老师根据事先准备好的教案课件内容给学生上课,每位老师都要用心的考虑自己的教案课件。教案是完整课堂教学的核心。栏目小编为您整理的“初中数学教学优秀教案”将会告诉您一些重要的知识,仅供参考,我们来看看吧!
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
一、教材分析:
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、教学目标分析
根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。
因此把教学目标确定为:1、掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2、在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3、通过学习培养学生积极参与和勇于探索的精神。
三、教学重点难点分析
本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;
难点则是如何抓住特征准确画出反比例函数的图象。
为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。
四、教学方法
鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法
和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
五、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、
对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
六、教学过程
(一)复习引入——反函数解析式
练习1:写出下列各题的关系式:
(1)正方形的周长C和它的一边的长a之间的关系
(2)运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系
(3)矩形的面积为10时,它的长x和宽y之间的关系
(4)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系
问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?
问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。
问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?
通过问题2来引出反比例函数的解析式,请学生对比正比例函数的定
义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。
例题1:已知变量y与x成反比例,且当x=2时,y=9
(1)写出y与x之间的函数解析式
(2)当x=3、5时,求y的值
(3)当y=5时,求x的值
通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在
解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。
课堂练习:已知x与y成反比例,根据以下条件,求出y与x之间的函数关系式
(1)x=2,y=3(2)x=,y=
通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。
(二)探究学习1——函数图象的画法
问题3:如何画出正比例函数的图象?
通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。
问题4:那反比例函数的图象应该怎样去画呢?
在教学过程中可以引导学生仿照正比例函数图象的的画法。
设想的教学设计是:
(1)引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数和的图象;
(2)老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;
(3)随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。
初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:
(1)在“列表”这一环节
在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。
(2)在“连线”这一环节
学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。
从而引导学生画出正确的函数图象。
(3)图象与x轴或y轴相交
在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。
需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第一次学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。
巩固练习:画出函数和的图象
通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。
(三)探究学习2——函数图象性质
1、图象的分布情况
问题5:请大家回忆一下正比例函数的分布情况是怎么样的呢?
提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。
问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?
在这一环节中的设计:
(1)引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;
(2)充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;
(3)组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k
2、图象的变化情况
问题7:正比例函数图象的变化情况是怎么样的呢?
提出问题7主要是起到巩固复习,为引导学生学习反比例函数图象的变化情况打下基础。
问题8:那反比例函数的图象,是否也具有这样的性质呢?
在这一环节的教学设计是:
(1)回顾反比例函数和的图象,通过实际观察;
(2)根据解析式对XX取值,比较x在取不同值时函数值的变化情况;
(3)电脑演示及学生小组讨论,请学生给出结论。即这个问题必须分成两种情况讨论即当k>0时,自变量x逐渐增大时,y的值则随着逐渐减小;当k
(4)对于学生做出的结论,老师应该要给予肯定,同时可以提出:有没有同学需要补充的呢?若没有,则可以举例:当k>0,分别比较在第三象限x=—2,第一象限x=2时的y的值的大小,则以上性质是否依然成立?学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在每一个象限内,才有以上性质成立。
问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?
在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。
(四)备用思考题
1、反比例函数的图象在第一、三象限,求a的取值范围
2、
(1)当m为何值时,y是x的正比例函数
(2)当m为何值时,y是x的反比例函数
(五)小结:
1.通过观察实验,使学生理解圆的对称性.
2.掌握垂径定理及其推论,理解其证明,并会用它解决有关的证明与计算问题.
过程方法1.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.
2.经历探索垂径定理及其推论的过程,进一步和理解研究几何图形的`各种方法.
激发学生观察、探究、发现数学问题的兴趣和欲望.
一、导语:直径是圆中特殊的弦,研究直径是研究圆的重要突破口,这节课我们就从对直径的研究开始来研究圆的性质.
沿着圆的任意一条直径所在直线对折,重复做几次,看看你能发现什么结论?
得到:把圆沿着它的任意一条直径所在直线对折,直径两旁的两个半圆就会重合在一起,因此,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.
2.你能用不同方法说明图中的线段相等,弧相等吗?
?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.
即:直径CD垂直于弦AB则CD平分弦AB,并且平分弦AB所对的两条弧.
推理验证:可以连结OA、OB,证其与AE、BE构成的两个全等三角形,进一步得到不同的等量关系.
分析:垂径定理是由哪几个已知条件得到哪几条结论?
即一条直线若满足过圆心、垂直于弦、则可以推出平分弦、平分弦所对的优弧,平分弦所对的劣弧.
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
思考:1.这条推论是由哪几个已知条件得到哪几条结论?
2.为什么要求“弦不是直径”?否则会出现什么情况?
思考:类似推论的结论还有吗?若有,有几个?分别用语言叙述出来.
归纳:只要已知一条直线满足“垂直于弦、过圆心、平分弦、平分弦所对的优弧,平分弦所对的劣弧.”中的两个条件,就可以得到另外三个结论.
分析:1.根据桥的实物图画出的几何图形应是怎样的?
2.结合所画图形思考:圆的半径r、弦心距d、弦长a,弓形高h有怎样的数量关系?
3.在圆中解决有关弦的问题时,常常需要作垂直于弦的直径,作为辅助线,这样就可以把垂径定理和勾股定理结合起来,得到圆的半径r、弦心距d、弦长a的一半之间的关系式:
补充:
1.如图,一条公路的转弯处是一段圆弧,点O是圆心,其中CD=600m,E为圆O上一点,OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.
2.有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由.(当水面距拱顶3米以内时需要采取紧急措施)
2. 垂径定理和勾股定理相结合,将圆的问题转化为直角三角形问题.
补充:已知:在半径为5?的⊙O中,两条平行弦AB,CD分别长8?,6?.求两条平行弦间的距离.教师从直径引出课题,引起学生思考
学生用纸剪一个圆,按教师要求操作,观察,思考,交流,尝试发现结论.
学生观察图形,结合圆的对称性和相关知识进行思考,尝试得出垂径定理,并从不同角度加以解释.再进行严格的几何证明.
师生分析,进一步理解定理,析出定理的题设和结论.
学生根据问题进行思考,更好的理解定理和推论,并弄明白它们的区别与联系
学生审题,尝试自己画图,理清题中的数量关系,并思考解决方法,由本节课知识想到作辅助线办法,
教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,方法,规律.
引导学生分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.
通过该问题引起学生思考,进行探究,发现垂径定理,初步感知培养学生的分析能力,解题能力.
全面的理解和掌握垂径定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识.
体会转化思想,化未知为已知,从而解决本题,同时把握一类题型的解题方法,作辅助线方法.
课型:新授课
学习目标:
1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.
2.学会运用数学知识分析解决实际问题,体会数学的价值。
重点:列一元二次方程解应用题
难点:学会分析问题中的等量关系
一、知识回顾
列方程解应用题的一般步骤是①②③④⑤⑥
二、自学教材、合作探究
1、自学教材45页,学习分析“探究一”中的数量关系
设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:
2、解这个方程,得
3、想一想:三轮传染后有多少人患流感?四轮呢?
三、检查自学效果
1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )
A.8人B.9人C.10人D.11人
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是( )
A. B. C. D.
四、指导学生应用
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)
解:设每轮感染中平均每一台电脑会感染台电脑,1分
4分
解之得6分
8分
答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。
五、巩固训练:
1.一个多边形的对角线有9条,则这个多边形的边数是( ).
A.6 B.7 C.8 D.9
2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人
A.11 B.12 C.13 D.14
3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是( )
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。
5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。
6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
反思:2题和4题列方程时为何不一样呢?
六、归纳小结:
1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。
2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。
七、效果测评:
1.解下列方程。(1)+10x+21=0(2)-x=1
2.两个相邻的偶数的积是240,求这两个偶数。
3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?
了解圆柱、圆锥、圆台和球的有关概念、认识圆柱、圆锥、圆台和球及其简单组合体的机构特征。
1、下面几何体有什么共同特点或生成规律?
这些几何体都可看做是一个平面图形绕某一直线旋转而成的。
2、圆柱、圆锥、圆台和球的有关概念。
3、圆柱、圆锥、圆台和球的表示。
如图,将直角梯形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
例2指出图、图中的几何体是由哪些简单的几何体构成的、
直角三角形中,,将三角形分别绕边,三边所在直线旋转一周,由此形成的几何体是哪一种简单的几何体?或由哪几种简单的几何体构成?
1、指出下列几何体分别由哪些简单几何体构成。
2、如图,将平行四边形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
3、充满气的车轮内胎可以通过什么图形旋转生成?
圆柱、圆锥、圆台和球的有关概念及图形特征。
3、用平行与圆柱底面的平面截圆柱,截面是_____________________________________.
4、_____________________可以看作圆柱的一个底面收缩为圆心时,形成的空间几何体、
5、用平行于圆锥底面的一平面去截此圆锥,则底面和截面间的部分的名称是_________。
6、如图是一个圆台,请标出它的底面、轴、母线,并指出它是怎样生成的。
7、请指出图中的几何体是由哪些简单几何体构成的。
8、如图,将直角梯形绕、边所在直线旋转一周,由此形成的几何体分别是由哪些简单几何体构成的?
一、内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的`数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。
(三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解,能从交流中获益。
四、教育理念和教学方式:
1.教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2.采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。
3.教学评价方式:
(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。
五、教学媒体:
多媒体
六、教学和活动过程:
〈一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗? (2m+3n)2=_______________,(-2m-3n)2=______________, (2m-3n)2=_______________,(-2m+3n)2=_______________。 〈二〉、分析问题
1.[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2, (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。 (1)原式的特点。 (2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。 (4)三项与原多项式中两个单项式的关系。 2.[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。 3.[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题 1.口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2.判断:
()① (a-2b)2= a2-2ab+b2 ()
② (2m+n)2= 2m2+4mn+n2 ()
③ (-n-3m)2= n2-6mn+9m2 ()
④ (5a+0.2b)2= 25a2+5ab+0.4b2 ()
⑤ (5a-0.2b)2= 5a2-5ab+0.04b2 ()
⑥ (-a-2b)2=(a+2b)2 ()
⑦ (2a-4b)2=(4a-2b)2 ()
⑧ (-5m+n)2=(-n+5m)2
3.小试牛刀
① (x+y)2 =______________;
② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;
④ (3a-2)2 =_______________;
⑤ (2x+3y)2 =____________;
⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;
⑧ (a-0.6b)2 =_____________.
〈四〉、学生小结
你认为完全平方公式在应用过程中,需要注意那些问题?
(1) 公式右边共有3项。
(2) 两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
(4)(3/5a-1/2b) 2=________________________________
(5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
(8)(2n3-3m3) 2=________________________________
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业]
p34 随堂练习
p36 习题
七、课后反思
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式等号两边的特点,让学生用语言表达公式的内容,由于语言缺陷的原因,这一点对聋生来说比较困难,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用,为完全平方公式第二节课的实际应用和提高应用做好充分的准备。
1 . 教学内容精心组织,容量恰当,重点突出,体现内容的有效性、系统性和有序性;
2 . 重视启发,活跃思维,方式、方法多样,选择适当;教学环节紧凑、合理;
3 . 教学媒体使用适时、适量、适度、有效。
4 . 教学结构组合优化,优质高效。
2、 通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法
3、 通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力
教学难点: 绝对值的概念、意义及应用 教学方法: 探索自主发现法,启发引导法 设计理念: 绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义 .通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力. 教学过程:
一、 创设情境,复习导入 .今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题.(用多媒体出示引例) 星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升? ① 千米,千米; ②×升 .在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反 意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的 路程有关,而与行驶的方向没有关系,所以没有负数.这说明在实际生活中,有些问题 中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了.你还能举出其他 类似的例子吗? .小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许, 气氛热烈.教师巡视,偶尔参加其中一组的讨论,但不直接肯定或否定学生的问题,而是引导鼓励学生思考、交流,请各小组派代表汇报讨论结果. 我们小组举的例子是:我爸爸喜欢炒股,一天他支出 元购买股票,同一天他又抛出股票收入 元,规定支出为负,那么爸爸两次的交易额用有理数如何表示?如果交易所每次交易按总额的千分之一收费,那么爸爸的这两次交易需交多少交易费? .在实际生活中存在不关注相反意义的例子,刚才我们所举例子中的计算,都不必考虑它们的正、负性,看来我们的确很有必要给上面涉及的量取一个名字.我们把这个量叫做有理数的绝对值.
