老师工作中的一部分是写教案课件,但教案课件不是随便写写就可以的。 教案课件设计全面,有助于深化教学和提高教学水平。下面让我们一起探索“乘法运算律教案”的奥秘,请查看本文中的重要信息!
一、说教材
1、教学内容:义务教育课程标准实验教科书四年级数学上册61-62页的例题和试一试、想想做做1-4题。
2、教材的编排情况及地位。
乘法的这两个运算定律,跟学生前面所学的加法交换律、结合律类似,也是由生活情境的数学问题引出一组等式,通过启发性的问题,引导学生在探索并在小组里交流,发现并归纳出乘法运算律。乘法的运算律,不仅有助于加深乘法计算方法的理解,还能使一些计算简便,而且在以后学习中也要经常用到。因此,这些运算律是小学数学最基础的知识之一,教学中要积极引导学生对这些规律性知识进行探讨,自觉应用中,并在应用加以巩固。
3、教学目标
知识与能力:使学生理解和掌握乘法交换律和乘法结合律,并会运用乘法运算律进行简便计算。
过程与方法:使学生在合作交流中对运算定律的认识由感性认识逐步发展到理性认识,合理构建知识。
情感态度与价值观:培养学生分析、推理能力,培养学生探索规律的欲望和学习数学的兴趣。
4、教学重点、难点:
重点:引导学生概括出乘法运算律,并运用乘法运算律进行简算。
难点:乘法运算律的推导过程。
二、设计理念
《新课程》提倡注重知识形成的过程。对这两种运算律的教学,不应仅仅满足于学生的理解、掌握及运用,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这是一个教学重点,也是难点。我根据学生实际情况,从学生的生活经验出发,设计创设情境、动手操作、玩游戏活动等活动,并组织学生探索、合作、交流、参与讨论,使学生发现并归纳出乘法运算律,既使学生学有价值的数学,人人成为学习数学的小主人,又充分调动了学生参与学习的积极性、主动性。
三、说学情
教学课程标准中提出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础上。学生在之前几个年级里,通过对四则运算学习和前几课时加法运算律的学习,对乘法运算律已经有一些感性认识。所以,在合作探索运算过程及掌握运算律时,我提倡联系加法运算律的推导方法进行学习,这一点会大大地减少学生推导乘法运算律的难度,为学生探索知识过程提供了一个构建知识的桥梁。
四、说教法
成功的数学教学策略应该让学生既学会又会学,最终达到教是为了不教的目的。在教本课时过程中,为了充分发挥学生的积极性、主动性,我采用的教学方法是:
1、情境教学法:在导入环节时,我通过设计联系学生生活现实的情景,找出生活中常见问题,使学生感到数学与生活是联系的,增强了学习数学的兴趣。
2、动手操作法:在推导乘法交换律环节时,我让学生用小石子或火柴,动手摆一摆,说一说,写一写,在自主探索中发现问题,使学生的实践能力和思维能力得到发展。
3、游戏法:在巩固知识环节,我根据学生的兴趣爱好,通过设计了游戏教学法,找朋友活动,从而增强课堂教学趣味性。
五、说学法
教学中,通过引导学生自主探究,小组合作,引导学生抓住问题,尝试解决问题,感悟知识的形成。
六、说教学程序
(一)创设情景,激发兴趣,导入新课,引出问题。
(1)要求学生上台排队:5人一组,组成4组。(提问:共有多少人?有几种列式?)
(2)(教师口头表达)学校买来15箱课外书,每箱有25本,每本4元,用了多少钱?看谁算得最快。
(这样创设情境,提出启发性问题,既体现了知识与生活的联系,激发了学生的学习兴趣,又为导入学习乘法交换律、结合律做好铺垫。)
观察插图,说说从中知道哪些信息,要求共有多少人?应该怎样列式?
(数学来源于生活,让学生在实际生活情境中学习数学,加强了知识与生活的联系,让学生从感性上掌握乘法交换律的特点,同时也激发了学生的学习兴趣。)
(二)教学乘法交换律
1、出示例题插图,弄清题意。
2、合作、探究、交流解决问题。
1)解决问题。
(1)指名说出列式:35=(5)(3)
(2)观察、讨论:这两组解法有什么异同?
引导学生说出相同点都是两个数相乘积相同;不同点是两个因数位置交换了。
2)分析,发现规律。
(1)摆一摆,写一写类似的等式。
发动学习动手实践、操作,拿出课前准备好的火柴,同桌合作学习,摆放要用乘法算的火柴,并列出相应的等式。
(2)学生自由汇报摆放好后所列的等式。
(3)交流、讨论:你发现了什么?
小组交流、讨论,每组中的两个算式有什么样的关系?每组算式有什么相同点及不同点?通过观察,你发现了什么规律。
(4)启发学生通过观察,发现两个数相乘,交换因数的位置,它们的积不变。
说明:这条规律就是乘法交换律。
(经过活动,既突破了重点、难点,掌握了乘法运算律的推导过程,让学生实现了经历一个数学学习的过程。又培养学生的合作意识、动手操作能力,发展思维。)
3)归纳知识:
(1)用你自己喜欢的方法表示乘法交换律。
这一点要求在认识加法运算律时,学生已掌握用+=+,甲数+乙数=乙数+甲数,学生会联系加法运算律,根据已有经验写出相应的=,甲数乙数=乙数甲数。这样既加强复习旧知,学习新知的训练,又培养学生应用知识的能力。
(2)乘法交换律也可以用字母表示,如果用a、b表示两个因数,怎样表示乘法交换律?
指名说出:ab=ba
提问:式子表示什么意思?
5、运用知识。
练习:计算,并用乘法交换律进行验算:2372
(培养了学生应用知识的能力)
(三)教学乘法结合律。
1、出示例题:
华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每个班有23人参加,一共有多少人参加?
2、解决问题。
(1)学生独立解答
(2)展示学生解题方案,畅谈解决方法。(指名板演,并分别说说每种解题思路。)
板书:(235)623(56)
=1156=2330
=690(人)=690(人)
(3)交流两组解法异同。
教师帮助学生小结:相同点是,三个数相乘,三个数相同,积也相同;不同点是左边的式子是先把23和5相乘,再和6相乘,右边的式子是先把5和6相乘,再和23相乘。
3、分析、发现规律。
(1)请同学们将这两算式写成一个等式。
(235)6=23(56)
(2)观察,交流讨论:发现了什么规律?
归纳概括:三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一数相乘,它们积不变。
说明:这条规律就是乘法结合律。
4、归纳知识。
如果用字母a、b、c表示3个因数,你能用字母表示乘法结合律吗?
(ab)c=a(bc)
提问:这个等式表示什么意思?
(四)做游戏,复习反馈。
1、出示动物头像,上面分别有根据乘法运算律,写出来的两组相等的乘法算式,标有算式相等的动物是好朋友,请同学们看准后,帮他们找到好朋友。
2、教师把一组小企鹅图画贴在黑板上,一组小企鹅卡片发给学生,两组企鹅身上都分别写着乘积是整十、整百或整千的因数,学生拿着卡片根据要求找朋友,并贴在相应的图画上。
(创设情境,经过游戏活动,将枯燥、理论化的知识变活,学生会在快乐的氛围下学数学,产生浓厚的兴趣。第一项找朋友游戏,是为了让学生对所学知识有所巩固;第二项找朋友游戏是为了让学生重新熟记乘积是整十、整百、整千的两个因数,为下面灵活运用乘法运算律进行简便运算做好铺垫。
(五)反馈练习。
1、教学试一试
教学内容
教科书第90页,例4完成练习十六第6~9题。
教学目标
会用简便的方法计算小数乘法;初步培养学生的合作意识和能力。
教学重点
会用简便的方法计算小数乘法。
教学过程
一、复习
出示有关整数简便计算的练习题。
小结,学过了哪些运算定律。(板书运算定律)
二、新授
1、教学例4
算一算,下面的○里能填上等号吗?
0.81.3○1.30.8
(0.90.4)0.5○0.9(0.40.5)
(3.2+2.8)0.6○3.20.6+2.80.6
提问:每组的两个算式有什么关系?你能发现什么规律?
学生交流。发现:用了乘法运算律。
ab=ba
(ab)c=a(bc)
(a+b)c=ac+bc
说明:整数乘法的运算律,对小数乘法也同样适用。
2、试一试
下面各题怎样计算比较简便?
0.250.7340.32403
完成后,学生交流。指一人板书。
3、练一练
用简便方法怎样计算比较简便?
0.250.7340.32403
计算下面各题,并应用乘法交换律验算。
3.54.80.370.251.90.18
三、综合练习。
1、练习十六,第7题。
2、一块平行四边形的塑料板,底边长3.2分米,高1.84分米。它的面积是多少平方分米?(先估算,在计算,得数保留整数。)
四、作业。
1、练习十六8、9题。
2、简便计算补充练习
先说说方法,运用哪些运算定律
一、说教材
运算定律与简便算法这一小节是对学过的有关知识进行整理和复习。加法的交换律、结合律,乘法的交换律、结合律和分配律,是小学数学中简便计算的根据,也是学生今后进一步学习的基础。因此,我制定了以下三个方面的教学目标。
二、说目标
1、知识与技能:通过整理和复习,学生形成一定的知识网络,系统掌握运算定律,能按照题目的具体情况选择简便的解答方法。
2、过程与方法:通过整理、交流、合作、探究,体验探究的乐趣,感受数学的价值,培养学生“学数学,用数学”的意识。
3、情感与态度:激发学生对学习简算技能、形成简算意识的积极的情感体验,有意培养学生的简算意识,并最终养成简算习惯。
教学重点:整理运算定律。
教学难点:合理、灵活地运用运算定律进行简算。
三、说学情
根据教材内容、教学目标及学生特点,在学生已有知识经验的基础上,以学生自主探究整理为主线,辅以讨论、交流等方法组织教学,使学生能在一个开放的氛围中完成学习任务。
四、说教学过程
1、教具学具准备
课件、卡片纸
2、教学流程
1、巧设疑问,自主整理
整理运算定律是本课的教学重点。在复习的过程中。学生会感觉到学过的运算定律有很多,需要对它进行整理。那怎样进行整理呢?学生思考后交流,结合学生的交流结果,我设计了几个问题引导学生自主合作进行整理:①你能说出我们学过的所有运算定律吗?②你能把它进行分类整理吗?③你能用什么方式表示呢?④你能将整理结果制成学习卡片吗?在问题的引导下,学生积极思考、主动探究、合作交流,将整理结果制成一张张学习卡片。通过比较、欣赏、评价这些学习卡,学生可以得出按运算方式将运算定律分成两类或按运算定律的意义将其分成三类,并总结出用字母表示运算定律是最好的整理方法,既简洁又清晰,便于理解和记忆。这样一个自主活动的过程,能让学生切实体会到分类整理是一种很好的学习方法,在以后的知识整理中还可以借鉴这种方法。
2、层层深入,发展能力
在数学课堂上,我们常常会听到这样的提问:老师,这道题目要不要用简便方法计算?这说明学生的简算意识还很差。那么,在复习课上,怎样培养学生的简算意识和习惯,提高学生的简算能力呢?我主要从以下几个方面入手。
1)基本练习:
教师给出三个数8、40、125,让学生根据乘法的三个运算定律分别编三道式题,在四人小组内说说如何运用运算定律使计算简便,
为了培养学生的发散思维,我把出题权交给学生,让他们当小老师,设计一道可以简便计算的题。
乘法交换律编题为8×40×125=8×125×40
乘法结合律编题为40×125×8=40×(125×8)
乘法分配律编题为(8+40)×125=8×125+40×125
以学生自主探究、合作交流贯穿始终,精心设计各个教学环节,让学生主动积极。
2)引申练习:
将40和8合在一起,怎样计算简便?
用乘法分配律:48× 125=(40+8)×125 =40×125+8×125=5000+1000
=6000
用乘法结合律:48× 125=6×8×125=6×(8×125)=6× 1000 =6000
题目相同,结果相同,但应用的运算定律不相同,因此审题很重要,所选方法一定要合理简便。
用不同的方法计算:44×25 808×125
你们能再出一题用两种方法做的题目吗?
3)拓展练习:
课上到这时,同学们兴致很高,教师又灵活出了一些含有“一组半”、“两组半”的适合用乘法分配律的题目供学生独立练习,全班交流,拓展学生思维,留给学生创新机会,题目如下:
①27×99+27
②45×55+45×47-45×2
③125×(8+40)×25
3、总结提升,拓展应用。
复习课上题目的具体设计是值得教师认真思考的问题。本节课练习题的设计,我力求少而精,对学生有一定的挑战性。这些题,学生只有边做边审题,运用整体思维观察算式,寻找特点,并综合各法,才能算得又对又快又合理,进而形成娴熟的运算技能。
1)小明做数学题时很粗心,把25×(+4)错算成了25× +4请你帮忙算一算,与正确的结果相差多少?
2)判断题:
(a)(32-17)×35=32×35-32×17()
(b)58×91+91×25=58+25×91()
(c)8×(125×9)=8×125×8×9()
(d)125×(8+4)×25=125×8+25×4()
3)简便计算:
999×27+333×19
38×48+96
1999+999×999
先读一读、议一议、做一做。
第一个练习。难度不大,只要他能正确运用乘法分配律就能直接做,第二个练习,是学生计算中经常出现的问题,通过判断进一步提升学生运算定律运用的正确性,第三个练习,需要学生知识的综合应用,先要利用积不变来转换成有相同因数的算式,再利用分配律简便计算。
4、总结:
纵观全课设计,我以学生自主探究、合作交流贯穿始终,精心设计各个教学环节,让学生主动积极地学习,体会到整理知识的好处,感受到简算的优越性,使本节课既达到了整理复习的目的,又提高了学生合理、灵活地运用简便算法的能力。
教学内容
P12页例8和做一做,练习二第2题
教学目标
使学生理解整数乘法的运算定律对于小数同样适用,并会运用乘法的运算定律进行一些小数的简便计算。
知识重点
乘法运算定律中数(包括整数和小数)的适用范围
教学难点
运用乘法的运算定律进行小数乘法的的简便运算
教学过程
教学方法和手段
教学过程
1、计算:
259542532448+64810256
2、在整数乘法中我们已学过哪些运算定律?请用字母表示出来。
根据学生的回答,板书:
乘法交换律ab=ba
乘法结合律a(bc)=(ab)c
乘法分配律a(b+c)=ab+ac
2、让学生举例说明怎样应用这些定律使计算简便。(注意学生举例时所用的数。)
3、出示教材P.9页的3组算式:下面每组算式左右两边的结果相等吗?
0.71.2○1.20.7
(0.80.5)0.4○0.8(0.50.4)
(2.4+3.6)0.5○2.40.5+3.60.5
让学生看每组算式是否相等。
●从而得出结论:整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。
4、揭题并板书课题:整数乘法的运算定律推广到小数乘法。
二、尝试
1、出示例8第(1)题:0.254.784
2、引导学生进行思维迁移:你能仿照整数乘法中,类似的题目的简算方法来计算这道题吗?请你试着做一下,指名板演。
3、你能说一说每一步各应用了哪一条运算定律吗?根据学生的回答,板书:
0.254.784
=0.2544.78乘法交换律
=14.78
=4.78
指出:用虚线框起来的部分可以省略。
4、尝试后练习:关键是什么?(把........,用律完成)
500.140.21.250.80.80.32.50.4
生独立完成,师巡视辅导有困难的学生。指名板演,集体订正。
5、示范:例7第⑵题:0.65201
你认为此题的关键是什么?(把201变成200+1,用乘法分配律完成)
你会做吗?谁来讲讲这道题的解题思路?(指名上台讲解演示)
0.65201
=0.65(200+1)
=0.65200+0.65
=130+0.65
=130.65
6、练习:
0.78100.51.51021.22.5+0.82.5(提取公因数)
生独立完成,师巡视辅导有困难的学生。指名板演,集体订正。
三、运用
1、P.12页做一做:用简便方法算下面各题。
0.0340.50.61020.45
=0.034(0.50.6)=(100+2)0.45
=0.0340.3=1000.45+20.45
=0.0102=45+0.9
=45.9
25+5.6-0.6200.0145
=25+(5.6-0.6)=(200+0.01)45
=25+5=20xx5+0.0145
=30=900+0.45
=900.45
课堂练习
小结与作业
课堂小结
今天,你有什么收获?
课后追记
本课应用的运算定律之前都有学过并在整数的简便计算中广泛应用,但是小数应用运算定律来简算,难点在与学生不知道要拆哪个数,如何搭配构建出符合运算性质的形式,之后才进行应用定律来简算。
教学过程:
一、知识点的复习
回忆《乘法的运算定律》这一小节的学习内容。
教师引导回忆,并相应板书。
二、联系实际复习
1.学生汇报课前收集的有关乘法的运算定律的相应知识。
2.学生汇报课前自己根据乘法运算定律自编的题目或搜集的题目。
教师把符合要求的题目贴上黑板。
学生根据前面的知识点的复习,进行题目的独立解答。
要求:选择自己喜欢的方法解答。
教师巡视,加以必要的指导。
有必要的题目可以让学生练习画线段图。
小组内交流。
全班汇报。
三、小结
学生谈收获
课后小结:
教学内容:
乘法运算定律的复习
教学目的:
1.引导学生能运用乘法运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学内容:教科书第9页下半页的内容,第10页的例7和做一做,练习三的第5~8题
教学目的:能应用乘法运算定律,根据已知数的特点,使小数乘法运算简便;培养学生思维的逻辑性;使学生养成善于观察、善于思考的好习惯。
教学重点、难点:灵活应用乘法运算定律,进行简便运算
教学过程:
一、复习引新
1、口算:0.10.20.52
0.4252.50.4
81.250.812.5
2、出示:254784
这道题怎样做比较简便?
说说每步应用了什么运算定律?
二、进行新课
1、把复习题变为例7,问:变成小数乘法后怎样算比较简便?
(1)0.254.784
问:第一步怎样做,应用哪条乘法运算定律?
第二步怎样做,应用哪条乘法运算定律?
根据提问板书(略)
(2)0.65201
在整数乘法计算中,这样的题怎样计算比较简便呢?
小组形式讨论
汇报交流时说说应用了哪条运算定律
板书:(略)
(3)指出:实际做题时,虚线方框里这一步可以省略(但这一步却是思考过程,解题依据)
2、练习
P10做一做用简便方法算下面各题
指名板演,集体订正,说说简便运算的依据
三、巩固练习
1、用简便方法算
0.72.540.26100.5
1.35+4.6+0.6512.53.4+1.254.6
指名板演,其余自练
集体订正,重点评讲第二、三题
指出:做题时要看清运算符号
2、P11第6题
独立练习,教师巡视辅导
重点评讲第5、6题
四、全课小结
今天我们学习了什么?
我们一定要牢固掌握这些定律内容,才能灵活应用这些定律进行简算。
五、布置作业
P11第5题
教学内容:教科书第90页例4、练一练,练习十六6~9题。乘法运算律的推广。
教学目标:
1、初步理解整数乘法的运算律对小数乘法同样适用,能运用有关的运算律进行小数的简便计算。
2、使学生通过学习,进一步体会数学知识之间的内在联系,进一步增强探索数学知识和规律的能力。
教学过程:
一、复习引入
1、在()里填入合适的数。
8□=13□945=9(□□)
(32+28)6=□6+□6
你是根据什么填的?
我们学过那些整数乘法运算律呢?
2、引入。
我们一进学习了整数乘法运算律并能运用这些规律使我们的计算简便,那么整数乘法运算律在小数中能不能用呢?这就是今天我们要学习的内容。
二、自主探索。
1、出示例4。
2、能不能填上等号,要看什么?
独立完成,进行验证。
汇报结果。
3、每组中两个算式有什么关系?
你能发现什么规律?
在小组中互相说说自己的发现,并汇报。
4、整数乘法的运算律,对小数乘法同样适用。
板书课题:整数乘法运算律的推广。
5、试一试。
(1)出示试一试。
(2)先在小组中说说你的方法,再计算。
(3)展示学生作业,集体评讲。
你运用了什么规律。
6、小结。
在小数乘法计算中,运用整数乘法运算律可以使计算简便。在计算中,要先观察算式的特点,再合理选择,灵活运用。
7、完成练一练第1题。
独立完成计算,再说说自己是怎样想,怎样算的?
注意学生不同方法的指导。
8、完成练一练第2题。
学生独立完成计算,集体评讲。
三、巩固练习
1、完成练习十六第7、8题。
独立完成,展示学生作业。
说说自己运用了什么运算律?怎样想到运用这个运算律的?
2、完成练习十六第9题。
要求80根钢轨的千克数,首先要求出什么?
怎样列式?
独立完成计算,汇报解题方法。
哪一种方法计算简便?合多少吨?怎样算呢?(除以1000)
四、课堂小结
通过今天的学习,你有什么收获?在计算中有什么要提醒其他同学注意的?
板书设计:
整数乘法运算律推广到小数
0.250.7340.1543
=0.2540.73=0.15(40+3)
=10.73=0.1540+0.153
=0.73=6+0.45
=6.45
教材分析:
《整数乘法运算定律推广到小数》是义务教育标准实验教材小学数学五年级上册第一单元内容。这部分内容是在学生掌握了整数的四则运算和简便算法,以及小数加减法的基础上进行教学的。
教学目标:
1、知识与技能目标:
通过猜测、验证、应用等环节引导学生探索,并理解整数乘法运算定律对于小数同样适用。
2、过程与方法目标:
能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。
3、情感态度与价值观目标:
让学生相互交流、合作、体验成功的喜悦
教学重点:
探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。
教学难点:
运用运算定律进行小数乘法的简便计算。
学情分析:
五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。
教法学法:
本节课我主要采用自主探究,合作交流,汇报验证等教学方法。通过创设生动的教学情景,激发学生的求知欲。使学生在观察中发现,在探究中交流,在合作中归纳解决问题。具体地说分为以下几种方法:
1、情景创设法。
2、活动探究法 。
3、集体讨论法 。
教学流程:
第一环节:创设情境,导入新课。
上课伊始,我会向孩子们抛出一个问题:同学们,我们已经学习了整数乘法的一些运算定律,谁能来说一说整数乘法的运算定律有哪些?
学生们会回答:乘法交换律、乘法结合律和乘法分配律。
接着我会让孩子们用数字、字母或者符号等自己喜欢的方式来表示出这三个定律。学生展示后,我进行小结:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用呢?今天这节课我们就来研究这个问题。同时板书课题。
在这一环节中让孩子们用自己喜欢的方式表示三个定律,一方面激发他们学习的兴趣,另一方面复习巩固所学的知识,为学习新课作准备。以旧引新,激发孩子的探究欲望,让他们有目标的去思考。
第二环节:自主探索,解决问题。
本环节我设计了以下几个教学活动。
(一)小组合作,猜测验证。
1、用幻灯片出示以下题目。
2○1.2
0.4○0.8
0.5○2.4
让孩子们猜一猜,每一组算式它们有怎样的关系?(当然由于是猜测,学生出现的答案很可能会不一样。)
2、学生自己探究,验证。
让学生以小组为单位通过计算得出结论,原来每组算式的结果都是相等的'。
接着我引导学生们仔细观察每一组算式,它们有什么特点?
学生们通过观察会得出如下结论:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。
3、举例验证。
我向孩子们提问:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?
孩子们可能有两种意见:能或是不能。
针对不同意见,我会引导他们:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。下面咱们就以小组为单位仿照第一组的例子,也写出三种这样的算式,并验证是否相等。
(给孩子们充分的时间动手写,验证后让他们进行汇报,尽量多让几组学生汇报,这样例子多了,结论更有说服力。)
学生汇报的同时,我会有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。
在大家交流结束后,我这样引导他们:刚刚小组同学相互交流后,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)
在这一环节中我首先让学生进行猜测,在头脑中初步感知每一组算式之间的关系,然后进行验证,进一步理解每一组算式之间的关系,再次启发学生自己举例验证,让他们通过自己动手动脑,以及倾听其他同学的发言,从而得出结论。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。
(二)灵活应用,解决问题。
出示例题8
师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。
4.784 0.65201
(1)让学生独立思考,然后尝试写在练习本上。
(2)指名让学生板演。
然后我会让孩子们思考:
第①题中为什么先让0.25和4相乘?这里运用了什么运算定律呢?
孩子们会自然而然的答出:运用了乘法交换律
接着问他们:
你们认为第②小题中解题的关键是什么?
学生会根据以往的知识答出:把201分成200+1,然后用乘法分配律完成。(因为乘法分配率在上学期的学习中就是一个难点,所以这里我也会强调一下,让孩子们体会到先把特殊的数进行分解,然后才能进行简算。)
然后继续提问:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点等。)
在这一环节里,让孩子们运用所学的知识解决问题,这是数学学习的目的。学生通过自己动脑想,尝试用乘法的运算定律使计算简便,激发了他们运用知识解决问题的欲望,同时使学生体会到运用乘法运算定律的简便性,并体验到成功的快乐。
第三环节:精心选题,多层训练。
本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。
练习题组设计如下
通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。
第四环节:质疑总结,反思评价。
用幻灯片出示以下两个问题
让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让他们互评,最后我会表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。
在本环节通过交流学习所得,增强孩子们学习数学知识的信心,培养了他们敢于质疑、勇于创新的精神。
板书设计:
本课的板书设计如下这样的板书设计既条理清楚、简单明了、一目了然;同时又突出了本课的教学重点,对学生的学习起到帮助作用。
经过反复比较编辑认为“乘法交换律教案”是最精华的一篇文章,仅供参考,欢迎大家阅读。教案课件是老师上课的重要部分,写教案课件是每个老师每天都在从事的事情。教案是高质量教学必不可少的部分。
本课题教时数:25本教时为第16教时备课日期11月7日
教学目标
1.使学生初步理解和掌握乘法交换律和结合律,并能用字母表示。
2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。
教学重难点
使学生初步理解和掌握乘法交换律和结合律,并能用字母表示。
教学准备
投影片
教学过程设计
教学内容
师生活动
备注
一、揭示课题
二、学习新课
三、巩固练习
四、课堂小结
五、课堂作业
1.我们已经学过加法的运算定律,请大家回忆一下,是怎样的?
2.加法交换律用字母公式如何表示?加法结合律呢?(板书)
3.请大家大胆地猜测一下:乘法有
怎样的运算定律?(学生猜测)
4.大家猜的非常好,的确乘法也有
交换律和结合律?这节课我们一起来研究一下乘法的交换律和结合律。(板书课题)
1.学习例1
(1)出示例1
(2)小组合作,想一想:怎样求出邮票的总张数?
(3)组织交流:①43=12(张)②34=12(张)
(4)思考:这两种算法都是求什么的?结果怎样?从中你体会到了什么?(板书:43=34)
(5)这两个算式有什么相同和不同的地方?
2.其他的算式是不是也有着这样的特点呢?出示第81页上的有关题目。学生先计算再比较。
3.从这些算式中,你体会到了什么?谁能来归纳一下。你能用字母公式来表示吗?(根据学生所讲,板书ab=ba)。
4.学习乘法交换律的应用。
乘法交换律我们以前有没有碰到过?你能举个例子吗?
完成练一练的第1题。指名一人板演,其余学生做在练习本上。
5.学习乘法结合律。
(1)出示计算题。①(1412)5②14(125)
(2)学生按运算顺序计算,指名两人板演。
(3)比较两个算式的结果,你可以得出怎样的结论。
(4)板书:(1412)5=14(125)。比较这两个算式有什么相同的地方和不同的地方?
6.其他的算式是不是也有着这样的特点呢?出示第83页上的有关题目。学生先计算再进行比较。
7.从中你发现了什么?谁能来归纳一下?你能用字母公式来表示吗?[板书:(ab)c=a(bc)]
8.谁能根据字母公式,来说一说乘法有着怎样的运算定律?
