小编为你推荐《法不可违教学设计》,希望您喜欢。

天河中学七年级下册思想品德教学设计:

课题《法不可违》

【教材分析】

教学重点:使学生能够认清合法与非法行为,初步具有守法观念。

教学难点:行政违法行为、民事违法行为、刑事违法行为三者的区别

【学生分析】

初中生正处在身心发展、成长过程中,其情绪、情感、思维、意志、能力及性格还极不稳定和成熟,具有很大的可塑性和易变性。他们既可以在良好的教育影响下走向品学兼优、健康向上的道路,也可以在不良的环境影响下走向道德败坏、违法犯罪的道路。近年内,青少年犯罪总数已经占全国刑事犯罪总数的70%以上,其中十五六岁少年犯罪案件又占了青少年犯罪总数的70%以上,其中缺乏法律知识的现象非常严重。因此让学生了解哪些行为是违法行为,使他们懂得什么行为是合法的,什么行为是违法犯罪的,懂得什么样的行为会带来什么样的法律后果,以及相应地要受到怎样的法律制

【综合设计思路】

由复习上节课的知识导入,意在引起学生的共鸣。接着以“故事发展”的手法将各种不同的法律知识分接阶段展开在学生面前,学生能通过对案例的分析和思考,让学生在形象的真实情景中,通过喜闻乐见亲身参与的活动,自主学习,合作学习,深切体味、掌握知识,提高对法律的认识,提高尊重法律的觉悟。

【教学过程:】

导入:温故知新(“社会规则的种类于区别”知识的复习)并由此引出课题。

新知识的教授:以两兄弟的自己和身边的人所发生的法律故事展开学习:第1集:身边的法律小事

第2集:兄弟二人参加法律学习班

第3集:表哥出事了

第4集:学法改变人生路。

(在故事的发展过程中,学生分阶段地思考并掌握:违法行为的含义;违法行为的分类;犯罪行为的特征;刑罚的种类)

最后重点知识归纳:学生四人小组为单位进行思考归纳:

“一般违法行为与犯罪行为的关系”(解决好这个问题,学生必须以掌握前面的基础知识为前提,这样的活动以能达到巩固知识的作用,也能发挥小组合作学习的功效,事半功倍)。

【课后教学反思:】

这个教学课的内容十分的繁多,并且专业性较强。对于初一学生来说,难度较大。因此必须要将这个知识发生背景与生活拉近,才能调动学生的学习积极性。并且鉴于思想品德课的课程安排的问题,在这节教授课中新知识必须要有在本课堂上学生消化检测的环节,否则学生的知识遗忘率是十分惊人的。所以在最后的“小组合作”环节的设计是必要和有效的。但教学完毕后,仍然感觉知识点组织较为松散,不够紧凑,如果能将四集故事浓缩成一到二个情节,背景更加清晰,学习效果更好。

Jk251.coM编辑推荐

数学教案-运用公式法


教学设计示例

运用公式法――完全平方公式(1)

教学目标

1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

2.理解完全平方式的意义和特点,培养学生的判断能力.

3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

教学重点和难点

重点:运用完全平方式分解因式.

难点:灵活运用完全平方公式公解因式.

教学过程设计

一、复习

1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

(2)16m4-n4=(4m2)2-(n2)2

=(4m2+n2)(4m2-n2)

=(4m2+n2)(2m+n)(2m-n).

问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式.

请写出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

二、新课

和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

问:具备什么特征的多项是完全平方式?

答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

问:下列多项式是否为完全平方式?为什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2x3,所以

x2+6x+9=(x+3).

(2)不是完全平方式.因为第三部分必须是2xy.

(3)是完全平方式.25x=(5x),1=1,10x=25x1,所以

25x-10x+1=(5x-1).

(4)不是完全平方式.因为缺第三部分.

请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?

答:完全平方公式为:

其中a=3x,b=y,2ab=2(3x)y.

例1把25x4+10x2+1分解因式.

分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+25x21+12=(5x2+1)2.

例2把1-m+分解因式.

问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“”是的平方,第二项“-m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-21+()2=(1-)2.

解法2先提出,则

1-m+=(16-8m+m2)

=(42-24m+m2)

=(4-m)2.

三、课堂练习(投影)

1.填空:

(1)x2-10x+()2=()2;

(2)9x2+()+4y2=()2;

(3)1-()+m2/9=()2.

2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多

项式改变为完全平方式.

(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;

(4)9m2+12m+4;(5)1-a+a2/4.

3.把下列各式分解因式:

(1)a2-24a+144;(2)4a2b2+4ab+1;

(3)19x2+2xy+9y2;(4)14a2-ab+b2.