1、 绝对值的概念、意义 ① 数轴上的点到原点的距离叫做这个点表示的有理数的绝对值 ② 正数的绝对值是它的本身 负数的绝对值是它的相反数 的绝对值是 ?a(a?0)?a(a?0)?③ a=?0(a?0)a=? ??a(a?0)??a(a?0)?④ 绝对值是非负数 a≥ ⑤ 有理数可理解为由性质符号和绝对值组成 ⑥ 互为相反数的两个数可理解为符号相反、绝对值相同的两个数
2、 学会发现、探索、合作交流,体会数形结合,分类讨论等数学思想方法 六、设计理念: 绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义.通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力. 学习是一件增长知识的工作,在茫茫的学海中,或许我们困苦过,在艰难的竞争中,或许我们疲劳过,在失败的阴影中,或许我们失望过。但我们发现自己的知识在慢慢的增长,从哑哑学语的婴儿到无所不能的青年时,这种奇妙而巨大的变化怎能不让我们感到骄傲而自豪呢。当我们在学习中遇到困难而艰难的战胜时,当我们在漫长的奋斗后成功时,那种无与伦比的感受又有谁能表达出来呢。因此学习更是一件愉快的事情,只要我们用另一种心态去体会,就会发现有学习的日子真好。
如果你热爱读书,那你就会从书籍中得到灵魂的慰藉;从书中找到生活的榜样;从书中找到自己生活的乐趣;并从中不断地发现自己,提升自己,从而超越自己。
明天会更好,相信自己没错的。 我们一定要说积极向上的话。
只要持续使用非常积极的话语,就能积累起相关的重要信息,于是在不经意之间,我们就已经行动起来,并且逐渐把说过的话变成现实。 绝对值教案。
教学内容:
第2-3页练习一第6-13题。
教学目的:
1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如axb=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、提高分析数量关系的能力,培养学生思维的灵活性。
3、在积极参与数学活动的过程中,树立学好数学的信心。
教学重点、难点:
引导学生独立分析问题,找出题目中的等量关系。
教学对策:
在积极参与数学活动的过程中,树立学好数学的信心。
教学准备:
教学光盘
教学过程:
一、复习准备
1、解方程(练习一第6题的第1、3小题)
4x+12=502.3x-1.02=0.36
学生独立完成,再指名学生板演并讲评,集体订正。
二、尝试练习
师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。
出示:30x2=360
学生独立尝试完成,全班交流。
指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?
三、巩固练习
1、出示练习一第7题。
(1)分析数量关系
提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah2.联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x2=0.39.
第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8.
(2)学生独立计算,并检验答案是否正确,全班核对。
小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。
2、练习一第8题。
学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)
学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)
3、练习一第9题。
学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。
学生独立解方程再集体订正。
4、练习一第10题。
教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。
5、练习一第11题。
学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)
学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。
6、练习一第12题。
提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢
学生独立列方程解答,同桌同学互相检查,再集体订正。
7、练习一第13题。
学生阅读第13题,理解后独立解决问题,再交流。
教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。
四、全课小结
说一说你这一节课的学习收获及还有什么问题。
五、布置作业
完成配套习题。
教后反思:
本课时是一节练习课,练习目标有两个,一是通过练习让学生掌握形如ax+b=c和ax-b=c的方程的解法,会列方程解决两步计算的实际问题;二是借助一些对比练习,让学生感受方程的思想方法和价值。课前,我学习了高教导的课前思考,在今天的练习课中补充了两组题目,让学生进行对比练习。题目是这样的:(1)果园里有桃树60棵,比梨树的3倍少6棵,梨树有多少棵?(2)果园里有梨树60棵,比桃树的3倍少6棵,桃树有多少棵?课堂上,我先请学生分析每一题的数量关系,然后选择合适的方法来解答。学生们经过分析、比较,发现类似第1小题这样的题目适合用方程解,类似第2小题这样的题目适合用算术方法解。另一组补充的题目是:(1)王老师买了3个足球,付了200元,找回8元。每个足球多少元?(2)水果店运进5箱苹果,卖出56千克,还剩34千克。每箱苹果多少千克?对于这两题,我请学生认真分析数量关系后用自己喜欢的方法来解答,而且如果是列方程的话,试着列出不同的方程;如果是用算术方法解的可以列出不同的算式。课堂上学生思维活跃,在正确分析数量关系后列出了不同的方程或算式。
通过本节练习课,我想教师在教学中要更多地指导学生关注怎样从一个个具体的问题情境中分析数量之间的相等关系,关注怎样根据数量关系列出方程,从而在经历实际问题数学化的过程中,获得对用方程解决实际问题策略的体验,进一步丰富学生解决问题的策略,加深学生对方程作为一种重要的数学思想方法的理解。
对于新入职的老师而言,教案课件还是很重要的,所以老师写教案可不能随便对待。只有教案课件写的越好,需要的时间当然也会越长。我们应该从什么方面写教案课件?因此,栏目特意整理了小学数学教学优秀教案汇总,请在阅读后,可以继续收藏本页!
对于教案、教学设计我们都不会有陌生感,他和我们的教学生活密不可分,我们上课前都要写教案、做教学设计,充分的、精心的教学设计是上好课的前提,而教学案例我们听得则不是很多,随着新课程改革的推进,教学案例才被越来越多的提及。这是因为人们越来越多的认识到案例对于反思教学,指导教学从而提高教师的教学水平,促进教师的专业成长的作用。下面我将从以下几个方面和大家一齐说说有关案例的知识。
首先我们来看什么是案例,也就是案例的概念。
案例是指发生在课堂教学过程中的一个典型的事例,一般比较具有代表性或有重大好处,它比较详细的记叙了一个教学片断或是整堂课的具体的教学情节,向人们带给教学的过程,引发大家的思索,然后探讨产生的原因和影响,并作必须的分析和反思,从中体现先进的理论和思想。
比如:“尊重学生的数学现实”——《分数乘整数》这个案例记录的就是《分数乘整数》这节课中的一个片断,首先作者说明了这个案例产生的背景:即在给同轨教学班中的一个班上这节课时,教师按照通常的做法,先复习了乘法的好处,然后引入分数乘整数的好处,透过几个相同的分数相加引入分数乘整数的计算。教师步步铺垫,学生学起来能够说没什么困难,但课堂上却气氛沉闷,课下教师问原因,学生们说:“老师,我们早就会了,听着觉得没什么意思”所以作者在给另一个班上课时作了调整,于是就有了下面这个案例。
介绍完背景后,作者把教学片断以访谈录的形式记录了下来,这是我们大家熟悉的实录的形式,师如何说的,学生如何回答的,甚至某处学生的表情与动作都记录上了,片断后面是反思,反思中作者分析了改善后的设计成功的原因:一是尊重学生的数学现实,二是实现数学学习的个性化,反思中作者抓住了这个教学片断的特点,分析得很透彻。(老师们能够细致的读一读这个案例,它是很有代表性的教学片断的案例,来自小学教学设计理科版),我们再看“发展语言不是语文课的专责”——《1——5的认识》案例,这是一节课的案例,是对整堂课的教学情节进行了记录,同样,在后面是反思,它以评析的形式,分析了这节课的突出特点:在数学课中,同样应注意发展学生的语言。
刚才,我们明确了案例的概念,接下来我们把案例与教案、教学设计、教学实录作一下比较:
二、案例与教案、教学设计的区别:
教案和教学设计是根据必须的教育思想、教学方法,在课前设想的教学思路。案例则是对已经进行完的教学过程的反映,一个写在教之前,一个写在教之后,一个是预期,一个实现是的过程和结果。
那么同是写在教之后,案例与教学实录又有哪些区别呢?
1、案例要有对本教学问题的反思,对好的教学行为,教学效果,要进行分析,分析它体现了哪些先进的教育教学思想,对存在问题的教学行为要分析出症结所在,对教学有指导作用。
2、同样对教学情境进行描述,实录是有问必录,案例是有选取的记录。
接下来,我们一齐来看一看,写教学案例应注意些什么:
在形式上案例通常分为以下几大块:
一背景、二教学经过、三分析。当然,这不是固定的模式。
l、背景介绍,即案例发生的原因或条件,如《分数除以整数》这个案例,作者这样介绍它的背景:开学初上了一节公开课,资料是浙江省编的义务教育教材第十一册“分数除以整数”一课,在《数学新课程标准》的指引下对新知识的引入和巩固的设计觉得比较有新意,此刻就几个教学片断评析如下。
2、教学经过,即教学片断、或整个教学过程的访谈录。记录的教学经过,不是有闻必录,而是有选取的录关键性的教学情节要记录详细、清楚、具体,什么是关键性的教学细节,怎样写具体、写清楚,大家能够看《人民教育》、《小学教学设计》等刊物中刊载的教学案例,仔细读一读,读后感悟会有更深切的感悟。
3、分析,即反思或评析。揭示案例所反映的教学问题、所体现的教学思想,或存在的不足。也就是这个案例教学效果好好在哪里,不足,问题出在哪里?在前面实践的基础上,作分析,为实践寻找理论的依据。我们从刊载的案例中也能看出他们的案例都包内含一个或几个教学难题、热点问题或新课题,同时包内含解决这些问题的方法和反思。也就是分析案例所体现的理念。
在撰写时要注意:
1、要有一个主题:撰写时首先要思考这个案例索要反映的问题,这个案例无论记录的是成功的教学过程还是失败的教学片断,都要从最有收获、最具代表性、启发性的角度切入,来确定主题。我们看很多的案例都有一个主标题,下面还有一个副标题,副标题是指出这是哪节课的案例,而主标题多数是指出这个案例所要反映的主题,或是这个案例主题的一个方面。
2、注意案例要有真实性和典型性。
3、在撰写案例分析时,要对案例所反映的主题和资料,包括教育教学的指导思想、过程、结果,以及利弊得失有必须的看法和分析。是在记叙基础上的议论,要进一步揭示事件的好处和价值,能够从教育学、心理学、教学法等不同的理论角度入手,揭示成功的原因和科学的规律。
从以上的解释中我们也能看出,做教学案例的价值。
1、对教学实践的反思,把理论学习与教学实践紧密的结合起来,用以改善和指导今后的教学实践。
2、梳理、记录分析自己的教学,提高教育教学潜力和水平。案例不仅仅记叙了教学行为,也记录了伴随行为而产生的思想、情感及灵感。他是个人的教学档案或教育教学史,有其独特的保存和研究价值。
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第51~54页主题图、例1、例2及课堂活动第1~3题,练习十第1~5题。
教学目标
1、通过实验,使学生知道三角形的稳定性及其在生活中的应用
2、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
3、体会数学与生活的联系,培养学生学习数学的兴趣。
教学重点:
掌握三角形的特性。
教学难点:
三角形的稳定性在实际生活中的应用。
教具准备:
木条制作的长方形和三角形、不条、三角板等
教学过程
一、游戏导入
1.请两位学生到黑板前学交警指挥交通车时的各种动作姿势。
2.指名两位学生在黑板上画出刚才所观察交警的手与手、手与身躯构成的角。
3.指名学生将角的两边上取两点,再将两点连接起来得到第三条线段,并说出是一个什么图形?
多媒体出示生活中形状是三角形的物体,让学生观察后,你想探索三角形的哪些问题?
学生自由提问。
板书:意义、特征、特性
二、探究新知
(一)理解三角形的意义
1.学生用小棒任意摆出一个三角形。
教师出示几个具有代表性的图形:
(1)(2)(3)
学生讨论三个图形,是不是都是三角形?为什么?
刚才大家在判断上述三个图形是不是三角形时,都注意到三条线段,围成等这些重要条件(板书:三条段、围成),谁能说说什么是三角形吗?(由三条线段围成的图形叫三角形)
2.练习
(1)举出日常生活中见到的三角形。
(2)判断下列哪些图形是三角形,并说明理由。
(1)(2)(3)(4)(5)
(二)探索三角形的特征
(1)虽然三角形的形状各不相同,但也有相同的地方,谁能说说有哪些地方相同呢?(分组讨论)
(2)小组指定代表说说讨论的结果。
板书:边——3条
角——3个
顶点——3个
(3)让学生用自己的话说说三角形的特征。
学生阅读教材上的内容。
多媒体出示三角形,让学生指出三角形的边、角、顶点。
(4)学生指出三角板上的边、角、顶点。
(三)探索三角形的特性
多媒体出示电线杆、自行车、货柜架等实物图,让学生指出其中的三角形。
提问:为什么这些部位要做成三角形?(分组讨论后,指定学生回答)
学生操作:用木条钉成平行四边形和三角形,然后用力拉、推,让学生观察,大家会发现什么?
这说明三角形具有什么特性?(稳定性)
举出生活中见到哪些物体的哪些部位是做成三角形的。
三、练习。
1.任意画一个三角形。
2.学生在钉子板上围出不同的三角形。
3.折一折:把一张纸对角对折,能数出几个三角形?再对角对折,又能数出几个三角形呢?
4.说说日常生活中哪些地方应用了三角形的特性?
四、小结:
这节课我们学习了什么?探讨了三角形的哪些问题?你有哪些收获?