1.在□里填上合适的数,并说说这样填的理由。
(1)9635=35□4827=□48
(1615)4=16(□□)
25(218)=(25□)□
(3)判断:哪些等式应用了乘法运算定律?应用了什么定律?
153=315
2124=4212
7(86)=7(68)
(32)1=3+(2+1)
(434)15=43(415)
今天这节课我们一起学习了什么内容?你有什么收获?
练习十七第1题、第4题
课后感受
学生由于已经有了加法运算定律的积累,所以今天的课上的很顺,学生大多能正确地进行迁移、应用。少数同学会在回答概念时,把乘法口误成加法。
【教学内容】
西师版四年级下册数学教材第17~18页例1~2,练习四第1题。
【教学目标】
1.经历在计算中探索发现乘法交换律、结合律的过程。
2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
【教学重难点】
在具体情景中探索发现乘法交换律、乘法结合律。
【教学过程】
一、复习旧知
1.以前学过的加法运算律有哪些?
加法交换律和加法结合律(学生回答)
2.说一说,下面的等式用了什么运算律?
80+a=a+80()20+30+40=20+(30+40)()
3.通过预习,你知道下面的等式用了什么运算律吗?
2×3=3×2()(2×3)×4=2×(3×4)()
引出课题:乘法运算律。
二、新课讲授
1、讲解
2×3=3×2
观察并思考:
(1)等号左边的算式和右边的算式有什么联系?
(2)从上面的观察与分析中,你能发现什么规律?
学生发现:两个因数交换位置,积不变。
师引导学生得出乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)
随堂练习:计算下面各题,用交换因数位置的方法进行验算。
34×16 26×37
学生独立做,请两名学生上台板演。
2讲解
(2×3)×4=2×(3×4)
观察并思考:
(1)等号左边的算式和右边的算式有什么联系?
(2)从上面的观察与分析中,你能发现什么规律?
学生发现:每个算式只是改变了运算顺序,每排左、右两个算式计算结果相等,
三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(a×b)×c=a×(b×c)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
三、课堂活动
1.练习四第1题:学生独立完成,全班交流,说出依据。
2.连线。
(学生独立完成)
23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)
四、课堂小结
今天这节课你都有哪些收获?还有什么问题?
五、作业
练习四第1、2题。
教学内容:教科书第63页。
教学目标:
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便运算,体验运算律的应用价值,培养学生的探究意识和解决问题能力,增强数学的应用意识。
3、培养学生观察,比较,分析,综合和归纳,概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点、难点:
理解并掌握乘法交换律和乘法结合律,并会用运算律进行简便计算。
教学准备:教学光盘
教学过程:
一、复习引新。
1.什么叫做乘法交换律?乘法结合律?你能用字母表示吗?
2.口算。
计算三角形三个角上的三个数的积。
(5、17、20)(35、2、29)(25、37、4)
提问:上面各题口算时怎样算比较方便?
指出:连乘时如果有两个数相乘得的积是整十整百,要先乘,再和第三个数相乘就比较简便。
1、你知道怎样的相乘得整百或整十数?
引导学生熟记常用数据:254=100258=2001258=1000
口诀中相乘的积个位上是0的。
2、简便计算
28154451329425125188
二、运算运算律,简便计算。
出示:35182516
(1)指名板演,列竖式计算,集体练习。
(2)讨论:怎样运算比较简便,可以不必列竖式计算,直接口算得到。
(3)讨论2516,想25和谁相乘可以得到整十或整百?25需要和相乘,怎样找到4,(将16分成4乘4)
2516
=2544运用乘法结合律可以得到。
=1004
=400
(4)3518怎样做比较简便呢?学生仿照上述的样子试做。
三、出示想想做做第8题,谁能将他们做的又对又快?学生集体练习,说说上下两题的联系。怎样计算比较简便。
四、巩固练习:
1、用简便方法计算。
2512351625321252516
指名扳演,集体订正。
2、想想做做P63、7。
先独立填表,再观察和比较,说说积是怎样变化的。
四、作业
想想做做第9、10题
课前思考:
1、通过让学生算一算,在比较每组中两道题的计算过程,交流各自的体会,进一步体会使计算简便的关键。
2、35*1825*16让学生探究应用乘法运算定律得到不同的简便的方法,从中找到最简便的方法,教导学生看见25通常的情况是想到25,看见125通常想到8。
3、第7题渗透了积的变化规律。可以让学生先独立填表在观察和比较,说说积是怎样变化的。
课后反思:
针对上节课出现的问题,在复习这一环节,我们重点训练了254=100、258=200、1258=1000,352等这样常见的也是常用的简便计算的算式。在学习新课:351816时,学生心中有了简便计算的关键的一步:352、254,就自然而然地从已知的数中去寻找,很快地就有了答案。
在训练过程中,有许多新的情况出现,部分学生有些措手不及,看来这方面的练习还得多做,所谓熟能生巧还是需要,让学生在大量不同类型的题目中感悟方法的巧妙和解题的技巧。
教后反思:
和周老师一样我本堂课先复习了254=100、1258=1000这样常见的也是常用的简便计算的算式。本堂课主要是学习像3518这样的只有两个乘数的简便计算,我是先让学生自己去找方法,看谁算得快,又算得正确。学生的学习兴趣很快就被引了出来,最后的效果也不错。从作业中可以看出学生的错误率还是很高,还需多加练习。
教后反思:
简便运算具有一定的灵活性,每个学生的理解和感悟是不同的。同样教学中都是先渗透254=100、1258=1000也就是看见25最先想到4,而看见125最先想到8,而再练习中看见25还会见到分成5*5的现象的。但是大多数的同学简便运算还是比较兴趣的,毕竟可以使计算变的简便了。
一、教学内容:
北师大版四年级上册数学第二单元p45-p46
二、教学目标:
1、经历探索过程,发现乘法结合律和交换律,并用字母表示。
2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。
3、感受数学探索的乐趣,培养自主探索问题的能力。
三、教学重、难点
1、重点:探索、发现、理解和应用乘法结合律和交换律。
2、难点:乘法结合律和交换律的探索过程。
四、教学过程
(一)口算比赛,激发学习兴趣
1、出示口算题
5×225×425×8125×8
2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。
3、谈话引入:我们在前面已学过乘法的计算,在教学运算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?
(二)创设情境,发现问题
1、多媒体出示情境图
2、估一估
师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?
3、算一算
师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。
4、交流算法。
师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。
师板书:(3×5)×4=60(个)
3×(5×4)=60(个)
(三)比较算式的特点,发现规律
1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?
2、学生汇报:略
3、小结:(3×50)×4=3×(5×4)
(四)提出假设,举例验证
1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。
2、学生举例
同桌之间互相交流?
3、集体交流
谁愿意介绍一下你们小组举例的情况?
(五)概括规律
1、从刚才大家所举的例子看,每一组的结果都是相同的。这样的例子多不多?能举的完吗?
2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?
板书(a×b)×c=a×(b×c)
板题:乘法结合律
(六)运用规律,解决问题
1、比较(3×5)×4=603×(5×4)=60两个算式,哪个更简便?
2、看来运用乘法结合律可以使一些计算简便。
3、练习:p46“试一试”的题目
学生独立完成,集体订正。
(七)探索乘法交换律
1、出示两组数据
4×5=5×412×10=10×12
2、师:认真观察,看看你有什么新发现?
3、学生汇报。
4、学生举例验证。
师:你能举出像这样的例子吗?
5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?
6、板书:a×b=b×a
板题:乘法交换律
三、巩固练习
1、(完成课本第46页练一练第1题)
学生口答,集体订正。
2、应用乘法结合律和交换律,快速计算下面各题。
25×17×413×8×128(25×125)×(8×4)
(1)学生独立完成,个别板演。
(2)订正时让学生说说运用什么运算定律。
四、总结:这节课你有什么收获?
五、学生读课本第45、46页,质疑。
六、作业:课本第46页第2题。
乘法结合律 乘法交换律
【教材分析】
本课是北师大版数学实验教材四年级上册的一个教学内容,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程,通过对乘法结合律探索基本步骤的体验为学生今后的数学探索活动打下基础。
【学情分析】
学习方式上:四年级的学生,经历四年的课改实验,已具有一定的发现问题、提出问题、解决问题的能力。同学之间能够较好地合作交流与倾听。能比较主动地探究新知,运用已有的知识经验来学习新知。
知识技能上:在学习本课前,学生已经知道:25×4=100 、125×8=1000以及整十整百整千数乘法计算比较简便。
【学习目标】
知识与技能:通过探索活动,发现乘法交换律、结合律,并用字母进行表示。在理解乘法结合律的基础上,会对一些算式进行简便计算。
过程与方法:经历数学探索过程,进一步体会探索的过程和方法。
情感、态度、价值观:感受数学探索的乐趣,培养自主探究问题的能力。
【学习重难点】
探索、发现、理解、应用乘法结合律。
【教学策略】
创设情境,组织探索,引导自主学习。
【教学过程】
一、创设情境,发现问题
师:同学们喜欢搭积木吗?
生:喜欢
师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?
生:想
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)
师:你知道图中有多少个小正方体吗?说说自己是怎样想的。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)
师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?
生:……
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证
师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?
生说师板书:
a×b﹦b×a叫做乘法交换律
师:a。b指的是什么?
(设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。)
三、探索乘法结合律
1、课件2出示情景图(书54页)
师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?
学生独立观察、思考后集体交流。(说说估计的方法)
师:谁估计的准确呢?请同学们在本子上算一算。
(学生独立思考,计算,教师巡视)
师:谁愿意把你的想法介绍给大家?
生举手汇报,师追问:怎样想的?
师引导从上面、正面观察
上面:(3×5)×4
师:这个算式可以写成 (5×3)×4 吗?
生:可以,都是求同一个物体,
生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。
师:出示4×(5×3) 可以这样写吗?
生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。
正面:(4×5)×3
师:你还可以怎样写?根据是什么?
生:(5×4)×3 3×(5×4)
(设计意图:通过对算式的变换,巩固乘法交换律)
师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×4 3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。
生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。
师:可以写成(3×5)×4 = 3×(5×4)吗?
生思考回答。
(设计意图:通过对算式异同的比较,让学生自己发现规律,)
2、提出假设,举例验证
师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器
(学生在小组内举例交流讨论,教师巡视指导。)
师:谁愿意介绍一下你们举例的情况。
生:……
3、概括规律
师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?
生思考概括
师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?
生说师板书:
(a×b)×c﹦a×(b×c)叫做乘法结合律
三、运用模型,完成练习
1、学生独立完成“练一练”1题。最后运用课件集体订正。
2、运用乘法结合律很快算出38×25×4 42×125×8
生独立完成,小组交流后汇报
3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。
(设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算。对所学的
知识通过练习加以巩固运用。)
五、小结:
1、 这节课你学到了什么?
2、 我们是怎样认识这个好朋友的?
板书:
探索与发现
乘法交换律 乘法结合律
a×b﹦b×a (a×b)×c﹦a×(b×c)
5×4﹦4×5 (3×5)×4 =3×(5×4)
生举例略 生举例略
教学内容 :课本34页例1、例2。
教学目标
1、知识与技能:引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。
2、过程与方法:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3、情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:
理解乘法交换律、结合律,能运用运算定律进行一些简便运算。
教学难点:
1、能灵活运用乘法交换律和乘法结合律解决简单的实际问题,提高计算能力。
2、能用自己的语言描述乘法交换律和乘法结合律,并会用字母表示。
教学过程
一、自主学习
(一)出示自学提纲
1、乘法交换律的内容是什么?用字母式子怎样表示?你能再举出一些这样的例子吗?
2、乘法结合律的内容是什么?用字母式子怎样表示?你能再举出一些这样的例子吗?
3、比较加法交换律与乘法交换律,加法结合律与乘法结合律,你发现了什么?
(学生在自学过程中,教师巡回指导,并告诉学生在看不懂的地方要做上标记)
(二)学生自学
(三)自学检测
计算下面各题,怎样简便就怎样计算。
23×4×5 8×(125+11) 2×289×5
二、合作探究
1、小组互探(把在自学过程中遇到的不会问题在小组内交流探究)
2、师生互探(师生共同探究在自学过程中遇到的不会问题及经小组讨论后还未能解决的问题)
(1)在运用乘法运算定律进行计算时应注意什么?
(2)你会用简便方法计算下列各题吗?
45×12 125×16 250×64
三、达标训练
1、下列各式运用了乘法的交换律,对吗?为什么?
100×9=9×100 2×18=2×18 a+b=b+a
2、先口算,再把得数相同的两个算式用等号连接起来。
(6+4)×5 6×4+4×5
(8+12)×4 8×4+12×4
8×(7+3) 8×7+8×3
3、在下列方框中填上适当的数。
30×6×7=30×(□×□)
125×8×40=(□×□)×□
4、用简便方法计算。
69×125×8 25×43×4 13×50×4 25×166×4
课堂小结:通过本节课的学习,你都学会了哪些内容?你有哪些收获?你还有疑问吗?
四、堂清检测
1、判断。
(1)4×(25×3)=(4×25) ×3 ( )
(2)7×(18×40)=7×(40×18) ( )
(3)(7×8)×125×15=7×(8×125)×15 ( )
2、计算。
(1)13×50×4
(2)25×166×4
(3)8×5×125×40
(4)125×32×5
3、解决问题。
每袋有5个乒乓球,每排有4袋,放了2排,一共有多少个乒乓球?
板书设计
乘法交换律和乘法结合律
(1)负责挖坑、种树的一共有多少人? (2)一共要浇多少桶水?
25×4=100(人) 4×25=100(人) (25×5)×2 25×(5×2)
25×4=4×25 =125×2 =10×25
┆(学生举例) =250(桶) =250(桶)
(25×5)×2=25×(5×2)
┆(学生举例)
交换两个因数的位置,积不变。 先乘前两个数,或者先乘后两个数,
这叫做乘法交换律。 积不变。这叫做乘法结合律。
a×b=b×a (a×b)×c=a×(b×c)
教学内容:
教材第33页的主题图,第34—35页的例1(乘法交换律)和例2(乘法结合律)以及练习五中的相关习题。
教学目标:
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点:理解乘法交换律和乘法结合律。
教学难点:能运用乘法交换律和乘法结合律进行简便计算。
教学准备:多媒体。
教学方法:
尝试法、观察比较法。
教学过程:
一、复习导入
我们已经学过了哪些运算定律?请你用自己的话说一说,并说一说怎样用字母表示。
二、探究新知。
1、主题图引入
(1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息。
(2)你能提出哪些问题?(指定多名学生说一说。)
2、学习例1。
(1)出示例1:负责挖坑、种树的一共有多少人?
(2)启发学生思考:要解答“负责挖坑、种树的一共有多少人?”这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。
(3)学生独立列式计算。教师根据学生回答,边板书:
4×25=100(人)25×4=100(人)
(4)教师引导学生观察,比较两种解法有何异同。
启发思考:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(即:4×25=25×4)这个等式说明了什么?
(5)你能再举出几个这样的例子吗?(学生举例)
(6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)
(7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)
(8)让学生用自己喜欢的方式表示乘法交换律: a×b=b×a。让学生说一说:这里的a、b可以是哪些数?
(9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。
(10)我们学习哪些知识时用了乘法交换律?
(11)反馈练习:完成教材第35页“做一做”的第1题。
3、学习例2。
(1)出示例2:一共要浇多少桶水?
(2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。
(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(25×5)×2和25×(5×2)。
(4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(25×5)×2=25×(5×2)
(5)哪一种方法计算起来更简便?
(6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。
(7)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)你们能给乘法的这种规律起个名字吗?
(8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
(9)用字母怎样表示?(a×b)×c=a×(b×c)
(10)反馈练习:完成教材第37页的第2题。
4、乘法交换律和乘法结合律的应用。
(1)出示:怎样简便就怎样算?
5×37×2 125×4×8×25
(2)思考:怎样计算简便?
(3)学生独立完成,教师巡视指导,指定学生上台板演。
(4)集体订正,指定学生说一说各题运用了什么运算定律。
5、反馈练习:教材第35页“做一做”的第2题。
6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。
三、小结
学生小结本节课的学习内容。
教师引导学生回忆整节课的学习要点。
四、作业
《练习册》第14页第1课时的所有习题。
板书设计乘法交换律和乘法结合律
4×25=100(人)25×4=100(人)
4×25=25×4)a×b=b×a
(25×5)×2 25×(5×2)
=125×2 =25×10
=250(桶)=250(桶)
(25×5)×2=25×(5×2)
(a×b)×c=a×(b×c)
教学目标:
1、知识目标:通过探索活动,使学生进一步体会探索的过程和方法。
2、技能目标:通过探索活动,使学生发现乘法结合律、交换律,并懂得用字母进行正确的表示,使学生在理解乘法结合律、交换律的基础上,会对一些乘法算式进行简便计算。
3、情感目标:培养学生学习数学的兴趣
教学难点:
指导学生探索乘法的结合律。
教学重点:
发现规律、总结规律、应用规律。
教学方法:
发现法、讲解法、练习法。
教学过程:
课前三分钟:口算练习
一、谈话导入
S:同学们,在数学运算中,有许多有趣的规律。今天,我们再一起来探索,看看我们还能发现什么规律?
二、给出图片,发现规律
S:济南长途汽车站里一片繁忙,人来车往,济南汽车站也因此被称为是中华第一站。老师这里,有20xx年济南汽车站一天中中巴和大巴运送旅客的情况分析,你能看的懂这个表格吗?
T:能。
S:好,那谁能说说表格告诉了你什么信息呢?
T:中巴每天发车960辆,平均每车20人,大巴每天发车640辆,平均每车36人。
S:同学们真聪明,发现了这么多的信息。那谁能根据这些信息试着提出一个数学问题呢?
T:中巴一天运送多少人?
S:哦,我们同学提出了这样一个问题,谁能替他解答解答?
T:96020
S:咱们同学太聪明了,那老师提高个难度,想让你们帮老师算算中巴车周一到周五共运送乘客多少人呢?你们能解答出来吗?
T:能。
S:好,拿出老师给你们准备的练习纸,把你的答案写在练习纸上。
(找两位同学到黑板板书他们不同的做法,然后分别让他们解释为什么这么做。)
S:我们请这位同学来说说他是怎么算的。
T:先算出中巴车一天运送乘客多少,然后再乘以5,计算出五天共运送乘客多少。
S:哦,你真棒,那另一位同学你是怎么想的呢?能给大家解释解释你为什么这么做吗?
T:我先算出一辆中巴车五天运送多少乘客,然后乘以总共有多少辆,就得出总共运送多少人。
S:解释的太棒了,(教师同时将两种算式抄在黑板左上部分)我相信大家也都听懂了这位同学的想法。同学们找到了两种方法来解决这个问题,既然都是解决这个问题的方法,那两个式子之间我能不能用=连接?
T:能。
S:好,现在同学们来观察一下,你能发现这两个式子有什么异同点吗?
T:相同点是三个数相乘,并且结果相同。
S:你的眼睛真是雪亮雪亮的,这么快就发现了相同点,那同学们再找找有什么不同点呢?
T:第一个式子是前两个数先相乘,然后再乘第三个数,第二个式子是后两个式子先乘,再乘以第一个数。
S:同学们太棒了,这么快就找到了相同点和不同点,哦,这好像是一个规律,哪位同学可以起来总结一下我们刚才发现的规律?
S:三个数相乘,先把前两个数先乘,再乘第三个数,或者先把后两个数相乘,再和第一个数相乘,积不变。
T:那是不是所有的式子都有这样的规律呢?你能不能举出个类似的式子来验证一下呢?同学们先自己想,然后在小组内讨论交流,交流好的小组坐好。我们来看看哪个小组最先完成。
(小组讨论,交流想法。)
三、组展示,验证猜想
T:看来大家想法很多,讨论的这么激烈,谁想上来给老师和同学们展示一下你们小组交流的内容呢?
(师投影展示生举出来的例子)
T:哦,看来大家都找到了不少的例子来证明我们发现的规律啊。这也说明了,我们发现的规律,确实是存在的。前面我们刚学了用字母表示数,那谁能用字母表示一下这个规律呢?
S:(ab)c=a(bc)
T:同学们怎么这么聪明啊?那大家再想想,前面我们学习了加法的结合律和交换律,既然乘法中存在结合律,那会不会存在着交换律呢?
S:会。
T:光说老师可不相信你们,你们能举出来个例子吗?
S:12=21
S:211=112
T:这样的例子我们能不能举完啊?
S:不能。
T:那我们又用大量的实例来证明了乘法中,同样也存在着交换律。谁能用字母来表示表示呢?
S:ab=ba
T:看来咱们同学都是些聪明的人,这么快就发现了乘法运算中的规律(板书课题)。其实数学中,我们不止从最后的结论中学习到知识,我们还可以从我们发现规律的过程中学习到知识。回想我们刚才学习的过程,我们经历了哪些过程呢?
T:首先,我们通过观察例子,发现了规律;然后,我们猜想出来了规律,然后举出了大量的实例来验证规律,最后,得到了结论。这就是我们数学研究的一般思路。
四、理解规律,运用规律
T:同学们真棒!学了马上就会用。有的同学该问老师了,我们都会了乘法运算,那还费劲学这个运算律干什么呢?我们来看这一题,12578,你能用简便的方法算出结果吗?在练习纸上试一试。
(找一位同学到黑板板书)
T:同学们坐的差不多了,我们来看我们班的xxx的做法,你能给大家解释解释你为什么这么做吗?
S:将125和8先乘,就能得到整数1000,这样就能很快算出结果了。
T:哦,把125和8先乘,得到整数,这样计算就简便了,那为什么能把8和7交换位置啊?
S:因为运用了乘法的交换律。
T:同学们能不能想想我们以前的什么知识运用到了乘法的交换律?
T:想不起来了?老师来提请你吧。前面我们运用了交换律的方法将两个因数交换位置再乘一次来检验结果对不对,而且我们在乘法口诀中也涉及到了乘法的交换律,例如,七八五十六,我们可以得到什么算式?
S:78=56,87=56
T:这里,我们就已经涉及到了乘法交换律了。
T:好了,学了这么多知识,我们来做些练习题检测一下吧。
五、课堂练习
1、(1)23254(2)40235
2、一套书有15本,每本定价9元,小明要买4套这样的书,一共需要多少钱?
3、风华小学六个年级的学生参加跳绳比赛,每个年级有5个班,每班23个人参加,一共多少人参加比赛?
六、小结
T:这节课同学们都学的非常认真,那么你们有什么收获呢?
每个老师在上课前需要规划好教案课件,因此想要随便写的话老师们就要注意了。 教案课件是教学计划的重要组成部分,必须梳理清晰,写教案课件时应该注意哪些问题?小编为大家提供了一篇网络上挑选的“乘法分配律教案”文章,建议您将此页收藏方便随时查看!
本课题教时数:25本教时为第19教时备课日期11月14日
教学目标
1.使学生初步理解和掌握乘法分配律,并能用字母表示。
2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。
教学重难点
使学生初步理解和掌握乘法分配律,并能用字母表示。
教学准备
投影片
教学过程设计
教学内容
师生活动
备注
一、复习
二、学习新课
三、巩固练习
四、课堂作业
1.口算
(6+4)3=(8+2)2=
63+43=82+22=
口算得数。
提问:第一行的题先算什么,再算什么?第二行的题先算什么,再算什么?
2.揭示课题
两个数的和同一个数相乘,与这两个加数分
别同这个数相乘后再相加之间,有什么关系呢?这就是今天要学习的乘法分配律。
1.学习例5
(1)出示例5
(2)请学生用不同的方法进行计算。
(3)比较这两种方法。
(4)再出示第88页的题目。学生进行计算。
2.归纳乘法分配律。
这三组算式,每组两个算式之间有什么共同的特点?你能从中看出什么规律吗?
(1)用自己的话归纳一下。
(2)用字母表示乘法分配律。
(a+b)c=ac+bc
1.练一练第1题。
让学生做在课本上,老师进行指导。
2.练一练第2题。
学生做在课本上,老师进行讲评。
3.练习十八第1题。
学生先做,然后组织交流。
4.提问:谁再来说一说,什么叫做乘法的分配律?用字母公式怎样表示乘法的分配律?
练习十八第2题。
课后感受
根据长方形的周长引入新课,学生学的比较自然,但真正在运用中并不是很正确。
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用
教学难点:乘法分配律的反应用.
教具:教学课件一套
教学过程:
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
7×28+7×72
7×(28+72)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
7×28+7×72=7×(28+72)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
二、引导探究,发现规律。
1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。
2、商场“五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)
(1)看到这幅图画,你了解到了什么信息?你想提什么问题?
(2)你能用两种方法列出综合算式吗?
(3)学生独立列式,教师巡视
(4)交流反馈:你是怎么想的,怎样列式计算
板书:65×5+45×5(65+45)×5
(5)观察这两个算式,你有什么发现?
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
(5)大屏幕出示关于乘法分配律的总结,学生齐读。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(8+4)×2534×72+34×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
四、巩固内化
1、做“想想做做”第1题
学生独立填写,指名报,全班共同校对。
明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?
2、做“想想做做”第2题
学生自己判断。然后请生说说判断的依据。
3、做“想想做做”第3题
让每位学生都用两种方法计算长方形的周长,指名板演。
明确:这两种算法有什么联系?符合什么规律?
小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。
4、做“想想做做”第4题
让学生各自按运算顺序计算,指定两人板演,共同订正。
提问:每组两道算式有什么联系?哪一题的计算比较简便?
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
五、总结回顾
一、 说教材
本节课是人教版小学四年级数学第三章运算定律与简便计算中的内容。本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
二 、说教学目标
根据数学课程的基本性质与目的,我拟定了如下教学目标:1.从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。 2.渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
三、 说教学重、难点
教学重点:掌握乘法分配律,理解乘法分配律的意义。
教学难点:掌握乘法分配律,理解乘法分配律的意义。
四、说教法和学法
(一)教学方法
在教学过程中,我运用启发式进行教学,根据小学生的心理特征和认知规律,我设计了循序渐进的教学过程,一步一步的引导学生到达新知识的制高点。其中适当的鼓励学生,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,让学生积极参与,充分体现教师的主导作用和学生的主体地位。
(二)学法指导
注意引导学生通过动手操作,采用观察、比赛、概括的方法概括出“乘法分配律”。让学生都能够动手、动脑、动口,积极参与教学的整个过程。
五、说教学过程
(一)谈话引入,激发兴趣。
1、回顾前面学习过的乘法交换律和乘法结合律,让学生用自己的话说一说,用字母来表示。
2、师:(指导观察主题图,理清图中的数学内容)同学们植树多么认真啊!他们为绿化祖国做出自己能做的事。这节课我们接着来探究关于其中的一些数学问题,同事们能够有兴趣解决吗?
(复习旧知识,孔子曰:学而时习之。时下正是植树节,以这样一个情境引入新课比较自然)
(二)自主学习,合作探究。
1、教学例3。
负责挖坑、种树的一共有多少人?
A、要求生在练习本上列综合算式算,然后小组里交流。生汇报。
B、让一学生上黑板写。
(4+2)×25
=6×25
=150(人)
师:你是怎么想的?
C 、师问:还有同学有不同的列算式方法吗?
生:上黑板写。
4×25+2×25
=100+50
= 150(人)
师: 你是怎么想的?
(让学生说一说自己的想法,理清解题思路,与其他同学共享)
师引导学生对比观察这两个算式,你发现了什么?