答案:

1.(1)25,(x-5)2;(2)12xy,(3x+2y)2;(3)2m/3,(1-m3)2.

2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.

(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.

(3)是完全平方式,a2-4ab+4b2=(a-2b)2.

(4)是完全平方式,9m2+12m+4=(3m+2)2.

(5)是完全平方式,1-a+a2/4=(1-a2)2.

3.(1)(a-12)2;(2)(2ab+1)2;

(3)(13x+3y)2;(4)(12a-b)2.

四、小结

运用完全平方公式把一个多项式分解因式的主要思路与方法是:

1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.

2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b)2;如果是负号,则用公式a2-2ab+b2=(a-b)2.

五、作业

把下列各式分解因式:

1.(1)a2+8a+16;(2)1-4t+4t2;

(3)m2-14m+49;(4)y2+y+1/4.

2.(1)25m2-80m+64;(2)4a2+36a+81;

(3)4p2-20pq+25q2;(4)16-8xy+x2y2;

(5)a2b2-4ab+4;(6)25a4-40a2b2+16b4.

3.(1)m2n-2mn+1;(2)7am+1-14am+7am-1;

4.(1)x-4x;(2)a5+a4+a3.

答案:

1.(1)(a+4)2;(2)(1-2t)2;

(3)(m-7)2;(4)(y+12)2.

2.(1)(5m-8)2;(2)(2a+9)2;

(3)(2p-5q)2;(4)(4-xy)2;

(5)(ab-2)2;(6)(5a2-4b2)2.

3.(1)(mn-1)2;(2)7am-1(a-1)2.

4.(1)x(x+4)(x-4);(2)14a3(2a+1)2.

课堂教学设计说明

1.利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质.

2.本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法.在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点.例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法.

提公因式法的教学方案


教学设计

(一)

教学目标

1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系.

2.使学生理解并能熟练地运用分解因式.

3.通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.

教学重点及难点

教学重点:

因式分解的概念及.

教学难点:

正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系.

教学过程设计:

一、复习提问

乘法对加法的分配律.

二、新课

1.新课引入:用类比的方法引入课题.

在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把15分解成3×5,把42分解成2×3×7.

在第七章我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法.

2.因式分解的概念:

请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果.(老师按学生所说在黑板写出几个.)

如:m(a+b+c)=ma+mb+mc

2xy(x-2xy+1)=2x2y-4x2y2+2xy

(a+b)(a-b)=a2-b2

(a+b)(m+n)=am+an+bm+bn

(x-5)(2-x)=-x2+7x-10等等.

再请学生观察它们有什么共同的特点?

特点:左边,整式×整式;右边,是多项式.

可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.

定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

如:因式分解:ma+mb+mc=m(a+b+c).

整式乘法:m(a+b+c)=ma+mb+mc.

让学生说出因式分解与整式乘法的联系与区别.

联系:同样是由几个相同的整式组成的等式.

区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.两者是方向相反的恒等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式.

例1下列各式从左到右哪些是因式分解?(投影)

(1)x2-x=x(x-1)(√)

(2)a(a-b)=a2-ab(×)

(3)(a+3)(a-3)=a2-9(×)

(4)a2-2a+1=a(a-2)+1(×)

(5)x2-4x+4=(x-2)2(√)

下面我们学习几种常见的因式分解方法.

3.:

我们看多项式:ma+mb+mc

请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式.

注意:公因式是各项都含有的公共的因式.

又如:a是多项式a2-a各项的公因式.

ab是多项式5a2b-ab2各项的公因式.

2mn是多项式4m2np-2mn2q各项的公因式.

根据乘法的分配律,可得

m(a+b+c)=ma+mb+mc,

逆变形,便得到多项式ma+mb+mc的因式分解形式

ma+mb+mc=m(a+b+c).

这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式ma+mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做.

定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做.

显然,由定义可知,的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2指出下列各多项式中各项的公因式:

(1)ax+ay+a(a)

(2)3mx-6mx2(3mx)

(3)4a2+10ah(2a)

(4)x2y+xy2(xy)

(5)12xyz-9x2y2(3xy)

例3把8a3b2-12ab3c分解因式.

分析:分两步:第一步,找出公因式;第二步,提公因式.

先引导学生按确定公因式的方法找出多项式的公因式4ab2.

解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc).

说明:

(1)应特别强调确定公因式的两个条件以免漏取.

(2)开始讲时,最好把公因式单独写出.①以显提醒;③强调提公因式;③强调因式分解.

例4把3x2-6xy+x分解因式.

分析:先引导学生找出公因式x,强调多项式中x=x·1.

解:3x2-6xy+x

=x·3x-x·6y+x·1

=x(3x-6y+1).