板书设计:
三角形的特性
意义:由三条线段围成的图形叫三角形。
特征:边——3条
角——3个
顶点——3个
特性:稳定性。
[教材简析]
本课是在学生已经认识自然数,并初步认识分数和小数的基础上,结合熟悉的生活情境,初步认识负数。教材首先紧密联系学生已有的关于温度和海拔的知识经验,探索学习用正、负数来表示一些意义相反的量,再组织学生分类、归纳、概括,从数的理性高度更进一步地认识了负数,最后教材提供了鲜活的素材引领学生把对负数的认识和理解应用到生活中,从而进一步丰富对负数意义的理解,发展学生的数感和应用意识。这样安排即拓宽学生对数的认识,激发进一步学习的愿望;又为今后进一步理解有理数的意义打下坚实基础。
[目标预设]
1、在学生熟悉的生活情境中了解负数产生的背景和意义,认识负数,掌握正、负数的读、写法,知道0不是正数也不是负数。并能用正、负数描述现实生活中的现象。
2、在认识负数的过程中,培养学生观察、比较、联想、猜测、推理等思维能力和独立思考、合作交流等学习能力。
3、让学生体验数学和生活的联系,获得积极的情感体验,进一步激发学习数学的兴趣。
[重点、难点]
重点:了解负数的意义,掌握正、负数的读、写方法。
难点:理解0既不是正数,也不是负数。
[设计理念]
一、注重实效。课堂教学中学生知识与技能的形成和提高过程是个稳固扎实的推进过程,本课设计我注重实效性研究:以学生熟悉的生活情境为切入,从找负数、理解负数、到运用负数都力求注意扎实地提高学生的素质。
二、联系生活。学生学习的数学知识应该是生动的数学,生活中的数学,有价值的数学,并能运用知识解决实际问题。本课的各个环节,我都力求与生活联系,选取学生身边的经常经历的事例,引导了学生“从生活中学”,学“生活中的数学”。
三、创新合作。课堂教学是一个师生双向互动的过程,它不仅仅只是体现教师如何教,还在于体现学生如何学的过程。本课我设计一系列新颖的,能动性强而又有思考价值的活动引导学生自主学习,引导学生创造性的学习。
[设计思路]
数学的学习过程应该是一个循序渐进的探究过程。本课我先通过检查预习入手,巩固对“相反关系”和“温度计”的认识;接着引导 从“天气预报”中探索负数开始,用“海拔高度”巩固对负数的认识,再到生活中找负数的方式探索新知;然后通过分层练习巩固知识;最后通过观看“负数的产生”,拓展了学生的视野,总结本课,并进行适当地爱国主义教育。这种采用“检查预习—探索新知—巩固练习—拓展延伸” 的模式,宜利于形成高效、实效课堂。
[教学过程]
一、检查预习,激趣导入。
(课件出示预习题:(1)、照样子写反话,再与附近的同学或家人一人说一句,另一人说反话。①向前走100米(向后走100米);②小明将200元零花钱存入银行( );③ ; ④ 。 (2)、观察温度计,我知道到了 、还知道了 。我知道昨天晚上7点的气温是 。)
1、互动游戏。
交流预习第一题时,通过游戏了解预习情况。游戏叫做《我反 我反 我反反反》。游戏规则:老师(或同学)说一句话,请你说出与它相反意思的话。
2、检查交流。
交流预习第二题时,相机出示温度计放大图,了解温度计的刻度情况,主要交流左边的刻度情况,明确其单位-摄氏度,用℃表示。
3、激趣导入
相机小结:小小温度计作用非凡,是预报天气的好帮手,同学想不想学好呀?(想)老师现在就带大家观看中央气象台某天的天气预报。
【设计意图:关注预习,巩固预习成果,又能进一步激发学生学习兴趣,完善对温度计的认识,为后面学习新知做好铺垫】
二、师生互动,探索新知
1、探索例1。
(1)、将学生带入中央气象台某天的天气预报情景,引导记录城市的最低气温。这是东方大都市--刚举办过世博会的上海(出示温度计图),你能从温度计上面看出这天上海的最低气温吗?你是怎么看出的?
(2)、这是我们江苏的省会南京(出示温度计图),你能从温度计上面看出南京的最低气温吗?这个温度比上海的气温怎样?(将温度计图放一起,便于学生比较)
(3)、这是我们祖国母亲的心脏--首都北京。猜一猜:北京的气温一般要比上海和南京怎样?学生提出猜想后,出示温度计图,引出北京气温“零下4℃”。
(4)、刚才三个城市的最低气温中,南京正好是0摄氏度。而上海超过了0摄氏度,是零上4摄氏度;北京却低于0摄氏度,是零下4摄氏度。是一组相反的量。大家能想出巧妙的方法来记录着两个相反的气温吗?(学生交流自己的设想,老师选择性板书:+4℃或4℃ —4℃等,并交流负号、正号以及它们的读写方法)
(5)、巩固练习。记录其它城市的最低气温,(分别出示同时拉萨、哈尔滨、香港、曾母暗沙、南极中山站等地的温度计图)你能分别写出它们的最低气温吗?
(6)、在温度计上找刻度。师指出温度计是通过酒精柱的高低来表示气温变化的,带有箭头的直线大家并不陌生吧。在下面的直线上,你觉得下面哪个点表示+4,哪个点表示—4呢?说说你的想法?(学生完成后,再让学生尝试在图上表示出-8、-10、10等)
2、探索例2。
(1)、(显示珠穆朗玛峰图)谁知道它有多高吗?(8844米)这个高度是从哪儿到山顶的距离呢?(学生回答后,在添加8844米前面添加“海拔”,并在图上添加一条海平面的水平虚线。)
(2)、世界上也不是每个地方都比海平面高的,比如,我国的第五大盆地——吐鲁番盆地,就低于海平面155米(接在上峰图旁边出示盆地图)。大家能从刚才表示气温的方法受到启发,也用一种比较科学的方法来表示这两个海拔高度呢?(出示:+8844米—155米)
(3)、模仿练习。课本第6页“练习一”第1题。
(4)、在数轴上尝试表示“- 400”“+3193”。相机揭示“正数”“负数”的概念和数的分类。
3、小结延伸
通过刚才的研究,我们看到,在表示气温时,以0℃为界,高于0℃时用正数表示,低于0℃时用负数表示;在表示海拔高度时,以海平面为界,高与海平面用正数表示,低于海平面用负数表示。由这两种情况想开来,同学们觉得还可以用正数、负数来表示哪些相反的数量呢?
【设计意图:先借例1抓“相反关系”;初步认识负数;再借例2用“海拔高度”巩固认识负数;最后推广到在生活的其它领域寻找负数。这样层层推进符合学生的认知规律】
三、分层练习,深化理解
1、基本练习。将黑板上的数(说明:出示的数都是可以在黑板上粘贴、移动的)移到圆圈内
正 数 负 数
(1)0为什么不移?(0既不是正数,也不是负数)
(2)你还能再写几个正数和负数吗?
(3)观察这些正数,你发现了什么?(正数可以是整数、小数或分数。我们以前学过的除0以外的数都是正数)
(4)你是怎样理解负数的?(负数小于0,可以是整数、小数或分数)
相机板书大于号,形成板书:正数>0>负数
2、对比练习。选择合适的结果天在括号内。
我国多次成功发射神舟系列飞船,其中神舟六号飞船在太空中向阳面的温度为( )以上,而背阳面却低于( ),但通过隔热和控制,太空舱内的温度始终保持在( ),非常适宜宇航员工作。
① 21℃ ② 100℃ ③ -100℃
3、综合练习。
比赛羽毛球规定了标准重量。4只羽毛球称重并后标准重量比较后,记录为:
1号 -0.15克 2号 0克 3号 +0.7克 4号 -0.2克
(1)2号羽毛球真的就重0克吗?
同桌先交流自己的想法,再集体交流。
(2)几号羽毛球最重?几号羽毛球最轻?
提问:你是怎样想的?
【设计意图:通过循序渐进地练习,让学生进一步明确正、负数的意义;引导学生回归生活,寻找并解决生活中的相关问题,以求达到学为之用的目的】
四、小结揭题,拓展延伸
教学目标: 1.使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。
2.使学生理解梯形面积的计算方法,能正确地计算梯形的面积。
3.培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。
教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。
一.复习引入。
1.同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?
你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)
你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180?,再沿边平移上去,这样就拼成了一个平行四边形。)
5.出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!
二.新课传授。
(一)面积计算方法的推导过程。
1.今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)
2.提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?
请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180?,再沿腰平移上去,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)
请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)
请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个三角形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)
4.我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?
5.你是怎么得出这个规律的?
教学内容:义务教育课程标准实验教科书三年级上册第八单元第104页。
教学目的:使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的。丰富学生的生活经验,培养学生合作交流的意识,养成认真观察勤于思考的好习惯。
教学重点:初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。
教学难点:结合生活实例判断事件发生的确定性和不确定性。
教学用具:扑克牌,不同颜色的乒乓球,两个纸盒,六个学具盒,幻灯片。
教学实录:
师:同学们喜欢做游戏吗?喜欢玩扑克牌吗?老师这有四张牌,请认真观察看好了吗?(教师把牌翻过来,洗一洗牌)抽出一张你猜这张是什么牌?
生:红桃A。
师:你能确定吗?
生:能确定。
师:其他同学有不同看法吗?
生 :没有。
师:一定是红桃A吗?
生 :一定
师板书“一定”
师:为什么说的这么肯定?
生 :因为刚才老师让我们看的四张牌都是红桃A,所以老师无论拿哪张牌都是红桃A。
师:同意他的说法吗?
生 :同意。
师:都是认真观察的好孩子。那我们来看看这张牌到底是不是红桃A?(实物展示)果然是红桃A。恭喜你们猜对了。
师:我再拿一张牌这张牌有没有可能是黑桃A?
生:不可能,因为老师这四张牌都是红桃A,所以不可能是黑桃A?
师:你能确定吗?
生 :确定。
师:板书“不可能”,那咱们来看看这是一张什么牌?果然是一张红桃A。
师:老师这还有一套牌,(4张不同的A)请你认真观察,老师把牌翻过去,再洗一洗牌,我抽出一张谁来猜一猜,这是什么牌?
生 :方片A。
师:你能确定吗?
生 :不能确定。
师:为什么?
生 :因为。老师刚才的四张牌是不同的,什么样的牌都有,所以就不能确定老师手里拿的到底是什么牌。
师:你同意他的说法吗?
生:同意
师:你来猜一猜,我手里是一张什么牌?
生 :红桃A。
师:确定吗?
生 :不确定。
师:不确定,应该怎么说呢?
生 :可能是红桃A。
师:板书“可能”
师:“一定”“不可能”“可能”是描述事物可能性的三种情况,也就是我们这节课要学习的重点内容,(板书课题:可能性)其中“一定,不可能”是可以确定的,而可能是不确定的。
师:还想玩游戏吗?(老师做出非常6+1的手式)认识这个手势吗?
生 :非常6+1
师:对,看来同学们非常喜欢这个节目,那么在非常6+1中有一个非常精彩的环节,谁知道?
生 :砸金蛋
师:对,但老师这没有金蛋,我这有六个宝盒,分为两类,一类叫幸运宝盒,一类叫快乐宝盒,幸运宝盒有2个,快乐宝盒有4个,我想找几个同学到前面来抽宝盒,谁愿意来?
师找一名学生到前面来,
师:你想抽到什么宝盒?
生:快乐宝盒,因为我想得到快乐。
师:你认为你一定能抽到吗?
生:有可能。
师:为什么?
生:因为这里有两种宝盒,抽到哪种的可能性都有。
师:同学们预测一下,他抽到哪种宝盒的机率最大?
生1:快乐宝盒
生2:幸运宝盒
师:究竟能抽到哪种宝盒呢?答案马上揭晓。
生抽宝盒交给老师。
师:恭喜你心想事成,选中快乐宝盒,请你面向大家“微笑”一下。
现在剩下的这些宝盒,你认为都是什么宝盒呢?
生:3个快乐宝盒,2个幸运宝盒。
师:谁愿意到前面来继续选宝盒?
(一生到前面来)
师:猜一猜他能选中哪种宝盒?
生:快乐宝盒。
师:一定是快乐宝盒吗?
生:不一定,有可能。
生:有可能是幸运宝盒
师:大家为什么不能确定呢?
生:因为剩下的宝盒既有幸运宝盒又有快乐宝盒所以不能确定。
师:同意他的说法么?
生:同意。
师:请你选宝盒。
生选后打开。
师:你很幸运,选种幸运宝盒,现在还剩下什么宝盒?
生:3个快乐宝盒1个幸运宝盒。
师:你能确定吗?
生:确定,一定是这样。
师:有不同意见吗?