生小组里交流。生汇报。
引导学生发现:1、(4+2)×25=4×25+2×25
2、第二个算式比第一个算式简便。
3、师适时引导总结出乘法分配律
。。。。。
师:谁能给我们发现的这个规律起个名字?(乘法分配律 师板书)
(这一环节充分体现了学生的主体地位,放手让学生讨论交流,得到自己的想法,培养学生观察发现交流合作的能力。)
生:翻开课本齐读乘法分配律的概念。
师:课本上用符号来表示乘法分配律,但是没有写完整,你能补充完整吗?(师巡视指导)
师板书: (a+b)×c=a×c+b×c
D、你能例举出类似的例子来吗?
生:在练习本上写,然后师指名说一说。
(由于前面学习交换律、结合律的时候都有这些环节,所以这部分内容学生很熟悉,放手让学生做。)
E、师在黑板上板出乘法结合律的式子。(用字母表示)让学生对比乘法结合律和乘法分配律,对比它们的异同,让学生说一说。
(在这一章内容里学习了好几个运算定律,学生很容易搞混淆,所以要让学生区别它们。)
(三)巩固运用,深化提高。
1、第36页“做一做”。
下面哪个算式是正确的?正确的画“√”,错误的画“×”。
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
2、师:运用乘法分配律可以使一些计算简便。
计算:101×13 40×65
指名两生上黑板做,并说说自己的想法。
生甲:101×13 生乙:40×65
=(100+1)×13 =40×(60+5)
=100×13+1×13 =40×60+40×5
=1300+13 =2400+200
=1313 =2600
(这部分的练习主要是训练学生的运用能力,可能当时对学生来说有一定的难度,老师的巡视指导。)
师:表扬鼓励学生。
(四)总结提升。
这节课,你认识了什么新的运算定律?你会将它叙述一遍吗?它对我们有什么帮助?
六、说板书:乘法分配律
(a+b)×c=a×c+b×c
(简洁,一目了然)
一、教材分析
(一)教学内容在教材中的地位和作用
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
(二)教学重点、难点的确定
教学重点:理解、应用乘法分配律。
教学难点:乘法分配律的逆运算。
(三)《大纲》要求
让学生从正、反两方面正确理解乘法分配律。
(四)学情分析
学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算的基础上接着学习“乘法分配律”不会觉得太难,但是学生的概括、归纳能力还是一个薄弱的环节。
二、教学目标的确定
根据《大纲》要求,教学内容和学情,本节课我制定如下教学目标。
(一)知识目标:
使学生理解和掌握乘法分配律,会应用乘法分配律进行简便运算。
(二)智能目标:
培养学生的分析、比较、综合能力以及初步的抽象概括能力。
(三)情感目标:
通过学生的自主学习,激发学生学习数学的兴趣。
三、教法与学法分析
(一)教学方法
在设计乘法分配律的教学时,依据学生的认知发展水平和已有的知识经验。采用自主学习、当堂训练的教学模式。充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动参与的学习。
(二)学法指导
本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。通过学生多思、多说、多练。积极参与教学的整个过程。
(三)教学准备
多媒体课件。
教学过程分析
一.创设情境,激趣引入。
第一步我用课件出示口算题: 125 × 8 25 × 4
25 × 6 × 4 7 × 8 × 5 2 × 3 × 50
课件设计可以使学生看得更清楚。也是为了让学生想说、敢说、抢着说,激发他们早点进入学习状态。
第二步创设情境,师生比赛。出示一组题从中选取两道,谁能看一眼题目就能说出得数。
( 40+4 )× 25 37 × 45+55 × 37
68 × 32+68 × 68 ( 80+8 )× 125
比赛的结果:老师算得快学生算得慢。学生心里就会想:老师怎么你算得那么快?这 时 老师导入:刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,你们想知道吗?此时同学们一定很想知道,学生的求知欲望达到了高潮。老师告诉学生乘法的又一法宝就是乘法分配律。板书课题,进入新知。
二.出示学习目标,自学新知。
本环节先用幻灯片出示学习目标:
1 、什么叫乘法分配律?用字母如何表示 ?
2 、应用乘法分配律有什么用?
3 、什么地方用乘法分配律?
4 、例 7 的两道计算题有什么特点?如何计算?
学生依据学习目标 , 自学课本 64 — 65 页的内容。要求学生用 6 、 7 分钟的时间掌握学习目标中的内容。学生欲望值高,所以学生会发挥自己最大的潜能。想尽办法去记忆新知识。在学生的自学过程中,老师要巡视指导,帮助个别学生掌握新知识。此环节即使有个别同学不理解课本中的知识,可他为了在测验环节中取得较理想的成绩,也会用心的去掌握乘法分配律。
三.互相交流,加强记忆。
老师相信,经过自主学习,同学们已经掌握了乘法分配律。下面同学们就根据学习目标把自己认识的乘法分配律为大家介绍一番。
由于上一环节学生学会了乘法分配律,这时他一定会特别想把自己的看法、见解告诉大家。这时就要为学生提供展示自我的平台。让学生自由发言,谈谈自己对乘法分配律的认识。师生间、生生间互相交流,合作学习,加强记忆。
四、当堂测验,检验学习效果。 (幻灯片出示下面各题)
在巩固练习阶段,还给学生学习的自主权,还给学生自我展示的空间。并通过比较,感悟计算方法的灵活多样,培养学生灵活运用所学知识解决生活中遇到的问题。在设计练习时,设计了有层次的练习题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”基本教学理念。
附:板书设计
乘法分配律
(a+b) × c = a × c+b × c
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。
教学目标
1.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。
2.使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。
教学过程
一、创设比赛场景,在活动中激趣
谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?
A组B组
(1)135×6+65×6(1)(135+65)×6
(2)9×37+9×13(2)9×(37+13)
在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?
A组B组
(1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125
谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)
小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!
谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?
【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】
二、创设活动情境,在合作中探究
1.交流算法,初步感知
(课件出示例题情境图)
谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?
(1)学生的选择方法1:买5件夹克衫和5条裤子
一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)
谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师巡视。
[教师板书:(65+45)×5=65×5+45×5],让学生读一读。
(2)学生的选择方法2:买5件短袖衫和5条裤子
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5
再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
[教师板书:(32+45)×5=32×5+45×5]
启发:比较这两个等式,它们有什么相同的地方?
2.深入体验,丰富感知。
现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。
在得数相同的两个算式中间的□里画“=”
(1)(28+16)×7□28×7+16×7
(2)15×39+45×39□(15+45)×39
(3)74×(20+1)□74×20+74
(4)40×50+50×90□40×(50+90)
(5)(125×50)×8□125×8+50×8
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)
谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)
学生举例并组织交流。(比较这些等式是否具有相同的特点)
3.反思学习,揭示规律
提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]
小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)
对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!
【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】
三、巩固内化知识,在实践中运用
谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!
1.大显身手
出示“想想做做”第1题,让学生在书上填一填。
师:第2题你是怎么想的?
小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]
2.生活应用
(“想想做做”第3题)
小结:说说两种方法的联系。
3.巧妙运用
(“想想做做”第4题)(同桌一人做一组,做在练习本上)
谈话:每组两道算式有什么联系?哪一题计算比较简便?
现在你知道上课开始时为什么B组同学算得快吗?
小结:乘法分配律可以使计算简便。
4.明辨是非
我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?
王小明这样计算:
(3+2)×(34+36)
=5×70
=350(人)
①观察一下,你赞同王小明的算法吗?为什么?
②要用乘法分配律,要有什么条件?
5.巧猜字谜
猜一猜,等号后边是三个什么字?
人×(1+2+3)=
6.大胆猜想
如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?
学生小组交流猜想。
谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!
教师组织、引导学生总结得出:
(a-b)×c=a×c-b×c
小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!
【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】
四、回忆梳理知识,在反思中总结
今天这节课,你有什么收获?
五、布置作业:“想想做做”第5题。
《乘法分配律的运用》教学设计及反思
教学目标
(一)使学生学会用乘法分配律进行简算,提高计算能力.
(二)培养学生灵活运用乘法运算定律进行计算的习惯.
教学重点和难点
能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计
(一)复习准备
1.口算:
(二)学习新课
我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)
1.创设情境,激发学生学习积极性.
出示102×( ).
请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.
2.教学例6:用简便方法计算.
(1)计算102×43.
这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一
做,对比一下,找出哪种方法简便.
在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
(2)计算102×24.
订正时说明怎样简算的?根据是什么.
(3)计算9×37+9×63.
启发提问:
①这类题目的结构形式是怎样的?有什么特点?
②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?
在学生充分讨论的基础上,师板书:
提问:这题能简算吗?什么地方错了?应怎样改?
启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.
2.根据乘法分配律把相等的式子用“=”连接起来.
讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?
在讨论基础上得出:
第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.
第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此
要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.
(四)作业
练习十四第5~10题.
教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。
教学内容:教材第8990页乘法分配律在口算中的应用,例6、试一试,练一练,练习十八第47题。
教学要求:
1.使学生认识乘法口算应用了乘法分配律,并能说明是怎样应用乘法分配律口算乘法。
2.使学生初步理解和学会应用乘法分配律进行简便计算的方法,能对一些乘法算式用简便算法正确计算,进一步培养学生采用合理、灵活的方法进行乘法计算的能力。
教学过程:
一、复习引新
1.复习乘法分配律。
(1)提问:什么是乘法分配律你能用字母式子来表示吗
反过来可以怎样说
(2)根据乘法分配律在横线上写出算式。
(40+7)x6=
4x(25+70)=
36x3+24x3=
5x72+5x28=
2.揭示课题。
提问:上面四道题,哪边的计算适合用口算左边的题用右边的方法算,是应用了哪种运算定律
指出:应用乘法分配律,就可以使一些计算用口算,比较简便。这节课就学习乘法分配律的应用(板书课题),使一些计算简便。
二、教学新课
1.乘法分配律在口算中的应用。
(1)口算23x4。
指名学生说一说23x4的口算过程,老师板书。
提问:我们学过的乘法口算的方法,应用了哪种运算定律谁来具体说一说,23x4是怎样应用乘法分配律的
(2)口算。
小黑板出示练习十八第4题,让学生口算,并说说是怎样应用乘法分配律的。
指出:我们做乘法口算时,是把几十几看做几十加几的和同几相乘,先算几乘几十和几乘几,再把两个积相加。这样算实际上应用了乘法的分配律。
2.教学例6。
(1)出示例6。
(2)教学第(1)题。
提问:103x32过去是用什么方法算的你能按照刚才口算的方法,把103看做两个数的和乘以32吗[板书:=(100+3)x32]
现在应用乘法分配律怎样算(板书完整的计算过程)这样算有什么好处
谁来告诉大家,这样计算是怎样想的
(3)用简便方法计算。
①304x22401x16
指名两人板演,其余学生分两组,每组一道,做在练习本上。
集体订正。
提问:这两道题应用乘法分配律用简便算法要先算什么,再算什么
②(30+4)x25
学生做在练习本上,然后口答计算过程,老师板书。
提问:这样算应用了什么运算定律这样算有什么好处
(4)教学第(2)题。
提问:这道算式有哪些运算已知数有什么特点(算式里是两个相乘的积相加;两个乘法的积里都有因数12,46加54的和是100)
根据乘法分配律,这道题怎样算比较简便为什么
学生口答计算过程,老师板书。
谁来说一说,这道题用简便算法是怎样想到的
(5)用简便方法计算。
38x7+62x756x29+56x3l
提问:这两道题都有什么特点你能用简便方法计算吗
指名两人板演,其余学生分两组,每组一道,做在练习本上。
集体订正。
提问:这两道题都有什么特点用简便算法计算时,都要把哪个数写在括号的外面(相同的因数)
3.教学试一试。
(1)出示35x9+35。
提问:35x9表示多少个35735x9+35是几个35再加几个357一共是多少个357
你能应用乘法分配律使这道题的计算简便吗(指名学生说说,这道题怎样算简便。提示学生把35看做35xl,就可以用乘法分配律)
板书计算过程。
追问:括号里的尸是哪里来的
让学生看书上这道题,口算出得数填在课本上。
(2)口算。
48x9+4826x19+26
37x49+3753x99+53
指出:像刚才这样的题,可以把加上的一个数看做与l相乘的积,反过来应用乘法的分配律,可以使计算简便。
三、巩固练习
1.练一练第2题。
指名三人板演,其余学生做在练习本上。
集体订正。让学生说一说每道题是怎样想的。
2.提问:这节课学习了什么内容哪些时候可以应用乘法的分配律使计算简便
指出:像刚才做的这三道题,当两个数的和同一个数相乘,应用乘法分配律可以用口算时,应用乘法分配律比较简便;当两个相
乘的积相加,如果有一个相同的因数,另外两个因数的和是整十、整百数时,把乘法分配律反过来应用,也可以使计算比较简便。
四、布置作业
课堂作业:练习十八第6题第二、三两行。
家庭作业:练习十八第5题第一行,第7题。
【教材分析】
乘法分配律教学是在已学习了乘法、加法交换律和结合律的基础上出现的,学习乘法分配律是为简便运算打下坚实的基础。
本节课的重点是让学生充分感知并归纳乘法分配律;难点是理解乘法分配律的意义并能运用乘法分配律进行简便计算。
【目标定位】
1、让学生经历乘法分配律的探究过程,理解并掌握乘法分配律,初步了解乘法分配律的应用。
2、在学习活动中培养学生的探究意识和抽象概括能力。
【教法运用】
为了实践以人为本的现代教学理念,切实改进课堂教学,我组织学生通过探索,自己去发
现问题,提出问题,从而解决问题,真正落实学生的主体地位。
【学情分析】
四年级学生已经具备初步的分析、比较、抽象、概括能力,并且学习数学的热情比较高,在课堂上喜欢发表自己的不同见解。为此,在教学这一课时,我注重发挥学生的优势,组织学生通过自主学习,合作探究,主动获取新知。
【教学准备】
多媒体课件。
【教学过程】
根据教学目标,依据学情,本节课的教学,我设计三个环节来进行:
第一环节:比赛激趣、启迪思维
“兴趣是最好的老师”,为了激发学生学习兴趣,在进行新课教学之前,我设计了男女生计算比赛活动。(放录像及课件)通过创设这样的计算比赛活动,学生初步感知了简便计算的一些规律,把学生置身于矛盾冲突之中,让学生发现问题,并迫切寻找解决问题的方法。
第二环节:引导探究、发现规律
这个环节的教学是本节课的教学重点。
教学时,我先出示书上的准备题。(出示课件例题)让学生用两种方法解答,学生们很快就得出了结果。接着引导学生对照计算的过程和结果进行分析。我们来听听学生是怎么说的。
(放录像)学生感受到了两组算式结果相等,但运算顺序不同,对这一规律有了进一步的认识。为了验证这一现象不是巧合,我再让学生在草稿纸上写出几组类似这样的等式并计算是否相等。
(放录像)学生写完后汇报,我将等式板书在黑板上,要求学生仔细观察等式两边算式,去领悟思考,寻求规律。
(放录像)为了让学生进一步加深对规律的认识,我接着设计了一道连线题。
(出示课件与录像)学生先仔细观察独立思考后,再小组同学之间说一说,议一议,当学生发现问题后我们一起来看学生们是怎么解决问题的。
(放录像)这样使学生在辨析与争论中,自然而然地完成猜测与验证,逐步加深对乘法分配律的认识。接着我又出示“找朋友”的游戏题。
(放课件)通过生动形象的课件演示,使学生感受乘法分配律的一个重要因素——公因素的作用;同时课件演示乘法分配律的反运用。再告诉学生们这种规律数学上我们把它叫作乘法分配律,并引导学生观察算式,同学间互相用自己的话说说什么是乘法分配律?
(放录像及课件)我们一起来看学生们是如何总结乘法分配律。
(放录像)尽管学生说的不是很完整,但他们在自己理解的基础上加以总结,体现了学生思维的过程。在学生总结的基础上我再揭示乘法分配的定义,并引导学生用字母表示出来,以便加深对乘法分配律的理解。(边放课件)
第三环节:拓展延伸、应用规律
定律发现后,为了让学生熟练掌握乘法分配律,体验规律的应用价值,我设计了这样一组题目:抢答题,必答题,自创题,风险题,让学生大胆尝试,并以小组为单位进行比赛。抢答题和必答题以基础题为主,体现正逆两方面,运用乘法分配律进行计算变形练习,让每个学生特别是潜能未开发的学生能体味到成功,有成就感;自创题是让学生自己相互当小老师,围绕乘法分配律出题目,相互进行检测;风险题是为了体现分层教学的要求,在运用乘法分配律时,把题目加深加难,激起优秀的学生求知欲望。第一题有的学生是这样说的,他发现算式里有相同的数139,把它提出来再乘剩下的几个数的和;第二题学生是这样理解的,199个25加1个25就是200个25。学生的回答是他们思维火花的迸发,这种发散题也为后面的教学作了铺垫。这样就保证了不同层次的学生在数学课上得到不同的发展。
【评价反思】
纵观这堂课,我认为这节课我在这几个方面把握得较好:
一是创设学习情境,引导学生自主探究、合作交流,实现学习方式的转变。上课伊始,我设计一个比赛活动激发了学生的学习兴趣和探究欲望,从而使学生积极主动地参与学习。主动探究是学生的天性。课堂上,我注意留给学生足够的时间和空间,让他们自主探究、合作交流。如出示连线题让学生分组讨论,归纳总结乘法分配律时也采用了小组合作学习。
二是珍视课堂动态生成,实现没有预约的精彩。课前在设计激趣这个环节时,只考虑到学生用简便算法计算速度快,没想到演板时会出错。面对这一情况我冷静处理,引导学生找出错误原因,从而让学生感受到简便计算不仅速度快,而且正确率高。
三是设计分层练习,让所有学生都得到发展。新课标明确指出:要观注学生的个体差异,使每一个学生都有成功的学习体验,得到相应的发展。因此我设计由易到难的练习题,让不同层次的学生都得到发展。
四是借助媒体演示,化静为动,变抽象为具体。教学中我合理有效地使用现代化教学手段。如多媒体演示:连线题、“找朋友”、乘法分配律字母公式等。使课堂教学生动有趣,有效地提高了教学效率。
当然,在这节课的教学中,还有一些未尽人意的地方。如评价方式有待进一步改进。对学生的评价比较单一,只是老师对学生能力的评价,没有让学生自我评价或生生评价;如果教师再多一些对学生的情感评价,学习过程的评价,我想这样更能调动学生的学习积极性。
老师们,“教学有法,但教无定法”。在数学教学这块花园里,我愿勤奋耕耘,虚心学习,进一步提高我的教学水平。
教学内容:
教材第48页探索与发现(三)。
教学目标:
(一)知识目标
1、过探索活动,进一步体会探索的过程和探索方法。
2、通过探索活动,发现乘法分配律,并用字母进行表示。
(二)能力目标
1、学习过程中,培养学生的探索意识和探索精神。
2、探索、交流过程中,培养学生发现问题、提出问题的能力。
3、培养学生观察、比较、抽象、概括能力。
(三)德育目标
体验数学与生活的密切联系,认识到许多实际问题可以用数学方法来解决,激发学生对数学的兴趣。
教学重点:
理解乘法分配律。
教学难点:
乘法分配律的应用。
教学方法:
1、猜测法;
2、验证法。
教具准备:
课件。
教学过程:
一、导课
应用乘法结合律进行简算
2745=8(725)=3425=
二、学习新课
1、师:学校在假期位每个班级的墙上都铺了瓷砖,咱们现在估计咱班东墙和北墙一共铺了多少块瓷砖,好吗?
2、学生汇报:有的说100块,有的说90块。
3、详细汇报
生1:我将瓷砖分成两部分,两部分的和就是瓷砖的总块数。列式是69+49=90(块)
生2:我也发现有90块,因为有10行瓷砖,每行9块。
生3:那么是不是说明69+49=(6+4)9大家说的对不对呢?再举一些例子验证一下吧。
4、请大家观察这些例子的左右两边,有什么特点?
生1:从左到右是相同因数乘不同因数的和。
生2:从右到左是相同因数分别乘不同的因数,再将它们的积加起来。
5、师:我们把乘法这样的规律叫乘法的分配律。如用A、B、C
表示三个数,你能写出乘法结合律吗?
6、(A+B)C=AC+BC叫乘法的分配律。
三、巩固练习
1、填一填
35(2+5)=352+35()(43+25)2=()()+()()
2、拓展练习
运用学的规律,将计算过程变得简便些。
20xx50=632547=
四、全课总结
这节课,你学到了那些知识?会用乘法分配律简便运算吗?
五、布置作业
第49页练一练第2、3题。
在教学过程中,老师教学的首要任务是备好教案课件,准备教案课件的时刻到来了。 学生的思维方式和逻辑可以通过课堂反应得出结论,怎样的教案课件算为优秀?这是栏目小编为您整理的有关“乘法分配律教案”的最新信息,欢迎大家把这份资料推荐给身边有需要的人让他们得到帮助!
1、交流算法,初步感知
提问:请同学们自己求一下新长方形的面积。
教师巡视,观察学生不同的解法
反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导
(课件出示两种解法)
谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?
学生自己写一写,请学生说一说,教师相机板书。
2、比较分析,深入体会
提问:算式左右两边有什么相同和不同之处呢?小组内交流。
反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。
设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。
组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。
3、规律符号化,揭示规律
提问:像这样的算式,写的完吗?
我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。
反馈引导学生用不同的方式来表达规律。
小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)
教学目标《乘法分配律》教学设计
知识与技能:引导学生探究和理解乘法分配律。
过程与方法:感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。
教学难点:乘法分配律的反应用。
教具学具:多媒体课件
教学过程
一、复习引入
前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?
今天这节课我们再来学习乘法的另一个运算定律。
二、新课探究
出示主题图:还记得我们提出的第三个问题吗?
参加植树的一共有多少人?
1、你怎样解决这个问题?列式计算
2、汇报:
第一种算法:先算每个小组里有多少人?
(4+2)×25
=6×25
=150(人)
第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。
4×25+2×25
=100+50
=150(人)
3、观察这两个算是有什么特点?
4、讨论,你得到什么结论?
5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。
6、小结:这个规律就是乘法分配律。
7、用字母怎样表示这个规律?
三、巩固练习
1、P27做一做
2、拓展:乘法分配律是否也适用于减法?
验证:18x5-5x8(18-8)x5
265×105-265×5265×(105-5)
结论:适用【2】教材分析:本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的`基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材将乘法分配律与传统的相遇问题有机地结合在一起,合理整合知识,让学生在解决实际问题的过程中理解乘法分配律,注重引导学生运用猜想、验证、比较、归纳等方法解决问题,提高教学效率。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
新的数学改革强调,现实的和探索性的数学学习活动要成为数学学习内容的有机组成部分。所以,我把本课的重点确定为引导学生发现乘法分配律及理解含义上;因乘法分配律不是单一的乘法运算,还涉及到加法运算,为此在理论算术中又称之为乘法的分配性质,理解起来有一定的难度,所以,我把本节课的难点也确定为理解掌握乘法分配律上。
学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算的基础上接着学习“乘法分配律”不会觉得太难,但是学生的概括、归纳能力还是一个薄弱的环节。
根据《大纲》要求,教学内容和学情,本节课我制定如下教学目标。
(一)知识目标:
学会解答相遇问题,在解答实际问题的过程中理解乘法分配律。
(二)智能目标:
借助已有经验和具体运算,初步学会用猜想、验证、比较、归纳等数学方法学习知识。
(三)情感目标:
使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。
在设计求平均数的教学时,利用问题情境,以解决问题为线索,让学生在独立思考、合作探究的过程中,充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动参与的学习。
本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。通过学生多思、多说、多练,积极参与教学的整个过程。
一、创设情境,激趣引入。
师:你了解我国高速公路的一些情况吗?山东境内有哪几条主要的高速公路?你
知道济青高速公路的情况吗?
学生在小组内交流课前收集的有关资料,师简要介绍我国及山东省高速公路发展
出示情境图,引导学生观察。你从图中得到了哪些信息?根据图中的信息你
本环节意在引导学生通过已有经验和具体运算,在观察、猜想、比较、归纳、验证、
与交流的数学活动中,理解乘法分配律。具体可分四步进行:
师::“济青高速公路全长约多少千米?”这个问题怎么解决?
时行驶的路程和。师根据学生的交流,进一步借助课件或画出线段图,表示出解决这个问题
的两种思路。学生独立列式计算,集体交流后,师适当板书。一种思路是先求每辆车分别行
驶的路程,再求公路的全长。110×2+90×2=400(千米)。一种是先求两辆车1小时行驶的
路程和,再求2小时行驶的路程和。(110+90)×2=400(千米)
学生思考交流,师引导学生重点从计算结果、算式的结构和计算方法上进行比较。
师:根据前面所学的定律,结合刚才的发现,你有什么想法?
学生交流,提出猜想。(110+90)×2和110×2+90×2可能相等。
3、验证猜想:
你们能想办法验证自己的猜想吗?
学生小组合作,举例验证,并进行记录,全班汇报交流。
两个加数分别与这个数相乘,再把积相加,这个规律叫做乘法分配律。学生仿照(110+90)×2和110×2+90×2写算式。验证揭示了这些例子共同特点,就是两个数的和乘一个数等于和里的每一个加数……在举例验证的过程中提示学生可以使用计算器。
4、用字母表示规律,
你能用字母把它表示出来吗? 学生尝试表示,师板书。
1、自主练习第一题,学生独立完成,订正时,指生交流是怎么链接的,为什么
这样链接?
2、第二题,学生独立完成,交流时说说这样填写的理由。
3、第三题,学生独立判断对错,在小组内交流结果,说说错的原因并将错误的
师:这节课上你有什么收获?你能评价一下你和小组同学的表现吗?
1、瞻前顾后填一填。
(10+7)×6=□×6 + □× 6
8×(125+9)=8×□+ 8×□
7×48+7×52=□×(□ + □)
2、火眼金睛看一看:
判断下面算式是否正确?并说明理由?
56×(19+28)= 56×19+28 ( )
32×(7×3)= 32×7+32×3 ( )
25×12+12×75 = 12×(25+75) ( )
25×99+25 =(99+1)×25 ( )
3、利用乘法分配律,计算下列各题。 ( 80 + 4 ) ×25 34 ×72 + 34 ×28 师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
4、找朋友
(10+6)×4 10 ×4+6 10 ×4+ 6 × 4
5 ×(7+9) 5 ×7+ 5× 9 5 ×7× 9
3 ×25+7 ×25 3+7×25 (3+7)×25
5、对口令
师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。
6、脑筋急转弯。
猜一猜,等号后边是三个什么字?
木×(1+3+2)=?
教学资料
课题名称 乘法分配律 学科 数学 总课时 1
单元章节名称 第三单元运算定律和简便运算 页码 36 执教者 彭素娟
版本名称 人教版 年级 四 册次 下册
教学分析
教材分析 乘法分配律的教学是继续由主题图引出的问题:“一共有多少名同学参加了这次植树活动”,透过让同学们分组讨论,自我探究及合作交流等方式,解决问题。再透过类比,让学生理解并概括出乘法分配律,初步体会使用乘法分配律,使计算相对简便一些。
教学目标 1?使学生理解和掌握乘法分配律并学会用字母表示。
2?培养学生分析?比较?抽象?概括的潜力。
3?培养学生自主探究,自主学习得出结论的学习意识。
教学重点 透过比较,对乘法分配律的归纳概括。
教学难点 对乘法分配律好处的理解。
教学准备
教具学具补充材料 导入投影片?主题图
教学流程(第1课时)
一?知识回顾
1?口答:说说什么是乘法交换律和乘法结合律?请用字母表示出来。
2?口算:40×23×25125×16
要求学生回答出结果,并口述在口算过程中,使用了什么运算定律?这样计算有什么好处?