说明:当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提公因式后剩下的应是1,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,这类题常常有些学生犯下面的错误,3x2-6xy+x=x(3x-6y),这一点可让学生利用恒等变形分析错误原因.还应提醒学生注意:提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项.

课堂练习:(投影)

把下列各式分解因式:

(l)2πR+2πr;

(2)

(3)3x3+6x2;

(4)21a2+7a;

(5)15a2+25ab2;

(6)x2y+xy2-xy.

例5把-4m3+16m2-26m分解因式.

分析:此多项式第一项的系数是负数,与前面两例不同,应先把它转化为前面的情形便可以因式分解了,所以应先提负号转化,然后再提公因式,提"-"号时,注意添括号法则.

解:-4m3+16m2-26m

=-(4m3-16m2+26m)

=-2m(2m2-8m+13).

说明:通过此例可以看出应用分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则提出负号,此时一定要把每一项都变号;然后再提公因式.

课堂练习:(投影)

把下列各式分解因式:

(1)-15ax-20a;

(2)-25x8+125x16;

(3)-a3b2+a2b3;

(4)-x3y3-x2y2-xy;

(5)-3ma3+6ma2-12ma;

(6)

(三)小结

1.因式分解的意义及其概念.

2.因式分解与整式乘法的联系与区别.

3.公因式及.

4.因式分解中应注意的问题.

六、作业

教材P.10中1、2、3、4.

七、板书设计

运用公式法初中教案精选


教学设计示例

――完全平方公式(1)

教学目标

1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

2.理解完全平方式的意义和特点,培养学生的判断能力.

3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

4.通过分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

教学重点和难点

重点:运用完全平方式分解因式.

难点:灵活运用完全平方公式公解因式.

教学过程设计

一、复习

1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

(2)16m4-n4=(4m2)2-(n2)2

=(4m2+n2)(4m2-n2)

=(4m2+n2)(2m+n)(2m-n).

问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式.

请写出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

二、新课

和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

问:具备什么特征的多项是完全平方式?

答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

问:下列多项式是否为完全平方式?为什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以

x2+6x+9=(x+3).

(2)不是完全平方式.因为第三部分必须是2xy.

(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以

25x-10x+1=(5x-1).

(4)不是完全平方式.因为缺第三部分.

请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?

答:完全平方公式为:

其中a=3x,b=y,2ab=2·(3x)·y.

例1把25x4+10x2+1分解因式.

分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

例2把1-m+分解因式.

问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“”是的平方,第二项“-m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2·1·+()2=(1-)2.

解法2先提出,则

1-m+=(16-8m+m2)

=(42-2·4·m+m2)

=(4-m)2.

三、课堂练习(投影)

1.填空:

(1)x2-10x+()2=()2;

(2)9x2+()+4y2=()2;

(3)1-()+m2/9=()2.

2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多

项式改变为完全平方式.

(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;

(4)9m2+12m+4;(5)1-a+a2/4.

3.把下列各式分解因式:

(1)a2-24a+144;(2)4a2b2+4ab+1;

(3)19x2+2xy+9y2;(4)14a2-ab+b2.

答案:

1.(1)25,(x-5)2;(2)12xy,(3x+2y)2;(3)2m/3,(1-m3)2.

2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.

(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.

(3)是完全平方式,a2-4ab+4b2=(a-2b)2.

(4)是完全平方式,9m2+12m+4=(3m+2)2.

(5)是完全平方式,1-a+a2/4=(1-a2)2.

3.(1)(a-12)2;(2)(2ab+1)2;

(3)(13x+3y)2;(4)(12a-b)2.

四、小结

运用完全平方公式把一个多项式分解因式的主要思路与方法是:

1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.

2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b)2;如果是负号,则用公式a2-2ab+b2=(a-b)2.

五、作业

把下列各式分解因式:

1.(1)a2+8a+16;(2)1-4t+4t2;

(3)m2-14m+49;(4)y2+y+1/4.

2.(1)25m2-80m+64;(2)4a2+36a+81;

(3)4p2-20pq+25q2;(4)16-8xy+x2y2;

(5)a2b2-4ab+4;(6)25a4-40a2b2+16b4.

3.(1)m2n-2mn+1;(2)7am+1-14am+7am-1;

4.(1)x-4x;(2)a5+a4+a3.

答案:

1.(1)(a+4)2;(2)(1-2t)2;

(3)(m-7)2;(4)(y+12)2.

2.(1)(5m-8)2;(2)(2a+9)2;

(3)(2p-5q)2;(4)(4-xy)2;

(5)(ab-2)2;(6)(5a2-4b2)2.

3.(1)(mn-1)2;(2)7am-1(a-1)2.