生:没有。
师:谁愿意继续到前面来选宝盒?
(一生到前面来)
师:你认为他能选中哪种宝盒?
生1:有可能选中快乐宝盒。
生2:有可能选中幸运宝盒。
师:选中哪种宝盒的机会大些呢?
生:快乐宝盒。
师:请你选宝盒。
生选宝盒并打开
师:恭喜你选中快乐宝盒,请你面向大家“大笑”
生做大笑动作
师:现在还剩下什么宝盒?
生:2个快乐宝盒,1个幸运宝盒。
师:观察仔细继续找一名学生到前面来。
一生到前面来
师:你认为他能选中哪种宝盒?
生1:有可能选快乐宝盒。
生2:有可能选中幸运宝盒。
师:请你选择
生选择并打开。
师:祝贺你,你非常幸运,选中了幸运宝盒。
那么剩下的宝盒是什么宝盒呢?
生1:一定是快乐宝盒。
生2:一定是快乐宝盒。
师:同意他们的说法吗?
生:同意
师:为什么这么肯定呢?
生:因为两个幸运宝盒都被打开,所以剩下的就一定是快乐宝盒。
师:有道理,看来你是一个善于思考,善于观察的孩子。
(选两名学生到前面来完成游戏,分别做出“冷笑”和“哭笑不得”的表情。)
师:看同学们玩得这么高兴老师就在领你们玩一个游戏,我需要两个助手,谁愿意到前面来,(把这两名学生的眼睛蒙上)现在请同学们认真看(把一袋黄球放进1号盒子里,把一袋不同颜色的球放进2号盒子里),看清楚了吗?
生 :看清楚了。
师:(解开一名同学的纱巾)我想让这名同学一定摸出一个黄色的球,请你找出一个你最信任的朋友来告诉你到哪个盒子里去摸?
生1:到1号盒里摸。
生 2:到1号盒里摸。
师:你能确定吗?
生 2:确定。
师:听了朋友们的话你来摸摸看。
生摸球展示给大家看
师:果然是黄色的球。再摸摸看,又是一个黄色的球,再摸摸,又是一个黄色的球,那么我想让你猜一猜,根据朋友们说的和你刚才摸球的结果,你觉得这1号盒子里的球有什么特点?
生 :我想这个盒子里一定都是黄色的球。
师:为什么?
生:一定摸出黄色的球,那只有都是黄色的球才能一定摸出黄色的球。
师:真是一个认真思考的孩子。请回吧!
师:这回该轮到你了,我想让你摸出一个蓝色的球,你准备找谁来帮忙告诉你呢?
生:我的朋友。
生1:到2号盒子里摸,能摸出蓝色的球。
师:你能确定吗?
生1:不能确定。
师:他不能确定你一定能摸出蓝色的球,你再找一名同学帮帮你。
生:*同学。
师:好,你来告诉他应该到哪个盒子里去摸?
生2:还是到2号盒子里去摸。
师:你能确定他一定摸到蓝色球吗?
生2:不能确定,但有可能摸到蓝色球。
师:通过刚才同学的回答你猜猜这个盒子里的球有什么特点?
生:这个盒子里的球颜色不一,但一定有蓝色。
师:真是一个聪明的孩子,你来摸摸看。
生摸球。
师:你真幸运,一下就摸到了蓝色的球,你再摸摸。
生摸球展示给大家
师:让其他同学摸一摸。谢谢你的配合,请你回位。
师:现在我想问同学们有没有可能在一号盒子里摸出一个蓝色的球?
生1:不可能。
生2:不可能。
师:为什么?
生2:因为在1号盒子里只有黄色的球,所以不可能摸出一个蓝色的球。
师:同意他的说法吗?
生:同意。
师:我想在2号盒子里摸出一个红色的球,你觉得有可能吗?
生1:不可能
生2:不可能
师:为什么?
生2:因为在2号盒子里没有红色的球。所以不可能摸出红色的球。
师:根据刚才咱们做的游戏,请你按要求涂一涂。拿出题卡。
(生按要求涂题卡)
师请学生说说为什么这么涂。
师:刚才我们通过游戏知道了事情发生时出现的几种情况,其实在我们的日常生活中发生的事也存在这三种情况,老师选取了日常生活中的几件事请你用“一定”“不可能”“可能”进行描述,以学习小组为单位选取一件事进行研究。(课件展示)
(学生研究后以小组为单位进行汇报)
师:通过这节课的学习,我们知道了事件发生可能性的几种情况“一定”“不可能”“可能”并结合实际对一些事件进行了判断,判断的正确与否与我们的观察力,与我们的知识经验联系的非常紧密,因此,课后同学们要多看书,多积累经验,在生活中做个有心人。
教学反思:
我的这节课是人教版第五册的内容《可能性》,主要是让学生初步感知在我们平时的生活中,事情发生的不确定现象。了解有的事情是可能发生的,有些是不可能发生的,还有些是一定发生的。
这节课我想要体现以下几个特点:
一、体现玩中学的教学思想。
由于学生年龄小,认识事物比较直观,我就安排非常生动、直观的教学活动,使学生参与其中,感受乐趣,同时也在学习知识。在这节课中,可以看到整节课学生几乎一直都是在玩,玩的非常开心,在玩中不断的发现,不断的思考。虽然老师没有更多的讲解,但是对知识的理解和本节课的教学目标却都达到了。
二创设情境,让情境贯穿始终。
在教学中,设计生动有趣的教学情境,让学生参与其中,激发学生的学习兴趣,是十分必要的。
在这节课中,我就从学生的生活实际出发,以学生平时喜欢玩的扑克牌导入新课,大大激发了学生的学习热情,紧接着又以平时学生喜欢的电视节目非常6+1中砸金蛋的环节吸引学生的注意力,让学生在猜宝盒的活动中体会事件的可能性及可能性的大小,之后又让学生带着要求去摸球,进一步巩固对“一定”“不可能”“可能”的认识。
三注意学以致用的思想。
学有用的数学是新课标的要求,让学生能把课堂上学到的知识应用到现实中去,使学生感受到自己所学的知识能够在现实生活中得到应用能够激发学生的学习热情从而培养孩子自觉学习数学的兴趣。因此我又选取了生活中的几件事让学生进行判断。
不足之处:
教学的梯度体现不明显。第2个游戏如果放在最后就会更好些,因为设计这个游戏的目的就是起到承上启下的作用为下节课学习可能性的大小打下基础。本节课还有不足之处的是教师,可能是我的经验有限,应变能力较差,学生表现的那么好,老师表扬鼓励的话不到位,没有一份奖品奖励给他们,这也是我以后要学习和注意的地方。
教学内容:
九年义务教育六年小学制数学第九册第74—75页。
教学目标:
1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。
2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。
教学重点:
理解并掌握梯形面积公式的推导,会计算梯形的面积。
教学难点:
理解梯形面积公式的推导过程。
1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。
2.教师设疑:cai出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?
二、教学新课:
(一)、引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)
(二)、实验探究:
② 梯形的面积会跟梯形的什么有关呢?
2.小组合作实验,推导梯形面积的计算公式:
(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。
(2)思考:
①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?
② 拼成的这个图形的面积跟梯形的面积有什么关系?
③ 你觉得梯形的面积可以怎样计算?
(3)小组合作,学生实验。
3. 实验汇报。
现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?
5.概括总结、归纳公式。
教师提问:
①为什么计算梯形的面积要用(上底+下底)×高÷2?
②要求梯形的面积必须知道哪些条件?
四、小结:
通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?
五、巩固提高。
教学反思:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的'想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。
教学目的:
1、掌握梯形的面积计算公式,能正确地计算梯形的面积。
2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学准备:
投影、小黑板、若干个梯形图片(其中有两个完全一样的。
1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?
2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?
启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)
⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。
⑵看一看,观察拼成的平行四边形。
提问:你发现拼成的平行四边形和梯形之间的关系了吗?
出示小黑板:
拼成的平行四边形的底等于,平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。
学生讨论,指名回答,师板书。
师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:
生1:做对角线,把梯形分割成两个三角形,如下图⑴:
生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。
生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。
师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”
师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?
出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?
教学后记:
实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。
在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。
教学目标:
1、通过练习进一步认识元、角、分之间的关系,能根据元、角、分之间的进率进行单位间的简单换算,比较不同单位表示的钱数的大小。能进行一些简单的应用和解决简单的实际问题。
2、通过具体购物情境,体会购物的总钱数和购物的数量,积累购物的初步经验;感受购物问题里的数量关系,发展初步的思维能力。
3、体会元、角、分在生活里的广泛应用,感受人民币的实际价值;培养独立思考、探究交流的意识。
教学重点:
元、角、分简单换算和应用
教学难点:
理解购物实际问题的数量关系
教学准备:
课件
教学过程:
1、做练习十第3题
2、做练习十第4题
3、做练习十第5题
4、做练习十第6题
5、做练习十第7题
一、回顾引入
1、回顾旧知
提问:这单一已经认识了人民币的那些知识?请吧你的认识和大家说说
学生自由说出自己的认识。
2、引入课题
小朋友真棒!为了巩固和应用小朋友已经掌握的知识,今天这节课我们就来继续练习有关元、角、分的知识。(板书课题)
二、基本练习
1、再现就知
出示各种面值的人民币,让学生说说各是多少钱。
2、口答
提问:1元人民币可以换几张1角的?可以换几张5角的?为什么?
(板书:1元=10角)
如果用分币来换,几分可以换成1角?(板书:1角=10分)
1角2分=()分
1元2角=()角
1角2分和1元2角哪个钱多?
3、做练习十第1题
学生独立完成在课本上。交流结果,集体订正,指名说说各是怎样想的。
指出:把1元几角换算成多少角,可以按1元是10角,合起来是十几角;把十几角换算成几元几角,可以想其中10角是1元,就可以很快知道是1元几角。
4、做练习十第2题
学生先独立填写在课本上,在集体交流。
让学生说说怎样比的。
提问:题里告诉我们什么条件,要回答什么问题?
学生同桌讨论够不够,说说自己想法。
指出:三样商品各买一件,共需要28元,如果带去的钱比28元多,就够了;如果带去的钱比28元少就不够。
先让学生了解价格和解决问题的要求。
提问:把10元钱用完是什么意思?
先同桌交流,再全班交流。
学生观察情境,说说知道了什么,求什么问题。
提问:这里找回是什么意思?
让学生独立列式解决,集体交流。
学生独立列式计算。组织交流算式和得数,要求学生口答,并提问:计算牛奶的价钱你是怎样想的?
提问:你还能提什么问题?
学生提出问题,口头列式,教室板书。
提问:小宁买了什么?就要多少钱?如果付的都是10元的,应该付多少张?
先同桌讨论,再集体交流,要求说说自己的想法。
三、应用练习
1、交流小结。
提问:这节课练习了什么?你有什么收获?
2、介绍你知道吗?
3、布置课后实践
四、练习小结
练习十第8题。
教学内容:
冀教版《数学》三年级下册,第46、47页。
教学目标:
1、结合小区建房问题,经历自主解决问题,从分步计算到三个数连乘计算的过程。
2、认识连乘算式,会计算简单的三个数连乘的运算试题。
3、了解同一问题可以有不同的解决办法,积极主动的参与数学活动,增强学习数学的兴趣。
教学准备:
多媒体课件
教学过程:
教学环节
设计意图
教学预设
一、问题情景
出示课件情景图,通过谈话引出小区新建楼房问题,让学生了解事情中的信息和要解决的问题。
二、自主探索
1、让学生根据问题情景计算并交流自己的想法。
2、交流计算过程,重点说说每一步求的是什么。
3、预设学生回答问题时可能出现的情况,根据不同情况采取相应的应对方法。
4、认识连乘算式,讲解计算过程
5、出示连乘的计算题,对计算方法加以巩固。
三、思维拓展
1、出示情景题1,让学生自己读题,用自己的方法解决。
2、出示情景题2,让学生试着用综合算式解决。
四、课堂小结
师生通过简短的谈话引出新建楼房问题,让学生知道今天学习的目的是为了解决生活中的实际问题,从而体会到数学与生活的紧密联系,增强学习数学的兴趣。
明确“一栋楼”的概念,为下面的计算做准备。
交流时要关注学生的计算过程,每一步是在求什么。通过交流,不仅可以使学生自己的方法得到认证,同时还可以看到其他同学的不同想法,让学生体会到同一问题可以有不同的解决方法,增强学习数学的兴趣。
学生在回答问题时可能会出现很多不同的情况。充分考虑这些可能情况,并采取相应的措施,这样可以使教学过程显得自然流畅。
两道连乘的计算题,既是对计算方法的练习,又是为下面自己列连乘算式做准备。
这又是一道联系实际的问题,通过这道题,使学生体会解决问题的多样化以及数学和生活的紧密联系。
这道题既是对所学知识的巩固,又是对知识内容的升华。这样用分步列式的同学也尝试到了列综合算式的好处,让学生体会到学习新知识的用途,体验学习的乐趣,享受成功的喜悦。
师:同学们,我这有几张城市建筑的.图片,咱们先来看看。刚才我们看到这么多的高楼,体现出一个城市雄厚的经济实力。这几年,我们石家庄的发展速度也非常快,到处都是高楼耸立。最近,有家开发商又要新建楼房了,他们打算在一个生活小区里新建楼房,用来解决一些居民的住房问题。他们的设计是这样的(出示课件)。
师:图中这是几栋楼呢?