二?类比感知
1?投影出示:
4×(5+8)8×(4+5)(7+6)×3
4×5+4×88×4+8×57×3+6×3
2?分组讨论:(1)上方各组算式的结果有什么特点?
(2)根据这个特点,每组中的两个算式能够怎样连接起来,用以表示它们的关系?
教师根据学生的回答,进行板书。
3?你能举出类似的例子吗?(学生自由回答)
【设计意图:透过让学生讨论举例,让学生初步体会出乘法分配律在形式上与前面学过的乘法的运算定律的不一样,对将要学习的乘法分配律先有个初步的认识】
三?质疑释疑,研究归纳
1?出示主题图,根据图中信息,让学生讨论,你想解决什么问题?
2?针对学生提出的问题,可根据状况给予解答。
3?提出例3的问题,进行分析和讨论。
4?学生独立列式解答。
5?群众交流不一样算法的解题思路。
方法一:(4+2)×25方法二:4×25+2×25
=6×25=100+50
=150(人)=150(人)
6?分析比较:观察两种算法有什么不一样?
7?建立表象:以上两种算法的结果怎样?(4+2)×25=4×25+2×25
8?你还能举出类似的例子吗?(教师可根据学生的回答作适当板书)
9?探究规律:
结合以上几个等式,让学生分组讨论:
(1)这些等式的左边是怎样的?右边呢?
(2)结果又怎样?
(3)从以上你发现了什么规律?
如果学生在语言表述上有困难,教师可给予适当的提示。
(4)你能再举出乘法分配律的例子吗?
(5)能用字母表示吗?
(6)抢答:a(b+c)=?
(7)归纳乘法分配律并板书课题:乘法分配律
四?知识巩固
1?在里填上适当的数。
(23+25)×4=×4+×4
18×(31+16)=18×+18×
(25+26)×a=×+×
53×a+47×a=+×a
48×a+×b=×(a+b)
25×36+25×64=25×+
2?连线
(25+24)×5(25+75)×16
25×16+16×75a×b+a×c
a×(b+c)a×c+b×c
(a+b)×c25×5+24×5
五?课堂总结
这天我们学习了什么知识?它与乘法的交换律和结合律有什么不一样?
六?知识拓展
你会算吗?
111×999999×222+333×334
【设计意图:放手让学生探究,透过学生自主学习,培养他们的成就感,激发他们的学习兴趣】
七?作业:教材38页6?7。
板书设计
乘法分配律
乘法交换律:a×b=b×a乘法分配律:(a+b)×c=a×c+b×c
乘法结合律:(a×b)×c=a×(b×c)(4+2)×25=4×25+2×25
=6×25=100+50
=150(人)=150(人)
学生举例;……
……
……
教学目标:
1、通过经历探索乘法分配律的活动,发现并理解乘法分配律。
2、通过观察、分析、比较,培养学生初步的分析、推理、抽象概括能力。
3、渗透“从特殊到一般”的数学思想和方法。
教学重点:指导探索乘法分配律。
教学难点:发现并归纳乘法分配律。
教具:课件
教学过程:
一、创设情境,生成问题。
师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?希望今天通过我们的努力,能有新的发现。
出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?
师:你能用几种方法解答?
生1:(72+28)×2
生2:72×2+28×2(板书两个算式)
师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选择其中的一个算式计算一下。
生计算。
师:请选择第一个算式的同学,说出你的计算结果。
生:长方形的周长是200米。
师:谁选择的第二个算式,结果又是多少呢?
生:我算的结果也是200米。
师:通过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?
生:可以
板书:(72+28)×2=72×2+28×2
出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?
师:这道题你有能用几种方法解答?结果是多少?
(生计算,汇报)
生1:我列的'算式是32×64+18×64,结果是6400元。
师:有没有用不同的方法的?
生2:我列的算式是:(32+18)×64,结果也是6400元。
师:两种不同的方法,得出的结果却是相同,那这两个算式看来也是相等的。
板书:(32+18)×64=32×64+18×32
师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?
生:可能有规律。
师:真的有规律吗?
二、探索交流,归纳规律。
师:刚才同学们感觉到这两个等式中含有规律,下面把你的想法在小组内交流一下吧。
师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?
生:不能。
师:那该怎么办?
生:找更多的这样的等式。
师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。
(生举例验证)
汇报:
生1:(3+2)×5=3×2+2×5
师:你计算过了吗?
生1:算了,两边的结果都是30.
师:很好,其他同学还有吗?
生2:(30+50)×5=30×5+50×5
生3:(24+76)×2=24×2+76×2
……
师:同学们都找到了这样的式子吗?
生:是。
师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,可是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够判断两个式子的结果是否相同?
(生思考)
生:老师,我能。
师:你说说看。
生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果一定是相等的。
师:同学们,你听明白了吗?
生:明白了。
师:那你能用这个思路说说你举得例子吗?
生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4
……
师:现在我们再来思考,有没有可能像这样的式子两边不相等?
生:不可能,两边的结果一定相等。
师:这么看来,同学们猜测的那个规律是真的存在,你能用自己的方式表示出你认为的规律吗?
生1:(我+你)×他=我×他+你×他,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。
生2:(爸爸+妈妈)×我=爸爸×我+妈妈×我。
生3:(A+B)×C=A×C+B×C
生4、(a+b)×c=a×b+a×c
生5、(○+□)×◎=○×◎+□×◎
师:同学们真了不起,通过努力验证了这个规律,你觉得用那一种表示这个规律更好一些?
生:第三个用小写字母的那一个。
师:你为什么觉得这个好?
生:这样简单好记,而且前面学的交换律和结合律也是用字母表示的。
师:我也同意你的观点,这就是咱们数学的简洁美的体现。这个规律就是乘法的分配律。读一读这个式子。
(通过读式子,完善语言表达)
三、巩固应用,内化提高
1、火眼金睛,判对错。
56×(19+28)=56×19+28
64×64+36×64=(64+36)×64
32×(3×7)=32×7+32×3
2、思维敏捷,连一连。(把结果相同的两个式子连起来)
①(42+25+33)×26 ①20×25+4×25
②36×15-26×15 ②(66+34)×66
③66×66+66×34 ③42×26+25×26+33×26
④38×99+38×1 ④(36-26)×15
⑤(20+4)×25 ⑤38×(99+1)
师:相等的式子我们都找到了,请你选择其中的一组计算出它们的结果。
生1、我算的是(20+4)×5=20×25+4×25,结果是600.
师:你是把两边的式子都计算了吗?
生1:没有,我是算的右边的那个式子。
师:你为什么没用左边的式子计算呢?
生1:右边的那个式子计算起来简单。
师:看来乘法分配律还可以用来简便计算,提高我们的计算速度。
生2:我算的是38×99+38=38×(99+1),结果是3800,我算的是右边的那个式子,右边的括号里是100,38×100好算。
师:大家来观察这个式子,这是我们发现的那个乘法分配律吗?
生1:不是.
生2:是,就是把它给倒过来用的。
师:是的,这是乘法分配律的逆应用,也可以用来简化计算。
生3:我算的是36×15-26×15=(36-26)×15,结果是150,是通过右边的式子计算出来的,那样简便。
师:看了这个等式,你有什么想说的?
生:我们刚才做的都是带“+”的,可是这个是“-”。
师:看来我们的乘法分配律还有新的内涵呢。
补充板书:(a-b)×c=a×c-b×c
师:有没有计算(42+25+33)×26=42×26+25×26+33×26这个等式的?
生4:我算了,结果是2600,算的是左边的那个式子。
师:看了它,你有没有想说的?
生:刚才我们做的都是两个数的和与一个数相乘,这个题是三个数的和与一个数相乘。
师:如果是4个、5个数、更多数的和与一个数相乘,还能用分配律吗?
生:能。
3、合理选择,算一算。
312×12+188×12
101×87
(53+47)×23
四、拓展延伸,引发思考。
这节课我们共同来研究了乘法分配律,除法有没有分配律呢?
板书:(a+b)÷c=a÷c+b÷c ?
同学们可以课后用我们今天研究乘法分配律的方法进行验证,总结。
五、总评:
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。在本节课教学设计上教师注重了从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,通过让学生用两种不同的方法解决实际问题,在两个不同的算式之间建立起联系,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,让学生写出符合规律的式子,引导学生在研究讨论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。让学生亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习到了科学探究的方法,数学思维能力得到了发展。
乘法分配律教案人教版乘法分配律教学设计
乘法分配律是小学阶段的一个非常重要的运算定律,也是学生最难掌握的一个运算定律。下面是学习啦为你的人教版乘法分配律教学设计,一起来看看吧。
人教版乘法分配律教学设计
【教学内容】
人教版四年级下册课本36页例3. 【教材与学情定位】
本内容是人教版四年级下册四则运算之中的一个规律性知识,是在学生学习认知了加减乘除各部分之间的关系和加法、乘法交换律、结合律之后的知识内容,其承载了 “两个数的和与一个数相乘,可以把这两个数分别同这个数相乘”的内容,学生计算起来容易出现问题或者错误,总是会把其中一个加数与因数相乘,却把另外一个加数忽略。
【设计理念】
1、乘法分配律在学习两位数乘一位数的乘法口算、笔算以及两位数乘两位数的笔算教学中已经有所渗透。乘法分配律的学习是否可以由此引入,由此加强与学生已有知识基础的联系,运用知识的正迁移,解决学生对乘法分配律难理解,易用错的问题。
2、乘法分配律到底难在哪里?是学生体验不到成功,还是乘法分配律作为简便运算的一个方法而不能体现其简便性。如果是又当如何体现,其教学的临界点在哪里? 2、乘法分配律必须在学生了解了乘法交换律和结合律的基础上进行吗?通过两位数乘两位数的乘法计算是否可以进行导入?如果可行,是不是我们在一年的教学中把‘花开两朵单表一枝’做的太过了而忽略了另一只鲜花的存在? 【教学目标】
1、通过观察、分析、比较,引导学生概括、理解并且掌握乘法分配律,体会到乘法分配律作为一种简便运算的手段的可实行性和其存在的必然性。
2、通过观察、分析、比较,培养学生概括、分析、推理的能力。通过观察、分析、比较,培养学生概括、分析、推理的能力。
【教学重点】
【教学难点:】
1.理解乘法分配律,体会其优越性。
2.乘法分配律应用中出现的问题如何有效突破。
【教学过程】
1、同学们我们前面学习过两位数乘两位数,
出示:25×14= 算式表示什么意义?(14个25是多少。)你能计算这个题目吗?(能)完成在练习本上。
(师把25×14写在黑板左侧,指生上展示台展示自己的书写过程,并分别说明100是怎么求的?250呢?教师把学生的想法记录在展示本上) 过程:25 ×14 100 25×4 25 25×10 350 问及全班,相同计算过程与结果的举手,师边走边问回到黑板刚才我们怎么计算的?100=25×4,再算250=25×10,然后把它们的积+起来,顺手板书(注意前后顺序先写右侧25×4,在写25×10最后写‘+’号)。注意看,前面明明是25×14,怎么在右侧却变成了25×10 和25×4?(实际上是把14分成了10+4的和) 师随生动:14分成(10+4)的和乘25 指25×14表示什么?14个25是多少
指(10+4)×25表示什么?14个25是多少? 指10×25+4×25表示什么?14个25是多少? 可以画等号吗?可以
那下面这几个算式表示什么?也可以这样写吗? 【设计意图】
本环节设计主要是通过两位数乘两位数竖式计算算理的研究,打通与乘法分配律的关系,初步建立知识的感知。
出示15×12= 23×16= 学生观察:发现都是两位数乘两位数的运算,表示可以。
师指生描述算式的含义并由学生独立完成算式转换。 学生通过验证认识到:
15×12=(10+2)×25=10×15+2×15 23×16=(10+6)×23=10×23+6×23 16×25=(10+6)×25=10×25+6×25 现在还想等吗? 15×12=(10+2)×25=10×15+2×15 23×14=(10+4)×23=10×23+4×23 16×25=(10+6)×25=10×25+6×25 生:相等。
师:为什么?谁能说明白为什么仍旧相等?等号左边表示什么右边又表示什么? 生:等号左边表示10+4的和个23就是14个23是多少;右边10个23+4个23是多少。两边都是14个23是多少,所以相等。
师:读一遍等式,体会等式的意义。(此处不去小结,让学生初步意会到,但是不适合言传) 【设计意图】
本环节意在学生初步感知乘法分配律的意义存在,通过等号左右两边的关系和意义说明乘法分配律的存在的意义与其存在的实际价值。
师:同学们如果给你写出左边的算式,你能推导出右边的算式吗? 生:可以。 2、出示三道练习题目,(完成在练习本上)引导学生探究发现、总结规律 (20+3)×37= (10+9)×23= (32+25)×74= 学生写出正确的右半边后教师引导学生观察黑板和屏幕上全部内容,等号左边和右边有什么相同和不同吗?你发现了什么? 生可能发现:左侧先算加法,再算乘法,右侧先算乘法再算加法; 左侧三个数,右侧四个数; ……
小结:两个数加起来的和乘第三个数,就等于这两个数分别乘第三个数,然后把乘积加起来。
【设计意图】
通过仿写,学生体会乘法分配律的意义和作用。深刻认知‘分别’的含义。
师抓住第二条,对呀,怎么多了一个数还想等?引导学生发现,屏幕红色字体呈现以(20+3)×37=为例说明是左侧括号里面的数分别乘括号外的数,所以多了一个。你能说出一组符合这个规律的数吗? 生一:(10+5)×74=10×74+5×74 同意的举手,鼓励的掌声送给他
生二:(10+7)×52=10×52+7×52 生三:(10+9)×24=10×24+9×24 生四:(30+2)×52=52×30+52×2 【设计意图】
师:能说完吗?不能,看来这个层次的大家都没问题了,我出一个你会做吗?下面内容分层出示,体现知识层次性。 (16+△)×51= (△+■)×○= 引导出字母形式: (a+b)×c= 师:观察和班上和屏幕上的所有式子,你发现了什么?(可以进一步引导有规律吗?),同桌交流---组内交流(教师深入小组参与交流),全班交流。
【本环节学生必须充分的讨论,争论,作为教师必须在学生的练习中找到问题,并及时全班范围内解决。】
汇报时学生说的意思对就可以,多组汇报之后,逐步修正成比较完善的说法。教师出示规范的说法,学生自己说一遍,同桌互说一遍
小结:刚才我们从两位数乘法入手逐步发现:两个数的和乘一个数,可以把两个数分别同这个数相乘再相加,得数不变。这就是乘法分配律。
字母形式:(a+b)×c=a×c +b×c 也可以写成a×(b+c)=a×b+a×c 【设计意图】 本环节实现从数字到图形到字母形式再到文字表达形式的转化,提高认知难度的同时开拓新的只是先河,为五年级用字母表示数打下初步基础。
3、看谁算的又对又快: (4+6)×27 ○ 4×27+6×27 (14+86)×39 ○14×39+86×39 (100+1)×37○100×37+1×37 3×62+5×62+2×62= 集体订正,说学生的做法,怎么做的?怎么想的! 【设计意图】通过学生自己计算,感悟、发现乘法分配律作为一种简便运算的手段的优越性和可行性! 4判断:
(1)(36+27)×5=36×5+27×5 ( ) (2)(13+79)×12=13+79×12 ( ) (3)(34+61)×43=34×61+43 ( ) (4)(2+4+3+1)×5=2×5+4×5+3×5+1×5 ( ) 手势表示,对的举对号,错误的举起十字。
【设计意图】本环节意在学生判明乘法分配律易错题目的认知,避免今后的练习中出现类似的错误。 5、情景剧:生活中的握手问题: 两个学生到老师这里来看望老师,进门需要握手,通过握手分别对以上题目进行展示,让学生进一步感知为什么不对,把知识做到最大程度的内化。
【设计意图】学生在今后的解决问题中难免碰到类似的错误,如何更加有效地突破其难点,设计一个小情景剧,学生一旦出现类似的错误,只要想起握手问题,将会很容易改正,有效的突破手段。 6、全课小结:这节课我们共同研究了乘法分配律,你能举例说明什么样的算式才符合乘法分配律吗,乘法分配律你会应用了吗? 师:透露个小秘密,这是我们四年级下学期的内容,距离我们还很远,而我们却掌握了这个规律,最后一次把热烈的掌声送给自己。
人教版乘法分配律教学反思
在全校领导和数学教师的帮助和支持下,乘法分配律得到了比较好的呈现和展示,课堂中展示了如下几个亮点:
一、从两位数乘两位数的乘法过渡到乘法分配律是可行的。
自我感觉这样的设计更有利于学生思维的发展,学生在今后的学习中碰到乘法分配律问题完全可以退一步,来更加有效地解决实际问题,譬如学生碰到101×37 99×26等等类似的题目计算起来将更加游刃有余,从而最大程度上避免错误的发生。
二、实现了从数字到图形到字母的自然过渡。
这样的设计与执行,教师的导引学生的观察,而后的给左写右,然后的仿写,说一说。整整操作过程以庞大的数据说明问题,很大程度上自然有序的实现了从数字到图形到字母形式的转化,这个阶段奠定了学生对于乘法分配律基础的理解和其字母形式的最初也是最真实的认知,有利于学生知识连续性的发展和练习中的应用。
三、情景剧的适时引入,促使学生认知更上层楼
生活中的握手问题与乘法分配律有异曲同工之妙,为此,在判断部分加上情景剧,其主要目的是提前的预见性,在学生没有形成问题的时候,我们预感到这里会出现问题而提前预设,从而生成学生的纠错能力,很大程度上提升了学生的学习力。
四、评价给力,激发学生思维
“良言一句三冬暖,恶语伤人六月寒”,教师一句肯定性的评价,一个赞赏的目光,一个给力的动作都会让我们的学生感到教师的鼓励,给自己的鼓舞。正是这样的兴奋才能促使孩子又不断地想法不断迸发出来,去发展,去实现教师所希翼的内容甚至还能出现更高的突破性发展,这正是良性评价的优点,也正是我在课堂上所使用的,这只需要我们教师适时的适度的给孩子们一个合理的良性的评价,而不是哗众取宠,为了评价而评价。
存在不足:
一、细节之处仍存有瑕疵。
个别之处感觉总是不尽人意,很大程度上感觉放不开,不敢放开,这样的感觉制约了课堂的发展,同时制约了学生主体性的发展,也是我今后教学中需要改进的地方,这需要我们做好积淀的同时,给学生一个个升华的机会和时间以及空间,让他们真正的能够当家作主,用他们的语言进行阐述,进行思考。 二、落实上面书写部分尚显弱化。
为了避免学生出现不听课现象,我大力落实学生听课制度,让学生在课堂上最大程度的关注黑板,关注教师,关注其他同学的发言。这样确实提高了学生听得质量,课下反馈,学生听得不错,但是回头考虑,学生写的能力却被忽略,被弱化,长此以往对学生反而会造成另一个极端的不良现象,这更不是我想要的。需要我在今后的教学工作中,掌握好听与写的度,把握好时间分配,提高自己课堂组织能力,给学生一个全方位的发展机会和机遇,让他们在课堂上真正能够玩的开心,听得进去,说得出来,写的正确。保证人人学习不同的数学,人人得到不同的发展,人人学习有意义有价值的数学。
研修将全面结束,磨课已经接近尾声。而我们的教学却在新的平台上全面铺开,作为一线教师,需要我们以研修的精神为引领,以磨课的态度对待平时的每一节课,使我们的每节课尽量精品化,教师和学生能力增长化。让进步成为一种习惯,让成功一次次倍增叠加。
认知不当之处万望批评指正,不胜感激。谢谢! 猜你感兴趣的:
1.乘法分配律教学设计 乘法分配律说课稿 3.五年级上册数学简易方程教学设计 4.分数乘法简便计算教学设计和教学反思 5.长方体正方体表面积优秀教案设计
内容仅供参考
乘法分配律教学设计(共4篇)
“乘法分配律”教法和难点分析
《乘法分配律》说课稿
《乘法分配律》试讲稿
乘法结合律教学设计
教学目标:
1、通过经历探索乘法分配律的活动,发现并理解乘法分配律。
2、通过观察、分析、比较,培养学生初步的分析、推理、抽象概括能力。
3、渗透“从特殊到一般”的数学思想和方法。
教学重点:指导探索乘法分配律。
教学难点:发现并归纳乘法分配律。
教 具: 课 件
教学过程:
一、创设情境,生成问题。
师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?希望今天通过我们的努力,能有新的发现。
出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?
师:你能用几种方法解答?
生1:(72+28)×2
生2:72×2+28×2(板书两个算式)
师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选择其中的一个算式计算一下。
生计算。
师:请选择第一个算式的同学,说出你的计算结果。
生:长方形的周长是200米。
师:谁选择的第二个算式,结果又是多少呢?
生:我算的结果也是200米。
师:通过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?
生:可以
板书:(72+28)×2=72×2+28×2
出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?
师:这道题你有能用几种方法解答?结果是多少?
(生计算,汇报)
生1:我列的算式是32×64+18×64,结果是6400元。
师:有没有用不同的方法的?
生2:我列的算式是:(32+18)×64,结果也是6400元。
师:两种不同的方法,得出的结果却是相同,那这两个算式看来也是相等的。
板书:(32+18)×64=32×64+18×32
师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?
生:可能有规律。
师:真的有规律吗?
【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】
二、探索交流,归纳规律。
师:刚才同学们感觉到这两个等式中含有规律,下面把你的想法在小组内交流一下吧。
师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?
生:不能。
师:那该怎么办?
生:找更多的这样的等式。
师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。
(生举例验证)
汇报:
生1:(3+2)×5=3×2+2×5
师:你计算过了吗?
生1:算了,两边的结果都是30.
师:很好,其他同学还有吗?
生2:(30+50)×5=30×5+50×5
生3:(24+76)×2=24×2+76×2
……
师:同学们都找到了这样的式子吗?
生:是。
师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,可是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够判断两个式子的结果是否相同?
(生思考)
生:老师,我能。
师:你说说看。
生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果一定是相等的。
师:同学们,你听明白了吗?
生:明白了。
师:那你能用这个思路说说你举得例子吗?
生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4
……
师:现在我们再来思考,有没有可能像这样的式子两边不相等?
生:不可能,两边的结果一定相等。
【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】
教案课件既关系到教学步骤,也关系到教学的课程标准,但教案课件不是随便写写就可以的。要知道一份完整的教案课件,可以避免忘记教学过程的知识点。如何才能写出好教案课件呢?下面是小编为大家整理的“乘法交换律的教案8篇”,请在阅读后,可以继续收藏本页!
教学目的:
使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。
教学重点:
乘法的意义及乘法交换律的运用。
教具准备:
幻灯、幻灯片。
教学过程:
一、复习。
1、口算。
13460305040
245234264
3012127173
2、竖式计算。
1251830536
二、新授。
1、引出课题
乘法的意义和乘法交换律。
2、乘法的意义
(1)出示例1用鸡蛋盘放鸡蛋,如图(略)一盘可以放几个鸡蛋?
根据学生的回答板书:
用加法计算:5+5+5+5+5+5=30(个)
或:6+6+6+6+6=30(个)
用乘法计算:56=30(个)
或:65=30(个)
答:一盘可以放30个鸡蛋。
(2)引导学生比较两种方法。
师:第一种用加法,第二种较简便。故求几个相同加数的和的简便计算,叫乘法。乘号前面的数叫被乘数,乘得的数叫做积,被乘数和乘数又叫做积的因数。
(3)一个数和一相乘仍得原数。
一个数和0相乘都得0。
3、乘法交换律。
让学生观察例1。用乘法算的两种算式,有什么相同点与不同点?
师最后概括。
相同点:得数和相乘的两个数都相同。
不同点:两个因数的位置交换了。
两数相乘,交换因数的位置,积不变,这叫做乘法交换律。
用字母表示:ab=ba
师:前面我们曾经使用交换因数的位置的方法进行验算,这实际上就是应用了乘法交换律。
三、巩固练习。
1、应用乘法的意义说明下面各题为什么用乘法计算。
(1)一幢宿舍楼有6个单元,每个单元可以住15户,一共可以住多少户?
(2)一头牛重500千克,一头大象的重量是这头牛的10倍。这头大象有多重?
2、根据运算定律在下面的□填上适当的数。
1232=32□341=□□
□a=□1002574=□□7
3、计算下面各题,用交换因数的位置的方法进行验算。
3225105424
教学内容:
P34/例1(乘法交换律)例2(乘法结合律)
教学目标:
1.引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学过程:
一、主题图引入
观察主题图,根据条件提出问题。
(1)负责挖坑、种树的一共有多少人?
(2)一共要浇多少桶水?
学生在练习本上独立解决问题。
引导学生观察主题图。
根据学生提出的问题,适当板书。
二、新授
引导学生对解决的问题进行汇报。
(1)425=100(人)
254=100(人)
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:交换两个因数的位置,积不变。这叫做乘法交换律。
能试着用字母表示吗?
学生汇报字母表示:ab=ba
我们在原来的学习中用过乘法交换律吗?在验算乘法时,可以用交换因数的位置,再算一遍的方法进行验算,就是用了乘法交换律。
根据前面的加法结合律的方法,你们能试着自己学习乘法中的另一个规律吗?
教师巡视,适时指导。
(2)(255)225(52)
=1252=1025
=250(桶)=250(桶)
小组合作学习。
①这组算式发现了什么?
②举出几个这样的例子。
③用语言表述规律,并起名字。④字母表示。
小组汇报。
教师根据学生的汇报,进行板书整理。
三、巩固练习
P35/做一做1、2
四、小结
学生小结本节课的学习内容。
教师引导学生回忆整节课的学习要点。
完善板书。
五、作业:P37/24
板书设计:
乘法交换律和乘法结合律
(1)负责挖坑、种树的一共有多少人?(2)一共要浇多少桶水?
254=100(人)425=100(人)(255)225(52)
254=425=1252
=1025
┆(学生举例)=250(桶)=250(桶)
(255)2=25(52)
┆(学生举例)
交换两个因数的位置,积不变。先乘前两个数,或者先乘后两个数,
这叫做乘法交换律。积不变。这叫做乘法结合律。
ab=ba(ab)c=a(bc)
课后小结:
第五课时:教学内容:
乘法交换律和乘法结合律练习课
教学目标:
1.能运用运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学过程:
一、基本练习
(1)口算:
502=1005020=1000
254=100258=20xx512=3002540=1000
1258=100012516=200
12524=300012580=10000
通过刚才的口算,你们很快就算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?
板书:522541258
(2)在□里填上合适的数。
3067=30(□□)
125840=(□□)□
(3)计算:
4325425434
比较两道题,在运用乘法运算定律时有什么不同?
在讨论的基础上,启发学生总结出:第1题只应用乘法结合律把后两个数相乘,就可以使计算简便;第2题要先用乘法交换律把4放在前面,使25与4相乘,或把25放在43的后面,使25与4相乘,然后再用乘法结合律,使计算简便。
小结:用乘法结合律进行简便计算有两种情况:一种是单独运用乘法结合律使计算简便,一种是两个运算定律结合使用,使计算简便。关键要掌握运算定律的内容,根据题目的特点,灵活运用运算定律。
引导学生在对比中加以区分。
(4)师生比赛,看谁直接说出结果速度快。
25424681258
43925
(5)对比练习:
425+1625
4251625
(25+15)4
(2515)4
4625
(40+6)25
4949+4951
4999+49
(68+32)5
68+325
学生小组分工后独立完成,再进行小组内交流。
汇报。
二、小结
学生谈收获。
课后小结:
教学目的:使学生进一步掌握乘法交换律和乘法结合律,会应用运算定律进行简便运算。教具准备:把下面复习运算定律用的复习题写在黑板上
教学过程:
一、复习所学过的运算定律
1.教师出示复习题:根据运算定律在下面的横线上填出适当的数。
1.26305=305
2.(2468)125=246(8)
3.214+678=678+
4.225+(75+437)=(225+75)+
先让学生看清题目,再提问:
第一小题,横线上应该填什么数根据什么运算定律?