4.(1)x(x+4)(x-4);(2)14a3(2a+1)2.

课堂教学设计说明

1.利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质.

2.本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法.在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点.例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法.

代入消元法教案模板


2.2.1课时教案湖北口中学张衍生教学内容:课本例1例2教学目的:1、知识点:(1)掌握用代入法解二元一次方程组的步骤;(2)熟练运用代入法解二元一次方程组。2、能力训练点:(1)培养学生的分析能力;(2)训练运算技巧,养成检验习惯。3、德育渗透点:消元、化未知为已知的数学思想。教学重点:使学生会用代入法解二元一次方程组。教学难点:灵活运用代入法的技巧。教学关键点:如何“消元”,把“二元”转化为“一元”。教学过程:一、复习引入1、学生回答:二元一次方程、二元一次方程组以及它的解这三个概念。2、已知方程,先用含的代数式表示,再用含y的代数式表示x,并比较哪一种形式比较简单。3、选择题:二元一次方程组的解是()A、B、C、D、4、如果已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们一起来学习。二、讲授新课1、探究解法:利用上节课遇到的问题:要想求出1吨水费多少元,1立方米天然气费多少元,首先得利用我们上节课列出的方程组先求水费和天然气费,才能求出1吨水费多少元,1立方米天然气费多少元。那怎样才能求出水费和天然气费呢?我们知道方程①和方程②中的x都表示小亮家用月份的水费,y都表示天然气费,因此方程②中的x,y分别与方程①中的x,y相同。于是我们从②式得③可以把③代入①式得④可得,把代入③得。所以此方程组的解是于是1吨水费为2元,1立方米天然气费为1.7元。上面解二元一次方程组的方法,就是我们这节课要学习的方法——。你能简单说说用代入法解二元一次方程组的基本思想吗?同桌同学讨论,找学生回答,教师指正并引导学生归纳出:设法消去一个未知数,把二元一次方程组转化为一元一次方程。2、例1解方程组分析:(1)观察上面的方程组,应该如何消元?(把②代入①)(2)把②代入①后可消掉哪个未知数?(y)得到关于的一元一次方程,求出(3)求出x后代入哪个方程中求y比较简单?(②)学生依次回答问题后,教师板书(略)学生口答检验。3、例2解方程组分析:引导学生把①变形为③,把③代入②消去x解得y,再把y的值代入③求得x,得出此方程组的解。学生尝试完成例2,教师巡视指导,规范书写过程,最后检验。(略)检验后,师生共同讨论:(1)由①得到③后,再代入①可以吗?(不可以)为什么?(得到的是恒等式,不能求解)(2)把代入①或②可以求出x吗?(可以)代入③有什么好处?(运算简便)学生活动:根据例1、例2的解题过程,尝试总结什么叫,用代入法解二元一次方程组的一般步骤,讨论后学生代表发言,之后,看课本21页,用几个字概括每个步骤。教师板书:(1)变形()(2)代入消元(y)(3)解一元一次方程得(x)(4)把x代入求解。4、练习:课本(1)—(4)(找4名同学演板)三、巩固练习:练习册1—5题四、小结:1、解二元一次方程组的思想:二元一元。2、用代入法解二元一次方程组的步骤。五、作业:课本1题课后简记:板书设计:2.2.1例1例2思想:步骤:

运用公式法教案模板


教学设计示例

――完全平方公式(1)

教学目标

1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

2.理解完全平方式的意义和特点,培养学生的判断能力.

3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

4.通过分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

教学重点和难点

重点:运用完全平方式分解因式.

难点:灵活运用完全平方公式公解因式.

教学过程设计

一、复习

1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

(2)16m4-n4=(4m2)2-(n2)2

=(4m2+n2)(4m2-n2)

=(4m2+n2)(2m+n)(2m-n).

问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式.

请写出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

二、新课

和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

问:具备什么特征的多项是完全平方式?

答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

问:下列多项式是否为完全平方式?为什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以

x2+6x+9=(x+3).

(2)不是完全平方式.因为第三部分必须是2xy.

(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以

25x-10x+1=(5x-1).

(4)不是完全平方式.因为缺第三部分.

请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?

答:完全平方公式为:

其中a=3x,b=y,2ab=2·(3x)·y.

例1把25x4+10x2+1分解因式.

分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

例2把1-m+分解因式.

问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“”是的平方,第二项“-m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2·1·+()2=(1-)2.

解法2先提出,则

1-m+=(16-8m+m2)

=(42-2·4·m+m2)

=(4-m)2.

第12页

本文网址:http://m.jk251.com/jiaoan/11776.html

相关文章
最新更新

热门标签