像这样的一排楼房,就是一栋。一共要建8栋这样的楼房,每一栋都有5个单元。
师:那么这个小区建成后可以解决多少户居民的住房问题呢?先自己算算,然后四个人一组互相交流交流。
师:谁来说说你的想法?
学生自由发表不同意见,根据学生的回答板书有代表性的问题。
学生可能出现的情况有:
第一种情况:
在回答问题时,先有学生回答出用分步算式计算,再有学生回答出用综合算式计算。
生1:12×5=60(户)60×8=480(户)
生2:8×5=40(个)12×40=480(户)
生3:12×5×8=480(户)
师:真不简单,一道题就想出了这么多种算法。12×5×8=480(户)这个算式,是把两个乘法算式合成了一个算式,像这样的算式叫连乘。那你们试着把这个分步算式也改写成连乘算式吧。
第二种情况:
在回答问题时,可能第一个学生就用的综合算式计算,首先表示肯定,然后再让其他同学说说自己的计算方法。最后,老师再讲解连乘。
生:12×5×8=480(户)
师:这种方法挺巧妙。还有别的计算方法吗?
生:(其他同学回答)
师:刚才第一名同学的方法是把两个乘法算式合成了一个综合算式,这样的算式叫连乘。
第三种情况:
可能在回答问题时,没有学生列出用综合算式计算,这样就等学生们回答完,老师加以引导,列出综合算式。
生:(找2、3名学生回答)
师:像这样的两个乘法算式,我们可以把它们写成一个综合算式(板书),这样的算式叫做连乘。
师:连乘算式的计算是按照从左向右的顺序。(板书)
师:我这还有两道连乘的计算题,你们试着做做。
(用投影展示2名同学的计算结果,说计算方法)
师:刚才同学们帮助开发商解决了问题,大家表现的都很棒。我这还有一个题需要大家帮忙解决一下。(出示课件)
师:在练习本上用自己的方法做一做吧。
师:谁来给大家说说你的想法。
如果学生列的是分步的算式,要加以肯定;如果有学生列出了连乘的算式,要予以表扬,但不做硬性的要求。
师:刚才同学们用数学知识解决了那么多问题,真行!我家邻居小明暑假去旅游了,照了好多好看的照片,你们想不想看看?那咱们一起看看吧!(出示课件)他照了多少张相片呢?大家一起算一算吧!(出示课件)你们能不能尝试列综合算式呢?
生:能!
师:试着做一做吧!谁来说说你的做法。
生:(找2名同学回答)
师:(根据学生的回答加以讲解)
说得很好!
师:这节课,同学们表现的非常出色,解决了那么多的问题。好,这节课我们就上到这里,下课!
这里是栏目小编为您整理的最新关于“初中数学教学优秀教案”的范文。每个老师在上课前需要规划好教案课件,所以在写的时候老师们就要花点时间咯。只有老师教案课件写的越好,在教学过程学生也更容易理解。或许你能从中找到需要的内容!
1.通过观察实验,使学生理解圆的对称性.
2.掌握垂径定理及其推论,理解其证明,并会用它解决有关的证明与计算问题.
过程方法1.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.
2.经历探索垂径定理及其推论的过程,进一步和理解研究几何图形的`各种方法.
激发学生观察、探究、发现数学问题的兴趣和欲望.
一、导语:直径是圆中特殊的弦,研究直径是研究圆的重要突破口,这节课我们就从对直径的研究开始来研究圆的性质.
沿着圆的任意一条直径所在直线对折,重复做几次,看看你能发现什么结论?
得到:把圆沿着它的任意一条直径所在直线对折,直径两旁的两个半圆就会重合在一起,因此,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.
2.你能用不同方法说明图中的线段相等,弧相等吗?
?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.
即:直径CD垂直于弦AB则CD平分弦AB,并且平分弦AB所对的两条弧.
推理验证:可以连结OA、OB,证其与AE、BE构成的两个全等三角形,进一步得到不同的等量关系.
分析:垂径定理是由哪几个已知条件得到哪几条结论?
即一条直线若满足过圆心、垂直于弦、则可以推出平分弦、平分弦所对的优弧,平分弦所对的劣弧.
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
思考:1.这条推论是由哪几个已知条件得到哪几条结论?
2.为什么要求“弦不是直径”?否则会出现什么情况?
思考:类似推论的结论还有吗?若有,有几个?分别用语言叙述出来.
归纳:只要已知一条直线满足“垂直于弦、过圆心、平分弦、平分弦所对的优弧,平分弦所对的劣弧.”中的两个条件,就可以得到另外三个结论.
分析:1.根据桥的实物图画出的几何图形应是怎样的?
2.结合所画图形思考:圆的半径r、弦心距d、弦长a,弓形高h有怎样的数量关系?
3.在圆中解决有关弦的问题时,常常需要作垂直于弦的直径,作为辅助线,这样就可以把垂径定理和勾股定理结合起来,得到圆的半径r、弦心距d、弦长a的一半之间的关系式:
补充:
1.如图,一条公路的转弯处是一段圆弧,点O是圆心,其中CD=600m,E为圆O上一点,OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.
2.有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由.(当水面距拱顶3米以内时需要采取紧急措施)
2. 垂径定理和勾股定理相结合,将圆的问题转化为直角三角形问题.
补充:已知:在半径为5?的⊙O中,两条平行弦AB,CD分别长8?,6?.求两条平行弦间的距离.教师从直径引出课题,引起学生思考
学生用纸剪一个圆,按教师要求操作,观察,思考,交流,尝试发现结论.
学生观察图形,结合圆的对称性和相关知识进行思考,尝试得出垂径定理,并从不同角度加以解释.再进行严格的几何证明.
师生分析,进一步理解定理,析出定理的题设和结论.
学生根据问题进行思考,更好的理解定理和推论,并弄明白它们的区别与联系
学生审题,尝试自己画图,理清题中的数量关系,并思考解决方法,由本节课知识想到作辅助线办法,
教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,方法,规律.
引导学生分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.
通过该问题引起学生思考,进行探究,发现垂径定理,初步感知培养学生的分析能力,解题能力.
全面的理解和掌握垂径定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识.
体会转化思想,化未知为已知,从而解决本题,同时把握一类题型的解题方法,作辅助线方法.
教学目标
(一)教学知识点
1.利用方程解决实际问题.
2.训练用配方法解题的技能.
(二)能力训练要求
1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.
2.能根据具体问题的实际意义检验结果的合理性.
3.进一步训练利用配方法解题的技能.
通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.
教学重点
利用方程解决实际问题
教学难点
对于开放性问题的解决,即如何设计方案
教学方法
分组讨论法
教具准备
投影片二张
第一张:练习(记作投影片2.2.3A)
第二张:实际问题(记作投影片2.2.3B)
教学过程
Ⅰ.巧设情景问题,引入新课
[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片2.2.3A)
用配方法解下列一元二次方程:
(1)x2+6x+8=0;
(2)x2-8x+15=0;
(3)x2-3x-7=0;
(4)3x2-8x+4=0;
(5)6x2-11x-10=0;
(6)2x2+21x-11=0.
[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、
(4)、(6).
[师]各组做完了没有?
[生齐声]做完了.
[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.
[生甲]我改的是__同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即
x-3x=7,
x2-3x+32=7+32应为(-23
2)2.
[师]很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?
[生乙]方程(3)的解为x1=
[师]好,继续.3?237,x2?3?237.
[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.__同学解的对,其解为x1=52,x2=-32.
[生丁]__同学做的是方程(2)、(4)、(6).他解的完全正确,即
方程(2)的解:x1=5,x2=3,
方程(4)的解:x1=2,x2=
方程(6)的解:xl=32,12,x2=-11.
[师]利用配方法求解方程时,一定要注意:
①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.
②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.
另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.
这节课我们就来解决一个实际问题.
Ⅱ.讲授新课
[师]看大屏幕.(出示投影片2.2.3B)在一块长16m,宽12m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?
[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.
[生甲]我们组
的设计方案如右图
所示,其中花园四
周是小路,它们的
宽度都相等.
这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2m或12m.
[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.
[生乙]甲组的设计符合要求.
我们可以假设小路的宽度为xm,则根据题意,可得方程(16-2x)(12-2x)=1
2×16×12,
也就是x2-14x-24=0.
然后利用配方法来求解这个方程,即
x-14x=-24,
x2-14x+72=-24+72,
(x-7)=25,
x-7=±5,
即x-7=5,x-7=-5.
∴x1=12.x2=2.
因此,小路的宽度为2m或12m.
由以上所述知:甲组的设计方案符合要求.
[生丙]不对,因为荒地的宽度是12m,所以小路的宽度绝对不能为12m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2m.
[师]大家来作判断,谁说的合乎实际?
[生齐声]丙同学说得有理.
[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.
[生丁]我们组
的设计方案如右图.
我们是以矩形
的四个顶点为圆心,以约5.5m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.
因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为xm,根据题意,可得
πx2=22
1
2×12×16.
解得x=±96
?≈±5.5.
因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.
[生戊]由丁同
学组的启发,我又
设计了一个方案,
如右图.
以矩形的对角
线的交点为圆心,以5.5m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.
[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.
[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?
[生庚]我们组
设计的方案如右图.
顺次连结矩形
各边的中点,所
得到的四边形即
是作为花园的场
地.
因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24m2(即1
2×6×8),所以四
个直角三角形的面积之和为96m2,则剩下的面积也正好是96m2,即等于矩形面积的一半.因此这个设计方案也符合要求.
[生辛]我们组设计的方案如下图.
图中的阴影部分可作为建花园的场所.
因为阴影部分的面积为96m,正好是矩形面积的一半,所以这个设计也符合要求.
[生丑]我们组
设计的方案如右图.
图中的阴影部
分可作为建花园的
场地.
经计算,它符合要求.
[生癸]我们组的设计方案如下图.
2
图中的阴影部分是作为建花园的场地.
[师]噢,同学们能帮癸组求出图中的x吗?
[生]能,根据题意,可得方程
2×1
2(16-x)(12-x)
=1
2
2×16×12,即x-28x+96=0,
x2-28x=-96,
x2-28x+142=-96+142,
(x-14)2=100,
x-14=±10.
∴x1=24,x2=4.
因为矩形的长为16m,所以x1=24不符合题意.因此图中的x只能为4m.
[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案.
接下来,我们再来看一个设计方案.
Ⅲ.课堂练习
(一)课本P55随堂练习1
1.小颖的设计方案如图所示,你能帮助她求出图中的x吗?
解:根据题意,得(16-x)(12-x)=
212×16×12,即x-28x+96=0.
解这个方程,得
x1=4,x2=24(舍去).
所以x=4.
(二)看课本P53~P54,然后小结.
Ⅳ.课时小结
本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.另外,还应注意用配方法解题的技能.
Ⅴ.课后作业
(一)课本P55习题2.51、2
(二)1.预习内容:P56~P57
2.预习提纲
如何推导一元二次方程的求根公式.
湖北省咸宁市咸安区实验中学 章福枝
一、内容与内容解析(一)内容
一元一次不等式组的概念及解法
(二)内容解析
上节课学习了一元一次不等式,知道了一元一次不等式的有关概念及解法,本节课主要是学习一元一次不等式组及其解法,这是学习利用一元一次不等式组解决实际问题的关键.教材通过一个实例入手,引出要解决的问题,必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式组的过程,进而通过一元一次不等式来类推学习一元一次不等式组、一元一次不等式组解集、解一元一次不等式组这些概念.学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念.求不等式组的解集时,利用数轴很直观,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验. 基于以上的分析,本节课的教学重点:一元一次不等式组的解法.
二、目标及目标解析(一)目标
(1)理解一元一次不等式组、一元一次不等式组的解集等概念.(2)会解一元一次不等式组,并会用数轴确定解集.(二)目标解析
达到目标(1)的标志是:学生能说出一元一次不等式组的特征.
达到目标(2)的标志是:学生能解一元一次不等式组,能在数轴上确定不等式组的解集,并获得解一元一次不等式组的步骤.