乘法交换律说,两个数相乘,交换两个因数的位置,什么不变
第二小题呢
乘法结合律说,三个数相乘,先把前两个数相乘,再同第三个数相乘,还可以怎样乘,它们的积不变
第三小题,横线上应该填什么数根据什么运算定律?
第四小题呢
乘法和加法都有交换律,它们有什么相同的地方有什么不同的地方学生讨论以后,教师指出:乘法交换律和加法交换律都是交换了要计算的两个数的位置,交换前和交换后计算的结果都不变。只是加法交换律交换的是两个加数,交换前与交换后两个数的和相等;乘法交换律交换的是两个因数,交换前与交换后两个数的积相等。
如果用a、b代表两个数,怎样表示加法交换律和乘法交换律?学生加答后教师板书:
加法交换律:a+b=b+a
乘法交换律:ab=ba
乘法和加法都有结合律,它们有什么相同的地方有什么不同的地办学生讨论后,教师指出:乘法结合律和加法结合律都是说的三个数的运算规律;乘法结合律是先把第一个数、第二个数相乘,再同第三个数相乘;或者先把第二个数、第三个数相乘,再同策一个数相乘,它们的积不变;加法结合律是先把第一个数、第二个数相加,再同第三个数相加,或者先把第二个数、第三个数相加,再同第一个数相加,它们的和不变。
如果用a、b、c代表三个数,怎样表示加法结合律和乘法结合律?学生生回答后教师板书:
加法结合律:(a+b)+c=a+(b+c)
乘法结合律:(ab)c=a(bc)
二、做练习十三的第13-16题。
1.第13题,是要求学生按照运算定律来判断哪些算式是正确的。先让学生独立思考一下,然后再集体讨论哪些是正确的,还要说一说为什么。其中第2、3小题符合加法交换律,第4小题符合乘法交换律都是正确的;第6小题因为交换的是两个因数是正确的。第1小题和第5小题,虽然等号两边算出的结果相等,但不符合运算定律。
2.第14题,先让学生自己看题,独立思考,再集体讨论。这一道题中的第1、3、4小题都是正确的,第1和策4小题都符合加法交换律和结合律,第3小题符合乘法交换律和结合律;第2小题是不对的,这一题先计算的是16和49然后才能把两个乘积加起来,如果把6和4交换,它既不符合加法交换律,也不符合乘法交换律,所以这个算式是不正确的。
3.第15题,先让学生独立完成,然后再集体核对,核对时可以多让几个学生说一说是怎样做的,比较一下怎样做更简便。
4.第16题,先让一名学生读题,提问:
这道题有什么要求学生回答后,教师再明确指出:这造题在填表时,都要把每组的数和第一组的数比较一下,再着一看因数有什么变化,积有什么变化。然后让学生做在自己的书上。
四、作业。
练习十三的第17题。
教学内容:小学数学第七册第61-62页。
教学目标:
1、让学生探索乘法交换律和乘法结合律的过程,理解并掌握规律,并能应用规律进行一些简便的运算。
2、培养学生灵活选择和应用乘法交换律和乘法结合律的能力,增强数学的应用意识。
3、培养学生研究、比较、分析、综合和归纳、概括等思维能力,体会学习数学的乐趣。
教学过程:
一、复习引新
1、学生口算练习。
2、谈话:你们已经学习了哪些加法运算定律?你会用字母表示加法交换律和结合律吗?
乘法有类似的运算定律吗?
二、猜测、探索
1、大胆猜测。
猜一猜,乘法有哪些运算定律?
2、学习乘法交换律。
(1)情景导入题意。
你们喜欢踢毽子吗?看,(出示例题图)这些同学在开展踢毽子比赛呢!
教师:题目的条件和问题分别是什么?
学生说出条件和问题后,教师要求学生编出一道完整的应用题。
(2)计算推导过程。
要求学生独立列式计算。
引导学生得出:53=35
让学生猜测这种运算律的名称,并让学生用自己的语言表述规律:两个数相乘,交换乘数的位置,积不变。
指导学生用字母表示乘法交换律:ab=ba。
(3)填空促进体验。
156=6()()46=()54
□0=()()a8=()a
3、学习乘法结合律。
(1)教师出示例题:
华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加,一共有多少人参加比赛?
(2)学生独立列式,并说出解题思路。
第一种思路:
先算出一个年级参加的人数,再算出6个年级一共多少人。
(235)6
第二种思路:先算出全校有多少班级,再算一共有多少人。
23(56)
由此得出:(235)6=23(56)
请学生仔细观察:等号两边的算式有什么异同点?
(3)小组学习。
①独立写出两个这样的算式。
②组内交流等式,仔细观察,互相说说发现的规律。
③一起给这个规律取名。
④讨论并写出用字母表示的等式。
教师板书:乘法结合律:(ab)c=a(bc)
(4)做想想做做第3题。
要求学生说出做得快的诀窍。
4、试一试。
学生独立尝试,指名板演。
集体讲评。重点讨论第2题应用了什么运算律?
三、巩固应用。
1、想想做做第1题。
学生独立完成并汇报,说一说运用了什么运算律?
2、想想做做第2题。
先计算,再比较。
讨论:每组中哪一道算是计算比较简便,它们有什么特点?
四、全课小结。
这节课学习了哪些知识?你有什么收获?
五、课堂作业
第62页想想做做第4题。
教后反思:
乘法交换律和乘法结合律以及相关的简便运算,是在学生学习了表内乘法及两位数乘两位数的验算方法的基础上,并经过加法交换律和加法结合律的铺垫上进行教学的,所以学生通过前两课所学的加法运算定律这一新旧知识迁移的生长点,学生在轻松愉快的氛围中,理解和掌握了本节课的知识内容。本节课的教学内容比较枯燥,也比较乏味。因此在教学过程中,创设了一些教学情境,用贴近学生生活的场景,激发学生的情感冲动,产生学习数学知识的欲望,使学生由感知感觉感受的内化过程向表述表现表达的外化过程进行转换,在知识传授的过程中注意了学生能力的培养,因此取得了比较好的教学效果。
要求学生回忆一下上一节课学过的乘法的运算规律。
(我们上节课学习了《乘法交换律和乘法结合律》,那么,大家回忆一下,乘法交换律和乘法结合律的公式又是什么呢?)
1、由生活引入,通过对话的形式与学生共同探讨交换的含义。
数一数:本班男生的人数和本班女生的.人数,求本班一共有多少人?
结果无论哪一种计算方法,计算出来的结果都是相等的。
让学生列出不同的算式,分析比较两个算式的共同点和不同点。
突出强调“交换”的意思。结果表明:两个式子的加数交换了位置,但和不变。再要求学生自己举一两个例子来试试看。
2、出示题目:同学们的课间活动很丰富,看,有28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子,参加活动的一共有多少人?
方法一:先算跳绳的一共有多少人:28+17人,再算全部的人数:(28+17)+23人。
方法二:先算一下女生,再算一下他们加起来一共是多少人:28+(17+23)人。
结果表明,计算出来的结果都是相等的。
3、再举书本中的例子来说明结合的两个数的条件和原因。
=(50+40)+(7+9)因为50+40=90,90是一个整十数。
三、巩固练习,加深记忆。
1、书本P47(3)利用你发现的规律,计算下列各式。
四、布置作业。
五、板书设置。
教学目标:
1、知识目标:通过探索活动,使学生进一步体会探索的过程和方法。
2、技能目标:通过探索活动,使学生发现乘法结合律、交换律,并懂得用字母进行正确的表示,使学生在理解乘法结合律、交换律的基础上,会对一些乘法算式进行简便计算。
3、情感目标:培养学生学习数学的兴趣
教学难点:
指导学生探索乘法的结合律。
教学重点:
发现规律、总结规律、应用规律。
教学方法:
发现法、讲解法、练习法。
教学过程:
课前三分钟:口算练习
一、谈话导入
S:同学们,在数学运算中,有许多有趣的规律。今天,我们再一起来探索,看看我们还能发现什么规律?
二、给出图片,发现规律
S:济南长途汽车站里一片繁忙,人来车往,济南汽车站也因此被称为是中华第一站。老师这里,有20xx年济南汽车站一天中中巴和大巴运送旅客的情况分析,你能看的懂这个表格吗?
T:能。
S:好,那谁能说说表格告诉了你什么信息呢?
T:中巴每天发车960辆,平均每车20人,大巴每天发车640辆,平均每车36人。
S:同学们真聪明,发现了这么多的信息。那谁能根据这些信息试着提出一个数学问题呢?
T:中巴一天运送多少人?
S:哦,我们同学提出了这样一个问题,谁能替他解答解答?
T:96020
S:咱们同学太聪明了,那老师提高个难度,想让你们帮老师算算中巴车周一到周五共运送乘客多少人呢?你们能解答出来吗?
T:能。
S:好,拿出老师给你们准备的练习纸,把你的答案写在练习纸上。
(找两位同学到黑板板书他们不同的做法,然后分别让他们解释为什么这么做。)
S:我们请这位同学来说说他是怎么算的。
T:先算出中巴车一天运送乘客多少,然后再乘以5,计算出五天共运送乘客多少。
S:哦,你真棒,那另一位同学你是怎么想的呢?能给大家解释解释你为什么这么做吗?
T:我先算出一辆中巴车五天运送多少乘客,然后乘以总共有多少辆,就得出总共运送多少人。
S:解释的太棒了,(教师同时将两种算式抄在黑板左上部分)我相信大家也都听懂了这位同学的想法。同学们找到了两种方法来解决这个问题,既然都是解决这个问题的方法,那两个式子之间我能不能用=连接?
T:能。
S:好,现在同学们来观察一下,你能发现这两个式子有什么异同点吗?
T:相同点是三个数相乘,并且结果相同。
S:你的眼睛真是雪亮雪亮的,这么快就发现了相同点,那同学们再找找有什么不同点呢?
T:第一个式子是前两个数先相乘,然后再乘第三个数,第二个式子是后两个式子先乘,再乘以第一个数。
S:同学们太棒了,这么快就找到了相同点和不同点,哦,这好像是一个规律,哪位同学可以起来总结一下我们刚才发现的规律?
S:三个数相乘,先把前两个数先乘,再乘第三个数,或者先把后两个数相乘,再和第一个数相乘,积不变。
T:那是不是所有的式子都有这样的规律呢?你能不能举出个类似的式子来验证一下呢?同学们先自己想,然后在小组内讨论交流,交流好的小组坐好。我们来看看哪个小组最先完成。
(小组讨论,交流想法。)
三、组展示,验证猜想
T:看来大家想法很多,讨论的这么激烈,谁想上来给老师和同学们展示一下你们小组交流的内容呢?
(师投影展示生举出来的例子)
T:哦,看来大家都找到了不少的例子来证明我们发现的规律啊。这也说明了,我们发现的规律,确实是存在的。前面我们刚学了用字母表示数,那谁能用字母表示一下这个规律呢?
S:(ab)c=a(bc)
T:同学们怎么这么聪明啊?那大家再想想,前面我们学习了加法的结合律和交换律,既然乘法中存在结合律,那会不会存在着交换律呢?
S:会。
T:光说老师可不相信你们,你们能举出来个例子吗?
S:12=21
S:211=112
T:这样的例子我们能不能举完啊?
S:不能。
T:那我们又用大量的实例来证明了乘法中,同样也存在着交换律。谁能用字母来表示表示呢?
S:ab=ba
T:看来咱们同学都是些聪明的人,这么快就发现了乘法运算中的规律(板书课题)。其实数学中,我们不止从最后的结论中学习到知识,我们还可以从我们发现规律的过程中学习到知识。回想我们刚才学习的过程,我们经历了哪些过程呢?
T:首先,我们通过观察例子,发现了规律;然后,我们猜想出来了规律,然后举出了大量的实例来验证规律,最后,得到了结论。这就是我们数学研究的一般思路。
四、理解规律,运用规律
T:同学们真棒!学了马上就会用。有的同学该问老师了,我们都会了乘法运算,那还费劲学这个运算律干什么呢?我们来看这一题,12578,你能用简便的方法算出结果吗?在练习纸上试一试。
(找一位同学到黑板板书)
T:同学们坐的差不多了,我们来看我们班的xxx的做法,你能给大家解释解释你为什么这么做吗?
S:将125和8先乘,就能得到整数1000,这样就能很快算出结果了。
T:哦,把125和8先乘,得到整数,这样计算就简便了,那为什么能把8和7交换位置啊?
S:因为运用了乘法的交换律。
T:同学们能不能想想我们以前的什么知识运用到了乘法的交换律?
T:想不起来了?老师来提请你吧。前面我们运用了交换律的方法将两个因数交换位置再乘一次来检验结果对不对,而且我们在乘法口诀中也涉及到了乘法的交换律,例如,七八五十六,我们可以得到什么算式?
S:78=56,87=56
T:这里,我们就已经涉及到了乘法交换律了。
T:好了,学了这么多知识,我们来做些练习题检测一下吧。
五、课堂练习
1、(1)23254(2)40235
2、一套书有15本,每本定价9元,小明要买4套这样的书,一共需要多少钱?
3、风华小学六个年级的学生参加跳绳比赛,每个年级有5个班,每班23个人参加,一共多少人参加比赛?
六、小结
T:这节课同学们都学的非常认真,那么你们有什么收获呢?
1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。
2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。
3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。
1.出示:
你能在下列的 内填上合适的数吗?
28+320=320+ ;
(27+138)+62=27+( + );
35+ = +35。
提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?
2.出示:
在下列○内填上合适的运算符号。
4○10=10○4 (2○3)○5=2○(3○5)。
谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?
3.导入新课。
谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?
(一)探索乘法交换律。
谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?
提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?
2.举例验证。
谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?
学生举例。
引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?
学生交流,教师选择一些等式板书。
电脑验证大数相乘的结果。
谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。
3.总结规律。
讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)
板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。
提示:你能像加法交换律一样用字母来表示乘法的交换律吗?
提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?
4.回忆乘法交换律在过去学习中的运用。
谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)
(二)探索乘法结合律。
1.初步感知。
谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。
谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?
组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。
2.引导比较。
提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)
提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)
3.举例验证。
谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。
组织交流,教师有选择地板书一些等式。
4.总结规律。
讨论:
(1)你发现等号两边的算式中什么不变,什么变了?
(2)你能从这些算式中发现什么规律?
师生共同归纳乘法结合律。
板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。
谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?
2.尝试简便运算。
谈话:根据我们学习加法运算律的经验,想一想,学习乘法交换律和结合律,对我们的学习会有什么帮助呢?现在就让我们用学到的乘法运算律来进行简便运算吧!
出示第62页的“试一试”,学生尝试简便运算。
1.做“想做做做”第2题。
观察:你发现每一组题的上、下两道算式有什么联系?
谈话:每组的两道题,你可以任选一道题进行计算,看谁既会选又会算!
2.做“想想做做”第3题。
谈话:你运用乘法的运算律使计算简便吗?比一比谁算得又对又快!
组织交流。
3.用简便方法计算。
谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?
教学建议
教材分析
这一节主要讲乘法的意义和3个运算定律.通过以前的学习,学生对乘法的计算方法已经掌握,对乘法的意义也有了初步理解,知道几个相同的数连加,可以用比较简便的形式--乘法来计算.这一节是在已学的基础上,以定义的形式给出乘法的确切意义,使学生进一步理解乘法的意义,并能运用它解决实际问题.学生在学习了乘法意义之后,教材又通过具体的例子概括出乘法的运算定律,并且进一步用字母式子表示,这为以后学习“用字母表示数”打下良好的基础.
在本小节中学生参与推导乘法运算定律的过程是教学重点.另外,在这3种运算定律中只有乘法分配律不是单一的乘法运算,它不仅涉及到加法运算,而且学生对乘法分配律与乘法结合律的应用又容易混淆,所以学习和掌握乘法分配律成为了本小节的教学难点.
教师不仅使学生学会本节的知识内容,更重要的是让学生参与获取知识的思维过程,进而培养学生的分析、推理、抽象、概括的思维能力.
教法建议
在复习阶段,教师可以通过师生比赛“看谁算得快”的形式来调动了学生学习的积极性,使学生从被动学习变为主动学习.例如:在讲解乘法结合律前通过几道计算结果是10,100,1000 的口算题,让学生找出5和2,25和4,125和8三对“好朋友”,为学习乘法结合律做了铺垫.同时也可以调动学生的求知欲.
在教学乘法的意义时,教师首先要引导学生运用知识迁移,把旧知与新知联系在一起.
结合例1启发学生用多种方法解答.其次再让学生采用观察、分析的方法比较哪种算法简便?最后引导学生概括出乘法的意义.
教学乘法的运算定律时,教师可以出示几组数目不同的算式,让学生先计算,再观察每组算式有什么关系,然后再通过学生的讨论(小组、同桌、集体)、互相交流,用自己的话总结出乘法的运算定律.这样安排可以让学生参与运算定律的推导过程,使自己成为主体.
教学目标
1.使学生在原有知识的基础上,进一步理解乘法的意义,并能运用它解决实际问题.
2.使学生理解和掌握乘法交换律,并能运用它进行验算.
3.借助视察、比较、综合、概括等方法,培养学生的分析推理、抽象概括、及运用新知解决实际问题的能力.
教学重点:
使学生理解并运用乘法的意义及其运算定律--交换律.
教学难点:
乘法交换律的应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1.口算:14×3 50×30 2×50 15×4 15+15+15+15
4+4+4+4 30×12 60× 40 4×25 9+9+9+9+9
2.导入:刚才的口算题同学们算得很对,那么同学们想不想即算得对又算得快呢?好!为了实现你们的愿望,这节课我们继续学习乘法的有关知识.乘法的意义和乘法的交换律.(板书课题)
二、探求新知
1.教学乘法意义:
(1)出示例1,指名读题.演示课件“乘法的意义”出示例1 下载
引导学生分析:横着看或竖着看,每排放几个,一共有几排?
教师提问:如果要求盘里一共有多少个鸡蛋用加法怎样解答?
用加法计算:5+5+5+5+5+5=30(个)
或6+6+6+6+6=30(个) (教师板书)
教师提问:如果要求盘里一共有多少个鸡蛋用乘法该怎样解答呢?
用乘法计算:5×6=30(个)或6×5=30(个)(教师板书)
(2)对比例1中的两种方法,哪种方法简便?
引导学生说出:求几个相同加数的和,可用加法计算,也可用乘法计算,用乘法计算比较简便.
教师范文大全小编为您提供了关于“乘法交换律教案”的最全面信息。教案课件是我们老师的部分工作,因此每天老师都会按质按时去写好教案课件。只有写好上课用的教案课件,才能展现更完整课堂教学。我希望我的建议可以为您提供一份珍贵的参考材料!
教学内容:
九年义务教育苏教版小学数学第七册第81-83页例1、例2和练一练,练习十七第1-4题。
教学要求:
1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。
3.增强合作意识,激发学生学习数学的兴趣。
教学过程:
一、猜谜引入
1.猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。
生:(积极举手,低声喊)纽扣。
师:你为什么会想到是纽扣
生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。
师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。
2.提问:用字母如何表示加法交换律、结合律呢
适时板书:a+b=b+aa+b+c=a+(b+c)
3.设问:乘法有没有类似的规律今天我们就来学习乘法的一些运算定律。(板书课题)
[评析:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]
二、猜测验证
1.猜一猜:乘法可能有哪些运算定律
生1:乘法可能有交换律。
生2:乘法可能有结合律。
生3:
2.提问:乘法是否具有你们猜测的规律呢怎样确认自己的猜测看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)
3.学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)
[评析:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]
4.交流。
(1)生1:我们小组经过讨论认为乘法有交换律。比如:35二53,016=160等等。两个乘数的位置变了,但它们的积不变。
生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。
生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人可以列成算式:48=32,也可以用84=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。
提问:有没有不同意见指名让刚才说乘法没有交换律的学生发言。
生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如3006=6300。
提问:你能用自己的语言描述一下乘法交换律吗
生:两个数相乘,交换乘数的位置,积不变。
师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。
师:和你们说的有什么不同
生1:我们说的是乘数,但书上说的是因数。
生2:书上曾讲过乘数又叫因数,所以我们说交换乘数的位置,积不变也是对的。
师:会用字母表示吗板书:ab=ba)。
电脑出示练习十七第2题。
师:请你判别一下,有没有运用乘法交换律并说明理由。
[评析:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。
(2)生4:我们发现乘法也有结合律。如:(32)4=3(24)。
生5:我们也同意这种观点。我们是用应用题来说明的。比如:有6个盒子,每个盒子里有4枝钢笔,每枝钢笔5元,这些钢笔一共值多少元可以用645=120(元),还可以用6(45片=120(元),它们的结果一样。
生6:我们是用算式来说明的,如:(3467)23=34状6723)。
提问:同学们能用自己的语言描述一下乘法结合律吗
生7:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
师:你说得很准确,有什么好方法帮助记忆
生8:我把加法结合律里的加换成乘,把和换成积,其余的不变。
生9:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘;它等于先把后两个手指靠在一起,再把第一个手指靠过来。
师:这个记忆方法确实很好,我们大家一起来试一试。师:怎样用字母表示乘法结合律板书:(ab)c=a(bc)
[评析:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]
5.比较加法运算定律和乘法运算定律。
师:我们学习了加法、乘法运算定律,你觉得它们有哪些相同、不同的地方
生1:加法交换律和乘法交换律都要交换位置,不同的是,一个在加法里运用,另一个在乘法里运用。
生2:我觉得加法和乘法的运算定律很相似,只要记住其中一个,就能想出另外一个。
[评析:缘起加法交换律,再回到加法交换律,将两者进行比较,让学生感受到知识之间的内在联系。]
三、运用
1.回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助
生:我们验算乘法时就应用了乘法的交换律。
2.基本练习。
3.发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。
869=()
[评析:练习的层次鲜明,目标明确;促进学生构建新的知识网络。]
四、小结。(略)
教学目标:
1、掌握乘法交换律和乘法结合律。
2、运用乘法交换律验算乘法。
3、培养学生的分析、概括能力。
1、出示第33页主题图。
二、自主学习,合作探究。
师:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。负责挖坑、种树的一共有多少人?
生算,小组里交流。生汇报。
师:他们算得对吗?从这里,你发现了什么?小组里议一议,交流。(交换两个因数的位置,积不变。)
你能举出几个这样的例子吗?
师:交换两个因数的位置,积不变。这叫什么?你给它取个名字?
师:乘法交换律,以前我们已用过它,在什么地方呢?
指名两生板演,集体订正。
①师:看图,每组要种5棵树,每棵树要浇2桶水,一共要浇多少捅水?
生小组里交流,并汇报。
②师:那么(255)2○25(52)中间填上什么符号?
请你举出几个这样的例子。
生甲:三个数相乘,先乘前面两个数,或者先乘后两个数,积不变。
3、比一比,议一议。
师:比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?
生甲:我发现加法交换律和乘法交换律,都是交换数的位置,结果不变。
生乙:我发现加法结合律和乘法结合律,改变了题里的运算顺序,结果不变。
三、巩固运用,深化提高。
1、教材第35页做一做,,第1题。
先计算,再运用乘法交换律进行验算。
2、教材第35页做一做,,第2题。
四、总结提升。
这节课,你学会了什么?还有什么问题和大家共同讨论?
1.能从实际例子中,观察、概括出加法交换律。
2.理解掌握加法交换律,会用字母公式表示加法交换律。
3、请学生观察两组算式,说说有什么发现?是否任意一个加法算式中调换两个加数的位置,都会出现和不变的现象?
4、根据学生回答板书:猜想――两个数相加,交换加数的位置它们的和不变。
1,验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。
学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。
2、同学自己设计一组式题验证,小组交流结果,汇报结论。
全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。
例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)
为什么会相等呢?固为根据加法的.意义,这两个算式都是把两个相同的部分数合并起来,所不同的只是加数在算式中的位置,它们的意义是一样的。所以,在加法算式中,交换加数的位置,和不变。
5.学生自学书本、质疑。
1.学习加法交换律的最终目的是用。
2.“练一练”1,先计算出得数,再用加法交换律进行验算。
3、“练一练”
(2)指名说出验算方法和根据。
4、放录音、做游戏――“我该在什么位置”
470+830=830+ 101 3+214= 十
256+214= +256 十 367=367 +
(1)将卡片470、880、1013、214、58、58发给六个同学。
(2)伴随音乐,寻找自己的位置,并贴上。
(3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了加法交换律。
1.这节课我们发现了什么?是怎样获得证明的? (举例证明一意义论证) 2.这一规律已有哪些运用?
如:37+73= + 在 中可以填哪些数据?
教学内容:
教材第33页的主题图,第34—35页的例1(乘法交换律)和例2(乘法结合律)以及练习五中的相关习题。
教学目标:
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
教学难点:能运用乘法交换律和乘法结合律进行简便计算。
我们已经学过了哪些运算定律?请你用自己的话说一说,并说一说怎样用字母表示。
(1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息。
2、学习例1。
(2)启发学生思考:要解答“负责挖坑、种树的一共有多少人?”这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。
(3)学生独立列式计算。教师根据学生回答,边板书:
(4)教师引导学生观察,比较两种解法有何异同。
启发思考:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(即:4×25=25×4)这个等式说明了什么?
(6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)
(7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)
(8)让学生用自己喜欢的方式表示乘法交换律: a×b=b×a。让学生说一说:这里的a、b可以是哪些数?
(9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。
(10)我们学习哪些知识时用了乘法交换律?
3、学习例2。
(2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。
(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(25×5)×2和25×(5×2)。
(4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(25×5)×2=25×(5×2)
(5)哪一种方法计算起来更简便?
(6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。
(7)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)你们能给乘法的这种规律起个名字吗?
(8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
4、乘法交换律和乘法结合律的应用。
(3)学生独立完成,教师巡视指导,指定学生上台板演。
(4)集体订正,指定学生说一说各题运用了什么运算定律。
6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。
学生小结本节课的学习内容。
《练习册》第14页第1课时的所有习题。
本课教学的一个重点是自主探究发现乘法交换律及结合律,并能归纳总结规律。
我设计这节课时,从主题图入手,让学生根据图中的信息,提出问题并解决这个问题,根据学生列出的式子进行观察、比较,发现交换两个因数的位置,积不变。并让学生通过找出相类似的例子,验证了以上猜想,然后尝试总结归纳出乘法交换律。随后,我让学生用字母来表示乘法交换律,使知识点由具体向抽象过渡,建构模型。最后,学生用具体的例子应用深化,加深对乘法交换律的认识和理解。以上的教学思路同时也应用在教学乘法结合律当中。总的来说,如此设计,就是让学生经历了提出猜想→验证猜想→总结规律→建立模型→运用规律这五个步骤,通过由数学现象的引入,学生对现象的观察,培养学生自主探究和归纳总结的能力,渗透了类比、简化以及转化的数学思想和方法。
整堂课的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自主探究,主动学习,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,培养了学生探索和解决问题的'能力和语言的组织能力。在应用环节,我通过对比练习,让学生自主发现乘法交换律和结合律能使一些什么特征的乘法题计算简便,并引导学生将具有这种特征的乘法算式进行了归纳。学生在情感的互动中 ,在思维的碰撞中 ,掌握了学习方法,享受到了学习的乐趣 ,获得了真正的发展。本堂课还有一些细节需要注意,比如时间的把握;课中如何激发学生互相评价促进互动等等。这也是我在以后的教学中需要不断提高不断改善的问题。
本课题教时数:25本教时为第17教时备课日期11月8日
教学目标
使学生初步理解和学会应用乘法交换律和结合律进行简便计算的方法,并能对一些乘法算式用简便算法正确计算,培养学生采用合理、灵活的方法进行乘法计算的能力。
教学重难点
使学生初步理解和学会应用乘法交换律和结合律进行简便计算的方法。
教学准备
投影片
教学过程设计
教学内容
师生活动
备注
一、复习
二、学习新课
三、课堂练习
四、课堂作业
1.什么叫乘法的交换律?你能用字母表示吗?