三、教学问题诊断分析 通过前面的学习,学生已经掌握一元一次不等式的概念及解法,但是对于学生用数轴来表示不等式组的解集时还不够熟练,理解还不够深刻. 本节课的教学难点:在数轴上找公共部分,确定不等式组的解集.
四、教学过程设计
(一)提出问题 形成概念
问题:用每分钟可抽30吨水的抽水机来抽污水管道里的积存污水,估计积存的污水超过1200吨而不足1500吨,那么将污水抽完所用的时间的范围是什么? 设问(1):依据题意,你能得出几个不等关系? 设问(2):设抽完污水所用的时间还是范围?
小组讨论,交流意见,再独立设未知数,列出所用的不等关系. 教师追问(1):类比方程组的概念,说出什么是一元一次不等式组?怎样表示? 学生自学概念,说出表示方法.教师追问(2):类比方程组的解怎样确定不等式组中x的取值范围? 学生经过小组讨论,老师点拨:不等式组中各个不等式解集的公共部分就是不等式组x的取值范围. 教师追问(3):怎样解不等式,并用数轴表示解集? 学生独立完成. 教师追问(4):通过数轴,怎样得出不等式组的解集? 学生独立完成,老师点评 教师追问(5):什么是一元一次不等式组的解集?什么是解一元一次不等式组? 学生自学概念.
设计意图:培养学生独立思考、合作交流意识,提高学生的观察、分析、猜测、概括和自学能力.并且渗透类比思想,得出一元一次不等式组以及其解集的概念,利用数轴的直观理解不等式解集的意义.
(二)解法探讨 步骤归纳 例1 解下列不等式组
学生尝试独立解不等式组,老师强调规范格式
设问1:当两个不等式的解集没有公共部分,表示什么意思? 设问2:解一元一次不等式组的一般步骤是什么?
学生总结归纳,老师适当补充,得出解一元一次不等式组的一般步骤是:(1)求每个不等式的解集;(2)利用数轴找出各个不等式的解集的公共部分;(3)写出不等式组的解集.
设计意图:初步感受解一元一次不等式组的方法和步骤.
(三)应用提高 深化认知
例2 x取那些整数值时,不等式5x+2>3(x-1)与
都成立?
设问1:不等式都成立表示什么意思? 小组讨论
设问2:要求x取哪些整数值,要先解决什么问题? 学生先合作交流,再独立解不等式组 设问3.怎样取值?
学生在不等式组的解集范围内,取整数值.老师强调即求不等式组的特殊解. 设计意图:通过例2可以让学生构建不等式组,并解出不等式组,同时根据解集求出不等式组的特殊解,这是对学生解不等式组的一次提高训练.
(四)归纳总结 反思提高
教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)什么是一元一次不等式组?什么是一元一次不等式组的解集?(2)解一元一次不等式组的一般步骤?
(3)一元一次不等式组解集的一般规律是什么?
设计意图:通过问题归纳总结本节课所学的主要内容.
(五)布置作业 课外反馈 教科书习题9.3第1,2,3题
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法
五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思
师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:
(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。
方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:
(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:(1)一个多边形的内角和等于1260,它是几边形?
(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。
3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
八、教学反思:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
1、通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.
2、掌握成中心对称的两个图形的性质,以及利用两种不同方式作出中心对称的图形.
利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.
经历对日常生活与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.
中心对称与旋转之间的关系.
如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋 转后的三角形,并写出简要作法.
1、观察、实验:选择你最喜欢的一幅图,用透明纸覆盖在图上,描出其中的一部分,用大头针固定在O处。旋转180°后,你有什么发现?
发现:把一个图形绕着某一个 旋转 ,如果他们能够与另一个图形 ,那么就说这 个图形 或 ,这个点叫做 ,这两个图形中的 叫做关于中心的 .
在图5中,我们通过实验知四边形A B C D和四边形A'B'C'D'关于点O对称。
(1)你知道它的对称中心、对称点吗?
(2)连接A A'、 B B' 、C C' 、D D'你有什么发现?
(3)线段AB、BC、CD、DA的对应线段是什么?AB与A'B'的关系是怎样的?四边形ABCD和四边形A'B'C'D'有什么关系?为什么?
(四)自我尝试:
(1)、已知点A和点O,画出点A关于点O的对称点A'。
(2)、已知如图△ABC和点O,画出与△ABC关于点O的对称图形A'B'C'。
1、 中心对称与图形旋转的关系?
1、已知下列命题:① 关于中心对称的两个图形一定不全等; ②关于中心对称的两个图形一定全等; ③两个全等的图形一定成中心对称,其中真命题的个数是( )
3、已知,△ABC与△DEF成中心对称,请找出它们的对称中心。
4、如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.
5、如图,点A'是A关于点O的对称点,请作出线段AB关于点O对称的线段A'B'
1、如图,在△ABC中,B=90°,C=30°,AB=1 ,将△ABC绕定点A旋转180°,点C落在C'处,求CC'的长为多少?
2、如图,已知AD是△ABC的中线:
1)画出与△ACD关于D点成中心对称的三角形;
2)找出与AC相等的线段;
3)探索:三角形中AB与AC的和与中线AD之间的关系,并说明理由;
4)若AB=5、AC=3,则线段AD的取值范围为多少?
本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
相似三角形的概念是本节的重点也是本节的难点.相似三角形是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究相似三角形比研究全等三角形更具有一般性.对应边和对应角子相似三角形中占有重要地位,学生在找对应边及对应角时常常出现错误.
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识
4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
1.使学生理解并掌握相似三角形的概念,理解相似比的概念.
2.使学生掌握预备定理,并了解它的承上启下的作用.
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.
4.通过学习,培养由特殊到一般的唯物辩证法观点.
1.教学重点:是相似三角形的概念及预备定理,教学中要让学生加深对相似三角形概念的本质的认识.
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对相似三角形概念的本质的认识,教学时可预先准备几对相似三角形,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.
,如图所示.
∴
∽
反之亦然.即相似三角形对应角相等,对应边成比例(性质).
∵
∽
, ∴
另外,相似三角形具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
相似三角形对应边的比K,叫做相似比(或相似系数).
.
②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形.
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
∽
,如图所示.
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了相似三角形的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截
,本质上与右图是一致的.
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现
的错误,如出现错误,教师要及时予以纠正.
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有相似三角形.
1.本节学习了相似三角形的概念.
2.正确理解相似比的概念,为以后学习相似三角形的性质打下基础.
学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。为此,本节课的教学目标是:
1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、能利用尺规作角的和、差、倍。
3、能够通过尺规设计并绘制简单的图案。
4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。
1、回顾与思考
(1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?
(2)练习:已知线段a,b,c,作一条线段m,使得m=a+b—c
通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的`使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。
2、情境引入,探索发现
活动内容:如图2
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
作为一位杰出的老师,时常需要编写教案,教案有助于顺利而有效地开展教学活动。那么你有了解过教案吗?以下是小编为大家收集的初中数学人教版教案优秀,欢迎阅读与收藏。
问题描述:
初中数学教学案例
初中的,随便那个年级.2000字.案例和反思
1个回答分类:数学2014-11-30
问题解答:
我来补答
2.3平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分.
二、教学目标:
知识与技能:掌握平行线的性质,能应用性质解决相关问题.
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程.
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神.
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神.
三、教学重、难点:
重点:平行线的性质
难点:“性质1”的探究过程
四、教学方法:
“引导发现法”与“动像探索法”
五、教具、学具:
教具:多媒体课件
学具:三角板、量角器.
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片.内容:①火车行驶在铁轨上;②游泳池;③横格纸.
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
学生活动:
思考回答.①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题.
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质.
(二)数形结合,探究性质
1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).
问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组
第二组
第三组
第四组
同位角
∠1
∠5
角的度数
数量关系
学生活动:画图——度量——填表——猜想
结论:两直线平行,同位角相等.
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?
学生:探究、讨论,最后得出结论:仍然成立.
2.教师用《几何画板》课件验证猜想
3.性质1.两条直线被第三条直线所截,同位角相等.(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系?
学生活动:独立探究——小组讨论——成果展示.
教师活动:引导学生说理.
因为a‖b因为a‖b
所以∠1=∠2所以∠1=∠2
又∠1=∠3又∠1+∠4=180°
所以∠2=∠3所以∠2+∠4=180°
语言叙述:
性质2两条直线被第三条直线所截,内错角相等.
(两直线平行,内错角相等)
性质3两条直线被第三条直线所截,同旁内角互补.
(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1=110°,则∠2=°.理由:.
②若∠1=110°,则∠3=°.理由:.
③若∠1=110°,则∠4=°.理由:.
(2)如图,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3
(C)∠1=∠4(D)∠3=∠4
(3)如图,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=()
(A)180°(B)270°(C)360°(D)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2=.
学生提问,并找出回答问题的同学.
2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,
∠B=115°,求梯形另外两角分别是多少度?
(五)概括存储(小结)
1.平行线的性质1、2、3;
2.用“运动”的观点观察数学问题;
3.用数形结合的方法来解决问题.
(六)作业第69页2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣.
②学的转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境.
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的.灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例
公式
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题.
2.使学生理解公式与代数式的关系.
(二)能力训练点
1.利用数学公式解决实际问题的能力.
2.利用已知的公式推导新公式的能力.
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践.
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.
二、学法引导
1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点
2.学生学法:观察→分析→推导→计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式.
2.难点:同重点.
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。
一、教学目标:
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.能够利用二次函数的图象求一元二次方程的近似根。
二、教学重点
利用二次函数的图象求一元二次方程的近似根。
教学难点:
理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:
启发引导合作交流
四:教具、学具:
课件
五、教学媒体:
计算机、实物投影。
六、教学过程:
[活动1]检查预习引出课题
预习作业:
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2]创设情境探究新知
问题
1.课本p16问题.
2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?
(结合预习题1,完成课本p16观察中的题目。)
师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
二次函数y=ax2+bx+c的
图象和x轴交点
两个交点
一个交点
没有交点
教师重点关注:
1.学生能否把实际问题准确地转化为数学问题;
2.学生在思考问题时能否注重数形结合思想的应用;
3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。
设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。
[活动3]例题学习巩固提高
问题:例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).
师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。
教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。
设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。
[活动4]练习反馈巩固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根两个相异的实数根两个相等的实数根没有实数根根的判别式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac
问题:(1)p97.习题1、2(1)。
师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。
教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。
设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。
[活动5]自主小结,深化提高:
1.通过这节课的学习,你获得了哪些数学知识和方法?
2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。
师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。
设计意图:
1.题促使学生反思在知识和技能方面的收获;
2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。
[活动6]分层作业,发展个性:
1.(必做题)阅读教材并完成p97习题21。2:3、4.
2.(备选题)p97习题21。2:5、6
设计意图:分层作业,使不同层次的学生都能有所收获。
七、教学反思:
1.注重知识的发生过程与思想方法的应用
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的.指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。
探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方
法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2.关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。
3.强化行为反思
“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4.优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2.x的值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的'AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:
(1)从所填表格中,你能发现什么?
(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题:
(1)当AB=xm时,BC长等于多少m?
(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销
售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略
一、教学目标
1、了解推理、证明的格式,理解判定定理的证法。
2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。
3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。
4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。
二、学法引导
1、教师教法:启发式引导发现法。
2、学生学法:积极参与、主动发现、发展思维。
三、重点难点及解决办法
(一)重点
判定定理的推导和例题的解答。
(二)难点
使用符号语言进行推理。
(三)解决办法
1、通过教师正确引导,学生积极思维,发现定理,解决重点。
2、通过教师指导,学生自行完成推理过程,解决难点及疑点。
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片。
六、师生互动活动设计
1、通过设计练习,复习基础,创造情境,引入新课。
2、通过教师指导,学生探索新知,练习巩固,完成新授。
3、通过学生自己总结完成小结。
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。
(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。
(三)教学过程
创设情境,复习引入
师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。
学生活动:学生口答第1、2题。
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第1、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。
教师将第3题图形画在黑板上。
学生活动:学生口答理由,同角的'补角相等。
师:要求学生写出符号推理过程,并板书。
八、教法说明
本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点。
师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角。
师:它们有什么关系。
学生活动:互补。
师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题。
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法
五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思
师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:
(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。
方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:
(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:(1)一个多边形的内角和等于1260,它是几边形?
(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。
3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
八、教学反思:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
一、教学目标
1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2 .数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
二、教学重、难点
1.重点:对平行线性质的掌握与应用。
2.难点:对平行线性质1的探究。
五、教学用具
1.教具:多媒体平台及多媒体课件.
2.学具:三角尺、量角器、剪刀。
三、教学过程
1.创设情境,设疑激思
⑴播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。
⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。
2.数形结合,探究性质
⑴画图探究,归纳猜想。
教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,填写结果:
第一组:同位角( )( ) 角的度数( )( ) 数量关系( )
第二组:同位角( )( ) 角的度数( )( ) 数量关系( )
第三组:同位角( )( ) 角的度数( )( ) 数量关系( )
第四组:同位角( )( ) 角的度数( )( ) 数量关系( )
教师提出研究性问题二:
将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的`数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想
⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
3.引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)
又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)
所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)
教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
4.实际应用,优势互补
⑴(抢答)课本P21 练一练1、2及习题5.31、3.
⑵(讨论解答)课本P22 习题5.32、4、5.
5.课堂总结:
这节课你有哪些收获?
⑴学生总结:平行线的性质1、2、3.
⑵教师补充总结:
①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。
②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。
③用准确的语言来表达问题(如平行线的性质1、2、3的表述)。
④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
6 .作业。学习与评价: P 2 3 6 ( 选择);P247、12(拓展与延伸)。
四、教学反思
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变:
1.教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。
2.学的转变
学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。
3.课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!
作为一名教学工作者,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。那么写教案需要注意哪些问题呢?以下是小编精心整理的初中数学教案(精选9篇),欢迎大家借鉴与参考,希望对大家有所帮助。
一、学情分析
八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理
二、教材分析
这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
三、教学目标设计
知识与技能
探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用
过程与方法
(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的'思想方法情感态度与价值
(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。
(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
四、教学重点难点
教学重点
探索和证明勾股定理
教学难点
用拼图的方法证明勾股定理
五、教学方法
(学法)“引导探索法”
(自主探究,合作学习,采用小组合作的方法。
六、教具准备
课件、三角板
七、教学过程设计
教学环节1
教学过程:创设情境探索新知
教师活动:出示第24届国际数学家大会的会徽的图案向学生提问
(1)你见过这个图案吗?
(2)你听说过“勾股定理”吗?
学生活动:
学生思考回答
设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。
教学环节
教学过程:
实验操作获取新知归纳验证完善新知
教师活动:出示课件,引导学生探索
学生活动:猜想实验合作交流画图测量拼图验证
设计意图:渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望.给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。教学环节3教学过程:解决问题应用新知
教师活动:出示例题和练习
学生活动:交流合作,解决问题
设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识.
教学环节4
教学内容:
课堂小结
巩固新知布置作业
教师活动:引导学生小结
学生活动:讨论交流、自由发言
设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦.
通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导.
八、板书设计
勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么a2+b2=c2。
九、习题拓展
如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。(1)求梯子上端A到墙的底端B的距离AB。
(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?
十、作业设计
1、收集有关勾股定理的证明方法,下节课展示、交流.
2、做一棵奇妙的勾股树(选做)
一、案例实施背景
本节课是20xx-20xx学年度第一学期笔者在一乡镇中学的多媒体教室里上的一节课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程九年级数学(上册).
二、案例主题分析与设计
本节课是人教版义务教育教科书九年级上册第24章第1节内容——圆,圆的概念是中心对称的继续,是后面研究扇形、弧长的基础,是“空间与图形”的重要组成部分。《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标
1、知识技能:探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.
2、数学思考:体会圆的不同定义方法,感受圆和实际生活的联系
3、解决问题:在解决问题过程中使学生体会数学知识在生活中的普遍性.
四、案例教学重、难点
1、重点:圆的两种定义的探索,能够解释一些生活问题.
2、难点:圆的运动式定义方法.
五、案例教学用具
1、教具:多媒体课件、圆规、细线、铅笔。
2、学具:圆规
六、案例教学过程
(一)创设问题情境,激发学生兴趣,引出本节内容
1、如图1,观察下列图形,从中找出共同特点.
图1
2、学生活动:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.
3、教师活动:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.
(二)问题引申,探究圆的定义,培养学生的探究精神
1、如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件展示画图过程)
图2
2、学生活动:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.
3、教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径;圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.
4、师生共同归纳:
(1)圆上各点到定点(圆心)的距离都等于定长(半径);
(2)到定点的距离等于定长的点都在同一个圆上.
(3)圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.
5、讨论圆中相关元素的定义.
(1)如图3,你能说出弦、直径、弧、半圆的定义吗?
图3 (2)学生活动:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.
(3)教师活动:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决. 弦:连接圆上任意两点的线段叫作弦; 直径:经过圆心的弦叫作直径;
弧:圆上任意两点间的部分叫作圆弧,简称弧;
AB,读作“圆弧AB”或“弧弧的表示方法:以A、B为端点的弧记作AB”;
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.
优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的 ABC;
. 劣弧:小于半圆的弧叫作劣弧,如图3中的BC
(三)讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)
1、学生活动:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.
2、教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.
图4
(四)应用提高,培养学生的应用意识和创新能力m的圆?说出你的理由
2、师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.cm,这棵红杉树平均每年半径增加多少?
图5
4、师生活动设计:首先求出半径,然后除以20即可.
解答:树干的半径是23÷2=11.5(cm).
平均每年半径增加11.5÷20=0.575(cm).
(五)归纳小结、布置作业
小结:圆的两种定义以及相关概念.
作业:请做一个正方形的车轮,体会在车轮滚动的过程中车身的情况
七、教学反思
1、教师角色的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同探讨者。在引导学生观察、画图、发现结论后,利用多媒体课件直观的、动态的展示圆的形成过程及车轮原理,激发了兴趣。
2、学生角色的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
3、课堂氛围的转变:整节课以 “流畅、开放、合作、“隐导”为基本特征。教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
一、内容特点
在知识与方法上类似于数系的第一次扩张。
也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路
整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。
最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。
经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。
总结实数的概念及其分类,并用类比的.方法引入实数的相关概念、运算律和运算性质等。
三、一些建议
1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。
3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。
4.淡化二次根式的概念。
课题:12.3等腰三角形(第一课时)
教学内容:新人教版八年级上册十二章第三节等腰三角形的第一课时
任课教师:东湾中学李晓伟
设计理念:
教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。
㈠教材的地位和作用分析
等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。
㈡教学内容的分析
本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。
在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。
二、目标及其解析
㈠教学目标:
知识技能:
1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明;
3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。
数学思考:
1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观;
2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力.
解决问题:
1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验;
2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性.
情感态度:
1.经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心;
2.经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;
3.在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益.
㈡教学重点:
等腰三角形的性质及应用。
㈢教学难点:
等腰三角形性质的证明。
㈣解析
本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边;⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线;
2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明;
3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。
三、问题诊断分析
1.在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。
2.这堂课学生可能遇到的第二个问题是证明等腰三角形的性质,这一问题主要有三个原因:第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。
3.这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计
课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。
四、教法、学法:
教法:
常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。
本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。
学法:
学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。
五、教学支持条件分析
在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。
六、教学基本流程
七、教学过程设计
教学目标
1.知道什么是全等形、全等三角形及全等三角形的对应元素;
2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;
3.能熟练找出两个全等三角形的对应角、对应边.
教学重点
全等三角形的性质.
教学难点
找全等三角形的对应边、对应角.
教学过程
一.提出问题,创设情境
1、问题:你能发现这两个三角形有什么美妙的关系吗?
这两个三角形是完全重合的
2.学生自己动手(同桌两名同学配合)
取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.
3.获取概念
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.
形状与大小都完全相同的两个图形就是全等形.
要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.
概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中"全等"符号表示的要求.
二.导入新课
将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.
议一议:各图中的两个三角形全等吗?
不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.
(注意强调书写时对应顶点字母写在对应的位置上)
启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.
观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
得到全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.
[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.
问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?
将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,所以C和B重合,A和D重合.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.
[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.
分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.
根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素.常用方法有:
(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.
(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
解:对应角为∠BAE和∠CAD.
对应边为AB与AC、AE与AD、BE与CD.
[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)
借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的`角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
三.课堂练习
课本练习1.
四.课时小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的
找对应元素的常用方法有两种:
(一)从运动角度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
五.作业
课本习题1
课后作业:《新课堂》
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2.x的值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销
售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的.值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略
一、指导思想
教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的备课情况、讲课细节、作业批改情况。教学常规培养着教师的基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。
二、检查反馈
本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的.特点与不足。
特点:
1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。
2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。
3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。
4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。
不足:
1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。
2、个别教师教案过于简单。
作业方面的特点与不足
特点:
1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。
2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。
不足:
1、对于学生书写的工整性,还需加强教育。
2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。
一、教学目标:
1、理解二元一次方程及二元一次方程的解的概念;
2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
二、教学重点、难点:
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段:
通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。
四、教学过程:
1、情景导入:
新闻链接:x70岁以上老人可领取生活补助。
得到方程:80a+150b=902880、
2、新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。
做一做:
(1)根据题意列出方程:
①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:
(2)课本P80练习2、判定哪些式子是二元一次方程方程。
合作学习:
活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的'一对未知数的值叫做二元一次方程的一个解。
并提出注意二元一次方程解的书写方法。
3、合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程x+2y=8。
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4、课堂练习:
(1)已知:5xm—2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;
5、你能解决吗?
小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。
6、课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
7、布置作业:
教学目标
1.使学生正确理解的意义,掌握的三要素;
2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;
3.使学生初步理解数形结合的思想方法.
教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.
难点:正确理解有理数与上点的对应关系.
课堂教学过程
设计
一、从学生原有认知结构提出问题
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——.
二、讲授新课
让学生观察挂图——放大的'温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.
进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.
三、运用举例 变式练习
例1 画一个,并在上画出表示下列各数的点:
例2 指出上A,B,C,D,E各点分别表示什么数.
课堂练习
示出来.
2.说出下面上A,B,C,D,O,M各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
四、小结
指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.
本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.
五、作业
1.在下面上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)A,H,D,E,O各点分别表示什么数?
2.在下面上,A,B,C,D各点分别表示什么数?
3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
教案课件是老师需要精心准备的,但老师也要清楚教案课件不是随便写写就行的。教案是富有操作性和指导性的教学设计。教师范文大全小编为您详细介绍“初中数学教学优秀教案”的相关内容请看下去,希望我们的建议能够为您的决策提供支持和协助!
1.利用方程解决实际问题.
1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.
2.能根据具体问题的实际意义检验结果的合理性.
3.进一步训练利用配方法解题的技能.
通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.
通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片2.2.3 A)
(2)x2-8x+15=0;
(3)x2-3x-7=0;
(4)3x2-8x+4=0;
(5)6x2-11x-10=0;
(6)2x2+21x-11=0.
我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、
(4)、(6).
各组做完了没有?
做完了.
好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.
我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即
x-3x=7,
2)2.
很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?
方程(3)的解为x1=
好,继续. 3?237,x2?3?237.
方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x1=52,x2=-32.
××同学做的是方程(2)、(4)、(6).他解的完全正确,即
利用配方法求解方程时,一定要注意:
①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.
②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.
另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.
看大屏幕.(出示投影片2.2.3B)在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?
大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.
宽度都相等.
这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m或12 m.
噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.
甲组的设计符合要求.
我们可以假设小路的宽度为x m,则根据题意,可得方程 (16-2x)(12-2x)= 1
2×16×12,
也就是x2-14x-24=0.
x-14x=-24,
x2-14x+72=-24+72,
(x-7)=25,
x-7=±5,
即x-7=5,x-7=-5.
∴x1=12.x2=2.
因此,小路的宽度为2 m或12 m.
不对,因为荒地的宽度是12 m,所以小路的宽度绝对不能为12 m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m.
大家来作判断,谁说的合乎实际?
丙同学说得有理.
好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.
的四个顶点为圆心,以约5.5 m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.
因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m,根据题意,可得
?≈±5.5.
因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.
设计了一个方案,
线的交点为圆心,以5.5 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.
老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.
同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?
地.
因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m2(即1
个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半.因此这个设计方案也符合要求.
我们组设计的方案如下图.
图中的阴影部分可作为建花园的场所.
因为阴影部分的面积为96 m,正好是矩形面积的一半,所以这个设计也符合要求.
场地.
经计算,它符合要求.
图中的阴影部分是作为建花园的场地.
噢,同学们能帮癸组求出图中的x吗?
2×16×12, 即x-28x+96=0,
x2-28x=-96,
x2-28x+142=-96+142,
(x-14)2=100,
x-14=±10.
∴x1=24,x2=4.
因为矩形的长为16 m,所以x1=24不符合题意.因此图中的x只能为4 m.
同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案.
212×16×12, 即x-28x+96=0.
x1=4,x2=24(舍去).
所以x=4.
(二)看课本P53~P54,然后小结.
本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性. 另外,还应注意用配方法解题的技能.
汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S甲(米)与车速x(千米/时)之间有下列关系:S甲=0.1x+0.01x2;乙种车的刹车距离S乙(米)与车速x(千米/时)的关系如下图所示.
●教学目标
(一)教学知识点
1.平移的定义
2.平移的基本性质
(二)能力训练要求
1.通过具体实例认识平移,理解平移的基本内涵.