2.什么叫乘法的结合律?你能用字母表示吗?
3.口算:
15212=25417=3529=
12583=4528=41513=
4.引入新课
刚才我们复习了乘法的交换律和结合律,应用乘法的交换律和结合律可以使计算简便。这节课我们一起来学习乘法运算定律的应用。(板书课题)
1.学习例3
(1)出示例3
(2)学生讨论:如何计算能凑成整十、整百数,比较容易?
(3)学生尝试着进行计算。
(4)指名学生板演。
(5)请板演者讲讲是如何想的?
2.学习试一试第1题
(1)怎样算比较简便?
(2)指名学生板演,其余学生做在练习本上。
(3)集体订正。
3.学习例4
(1)出示例4
(2)想一想:怎样计算比较简便?
(3)学生试着完成,指名学生讲方法。
4.学习练一练第2题。
(1)说一说每道题是怎样想的?
(2)指名三人板演,其余学生做在练习本上。
(3)集体订正。
1.练习十七第5题。
2.练习十七第6题。
练习十七第6、7题。
课后感受
在加法运算定律的基础上,学生们学得还算不错。
教学内容:教科书第61~62页
教学目标:
1、让学生经历乘法交换律和乘法结合律的探索规程,理解并掌握规律,能用字母表示规律。
2、让学生学会用乘法交换律和乘法结合律进行简便运算,体验运算律的应用价值,培养学生的探究意识和问题解决的能力,增强数学的应用意识。
3、培养学生观察、比较、分析、综合和归纳、概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点、难点;
理解并掌握乘法交换律和乘法结合律,并会运用运算律进行简便计算。
教学准备:教学光盘
教学过程:
一、复习旧知,引入新课
引导学生回忆学习了哪些运算律?你会用字母表示加法交换律和结合律吗?
乘法有类似的运算规律吗?今天我们来学习乘法的一些运算律。
二、猜测验证,探索规律。
1.大胆猜测。
谈话:猜一猜乘法有哪些运算规律?
这些运算规律是怎样的吗?
2.出示P61例1的插图。请你结合这副图来解释乘法中有怎样的运算规律?
学生结合图解释。图中你获取了哪些信息?
提问:怎样求一共有多少人?
指出:得数相同,建立等式
提问:(1)你能再写出几个这样的等式吗?
(2)观察这些等式你有什么发现?
(3)你能用字母公式来表示你的发现吗?
指出:这就是乘法交换律
2、出示例2,独立列式解答
(1)你是怎样列式的?
(2)你能把上面两道算式写成一个等式吗?
(3)观察等式两边有什么相同?有什么不同?
(4)你能有字母公式来表示你的发现吗?
(5)指出:这就是乘法结合律
三、巩固规律,运用理解
1、第62页第1题
学生独立填写,再交流填写理由。
2、第62页第1题
分组计算,引导比较:这两题哪道计算比较简便?那么另外一题你能运用乘法交换律和乘法结合律也使计算简便吗?怎样解决?
学生发现只要将原本不简便的题目改成可以简便计算的题目,然后再计算。
3.教学试一试。
先判断按照原来的计算情况这两题的计算简便吗?
你能用简便方法计算这两题吗?
(1)先让学生独立完成。
(2)指名板演,集体评讲。
评讲时提问:①哪两个数可以相乘?为什么要把这两数相乘?②应用了什么运算律?
小结:连乘时,如果有两个数乘得的积是整十、整百,可以把这两个数相乘,再和第三个数相乘就比较简便。
4、第62页上的第3题
学生独立完成在书上,再指名交流。
5、第63页上的第6题
齐读题目,说明:你现在知道原来我们为什么用交换乘数位置再乘的方法来验算的原因了吧。
四、全课总结。
这节课学习了什么内容?谁来说一说什么叫做乘法的交换律?乘法的结合律呢?
五、作业。
想想做做:第4、5题
课前思考:
1、例题的教学可以仿照加法交换律进行。先引导学生根据乘法意义填写等式,并列举更多的同类等式,积累感性认识,进而探索、发现规律,再逐步抽象、概括出乘法交换律。
2、有了学习前面三个运算律的经验,在学习乘法结合律时可以给学生更大的探索空间。先引导学生用不同方法解决问题,发现其相同与不同点,并列出相应的等式;发现其中的规律,在小组里交流。进而抽象成字母表达式,理解乘法结合律。
3、在做试一试中的题目时,可以先让学生独立完成,在组织交流。重点讨论先算哪两个数想乘,为什么要先把这两个数想乘。应用了什么运算律。
课后反思:
1、学生在具有加法交换律和结合律的基础上学习乘法交换律和结合律感觉比较容易,而且理解的较好。并能把两者进行比较找到其中的相同和不同。
2、练习中个别学生没有很好的记:25*4=100,125*8=100024*5=120,因此很简单的计算还是有学生错。下节课要加强这方面的练习。
教后反思:
这课在教学的时候感觉比较顺,学生很容易接受。在作业中发现,类似于想想做做第1题最后1题的题目,学生做不好,往往是只写了一种运算律,或者是两种都写到了,但写成了乘法交换结合律这需要老师在课堂上有必要的示范与提醒。
我发现学生在做想想做做第三题时,好多学生都用简便方法计算了,我设想如果把这道题目放到课一开始,让四个小组各做一道,通过比赛的输赢,导入新课,效果是不是会更好呢?
教后反思:
乘法的运算律:乘法交换律和结合律,有了前面的加法的运算律作为基础学生学起来比较得法,并且通过比较其中的异同,学生更能进一步理解.这一点和邵老师的感受是相同的.
运用乘法的运算律进行简便计算,经过交换律和结合律变换过的式子学生似乎不是很清晰地能够辨认出来,常常只看到表面的东西,类似看到小括号就认定是运用了乘法的结合律。而简便计算的结果与我们课前预测的情况要糟一些,学生在计算中还是出现了许多错误,类似25乘4,45乘2,35乘2这样的计算依旧不是十分熟练。也有很多学生在简便计算时不能很快地发现某两个数先乘比较简便。今天是第一节新课,看来需要熟能生巧。
作为一名教学工作者,往往需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么什么样的教案才是好的呢?以下是小编为大家收集的“运算律”乘法交换律、结合律数学四年级上学期教案,仅供参考,欢迎大家阅读。
教材分析
这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。
学情分析
在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。
教学目标
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点和难点
1、引导学生概括乘法交换律、结合律。
2、乘法交换律和结合律进行简便。
教学过程
一、创设情境,发现问题
师:同学们喜欢搭积木吗?
生:喜欢
师:我们的淘气也很喜欢搭积木,而且聪明的`他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?
生:想
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)
师:你知道图中有多少个小正方体吗?说说自己是怎样想的。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)
师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?
生:……
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证
师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?
生说师板书:
a×b
学生从二年级就开始接触乘法计算,对乘法积累了较多的感性认识,这是学习乘法交换律和结合律的基础。对于乘法定律的教学,不应仅仅满足于学生理解、掌握乘法定律和运用乘法定律进行一些简便计算,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这才是教学的重点及难点。教学中,通过创设情境,激发学生的学习兴趣,让学生发现问题,提出猜想、进行验证、总结应用的思路进行的。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
1、提供自主探索的机会。
动手实践、自主探索与合作交流是学习数学的重要方式。在探索整数乘法运算律推广到小数的过程中,我为学生提供自主探索的时间和空间,使学生在学习活动中获得成功的体验,增强了学习数学的信心。
2、关注学生已有的知识经验。
在学习整数乘法运算律推广到小数之前,学生对整数乘法运算律已有了较多的感性认识,为新知学习奠定了良好的基础。教学中让学生处于探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。
3、引导学生在体验中感悟数学。
教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。
在教学工作中,并对照开学初的计划,我从以下方面加强改进日常教学:
1.注重从学生已有认知基础入手。如:紧密联系整数乘、除法的意义、计算方法、四则混合运算,使学生把整数运算知识迁移到小数运算中来。
2.注意教给学生运用多种计算方法,以培养学生的灵活计算能力。如在简便运算中,让学生分别用竖式计算和用运算律计算,通过比较,让学生认识到这些规律具有的普遍意义,又能对这些知识得到加深理解和牢固掌握。
3.注重培养和提高学生的分析能力和审题能力,能解决小数乘、除法在实际生活中的应用。
4.注重后进生双基的补习,让培优转差落到实处,以提高整体水平。
虽然班级的基础偏差,面临的形势比较严峻,但只要与学生建立良好的师生关系,日常加强题组训练,突破难点,培养起学生学习数学的兴趣,为进一步的学习打下更好基础的
教案课件是老师需要精心准备的东西,就需要我们老师要认认真真对待。只有教学教案写的越优秀,所呈现出来教学情况也会更好。那课件教案应该怎么做?也许"乘法分配律教案通用"就是你要找的,仅供参考,大家一起来看看吧。
一 说教材
本节课是小学四年级数学《乘法分配律》。本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
二 说教学目标
根据数学课程的基本性质与目的,我拟定了如下教学目标:1.从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。 2.渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
三 说教学重、难点
教学重点:充分感知并归纳乘法分配律。
教学难点:充分感知并归纳乘法分配律。
四 说教法和学法
在教学过程中,我运用启发式进行教学,根据小学生的心理特征和认知规律,设计一些情境来激发学生的学习兴趣,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,设计一些易混题教学过程。注意引导学生通过采用观察、比赛、概括的方法概括出“乘法分配律”。
五 说教学过程
(一).复习旧知,作好铺垫。
回顾:说说已学过的乘法交换律和结合律,并用字母表示。
(二).算一算,初步感知规律。
①(3 + 2)×4 3×4 + 2×4
② 2×(11 + 9) 11×2 + 9×2
③ 20×5 + 4×5 (20 + 4)×5
1.计算①、②两组算式各等于多少?
2.比较两组算式相同点和不同点;可用什么符号连接?
3.观察、激趣、导入。
第③组算式老师不用计算,就可以判定用等号连接,这是为什么呢?难道这里有什么奥秘吗?今天,我们就一同来研究这个问题。
﹙三﹚。联系实际,探究规律。
1.学校购买校服。每件上衣35元,每条裤子25元。买这样3 套校服,一共要多少元?
①.学生读题,弄清题意。。
②.分析比较:仔细观察两种方法有什么不同?
③.结论:两个算式的结果如何?用什么符号连接?仔细观察,认真思考,发现其中有什么规律?
2.郭老师用订书器为同学们订30个练习本和40个白报本,每个本需要2个书钉郭老师至少要准备多少个书钉。
①.再一步探究概括规律:
②.结论: 把两个加数分别同这个数相乘。概括起来,说一说?
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。
3. 字母表示乘法分配律:
如果用a、b、c分别代表三个数,你会用字母表示乘法分配律吗?
4.利用乘法分配律
我们知道减法是加法的逆运用,除法是乘法的逆运用。那么,乘法分配律有逆运算吗?你会运用吗?﹙给出题目,学生解答。﹚
(四).巩固运用规律。
(1)数学医院:判断正误。
① 2×( 6 + 5 ) = 2 × 6 + 5- - - - - 〖
② ( 25 + 7 )×4 = 25 ×4 ×7×4- - - - - 〖
③ 35×9 + 35 = 35×( 9 + 1 )= 350 - - - - - -〖
(2)连一连:
3×17 + 5 ×17 (22 + 44)×30
(18 + 4)×6 18 ×6 + 4 ×6
22×30 + 44 ×30 60×20 + 60×30
60 ×(20 + 30) (3 + 5)×17
(3)填一填:
①(12+40)×3= ×3 + ×3
② 15×(40 + 8) = 15× + 15×
③ 78×20+22×20=( + )×20
④ 66×28 + 66×32 + 66×40=( + + )×
(4)联系实际,深化认识
咱们来解决一个实际问题试试。【多媒体演示】
为了丰富同学们的课余生活,学校准备购置足球和篮球各20个,根据下面提供的信息,你能提出哪些数学问题 ?
足球22元 篮球25元
(五). 归纳概括,完善认识。
请同学们回忆这节课的学习过程,想想,通过这节课,你有什么收获?
1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。
2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。
3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
(1)如何求济青公路的全长,有几种解法,如何列式计算。
(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?
(3)什么叫乘法分配律,如何用字母表示?
5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)
学习中你有哪些收获、困惑和体会,请在小组内交流一下。
师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。
课堂生成预设:
(1)济青高速公路全长大约多少千米?
教师追问:第一种算法是先算什么,再算什么?第二种算法呢?
预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;
预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)
(2)相遇时大巴车比中巴车多行多少千米?
(110-90)×2 110×2-90×2
=20×2 =220-180
=40(千米) =40(千米)
教师追问:你能说说两种算式的意思么?
预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;
预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。
(3)观察、比较两种算法的过程和结果,你有什么发现?
预设一:第一种算法是先加(或减)再乘;
预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。
(4)据此,你有什么猜想?
预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
(5)怎样验证你的猜想呢?
(师用线段图帮助学生理清思路)
学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。
通过观察,有何发现?引导学生回答:
举例验证:(125+12)×8 = 125×8+12×8
(40-4)×25 = 40×25-4×25
(8+16)×125 = 8×125+16×125
(80-8)×125 = 80×125-8×125
…… ……
(6)通过验证,你能得出什么结论?
结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的`积相加(或相减)。
教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。
(板书课题)你会用字母表示这个规律吗?
(用字母表示:(a± b) c=ac±bc)
预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。
预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。
预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
预设四:这个规律叫乘法分配律,可以用字母表示为:
(a± b) c=ac±bc
课堂预设:
举例验证:(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
…… ……
教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
设计意图:将乘法分配律适当拓展
教师引导:怎么样?学会了吗?想不想挑战一下自己?
(1) 指4名学困生板演,其余同做在练习本上。
(2) 展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。
课堂预设:(以第一题为例)
(80+70)×5 ( 80+70)×5
=80×70+70×5 =80×5+70×5
(1)你认为谁的答案对,为什么?谁的答案不对,为什么?
(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。
(3)用同样的方法评议其余3题。
(4)同桌互改
(5)统计错题情况,让小组代表说说错误原因。
(6)学生各自订正错题。
预设一:我知道了什么是乘法分配律。
预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。
预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!
同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。
板书设计
乘法的分配律
济青高速公路全长大约多少千米? 相遇时大巴车比中巴车多行多少千米?
(110+90)×2=110×2+90×2 (110-90)×2=110×2-90×2
验证:
(125+12)×8 = 125×8+12×8 (40-4)×25 = 40×25-4×25
(8+16)×125 = 8×125+16×125 (80-8)×125 = 80×125-8×125
结论:用字母表示:(a± b) c=ac±bc)
(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
乘法分配律是第二单元的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用相遇问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
(1)本课堂我的教学程序是:先出示情景图,根据情景图上所给的信息列出算式:并且让学生说说这两个算式的含义,然后让学生读读这个算式(意图是让学生去感知乘法分配律),然后再让学生去写出两个类似的算式(意图是让学生体验乘法分配律)写完之后再板书几个同学所写的算式并选取期中一个同学的算式让他说说算式的左边为什么等于右边(110+90)×2=110×2+90×2);而且我还要求同学们用不同的方法来说(意图是让不同层次的同学们都能反复去感知乘法分配律),通过刚才的几道程序,然后再让同学们去总结这类算式左边和右边的特点,得出乘法分配律,最后通过练习巩固和加深同学们对乘法分配律的认识。原以为这样上会有一个比较好的效果,但是事与愿违,在要同学们独立写出两个类似的算式时,发现有小部分同学并不会写,所以本堂课后面部分上得就不怎么顺畅了。课后向老师请教得知,原来我的教学程序上出现问题了----违背了学生的认知规律,应该是先由老师引导学生总结出乘法分配律,再让学生写出类似的算式,体验乘法分配律,最后再通过练习巩固和加深学生对乘法分配律的认识。
(2)在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。
(3)在学生总结出乘法分配律的概念时,我只是一笔带过的把乘法分配律通过课件再展示给学生们看了一遍,没有反复强调乘法分配律的特点,导致学生没有较好的掌握乘法分配律。
(1)教师在创设情境时一定要激发学生探索的愿望。学生在情境的引导下,主动实现对数学知识的认识和理解。
(2)在练习时采用小组活动是必须的,这样学生之间可以互帮互助,共同进步。激发学生的学习热情。练习时一定要给学生足够的讨论时间。
(3)订正汇报时,让学生之间相互评价。
1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力,《乘法分配律》教学设计。
2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。
3、能够运用乘法的分配律进行简便计算。
重点:学生参与推导乘法分配律的过程。
难点:乘法分配律的推理及运用。
一、比赛激趣,提出猜想.
(1)同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做a组的题,右边的两组做b组的题,看谁做的又对又快,开始)
9×( 37+63) 9×37 + 9×63
(2)评出胜负。(做完的同学请举手,汇报计算过程。可以看出左边的同学做得比较快,(问同学)你们有什么意见吗?)刚才的计算中你发现这两道题有什么关系吗?
教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。
引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:9×( 37+63) =9×37 + 9×63
(3)将学生的发现以他(她)的名字命名为“xx猜想”。
设计意图:在课的开始,组织数学热身赛能调动学生的学习积极性。
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)昨天,老师去超市里买东西,看到下面这些物品。橙子每箱28元,苹果每箱22元。如果橙子和苹果各买3箱,一共需要多少钱?
(1)全班同学独立完成。
(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)
还有不一样的方法吗?谁来说说看?(生回答,师板书)
算式(28+22)×3 和28×3+22×3的每一步各表示什么?谁能说给大家听听?
(3)观察这两个算式,你有什么发现?
引导学生比较两个算式异同点,并指名学生说一说自己
生:这两个算式的得数是一样的。
师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。
生:等于号
师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,所以( 35+25)×3=35× 3+25×3
师:再和前面的一组式子一起观察,
9×( 37+63)=9×37 + 9×63
(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)
2、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)
(1)验证方法:要求每人出两组算式,数字随意举例,可以使用计算器进行计算,验证你举的例子是否相等。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)
(2)学生回报:谁来说一说自己举的例子。
(3)同学们,请看一看这三个同学举的.例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)
(4)轻声读这些等式,你发现了什么?
3、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?
学生回报。
(电脑出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)
同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?
结合学生回答,教师板书:(a+b)×c=a×c+b×c
齐声读两遍。
(4)对于乘法分配律,用字母来表示,感觉怎样。
引导学生发现:字母表示的式子简洁、明了,这就体现了数学的美。
三、加强应用、深化理解
1、瞻前顾后填一填。
(10+7)×6=□×6 + □× 6
8×(125+9)=8×□+ 8×□
7×48+7×52=□×(□ + □)
2、火眼金睛看一看:
判断下面算式是否正确?并说明理由?
56×(19+28)= 56×19+28 ( )
32×(7×3)= 32×7+32×3 ( )
25×12+12×75 = 12×(25+75) ( )
25×99+25 =(99+1)×25 ( )
3、利用乘法分配律,计算下列各题。 ( 80 + 4 ) ×25 34 ×72 + 34 ×28
师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
4、找朋友
(10+6)×4 10 ×4+6 10 ×4+ 6 × 4
5 ×(7+9) 5 ×7+ 5× 9 5 ×7× 9
3 ×25+7 ×25 3+7×25 (3+7)×25
5、对口令
师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。
6、脑筋急转弯。
猜一猜,等号后边是三个什么字?
木×(1+3+2)=?
四、总结:
1、回忆一下,这节课你学会了什么?
2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?同学们课后交流一下,下节数学课我们再继续研究。
【教学内容】
《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。
【教材简析】
本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。
【教学目标】
1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。
2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。
3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。
【教学重点】
让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。
【教学难点】
清楚地表述自己发现的规律,理解及应用乘法分配律。
【教学过程】
一、创设情境,感知规律
1.提出问题,列出算式。
出示情境图
谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?
信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。
问题预设:济青高速公路全长约多少千米?(板书)
谈话:请你试着用两种方法在答题纸上解答。
生独立解答。
预设:
2.结合情境,感知规律。
提出要求:结合线段图说说算式每一步的含义。
回答预设:①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。
②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。
【设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。】
二、研究素材,猜测规律
教师引导学生观察算式谈发现。
预设发现:两个算式结果相等。可以用等号连接。
教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。
预设区别:①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。
②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。
谈话:根据前面运算律的学习,你有什么想法?
预设回答:这可能又是一个规律。
【设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。】
三、讨论交流,验证规律
1.举例验证规律。
谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。
学生独立计算举例。
指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。
谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。
预设举例:(25+35)×4=25×4+35×4
(60+50)×2=60×2+50×2
(65+55)×42=65×42+55×42
……
教师引导学生发现像这样的例子举不完,可以用省略号表示。
2.观察几组等式的相同点。
教师引导学生观察这几组等式的左边和右边分别有什么相同点。
预设回答:①这几组等式的左边都是两个数的和乘一个数。
②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。
3.总结规律。
教师引导学生用自己的话说说这个规律。
谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。
教师出示乘法分配律。
谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。
生按要求说什么是乘法分配律。
谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?
预设回答:可以用字母表示。
教师要求学生在答题纸上试着用字母abc来表示乘法分配律。
学生试着在答题纸上写字母表达式。
指生板演(a+b)c=ac+bc。
谈话:对于乘法分配律用字母来表示,感觉怎么样?
预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!
教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。
【设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。】
四、巩固拓展,应用规律
1.连一连。
2.在□里填上合适的数或字母。
3.火眼金睛辨对错。
各位领导、各位老师:
你们好!今天我说课的课题是《乘法分配律》
首先我对本节教材作一些分析:
一、说课内容
北师大版四年级数学上册第48-49页
二、教材分析:(说教材)
1、教材所处的地位和作用
本节的教学内容是在学生已经掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有重要的作用。
2、教学目标
根据《大纲》要求,教学内容和学情,制定如下教学目标:
①学生理解和掌握乘法分配律,应用乘法分配律简便计算
②培养学生的分析、比较、综合能力及初步的抽象概括能力
③通过学生的自主学习,激发学生学习数学的兴趣
3、教学重点、难点
重点:理解应用乘法分配律
难点:乘法分配律的逆运算
三、教法与学法分析
(一)教学方法(说教法)
在设计乘法分配律的教学时,依据学生的认知发展水平和已有的知识经验,采用自主学习、当堂训练的模式,充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动参与的学习
(二)学法指导(说学法)
本节课以学生自主学习、合作探究为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性,通过学生多思、多说、多练,积极参与教学的整个过程。
四、教具准备
多媒体课件。
五、教学过程分析
一、温故互查,复习旧知
首先我用课件出示计算题,怎样使计算简便?复习乘法交换律和乘法结合律,
本环节的设计意图:(设计这一环节是因为新旧知识之间是相互联系的,学生的学习应该建立在已有知识的基础上,我让学生复习旧知是为了唤起学生对所学知识的回忆,从而可以较好把握教学起点,为学习新知铺路搭桥。)
二、创设情境,自学感悟(课件出示书中的情境图)
(一)提出问题:这里共有多少块瓷砖?
学生列式解答并汇报。4×9+6×9或(4+6)×9
点拨(一)(4+6)×9=4×9+6×9等号左、右两边的算式分别表示什么意思?(左边表示10个9,右边表示4个9加上6个9也是10个9。也就是说10个9可以分成4个9加上6个9。)学生会用乘法的意义来理解。
【设计意图:数学源于生活,教师创设生活中的情境,让学生根据信息提出数学问题,并解决问题。不仅激发了学生的学习兴趣,而且在不同的解答方法中培养学生的思维,初步感知乘法分配律的外在形式。】
(二)、发现问题,引发猜想
1.算一算、连一连。(课件出示)
2×(11 + 9) 11×2 + 9×2 (20 + 4)×5 20×5 + 4×5 (3 + 2)×4 3×4 + 2×4 2,请同学们观察黑板上板书的这几组算式,你有什么发现?与你的同桌交流。在学生充分交流后,引导点拨学生找出这几组算式的相同点和不同点,为规律的猜想奠定基础。
点拨(二)根据自己发现的规律提出假设并验证提出的假设是否适合其他数据
【设计意图:通过算一算、连一连、议一议的活动,让学生之间充分讨论交流,充分认识这些算式的特点,为后面的猜想奠定基础。】
三、举例验证,合作探究
1、下面请每个同学写出一组具有这样规律的两个算式,进行计算,看看左右两边相不相等?
2、汇报验证过程,进行归纳。
(1)你写出的算式是什么?你是怎样验证的?(2)同桌交换验证。(引出课题:乘法分配律)(课件出示)
(2)用字母表示乘法分配律。
根据上面的字母表达式用数学语言来描述一下乘法分配律?
【设计意图:让学生在猜想之后,通过举例来验证猜想的正确性。学生经历了从特殊到一般,再由一般到特殊的知识推理方法,同时充分发挥学生的主动性,让他们用自己喜欢的方式来总结规律,并记住规律。给学生一个宽松愉悦的学习氛围。】
四、应用规律,拓展延伸
1、判断正误
2、填一填
12+40)×3=()× 3 +()×3
15×(40 + 8) = 15×()+ 15×()
78×20+22×20=(+)×20
3、简便计算
点拨(三)通过比较感悟计算方法的灵活多样,培养学生灵活运用所学知识解决生活中遇到的问题。
4、拓展题
【设计意图:设计了不同层次的练习题,通过连一连、填一填、算一算等形式,进一步巩固、理解乘法分配律,同时培养学生利用规律解决问题的能力。】
五、回顾反思、总结提升
同学们,这节课即将结束,回顾学习过程,我们是怎样探索出乘法分配律的?你有什么收获?