2.探索平移的基本性质,理解平移前后两个图形对应点连线平行且相等,对应线段和对应角分别相等的性质.
(三)情感与价值观要求
经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移的基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。
●教学重点
平移的基本性质.
●教学难点
平移的基本内涵的理解.
●教学方法
探索、发现法.
●教具准备
图片:一些游乐园的图片、辘轳、电梯等.
电脑演示:平移的过程,粒子运动及行星运转等.
投影片四张:
第一张:想一想,议一议(记作投影片§3.1A);
第二张:想一想(记作投影片§3.1B);
第三张:平移的性质(记作投影片§3.1C);
第四张:例1(记作投影片§3.1D).
●教学过程
Ⅰ.巧设情景问题,引入课题
[师]同学们,还记得游乐园内的一些项目吗?(或投影片放图片,或在电脑上演示幻灯片):旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?
[生齐]也走了200米.
[师]很好.其实,数学就在我们身边,它有很多规律等待我们去探索,去发现!无论是年代久远的.老牛上的辘轳(出示图片);还是刚刚耸立起的高楼大厦里的电梯,(出示图片),无论是微观世界里的粒子运动(电脑演示),还是浩翰宇宙中的行星运转(电脑演示).其中最简捷的运动变化形式主要是平移和旋转,让我们走进图形变换的天地,继续探索图形变换的奥秘吧!
从今天开始,我们就来探索第三章:图形的平移和旋转.
Ⅱ.讲授新课
[师]下面我们来看第一节:生活中的平移(电脑演示:P57的图3—1,然后提出问题)
(1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?
[生齐]传送带上的电视机的形状、大小在运动前后没有发生改变.
手扶电梯上的人也没有变化.
[师]很好,我们再看(电脑演示):
在传送带上,如果电视机的某一按键向前移动了80cm,那么电视机的其他部位向什么方向移动?移动了多少距离?
[生]电视机的其他部位也向前移动,也移动了80cm.
[师]好,(电脑出示问题,并演示四边形ABCD移动到四边形EFGH的位置的过程)
如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?
[生]四边形ABCD与四边形EFGH的形状、大小相同.
[师]很好,那同学们来想一想,议一议(出示投影片§3.1A).
传送带运送电视机的过程中,电视机的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?手扶电梯上的人呢?
了解圆柱、圆锥、圆台和球的有关概念、认识圆柱、圆锥、圆台和球及其简单组合体的机构特征。
1、下面几何体有什么共同特点或生成规律?
这些几何体都可看做是一个平面图形绕某一直线旋转而成的。
2、圆柱、圆锥、圆台和球的有关概念。
3、圆柱、圆锥、圆台和球的表示。
如图,将直角梯形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
例2指出图、图中的几何体是由哪些简单的几何体构成的、
直角三角形中,,将三角形分别绕边,三边所在直线旋转一周,由此形成的几何体是哪一种简单的几何体?或由哪几种简单的几何体构成?
1、指出下列几何体分别由哪些简单几何体构成。
2、如图,将平行四边形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
3、充满气的车轮内胎可以通过什么图形旋转生成?
圆柱、圆锥、圆台和球的有关概念及图形特征。
3、用平行与圆柱底面的平面截圆柱,截面是_____________________________________.
4、_____________________可以看作圆柱的一个底面收缩为圆心时,形成的空间几何体、
5、用平行于圆锥底面的一平面去截此圆锥,则底面和截面间的部分的名称是_________。
6、如图是一个圆台,请标出它的底面、轴、母线,并指出它是怎样生成的。
7、请指出图中的几何体是由哪些简单几何体构成的。
8、如图,将直角梯形绕、边所在直线旋转一周,由此形成的几何体分别是由哪些简单几何体构成的?
设计思想:
这堂课为章节复习课,教师可以先从总体知识结构入手,引导学生逐步回顾所学的知识,要知道本章主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。
初步认识二次函数;
掌握二次函数的表达式,体会二次函数的意义;
会用数表、图像和表达式三种表示方法来表示二次函数,并会相互转化;
会画二次函数,能利用二次函数求一元二次方程的近似解;
利用二次函数的图像和性质解决相关实际问题,灵活应用二次函数。
通过利用二次函数的图像解决问题,体会数形结合的数学方法;
在学习探索的过程中逐步体会和认识二次函数。
体会从特殊函数到一般函数的过渡,注意找函数之间的联系和区别;
树立主动参与积极探索尝试、猜想和发现的精神;
注意运用数形结合的思想,改变过去只利用数式,而忽略图形的思想。
教学难点:二次函数y= 的图像及性质;二次函数的应用。
师:这堂课是这章的总结课,下面我们来看这章整体知识框架图:(幻灯片)
观看这章的知识整体框架,思考下面的问题:
1.你能用二次函数的知识解决哪些问题?
2.日常生活中,你在什么地方见到过二次函数的图像抛物线的样子?
3.你知道二次函数与一元二次方程的关系吗?你能解决什么问题?
同学们,想想你们学习本章的收获是__________。
同学们相互讨论,然后师生互动共同探讨上面的问题。
例1:某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图2-1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?
要求:(1)请提供四条信息;(2)不必求函数的解析式。
解:(1)2月份每千克销售价是3.5元;(2)2月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9与、4月与10月、3月与11月,2月与12月的销售价相同。
(注:此题答案不唯一,以上答案仅供参考,若有其他答案,只要是根据图象得出的信息,并且叙述正确即可)
师:要重点看一下横轴与纵轴分别是哪一个变量,然后再看一下它的数据分别是多少。
例2:(北京石景山)已知:等边 中, 是关于 的方程 的两个实数根,若 分别是 上的点,且 ,设 求 关于 的函数关系式,并求出 的最小值。
当 ,即 为 的重点时, 有最小值6。
师:本题涉及到等边三角形的性质,解直角三角形。二次函数的有关内容,是一道综合性题目。
例3:某校初三年级的一场篮球比赛中,如图2-2,队员甲正在投篮,已知球出手时离地面高 ,与篮球中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m。
(1)建立如图2-3的平面直角坐标系,问此球能否准确投中?
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?
将 点坐标代入解析式;左=右;所以一定能投中。
生:此球能否准确投中,与二次函数的知识有何联系,我不大清楚。
师:篮球运行的轨迹为抛物线,蓝圈可以看成一个点,所以此球能否准确投中的问题,实际上就是看一下该点在不在抛物线上即可。
例4:如图2-4,一位篮球运动员跳起投篮,球沿抛物线 运行,然后准确落入篮框内,已知篮框的中心离地面的距离为3.05米。
(1)球在空中运行的最大高度为多少米?
(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?
解:(1) 抛物线 的顶点坐标为(0,3.5)。
∴球在空中运行的最大高度为3.5米。
(2)在 中,当 时,
故运动员距离篮框中心水平距离为 米。
师:运动员距离篮框中心水平距离,就是过蓝框向地面做垂线,垂足与人的站立点的距离。
(1)证明抛物线顶点一定在直线 上。
(2)若抛物线与 轴交于 两点,当 ,且 时,求抛物线的解析式。
(3)若(2)中所求抛物线顶点为 ,与 轴交点在原点上方,抛物线的对称轴与 轴脚于点 ,直线 与 轴交于点 ,点 为抛物线对称轴上一动点,过点 作 ⊥ ,垂足 在线段 上,试问:是否存在点 ,使 若存在,求出点 的坐标;若不存在,请说明理由。
(2)∵抛物线与 轴交于 两点,∴ 。
即 ,解得 。
∵ 或 当 时, (与 矛盾,舍去), 。
当 时, 或 。
(3)∵抛物线与 轴交点在原点的上方,∴
解得 。
师:将抛物线的顶点坐标代入直线的解析式,如果适合直线的解析式,则点在直线 上;否则,点不在直线 上。
我们这堂课主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。
1.助数轴初步理解绝对值的概念及表示方法;
2.体会绝对值的作用与意义;
3.能熟练掌握有理数绝对值的求法和有关的简单计算。
通过观察,分析,思考,归纳,探索绝对值的几何意义,代数意义和性质,渗透数形结合和分类的数学思想,培养学生分析问题和解决问题的能力。
让学生在探索活动中产生对数学的好奇心,体验探索的乐趣和成功的快乐,增强学好数学的兴趣与信心。
正确理解绝对值的概念,能求一个数的绝对值。
甲乙两辆车从城站火车站同时开出,甲车向东行驶5千米到达一候车亭,乙车向西行驶5千米到达另一候车亭。问:
(2)这两个有理数有什么关系?
(3)在数轴上把这两个有理数表示出来。
设计意图:通过提问,复习用有理数表示具有相反意义的量,相反数的意义,在数轴上表示有理数等有关内容,为学习新知识做准备。
1.引入:
(1)若每辆车行驶每千米耗油0.2升,则甲乙两辆车各耗多少升油?
(2)计算汽车耗油量的过程中,只与什么有关?而与什么无关?
耗油量的计算只与汽车行驶的路程有关,而与方向无关,在实际生活中不注重方向的量还有很多,本节我们将学习一个新的不注重方向的量——绝对值。
2.引导学生从数轴上认识绝对值的几何意义。
师:+6和-6是相反数,它们只有符号不同,它们什么相同呢??
师:在数轴上标出到原点距离是6个单位长度的点。
引导学生观察:数轴上表示+6和-6两点,虽然分居在原点的两旁,符号不同,但与原点之间都是相隔6个单位长度。
指出:
在数轴上表示+6和-6的点与原点的距离都是6,我们就说+6的绝对值是6,-6的绝对值也是6。
归纳:
绝对值的几何意义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做∣a∣。
师:一个正数的绝对值是什么?0的绝对值是什么?负数呢??
生:学生小组交流、讨论,小组代表汇报讨论结论。
师:同学们说的对,但这只是绝对值意义的文字叙述,事实上,这意义还可以用数学式子来表达。大家知道怎样用数学式子来表达吗?
生:学生分组讨论,分析思考,得到三个相应的表达式。?
即:
(1)如果a>0,那么│a│=a;
(2)如果a=0,那么│a│=0;
(3)如果a
归纳:非负数的绝对值是它本身,非正数的绝对值是它的相反数。互为相反数的两个数的绝对值相等。
归纳:由此可知,不论a取何值,它的绝对值总是正数或0(通常也称为非负数),即对任意有理数a而言,总有:a≧0?。这是一条非常重要的性质,即绝对值的“非负性”。
补充:
(1)绝对值等于0的数只有一个,就是0;
(2)绝对值等于同一个正数的数有两个,这两个数互为相反数;
(3)互为相反数的两个数的绝对值相等。
例1.?-5的相反数是______;|-5|=______,不小于-2的负整数是______。
例2.若x>0,y
例3.绝对值不大于4的整数有______个。
一个数的绝对值就是数轴上表示数a的点到原点的距离,要注意一个数的绝对值不可能是负数,而是非负数。一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值就是零。
本节课的教学过程注重创设情境,遵循从特殊到一般的认知规律,给学生充分的思考空间,让他们自主探究,主动学习,体会小组合作及分析思考的过程,从而培养学生浓厚的学习兴趣。
一、教学目标
1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。
2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。
二、教学重、难点
1、重点:正确运用科学记数法表示较大的数
2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数
三、教学用具
1、教具:多媒体平台及多媒体课件、图片
四、教学过程
一、创设情境,兴趣导学:
1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?
2、展示课本第63页图片,现实中,我们会遇到一些比较
大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。
师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。
(1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000
生1:答:13.7亿,640万,3亿。
师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗? 生:不好用。(让学生意识到以前所学的方法不够用了) 师:接下来我们一起来探索新的记数方法。
分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。
二、尝试探索,讲授新课:
1、探索10n的特征
计算一下102、103、104、105、1010你发现什么规律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000
(观察并思考,小组讨论)
(1)结果中“0”的个数与10的指数有什么关系?
(2)结果的位数与10的指数有什么关系?
2、练习:将下列个数写成只有一位整数乘以10n的形式。
(1)500(2)3000(4)40000
师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。 分析:通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。
4、科学记数法:
像上面这样,把一个大于10的数表示成 a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。
(思考,小组讨论)
10的指数与结果的位数有什么关系?
分析:这是本节课的重难点:10的幂指数n与原数的`整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。
三、巩固新知,知识运用:
1、将下列各数写成科学记数法形式。
(1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科学记数法表示是多少米? 分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。
(观察并思考,小组讨论)
5、如何将一个用科学记数法表示的数写成原数?
a×10n将a的小数点向右移动n位原数
分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。
练习:人体内约有2.5×10 5个细胞,其原数为多少个?
五、教学反思:
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好
地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。
本文网址://m.jk251.com/jiaoan/142994.html
上一篇:于丹观后感(范文十篇)
下一篇:幼师个人工作计划