【设计意图:让同学们在课即将结束时,对本节课的内容进行回顾反思。一方面总结出知识要点即:乘法分配律。另一方面也让学生总结出这一规律获得过程与方法,突现出本节课的重难点。因为数学教学不仅是基础知识的获得,更重要的是数学思维与方法的培养。】
一、说教材:
(一)教学内容在教材中的地位和作用。本节课是人教版九年义务教育小学数学第八册P64 — 65页的《乘法分配律》,本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
(二)学情分析。学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算的基础上接着学习“乘法分配律”不会觉得太难,但是学生的概括、归纳能力还是一个薄弱的环节。
二、说目标
根据《新课程理念》、教学内容和学情,本节课我制定如下教学目标。
(一)知识目标:使学生在解决实际问题的过程中发现并理解乘法分配律。
(二)智能目标:使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
(三)情感目标:使学生能联系现实问题主动参与探索、发现和概括规律的学习尘埃,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点:在解决实际问题的过程中发现并理解乘法分配律
教学难点:自主发现规律,抽象归纳,并能用符号、语言或其他方式与同伴交流规律。
三、说教法学法
教学有法,教无定法。新课程以学生的发展为本,这是现代教育的根本目标,也是我们每一堂课教学的根本目标。新的理念提倡人人学有价值的数学,从获得必要的数学,不同的人在数学上得到不同的发展。根据这一总体目标,我采用了以下的方法:
(一)说教法。兴趣是一个人学习的动力,是最好的老师。在教学过程中,我运用启发式教学,根据小学生的心理特征和谁知规律,设计一些引人入胜的学习情境来激发学生的学习兴趣,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,设计一些易混题,最后设计一个找朋友的游戏,让学生积极参与,既活跃了课堂气氛,又能充分发挥学生学习的积极性和主动性,充分体现教师的主导作用和学生的主体地位。
(二)说学法。动参与,乐于探究。新课程标准指出学生是学习的主人,教师只是学习的组织者,引导者和合作者,学生始终参与教学活动中。因此在教学过程中,我先出示了学生的生活情景图,让学生去解决实际问题,并通过解决问题发现了乘法分配律。合作交流,体会规律。在教学过程中,以小组合作的开工,充分调动学生的积极性,主动性,让学生有充分的时间和机会通过观察、交流、反思等活动,提升思维品质,发展创新意识。通过学生多思、多说、多练。积极参与教学的整个过程。
四、教学准备:
多媒体课件投影仪
五、说教学过程
(一)创设问题情境
五一就要举行艺术节的比赛了,为了这次艺术节,教师和同学们都花了很多的精力,这不,我们学校教舞蹈的叶老师正利用星期天,去为舞蹈组的小演员们挑选漂亮的演出服呢?(课件出示商店场景)
【设计意图】创设一个充满现实的问题情境,使学生认识到现实生活中蕴涵着大量的数学信息,并主动积极地带着自己的知识背景、活动经验和理解走进课堂。
(二)展开探索过程
1、初步感知
(1)提出要求:仔细观察,从图中你获得了哪些信息?买这些些服装,叶老师一共要付多少元钱呢?你能用两种方法列出综合算式吗?
(2)学生独立列式,教师巡视
(3)交流反馈:你是怎么想的,怎样列式
板书:65×5+45×5;(65+45)×5。请生交流解题思路,并比较哪种解法更简便。
(4)列成等式。通过计算,我们发现这两种解法虽列式不同,但都能解决问题。那么我们在这两个算式之间用什么符号来表示它们的得数是相等的呢?小结:虽然这两个算式样子不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。
2、类比展开
(1)提出类比问题:如果叶老师选择选择的是另两种服装,买的数量都是6件、或8件的,你还能用两种方法来求一共要付多少元吗?
(2)要求:每一小组编一题,用两种方法列出综合算式,并计算出结果,比一比哪组完成得又快又好!
(3)学生小组合作完成,交流反馈,相机板书:
32×6+65×6
(32+65)×6
32×8+65×8
(32+65)×8
32×6+45×6
(32+45)×6
32×8+45×8
(32+45)×8
(4)观察算式,引导列成等式,仿照等式随意举例
像这样的情况,是偶然巧合还是有其中的规律呢?大家不妨再举几个例子,再算一算。
举例,小组交流,挑选几组板书。
【设计意图】从生活中的实际问题出发,在学生独立思考、探索的基础上引导有效的交流,在交流中相互启发,通过观察、类比列举使学生对乘法分配律有所初步感知,形成丰富的数学活动经验,而且也掌握了一学习数学的方法。
3、体验感悟
(1)观察这些算式,或小声地读一读这些算式,这中间隐藏着什么规律呢?
学生有自己的语言描述发现的规律。
(2)修改算式,感悟规律
通过观察,同学们或多或少都发现了一些规律,现在老师给每个小组提供了一些算式,根据你刚才的观察,你觉得这些算式中,哪两个可以用等号连起来就把它们挑出来,如果有争议可以算一算来验证一下。
课件出示:
(3+4)×6
3×6+4×6
3×17+3×5
3×(17+5)
20×(5+13)
20×5+5×13
(13+7)×4
13×4+7
(13+7)×4
13×4+7
交流反馈有哪几组等式。让生想办法修改那些不能组成等式的,使它们变成等式。
【设计意图】充分体现了学生学习的主体地位,学生通过解决问题,类比列举、观察感悟、反思纠错等多种学习活动,培养了学生的学习能力,生动活泼地建构起对数学富有个性理解的过程。
4、揭示规律
(1)游戏“交朋友”
课件出示:(80+20)×4,谁是它的好朋友?(80和20打着伞,一块去和4交朋友,4可最热情了,它和80握握手,又和20握握手,多公平啊,80和20高兴地把伞都丢掉了)
出示:6×(10+20)(A+100)×5,(42+45)×▲,请生帮它们交朋友
(2)揭示规律
像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的和乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
任何事物都可以从正反两方面去看,你们反着读一读用字母表示的等式,你能给下面两个算式找到朋友吗?35×8+65×8
9×18+9×282
【设计意图】从数学的角度来看,数学要比生活更重要。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打手成数学模型,它反映的是事物之间的关系和规律,它来源于生活而又远远高于生活。所以,前面的教学环节是为了学生更好地理解和掌握数学知识,在学生有所感悟,但不能用规范的数学语言进行概括时,及时数学化,有效地引导学生小结规律,使教学目标得以顺利完成。
(三)巩固内化
1、根据乘法分配律,在__里填入合适的数
(1)、(15+23)×2=____×2+_____×2
(2)、(37+12)×16=37×____+12×____
(3)、___×___+___×___=(16+26)×8
(4)、(125+11)×8=____×____+____×_____
(5)、276×38+276×62=____×(___+___)
如果计算的话,(4)、(5)你会选择左边的算式还是右边的算式进行计算,为什么?
2、判断下面各题是否正确,把错误的改正过来
(1)2×15+4×15=(2+4)×15………………()
订正:
(2)5×(20+6)=5×20+6……………………()
订正:
(3)8×23+8×27=8×23+27……………………()
订正:
(4)9×(6×4)=9×6+9×4……………………()
订正:
3、应用题
一块长方形的桌面,长68厘米,宽32厘米。周长是多少厘米?(用两种方法解答,并说说你喜欢哪种方法)
*4、用简便方法计算(任选一题)
①(125+9)×8 ②128×31—28×31 ③43×5+46×5+11×5
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
【设计意图】练习的设计不仅紧紧围绕教学重点,而且注重练习的层次和坡度。基本练习形式多样,达到了双基训练扎实的效果。由于刚刚学习了乘法分配律,为使学到的知识能更好地纳入到原有的已有知识体系里,必须进行一定量的、针对性强、有实效的基本练习。
(四)总结回顾
今天这节课,你有什么收获,从中你得到什么启发?
【设计意图】“收获”既有知识的习得,也有情感上的感受及所得,反思的效果很明显。
(五)课堂作业
六、说板书设计
乘法分配律
例:短袖衫裤子夹克衫
32元45元65元两个数的和乘第三个数,可以把这
65×5+45×5=(65+45)×5两个数分别和第三个数相乘,再求和。
=325+225=110×5
=550(元)=550(元)
其他购买方案:
32×6+65×6=(32+65)×6
32×8+65×8=(32+65)×8
32×6+45×6=(32+45)×6
32×8+45×8=(32+45)×8
〔a+b〕×c=a×c+b×c
难点:引导学生经历探索并发现乘法分配律的过程。
设计理念:根据学生已有的知识经验和教材的实际内容,本课的教学主要是教师创设情境,让学生对知识进行主动的探索,从而发现规律,并应用规律灵活地解决计算问题。
教学主要流程:
一、创设情境,导入教学
挂图出示例题:买5件夹克衫和5条裤子,一共要付多少元?
[创设与学生生活相联系的情境,让学生感受生活中的数学问题,激发学生学习的兴趣]
二、经历探索、分析比较、得出规律
1、让学生独立解答,得到两种不同的方法,集体订正,说出两个算式计算过程的含义
2、分析两个算式的联系,形成两个算式相等的共识(结果都是求出的是5件夹克衫和5条裤子的总价)即:(65+45)×5=65×5+45×5
3、建立初步的概念,写出类似的几组算式
4、小组合作,说说这样的算式所蕴涵的规律,得到乘法分配律公式并用字母来表示。
[新课标强调要让学生经历、体验知识获得的过程,主动参与探索,从而发现规律。在学生独立解答的过程中,教师引导学生感悟两种方法的相同点和不同点,经历观察、比较、分析,在学生的合作交流中,概括出乘法分配律的含义,从乘法分配律的认识由感性逐步上升到理性。培养了学生初步的归纳推理的能力]
三、巩固应用、深化延伸
1、做第1题,讲解2、3小题时重点强调相同乘数提出来,不相同的乘数相加,指出是乘法分配律的逆应用。
2、完成第2题,提示第3小题74×1的1可以省略不写,
第4小题中什么数是相同的乘数
3、完成第3、4题,比较两种方法中的哪种方法比较简便,渗透简便计算的思想
4、做第5题,重点提示学生第2题48×3-45×3可以写成(48-35)×3
把分配律中的加法类推到减法。
[乘法分配律的逆应用虽然在例题中没有出现,但现在这个知识结构中是很重要的一部分,乘法分配律在减法中的应用也是非常重要的,所以在教学中应该重视,使乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解]
四、课堂小结:
今天我们学习了什么知识,我们是怎么来学习的?
教材分析:
本课时是苏教版小学数学第八册第七单元的第一课时,乘法分配律涉及到乘法和加法两种运算。教材中实际情境中引出问题,引导学生用不同的方法进行解答,引导学生观察、比较列出两道算式,发现他们的内在联系,再让学生例举同类算式,分析共同点,从中发现乘法分配律,并用字母表示出来,练习中安排了应用乘法分配律进行简便计算,以及把乘法分配律延伸到它的逆应用和类推到两个数的差与一个数相乘,使乘法分配律的概念得到了有效的延伸。
学情分析:
学生在第七册学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2周长=(长+宽)×2
教学重点与难点:
重点:理解乘法分配律的意义
难点:引导学生经历探索并发现乘法分配律的过程。
设计理念:根据学生已有的知识经验和教材的实际内容,本课的教学主要是教师创设情境,让学生对知识进行主动的探索,从而发现规律,并应用规律灵活地解决计算问题。
教学主要流程:
一、 创设情境,导入教学
挂图出示例题:买5件夹克衫和5条裤子,一共要付多少元?
[创设与学生生活相联系的情境,让学生感受生活中的数学问题,激发学生学习的兴趣]
二、 经历探索、分析比较、得出规律
1、让学生独立解答,得到两种不同的方法,集体订正,说出两个算式计算过程的含义
2、分析两个算式的联系,形成两个算式相等的共识(结果都是求出的是5件夹克衫和5条裤子的总价)即:(65+45)× 5=65 ×5+45× 5
3、建立初步的概念,写出类似的几组算式
4、小组合作,说说这样的算式所蕴涵的规律,得到乘法分配律公式并用字母来表示。
[新课标强调要让学生经历、体验知识获得的过程,主动参与探索,从而发现规律。在学生独立解答的过程中,教师引导学生感悟两种方法的相同点和不同点,经历观察、比较、分析,在学生的合作交流中,概括出乘法分配律的含义,从乘法分配律的认识由感性逐步上升到理性。培养了学生初步的归纳推理的能力]
三、 巩固应用、深化延伸
1、做第1题,讲解2、3小题时重点强调相同乘数提出来,不相同的乘数相加,指出是乘法分配律的逆应用。
2、完成第2题,提示第3小题74×1的1可以省略不写,
第4小题中什么数是相同的乘数
3、完成第3、4题,比较两种方法中的哪种方法比较简便,渗透简便计算的思想
4、做第5题,重点提示学生第2题 48×3-45×3可以写成(48-35)×3
把分配律中的加法类推到减法。
[乘法分配律的逆应用虽然在例题中没有出现,但现在这个知识结构中是很重要的一部分,乘法分配律在减法中的应用也是非常重要的,所以在教学中应该重视,使乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解]
四、 课堂小结:
今天我们学习了什么知识,我们是怎么来学习的?
教学内容:
p36/例3(乘法分配律)
教学目的:
1.引导学生探究和理解乘法分配律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:
乘法分配律的意义和应用。
教学难点:
乘法分配律的反应用。
教学过程:
一、铺垫孕埋伏
思考问题。
在学习乘法的运算定律时,我们观察了一幅主题图,有的同学还提出了一个问题:一共有多少名同学参加了这次植树活动?
二、新授
小组讨论,尝试用不同的方法解决。
教师引导学生用多种方法解答。
学生汇报自己的解法。引导学生说明不同算法的理由。
(1)(4+2)×25
=6×25
=150(人)
4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。
(2)4×25+2×25
=100+50
=150(人)
4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。
小组合作:
(1)两组算式有什么相同点?
(2)两组算式有什么不同点?
(3)两组算式有什么联系?
汇报。
教师要根据学生的汇报,灵活地进行引导,总结出要点。
你还能举出像这样的几组算式吗?
学生举例。
根据学生举例板书。
到底我们举的例子是不是符合这样的规律呢?请学生验证。
请学生用语言表述出发现的规律。
板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
你有什么好方法帮助我们大家记住乘法分配律?
简记为:
和与一个数相乘=积相加
三、巩固练习
p36/做一做
p38/5
在练习小结中,帮助学生记忆乘法分配律。
四、小结
学生汇报自己的收获。
教师引导小结,相应完善板书。
板书设计:
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25(2)4×25+2×25
=6×25=100+50
=150(人)=150(人)
(4+2)×25=4×25+2×25
┆(学生举例)
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个
数分别相乘,再相加。这叫做乘法分配律。
课后小结:
教育学生,从爱出发,爱是一种特持久而深刻的感情。当老师面对教学难点的时候,可以详细的将一份教案做好准备,教师写教案时考虑教案的可行性。是否在为编写教案而犯愁呢?教师范文大全编辑收集并整理了“乘法分配律教案”,仅供参考,希望能为你提供参考!
教学目标:
1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
2、通过观察、分析、比较,培养学生的分析、推理和概括能力。
3、发挥学生主体作用,体验探究学习的快乐。
教学重点:指导学生探索乘法的分配律。
教学难点:乘法分配律的应用。
教学准备:课件、口算题、例题、练习题等。
教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。
教学流程:
一、设疑导入
师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?
生:可以使计算简便。
师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)
【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】
二、探究发现
1。猜想。
师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)
师:这道题算得怎么不如刚才的快啊?
生:它和前面的题目不一样。
师:好,我们来看一下它与前面的题目有什么不同?
生:前面的题都是乘号,这道题既有乘号还有加号。
生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。
师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。
生:(10+4)×25=10×25+4×25。
师:为什么这样算哪?
生:我是根据乘法分配律算的。
师:你是怎么知道的?你知道什么是乘法分配律吗?
生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。
师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)
2。验证。
师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)
师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)
小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?
师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?
3。结论。
生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。
师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)
师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?
(a+b)×c=a×c+b×c
师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。
【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】
三、练习应用
(生练习应用定律。)
师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
四、总结
师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)
反思:
本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:
一、主动探究,实现亲身经历和体验
现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特殊的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。
二、多向互动,注重合作与交流
在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一运算定律的主动建构。学生对“乘法分配律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。
一、说教材
本节课是西师大版四年级下册的《乘法分配律》。本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
二、说教学目标、
根据数学课程的基本性质与目的,我拟定了如下教学目标从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
三、说教学重、难点
教学重点:充分感知并归纳乘法分配律。
教学难点:充分感知并归纳乘法分配律。
四、说教法和学法
(一)教学方法
在教学过程中,我运用启发式进行教学,根据小学生的心理特征和认知规律,设计一些引人入胜的学习情境来激发学生的学习兴趣,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,设计一些易混题,最后设计一个找朋友的游戏,让学生积极参与,既活跃了课堂气氛又能充分发挥学生学习的积极性和主动性,充分体现教师的主导作用和学生的主体地位。
(二)学法指导
注意引导学生通过动手操作,采用观察、比赛、概括的方法概括出“乘法分配律”。让学生都能够动手、动脑、动口,积极参与教学的整个过程。
五、说教学过程
1、回顾:说说已学过的乘法交换律和结合律,并用字母表示。
2、初次感知规律:〖算一算〗
让学生通过复习、计算,感知乘法分配律算式的特点,为学习新的知识作好铺垫。
3、观察、激趣、导入。
第③组算式老师不用计算,就可以判定用等号连接,这是为什么呢?难道这里有什么奥秘吗?今天,我们就一同来研究这个问题。给学生制造悬念,激发学生的好奇心和求知欲。
一、联系实际,探究规律。
㈠影幕演示:
1、养鸡场左边有50间鸡舍,右边有30间鸡舍,每间鸡舍里有75只鸡。养鸡场共有多少只鸡?
【 ①学生读题,弄清题意。②上台演示,合作讨论,研究策略。
③展示思维过程,探究解题规律。】
2、分析比较:仔细观察两种方法有什么不同?
3、结论:两个算式的结果如何?用什么符号连接?仔细观察,认真思考,发现其中有什么规律?
通过观察、说特点,为下面口头概括定律收集语言材料。
㈡探究概括规律:
1、再一步观察、分析、比较去发现规律。〖多媒体操作引导〗
a、观察这些等式,等号左边算式有什么特点?〖多媒体演示〗
b、继续观察,等号右边的算式又是怎样计算的?先算什么?
后算什么?
通过口头概括,培养学生的思维能力和概括能力,让学生在主动中获取知识。
c、这两个积又是怎么得到的?
结论:把两个加数分别同这个数相乘。概括起来,说一说?
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。
2、字母表示乘法分配律:
如果用a、b、c分别代表三个数,你会用字母表示乘法分配律吗?
3、逆用乘法分配律、
我们知道减法是加法的逆运用,除法是乘法的逆运用。那么,乘法分配律有逆运算吗?你会运用吗?敢接受我的考验吗?
使学生懂得怎样用字母表示乘法分配律,从正反两方面理解乘法分配律。
二、质疑联想,拓展认识。
三、巩固运用规律。
(五)巩固与练习
通过多种形式的练习,既有利于学生巩固知识,又能激发学生的学习兴趣,同时也活跃了课堂气氛。
四、联系实际,深化认识。
咱们来解决一个实际问题试试。【多媒体演示】
为了丰富同学们的课余生活,学校准备购置足球和排球各20个,根据提供的信息,你能提出数学哪些问题?
五、归纳概括。
整堂课虽说有些不足,有些差生不能很好地理解,但都让学生们进行尝试,环环使学生体验成功的喜悦。
《乘法分配律》教学反思
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律。因此我在教学中让学生在不断的感悟、体验中理解乘法分配律,从而概括出乘法分配律。
1、在对本课的教学目标上,我从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
2、在本课教学过程的设计上,我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。让学生尝试通过不同的方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:(a + b)× c = a × c + b × c
3、在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。总之,在这堂课中新的理念也有所体现,但在具体的操作中还缺乏成熟的思考,对学生的积极性没有很好的充分调动起来。
教学目标:
1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力,《乘法分配律》教学设计。
2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。
3、能够运用乘法的分配律进行简便计算。
重点、难点:
重点:学生参与推导乘法分配律的过程。
难点:乘法分配律的推理及运用。
教学过程:
一、比赛激趣,提出猜想.
(1)同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做A组的题,右边的两组做B组的题,看谁做的又对又快,开始)
9×(37+63)9×37+9×63
(2)评出胜负。(做完的同学请举手,汇报计算过程。可以看出左边的同学做得比较快,(问同学)你们有什么意见吗?)刚才的计算中你发现这两道题有什么关系吗?
教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。
引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:9×(37+63)=9×37+9×63
(3)将学生的发现以他(她)的名字命名为“**猜想”。
【设计意图:在课的开始,组织数学热身赛能调动学生的学习积极性。】
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)昨天,老师去超市里买东西,看到下面这些物品。橙子每箱28元,苹果每箱22元。如果橙子和苹果各买3箱,一共需要多少钱?
(1)全班同学独立完成。
(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)
还有不一样的方法吗?谁来说说看?(生回答,师板书)
算式(28+22)×3和28×3+22×3的每一步各表示什么?谁能说给大家听听?
(3)观察这两个算式,你有什么发现?
引导学生比较两个算式异同点,并指名学生说一说自己
生:这两个算式的得数是一样的。
师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。
生:等于号
师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,所以(35+25)×3=35×3+25×3
师:再和前面的一组式子一起观察,
9×(37+63)=9×37+9×63
(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)
2、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)
(1)验证方法:要求每人出两组算式,数字随意举例,可以使用计算器进行计算,验证你举的例子是否相等,教案《《乘法分配律》教学设计》。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)
(2)学生回报:谁来说一说自己举的例子。
(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)
(4)轻声读这些等式,你发现了什么?
3、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?
学生回报。
(电脑出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)
同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?
结合学生回答,教师板书:(a+b)×c=a×c+b×c
齐声读两遍。
(4)对于乘法分配律,用字母来表示,感觉怎样。
引导学生发现:字母表示的式子简洁、明了,这就体现了数学的美。
三、加强应用、深化理解
1、瞻前顾后填一填。
(10+7)×6=□×6+□×6
8×(125+9)=8×□+8×□
7×48+7×52=□×(□+□)
2、火眼金睛看一看:
判断下面算式是否正确?并说明理由?
56×(19+28)=56×19+28()
32×(7×3)=32×7+32×3()
25×12+12×75=12×(25+75)()
25×99+25=(99+1)×25()
3、利用乘法分配律,计算下列各题。(80+4)×2534×72+34×28师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
4、找朋友
(10+6)×410×4+610×4+6×4
5×(7+9)5×7+5×95×7×9
3×25+7×253+7×25(3+7)×25
5、对口令
师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。
6、脑筋急转弯。
猜一猜,等号后边是三个什么字?
木×(1+3+2)=?
四、总结:
1、回忆一下,这节课你学会了什么?
2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?同学们课后交流一下,下节数学课我们再继续研究。
一.说教材分析
《乘法分配率》的内容,是人教版小学数学四年级下册第三单元的运算定律和简便计算中的一个重要内容。这一部分知识的教学,承接前面学过的加、减、乘、除的运算方法,几个几加几个几的运算和四则运算法则的知识,后起整数的简便计算和小数、分数的简便计算。本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,我是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
二.说学情分析
本节课是在前面学习了加法交换律、结合律,乘法交换律、结合律的基础上进行学习的,学生已经有了前面几次类似的学习经历,为本节课的学习打下了较好的基础。由于乘法分配律不像交换律、结合律只针对一种运算进行的变化,其中不仅有乘法还有加法或减法,因此学生理解起来有一定的难度,概括运算定律具有一定的抽象性,所以学生在概括时有一定的困难,因此我们在教学中应注意及时进行引导和点拨。
三.说我的思考
教学本课时,我试图在一种开放的教学环境下,让学生通过口算初次感知规律、解决问题形成规律表象、探索等号两边算式的联系概括规律、巩固运用规律等环节的学习,探索知识的发生发展过程,得出结论。培养学生独立思考、小组合作、主动探索的学习精神和意识,真正体现课堂教学中学生为主体、教师为主导的教学原则。
四.说教学目标
结合上面的分析,我制定了如下的教学目标:
1.使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配率可以使一些计算简便。
2. 使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3. 使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。
教学重点:
学生经历归纳概括乘法分配律的过程。
教学难点:
抽象概括乘法分配律,简单运用乘法分配律。
五.说教学过程
(一)复习旧知,导入新课
第一个环节,我设计了4道口算题:25*7*4 ;8*9*125;(8+4)*25;
3*12+7*12。前两道题让学生说运算过程的同时,说说运用了什么定律?对乘法交换律和结合律进行简算的复习,为后面和乘法分配律进行比较做准备。后两道题让学生进行口算时产生学习困难,大部分学生采用四则运算的运算顺序进行计算,所以很慢,也不见得准确。这都没有关系,这只是这节课的一个伏笔,是第一次让学生隐隐约约地感受惩罚分配律。然后老师快速神秘地说出答案,并激励学生说,“只要你们这节课认真学习,也能像老师一样快速准确地说出结果,你们愿意吗?”。让学生对这节课充满期待。
(二)解决问题,探索定律
1、再一次呈现种树的主题图,直接提出“一共有多少名同学参加了这次植树活动?”让学生围绕着问题,从熟悉的信息中找出相关的数学信息,培养学生搜集有价值信息的能力。利用前两次课的主题图,既可以使内容显得连贯,又可以降低解决问题的难度。更加突出这节的重难点(即乘法分配律的概括和运用),而不是解决问题。学生提取出有价值信息后,给学生出示一个完整的实际问题,有利于让学生下一步独立思考解决问题。
2、汇报方法,两种不同的方法出现后,引导学生观察两种方法的不同点和相同点。学生会发现两种方法思路不同,结果相同。由于学生有前面的学习经验,很容易就能把(4+2)*25和4*25+2*25用“=”连接起来。接下来就是引导学生一步步分析等号两边的算式,左边的算式先算什么?先算4+2=6。6*25表示什么?表示6个25是多少?右面的算式表示什么?4个25加2个25是多少?也就是6个25是多少。我引导学生利用乘法的意义,一步步地追问后,让学生懂得4个25加2个25就等于6个25,所以等号两边相等。这是第二次让学生感知乘法分配率了。但并不急于揭示定律,因为孩子的概括能力有限,还需要做进一步的铺垫。
于是我设计了“是不是任何三个数组成这样的算式都有这样的规律呢?”这再次激起学生的思考,强烈的探究欲望引导着他们马上想验证一下,我顺水推舟地让他们在小组里写写试试。小组中有的同学喜欢用大数、有的同学喜欢用小一点的数、有的同学则喜欢用1、10、99这样的特殊数,无论怎样他们都通过自己的验证和同学的交流中感受到了,这条规律是的的确确存在的。
3.总结定律
这个时候再让同学们用自己的话说说这条规律就水到渠成了。当然学生的语言并不规范。我会引导学生一步步说出“两个数的和”与“一个数相乘”就等于把这两个数“分别”与“这个数相乘”,这就叫做“乘法分配律”。边说边板书,尤其是表示分配的时候用彩色箭头标明怎样分配,有助于学生的理解和记忆。随后板书课题,就更突出本节课的学习目标了。
用字母表示运算定律是学生已有的学习经验,并不难,但是有可能出现(a+b)*c=a*c+b*c或a*(b+c)= a*b+ a*c,都要列出来给予肯定。
(三)对比理解,巩固应用
1.呼应口算,体会价值
做练习之前,我设计了一个回归口算的小环节。让学生再看上课之初不好算的那两道口算题。学完定律后,再看到(8+4)*25,自然会想到用分配的方法,见到3*12+7*12会想到3个12加7个12,其实就是10个12,就得120。这样的前后呼应设计,既使课堂显得完整,又让学生开始的疑惑解开,有种恍然大悟,豁然开朗的感觉,体会到学习的愉悦和成功,从而真正深刻体会到乘法分配律的好处。
2.对比定律,加强理解
与乘法结合律的对比,是基于我往年的教学经验,学生经常把乘法分配律和乘法结合律用混的现象。比如:44*25=(40+4)*25=40*25*4*25=1000*100=100000。所以,我让学生找出他们的不同点。从而更好地理解这两条定律,以便日后准确运用。
3.多种联系,巩固应用
判断和填空的练习,旨在进一步对比区分,巩固乘法分配律。买衣服环节的设计,让学生真正体会到数学来源于生活,体现出数学与生活的密切练习。
简便计算中,我设计了分配律正运用的练习,逆运用的练习,减法的分配练习,以及三个乘法合并的练习。一个比一个难,每个都有挑战性,有让学生蹦一蹦够得着,让学生获得学习的成功感,也培养了学生的类推迁移能力。
(四)课堂小结,拓展延伸
首先让学生说一说学习这节课的收获,学生的回答可能是零散的,不完整的,老师都应给予肯定。
其次我提出了45*99+45,35*102,23*99这样需要稍加变化才能运用定律进行简便计算的题,引起学生的思考,为下节练习课做好铺垫。
一、说教材:
教学目标及重难点:
根据《大纲》要求,教学资料和学情,本节课我确定了如下教学目标及重难点。
教学目标:
1、知识与本事
(1)会用乘法分配律进行一些简便计算。
(2)在探索的过程中,发现乘法分配律,并能用字母表示。
2、过程与方法
(1)经过探索乘法分配律的活动,进一步体验探索规律的过程。
(2)经历共同探索的过程,培养解决实际问题和数学交流的本事。
3、情感、态度与价值观
(1)增加学生之间的了解、同时体会到小伙伴合作的重要。
(2)在这些学习活动中,使学生感受到他们的身边处处有数学。
(3)在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点:充分感知并归纳乘法分配律。
教学难点:理解乘法分配律的意义。
二、说教法、学法
1、教学方法。
在设计乘法分配律的教学时,依据学生的认知发展水平和已有的知识经验。我采用自主学习、合作交流、当堂训练的教学模式。充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为进取主动参与的学习。
2、学法指导。
新课程标准指出学生是学习的主人,教师只是学习的组织者,引导者和合作者,学生始终参与教学活动中。所以在本节课教学过程中,我根据教学资料以学生自主学习、自主探索为主,让学生去解决实际问题,在解决问题过程中引导学生经过观察、比较、概括的方法总结出“乘法分配律”。使学生都能够动手、动脑、动口,进取参与教学的整个过程。
三、说教学过程
本节课的教学我是这样安排的:“创设情境,激趣导入;观察发现,总结规律;运用规律,尝试练习;扩展延伸;全课小结”共五个环节。
(一)创设情境,激趣导入:
本节课是规律的学习,就资料本身而言枯燥,单调,学生很难感兴趣,所以我从男女生的比赛开始,一是调动了学生的学习兴趣。更重要的是:经过比赛的形式让学生亲身经历感知到用相同的数,相同的运算符号,组成的结果也相同的算式,由于运算顺序不一样,使计算的难易程度是不一样的。在引导学生找这些式子的相同点和不一样点时,把学生的学习心向引导到对运算律的研究上去。初步感知了乘法分配律,为接下来归纳总结规律打下了基础。
(二)观察发现,总结规律:
经过例题的教学,学生会在观察、比较后发现其中隐藏的规律,肯定为这一发现感到欣喜不已并有表达的欲望,为了锻炼学生的语言表达本事就让学生先交流,但受学生的抽象概括本事的制约,表达的肯定不是很清楚,这时教师立刻让学生练习课前练习题来比较、观察,一来让学生明白用语言表达困难时能够借助式子用行为表达,二来也是以此来验证规律是否成立。接下来让学生把众多的的案例概括起来――即用符号表达。这种表达方式除了能直观、简洁地显现运算律的本质资料。学生在用图形、字母表示运算律时,也能充分体会这种表达方式的优越性,从而既加强对运算律的理解,又培养符号意识,发展符号感。最终教师把文字规律呈现出来,一是规范学生的语言表达,二是进一步巩固规律。
(三)练习的设计
理解了乘法分配律,我让学生经过“课堂活动”第1题的练习,再次体验乘法分配律在解决问题过程中的应用。之后设计了一组紧扣规律的简单填空练习,让学生在运用中进一步体会到乘法分配律中“分配”的意义。紧之后经过一组确定题加深对乘法分配律的理解和运用。最终的拓展延伸练习,将本节课的知识进行迁移,使学生体会到更多数的和与一个数相乘,两个数的差与一个数相乘这样的类型题也能够用类似的方法进行简便计算,使学有余力学生的本事进一步得到提高。
一、说教材
本节课是人教版小学四年级数学第三章运算定律与简便计算中的.内容。本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
二、说教学目标
根据数学课程的基本性质与目的,我拟定了如下教学目标:
1、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
三、说教学重、难点
教学重点:掌握乘法分配律,理解乘法分配律的意义。
教学难点:掌握乘法分配律,理解乘法分配律的意义。
四、说教法和学法
(一)教学方法
在教学过程中,我运用启发式进行教学,根据小学生的心理特征和认知规律,我设计了循序渐进的教学过程,一步一步的引导学生到达新知识的制高点。其中适当的鼓励学生,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,让学生积极参与,充分体现教师的主导作用和学生的主体地位。
(二)学法指导
注意引导学生通过动手操作,采用观察、比赛、概括的方法概括出“乘法分配律”。让学生都能够动手、动脑、动口,积极参与教学的整个过程。
五、说教学过程
(一)谈话引入,激发兴趣。
1、回顾前面学习过的乘法交换律和乘法结合律,让学生用自己的话说一说,用字母来表示。
2、师:(指导观察主题图,理清图中的数学内容)同学们植树多么认真啊!他们为绿化祖国做出自己能做的事。这节课我们接着来探究关于其中的一些数学问题,同事们能够有兴趣解决吗?
(复习旧知识,孔子曰:学而时习之。时下正是植树节,以这样一个情境引入新课比较自然)
(二)自主学习,合作探究。
1、教学例3。
负责挖坑、种树的一共有多少人?
A、要求生在练习本上列综合算式算,然后小组里交流。生汇报。
B、让一学生上黑板写。
(4+2)×25 =6×25 =150(人)
师:你是怎么想的?
C 、师问:还有同学有不同的列算式方法吗?
生:上黑板写。
4×25+2×25
=100+50
= 150(人)
师:你是怎么想的`?
(让学生说一说自己的想法,理清解题思路,与其他同学共享)
师引导学生对比观察这两个算式,你发现了什么?
生小组里交流。生汇报。
引导学生发现:
1、(4+2)×25=4×25+2×25
2、第二个算式比第一个算式简便。
3、师适时引导总结出乘法分配律
......
师:谁能给我们发现的这个规律起个名字?(乘法分配律师板书)
(这一环节充分体现了学生的主体地位,放手让学生讨论交流,得到自己的想法,培养学生观察发现交流合作的能力。)
生:翻开课本齐读乘法分配律的概念。
师:课本上用符号来表示乘法分配律,但是没有写完整,你能补充完整吗?(师巡视指导)
师板书:(a+b)×c=a×c+b×c
D、你能例举出类似的例子来吗?
生:在练习本上写,然后师指名说一说。
(由于前面学习交换律、结合律的时候都有这些环节,所以这部分内容学生很熟悉,放手让学生做。)
E、师在黑板上板出乘法结合律的式子。(用字母表示)让学生对比乘法结合律和乘法分配律,对比它们的异同,让学生说一说。
(在这一章内容里学习了好几个运算定律,学生很容易搞混淆,所以要让学生区别它们。)
(三)巩固运用,深化提高。
1、第36页“做一做”。
下面哪个算式是正确的?正确的画“√”,错误的画“×”。
56×(19+28)=56×19+28()
32×(7×3)=32×7+32×3()
64×64+36×64=(64+36)×64()
2、师:运用乘法分配律可以使一些计算简便。
计算:101×13 40×65
指名两生上黑板做,并说说自己的想法。
生甲:101×13生乙:40×65
=(100+1)×13 =40×(60+5)
=100×13+1×13 =40×60+40×5
=1300+13 =2400+200
=1313 =2600
(这部分的练习主要是训练学生的运用能力,可能当时对学生来说有一定的难度,老师的巡视指导。)
师:表扬鼓励学生。
(四)总结提升。
这节课,你认识了什么新的运算定律?你会将它叙述一遍吗?它对我们有什么帮助?
六、说板书:乘法分配律
(a+b)×c=a×c+b×c北师大版4年级上册乘法分配律教学设计教学反思说课稿
乘法分配律是人教版四年级数学下册的内容,是一节比较抽象的概念课,是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。因此,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算往完整地感知,对所列算式进行观察、比较和回纳,大胆提出自己的猜想并举例进行验证……
所以,本课的教学目标,我定位在:
(1)从学生已有生活经验出发,通过观察、类比、回纳、验证、运用等方法深化和丰富对乘法分配律的熟悉。
(2)渗透“由特殊到一般,再由一般到特殊”的熟悉事物的方法,培养学生独立自主、主动探索、发现题目,解决题目的能力,进步数学的应用意识。
本单元教材的一个鲜明特点是,不再仅仅给出一些数值计算的实例,让学生通过计算,发现规律,而是结合学生熟悉的题目情境,帮助学生体会运算定律的现实背景。这样便于学生依托已有的知识经验,分析比较不同的解决题目的方法,引出运算定律。
教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的题目是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用“=”连接,即25×(4+2)=25×4+25×2。我将其首先呈现给学生,目的是结合学生熟悉的题目情境,帮助学生体会运算定律的现实背景。
接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲看。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希看获得成功的动机。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得欢快,自己动手编题、自己动脑探索,从数目关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学会了像数学家一样进行研究、发现!这对十岁左右的孩子来说,其激励作用无疑是无比巨大的,而“爱思、多思、会思”的学习习惯,会让孩子一生受益。纵观教学过程,学生学得轻松,学得主动。
我通过这节课的教学感受到:认真钻研教材,深进挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。
一、说教材
教学目标:
1.使学生在解决问题的过程中探索和发现乘法分配律,并能更多用掌握乘法分配率。
2.引领学生在主动参与探索的过程中培养观察、分析、概括、推理能力。
3.使学生在感受教学规律的过程中,获得成功的体验,增强自信心。
乘法分配律在计算教学中占有重要地位,它的学习有利于提高学生的观察能力、比较和概括能力,是学生以后进行简便运算的前提和依据,因此,本节课的教学重点是探索和掌握乘法分配率的意义。教学难点是理解乘法分配率的意义。
二、说教法
兴趣是一个人学习的动力,是最好的老师。在教学中,我将遵循小学生的认识规律。突出学生的主体地位,采用自主学习的课堂教学模式。并综合应用情境教学法,操作实验法,讨论法,评价法等教学方法。为学生提供充分的自主学习的时间和合作探究的空间,促进学生的自主发展。通过创设愉悦的生活情境,寓教于乐,让学生自主探究,合作交流,沿着观察、交流、类比、归纳的思路,由具体到抽象,从感性到理性,构建新的知识体系,力求实现新课标所倡导的生命化、生活化、动态化、过程化的新型课堂教学理念。
三、说学法
“授人以鱼,仅供一饭之需:授人以渔,则终身受用无穷”,本节课,我主要采用“激、感、探、固、评“五字教学法,让学生通过观察比较、自主探究、合作交流、归纳总结、相互评价等形式充分调动学生的多种感官参与,让学生体会新知识的发生发展和形成的全过程,体现数学学习使学生经历数学活动、发展创新思维和实践能力的新课程理念。
四、说教学过程
在教学过程中,我根据五字教学法,制定了如下教学环节:
(一)借比赛来激趣
新课伊始,我先和同学们来一个小小的数学热身赛(课件出示)让学生在两道题中任选一题,教师全做,看谁做得又对又快。当有了结果后,我设置疑问:想知道老师算得又对又快的秘密吗?当学生产生探究的欲望时,我顺势进入第二个环节。
(二)依情境感新知
看到大家学习积极性这么高,老师送给大家一些笑脸,(出示课件)你们知道这上面一共有多少张笑脸吗?你是怎样算的?根据学生的回答板书:[(5+3)*4 5*4+3*4]
学生不难发现,用不同的方法求出来的结果相同,所以可以用等号将两个算式连接起来。(板书=)这样的设计,既符合小学生的年龄特点,又遵循小学生的认知规律,既可以化难为易,化抽象为具体,又能使学生乐学、易学。
我感到,一个规律的得出应该通过一组算式的观察得到,只是一个例子就显得十分草率,因此,我又创设了这样的情境:(课件出示)学校准备购买校服,上衣每件35元,裤子每条25元,要购买三套这样的校服一共需要付多少钱?同学们能帮老师解决这个问题吗?学生可能会根据大屏幕上的信息用不同的方法进行计算,我适时板书:[35*3+25*3 (35+25)*3]这时学生不难发现,用不同的方法求出的总价相同,所以也可以用等号将两个算式连接起来。
这样,由生活情境产生数学问题,由浅入深,不断地创境设问,引导学生自主参与解决问题,激发学生探究规律的强烈欲望,这样就自然地进入了第三个教学环节:
(三)据探究知规律
当学生产生探究规律的强烈欲望时,我将引导学生对教学重点进行合作探究。首先,请同学们仔细观察以上两个算式的左边和右边,你发现了什么?我并不急于让学生回答,而让他们把自己的发现在小组里进行交流,学生通过小组交流,将进一步的达成共识,学生可能会发现:左边是两数的和与一个数相乘,右边是把左边的两个加数分别与这个数相乘,再把两个积相加。当所有学生都有所发现时,我将继续引导他们:你能仿照上面的例子再举一些含有这样规律的例子吗?这一过程学生将会举出大量的例子,以揭示乘法分配律的普遍性。在此基础上,我问:同学们,在以上的学习中,你发现了什么规律?学生通过以上的合作探究、观察交流,充分感知乘法分配律的意义并进行归纳,(课件出示并板书课题)这时可让学生在小组里说说你是怎样理解这一定律的?你还有什么不懂的吗?最后师生共同概括出字母公式,(教师板书)结合公式教师说明乘法分配律也可以反过来使用,要根据具体情况灵活运用。这样一层深入一层的探究过程,能培养学生概括、分析、推理的能力。在这一过程中,我会采用各种评价手段,激励学生主动参与探究,对有特殊见解的我将予以充分肯定。从生活中来,到生活中去,这是新课程改革的主要内容,因此,我把第四个环节设计为:
(四)凭练习固新知
当学生理解了乘法分配律的意义后,我将设计以下的闯关练习:
第一关是一般性练习,数字找家。(出示课件)目的是面向全体学生,让学生人人参与,灵活运用乘法运算定律帮数字找准自己的家。
第二关是小判官。这一关中为了激发学生的积极性,我将让学生通过打手势的方式来进行判断并说明理由,培养学生的思维能力。
第三关是提高性练习,我能行。这一关练习我将引导学生运用定律进行简便运算,培养学生灵活运用定律的能力。
第四关是开放性练习,我最棒。根据提供的信息你能提出那些数学问题?这一过程我将采用各种激励手段,引导学生提出不同的问题,学生有可能提出20个足球20个篮球一个多少元?如果学生提出20个足球比20个篮球贵多少元时,可以进一步推广到乘法和减法的性质[(a-b)*c=a*c-b*c],这也是乘法分配律的应用。
在以上的闯关练习中,循序渐进,学生在用中巩固了新知,最后一个环节是:
(五)借评估促发展
评价是课堂教学的主要组成部分,评价的目的是全面了解学生的学习状况,激发学生的学习热情,促进学生的全面发展,评价也是教师改进教学以及反思的一种手段,在教学中,我将采用多样化的评价方式,如将教师评价与学生互评有机结合起来,全面激发学生的学习学习兴趣,活跃课堂的探究气氛。在课的最后,我将让学生做最后的自我评估:同学们,这节课的学习你有什么收获?你还有什么不明白的需要老师和同学帮帮你?让学生自我梳理,最后布置作业。
开场白:
尊敬的各位评委老师好!(鞠躬)我是小学数学组几号考生,今天我说课的题目是《乘法分配律》,下面开始我的说课。
依据数学课程标准,在新课程理念的指导下,我将以教什么,怎样教以及为什么这样教的思路,从教材分析,教学目标,教学方法教学内容等方面展开我的说课。
一、说教材:
首先,谈谈我对教材的理解。
《乘法分配律》选自人教版小学数学四年级下册第3单元,属于数与代数的内容。本节课主要介绍了乘法的分配律是在学生学完四则运算以及加法的运算律的基础上进行教学的,为简便运算做好铺垫。因此本节课在小学数学的学习中起到了承上启下的作用。
二、说学情:
根据因材施教的原则,在进行教学设计之前,进行学情分析是很有必要的。
四年级的学生在之前学习过四则混合运算,这也为本节课的教学奠定了知识基础。这个阶段的学生认知水平有所发展,思维从具体形象思维开始过渡到抽象逻辑思维,但仍然以形象思维为主,他们有一定的生活经验,且求知欲强,对新鲜事物充满好奇,喜欢表达,愿意在活动中进行学习,这些都是我在教学过程中需要注意的地方。
三、说教学目标
根据新课标要求我确定了如下的教学目标:
1.知识与技能目标:经历乘法分配律的探究过程,掌握乘法分配律的计算方法,能正确进行计算。
2.过程与方法目标:通过小组合作、交流讨论的过程,培养学生解决问题的能力,发展学生的数感。
3.情感态度与价值观目标:体会数学与生活的联系。激发学习数学的兴趣,增强学好数学的信心渗透环保意识。
四、说教学重难点
基于以上分析,本节课教学重难点确定如下:
教学重点是掌握乘法分配律的计算方法,能正确进行计算,而经历乘法分配律的探究过程则是教学难点。
五、说教法学法:
根据新课改的理念,结合教材和学情的分析,本节课的教法我确定为讲授法、讨论法、启发引导法。之所以用这些方法,是为了吸引学生的注意,活跃课堂氛围,增大课堂容量,培养学生的探究能力。
教师的教是为了学生更好的学。因此,我将本节课的学法确定为自主探究法、小组合作法,从而尊重学生的主体地位。
六、说教学过程:
钻研教材,研究教法学法,是上好一堂课的前提,而合理安排教学过程则是最重要的一环。为了使学生有所收获,我将从导入、新授、巩固、小结、作业这5个部分来展开教学过程。
1.导入:
俗话说,未成曲调先有情。一个好的导入能像磁石一样,牢牢吸引学生的注意力。因此本节课我将借助多媒体出示图片进行导入,创设如下情境:四年级学生在植树节种树,老师学生每25人分到1组,有4组同学进行铲土种树,有2组同学去打水给树浇水。我会一边给学生渗透环保意识,一边引导学生,你观察清楚图片了吗?你能提出什么样的数学问题呢?预设学生回答:想知道浇水组有多少学生,种树组有多少学生,一共有多少学生,从而引出今天的课题——《乘法分配律》。
通过多媒体导入新课,既能营造愉快的课堂氛围,又能激发学生的学习兴趣,通过设疑使学生产生求知欲。
2.新授:
接下来是师生互动,探究新知的环节。我设置了3个活动。
活动1:理解题意,初步感知
我将提问学生:根据你们之前提出的问题,能否计算出一共有多少学生参加了这次植树活动?学生之前已经有过解决应用题的经验,所以我会让学生在理解题意得基础上进行自主探究。探究过程中,我会适时点拨学生。探究结束后请2位学生上台板书计算过程,其他学生进行发言,有的同学可能会先计算浇水组学生人数25×2,再计算种树组学生人数25×4再将二者相加得到结果150人。
板书:25×2+25×4=150)
有的同学可能会先求出一共有几个小组2+4,再将小组个数乘25,最后同样求出150人(板书25×(2+4)=150),
对于学生的回答,我都会予以表扬鼓励,能够运用不同的思维方式解决问题,而对于不足之处我也会做补充和引导,帮助学生理清思路。
活动2:观察思考,提出猜想
接下来,我会提出问题请同学们仔细观察以上这两个算式,你们有什么发现?学生们不难发现,这两个算式中的三个数字相同,计算结果也是一样的。我会进行追问,你们能发现这两个式子有什么规律吗?如果把 25 和(2+4)对调位置呢,结果还是一样的吗?然后引导学生启动4 人小组讨论交流,限时 5 分钟,讨论过程中我会走下讲台进行巡视点拨,讨论结束后请小组代表汇报成果。
有的小组会发现 25 和(2+4)的位置调换,计算的结果是一样的,有的小组发现 25 与(2+4)相乘和 25 分别与括号的里数相乘,再相加的结果是一样的,对于学生的各种发现,我会予以发展性评价,并利用学生的错误资源及时纠错,帮助学生理解知识,梳理过程。
最终,师生共同提出猜想两个数地和与一个数相乘,可以先把它们与这个数分别相乘,再相加。我将此过程进行板演,规范书写
(板书25×(2+4)=25×2+25×4 (2+4)×25=25×2+25×4))。
活动3:验证猜想,总结规律
为了验证上述猜想是否正确,我会在多媒体上出示几组数据,引导学生在练习本上利用刚才的猜想计算,学生发现,这个规律同样也适用于其他的数据。最后我会引导、帮助学生尝试用规范的语言概括总结乘法分配律,并体会乘法分配律能让计算变得简便。
紧接着,我会启发学生:你能用字母来代替数字,写出乘法分配律吗?学生选择自己喜欢的字母进行表示。
(板书:乘法分配律:两个数地和与一个数相乘,可以先把它们与这个数分别相乘,再相加。)
新授环节充分体现了学生是学习的主体,教师是学习的组织者、引导者、合作者。学生通过活动、讨论主动建构知识,突破了教学的重难点,通过引导学生进行观察、猜想、验证、总结的过程,帮助学生内化知识,为以后的学习打好基础。
3.巩固:
为了巩固所学知识,我将分层次借助多媒体出示练习题,并设置“勇夺智慧宝石”闯关游戏。评价采用生生互评,生生纠错的形式,帮助学生加深知识理解。
4.小结:
在课堂小结的环节,我会请学生畅所欲言,谈谈本节课的收获和体会,引导学生多维度总结,培养学生总结反思的好习惯。
5.作业:
课上学习,课下复习。我将为学生布置书面和开放式相结合的课后作业:
作业1:完成课后的练习题
作业2:把本节课的内容制成数学书签。
以上就是我全部的教学过程。
六、说板书设计:
最后,数学课堂的板书设计,一定要简洁明了、重点突出、便于学生识记和运用。所以我采用了这样的板书设计。
结束语:
各位评委老师,以上就是我说课的全部内容,感谢各位老师的聆听!(鞠躬)
本节课是人教版小学四年级数学第三章运算定律与简便计算中的内容。本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
根据数学课程的基本性质与目的,我拟定了如下教学目标:1。从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。 2。渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
在教学过程中,我运用启发式进行教学,根据小学生的心理特征和认知规律,我设计了循序渐进的教学过程,一步一步的引导学生到达新知识的制高点。其中适当的鼓励学生,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,让学生积极参与,充分体现教师的主导作用和学生的主体地位。
注意引导学生通过动手操作,采用观察、比赛、概括的方法概括出“乘法分配律”。让学生都能够动手、动脑、动口,积极参与教学的整个过程。
1、回顾前面学习过的乘法交换律和乘法结合律,让学生用自己的话说一说,用字母来表示。
2、师:(指导观察主题图,理清图中的数学内容)同学们植树多么认真啊!他们为绿化祖国做出自己能做的事。这节课我们接着来探究关于其中的一些数学问题,同事们能够有兴趣解决吗?
(复习旧知识,孔子曰:学而时习之。时下正是植树节,以这样一个情境引入新课比较自然)
A、要求生在练习本上列综合算式算,然后小组里交流。生汇报。
(让学生说一说自己的想法,理清解题思路,与其他同学共享)
引导学生发现:1、(4+2)×25=4×25+2×25
师:谁能给我们发现的这个规律起个名字?(乘法分配律师板书)
(这一环节充分体现了学生的主体地位,放手让学生讨论交流,得到自己的想法,培养学生观察发现交流合作的能力。)
师:课本上用符号来表示乘法分配律,但是没有写完整,你能补充完整吗?(师巡视指导)
(由于前面学习交换律、结合律的时候都有这些环节,所以这部分内容学生很熟悉,放手让学生做。)
E、师在黑板上板出乘法结合律的式子。(用字母表示)让学生对比乘法结合律和乘法分配律,对比它们的异同,让学生说一说。
(在这一章内容里学习了好几个运算定律,学生很容易搞混淆,所以要让学生区别它们。)
下面哪个算式是正确的?正确的画“√”,错误的画“×”。
64×64+36×64=(64+36)×64()
(这部分的练习主要是训练学生的运用能力,可能当时对学生来说有一定的难度,老师的巡视指导。)
这节课,你认识了什么新的运算定律?你会将它叙述一遍吗?它对我们有什么帮助?
教学内容:
教科书书第54的例题以及55页的“想想做做”。
教学目标:
1.让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。
2.让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点和难点:
发现并理解乘法分配律。
教学准备:
多媒体课件。
教学过程:
一、复习旧知,作好铺垫
同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)
今天这节课,我们要来研究乘法的另外一个运算定律。
二、联系实际,探究规律
1.谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!
2.课件例题情景图。
(1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)
(2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?
指名说出算式,教师随学生回答板书:
(65+45)×5 65×5+45×5
让回答的两名学生说说自己的想法。(即先算的是什么。)
第一个算式:先算买一套衣服用多少元。
第二个算式:先算买5件夹克衫和5条裤子各用多少元。
(3)猜一猜:这两个算式结果会怎样?(相等)
(4)计算验证。
师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。
集体交流,指名汇报计算过程。
(5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。(板书:=)我们把这个等式轻声读一读。(学生轻声读读这个等式。)
3.探索、发现规律。
(1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。
同桌讨论交流,指名汇报,鼓励学生自由发表意见。
(学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。……)
(2)在学生发言的基础上,教师相机引导学生初步得出:65加45的和与5相乘,等于把65和45分别与5相乘,再把两个积相加。
(3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?
指名举例,计算算式结果,得出等式,教师板书。
师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)
学生汇报验证的结果。 教师结合学生回答板书三个等式。
问:还有许多同学要发言,说明这样的例子还有很多很多,举得完吗?(板书:……)师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。
(4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)
(5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。
展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。
表扬写对的同学,并指出:刚才的这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)
师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。
三、应用规律,巩固练习
1. 对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题) 横着看,在得数相同的两个算式后面画“√”。
学生自己判断。集体交流时指名说说是怎么判断的?
第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。
问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?
2.掌握得真不错!下面打开书看55页“想想做做”第1题。
学生独立填写后,指名汇报。
讨论第2小题时问:两个乘法中相同的乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!
3.完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)
问:图上给我们提供了长方形菜地的什么信息?
你会用两种不同的方法计算它的周长吗?
(1)学生完成在自备本上,指名板演两种不同的方法。
(2)集体交流,出示:(64+26)×2 64×2+26×2
师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?
师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。
4.完成“想想做做”第4题。
出示题目,观察这两组算式,想想每组中两个算式的结果是否相同?为什么?
比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。
学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?
(估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)
这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)
指名说计算过程,教师用课件展示简算过程。
小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。
5. 谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?
学生独立完成在自备本上,投影展示不同的算法。
观察这个等式,你有什么想告诉大家吗?
师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的和去乘,甚至更多的加数呢!
四、总结回顾
问:今天这节课,你有什么收获?
五、课堂作业
完成“想想做做”第5题。
教后反思:
乘法分配律是在学生学习了乘法交换律、结合律的基础上教学的,这是四年级学习的重点,也是难点之一。本节课我比较注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。首先我先创设了设计买衣服的情景,出示了例题图,让学生尝试通过不同的方法得出结果,再让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接,使之让学生从中感受了乘法分配律的模型,而后让学生作出一种猜测:是不是所有这样的两道算式之间都有这样的联系呢?是不是符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力,从而让学生知道乘法分配律给大家计算带来的便利,从而引出乘法分配律的概念和字母形公式。
在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。出示一些扩展型的练习:由(17+8+15)×60让学生明白乘法分配律也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为以后利用乘法分配律进行简算埋下伏笔。
当然在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还是不够,另外还有部分学困生对乘法分配律不太理解,运用时问题较多,在本节课中的一些具体的环节中也还缺乏成熟的思考,对学生的积极性没有很好的充分调动起来,这些在以后的教学中都要多加注意。
本文网址://m.jk251.com/jiaoan/101535.html
上一篇:毕业晚会班主任致辞精选
下一篇:生物课件(精华15篇)