导航栏

×
范文大全 > 高中教案

基因工程的应用教案【荐】

时间:2022-03-13 基因工程的应用教案 话说基因工程读后感

疏导引导

1.植物基因工程的成果

植物基因工程的成果都是由两方面组成:一是外源基因来源;二是外源基因的表达成果。虽然教材内容繁多,杂乱无章,但是我们在掌握时只要抓住植物基因工程的外源基因是什么,该基因是通过基因工程技术导入植物细胞,使其表达,产生人们所需要的产品,如抗虫转基因植物的外源基因是杀虫基因。外源基因还有bt毒蛋白基因、蛋白酶抑制剂基因、淀粉酶抑制剂基因、植物凝集素基因等。成果是抗虫棉等。

2.动物基因工程的成果

动物基因工程的成果也是由两方面组成:一是外源基因,如生长激素基因、肠乳糖酶基因、药用蛋白基因、抗原决定基因等;二是外源基因在动物体内的表达成果,如动物生长速率加快、转基因鲤鱼、乳房生物反应器、没有免疫反应的克隆猪器官。

3.基因工程药品

利用基因工程培育“工程菌”来生产药品,是基因工程的低成本高效益的工程产业,可以通过转基因培育的工程菌生产人胰岛素、细胞因子、抗体、疫苗、激素、白细胞介素、干扰素等。

4.利用微生物生产药物的优越性

所谓利用微生物生产蛋白质类药物,是将人们需要的某种蛋白质的编码基因构建成表达载体后导入微生物,然后利用微生物发酵来生产蛋白质类药物。与传统的制药相比,它有以下优越性:

(1)利用活细胞作为表达系统,表达效率高,无需大型装置和大面积厂房就可以生产出大量药品。

(2)可以解决传统制药中原料来源的不足。例如,胰岛素是治疗糖尿病患者的药物,一名糖尿病患者每年所需的胰岛素需要从40头牛或50头猪的胰脏中才能提取到。1978年科学家用2000l大肠杆菌发酵液得到了100g胰岛素,相当于从1000kg猪胰脏中提取的量。又如,生长激素是治疗侏儒症患者的药物,治疗一名侏儒症患者每年需要从80具尸体的脑下垂体中提取生长激素。利用基因工程菌发酵生产就不需要从动物或人体上获取原料。

(3)降低生产成本,减少生产人员和管理人员。

活学巧用

【例1】用现代生物技术培育生物新品种,其优越性在于…()

a.克隆技术可以快速繁育优良性状的家畜

b.现代转基因技术可迅速改变生物的基因组成

c.现代生物技术迅速使新品种形成群落

d.现代生物技术可克服远源杂交不亲和的障碍

解题提示:群落是在一定自然区域内,相互之间具有直接和间接关系的各种生物的总和。解决该类题目的规律:基因工程是在两个物种之间转移基因,克服两物种之间由于生殖隔离不能进行基因交流的障碍。

答案:abd

【例2】下列实例中,涉及基因重组的是()

a.我国著名育种专家袁隆平利用杂交技术培育出超级水稻品种

b.英国科学家利用细胞核移植技术克隆出小绵羊

c.荷兰科学家将人乳高铁蛋白基因移植到牛体内并获得成功

d.乘宇宙飞船上过太空的辣椒种子结出的果实较平常的大一倍以上

解题提示:袁隆平培育出的超级水稻品种是利用杂交技术,根据基因重组原理培育成功的,故a对。c项为基因工程的产物,基因工程也是利用基因重组原理,把一种生物的基因转移到另一种生物体内,定向地改造生物的遗传性状,即把不同种生物的基因组合在一起,并得以表达的过程,故c对。b项克隆小绵羊的产生是无性生殖的过程,无基因重组现象。太空育种是利用基因突变原理,故b、d错。解决该类题目的规律:基因重组有两种类型:一是有性生殖过程中非等位基因的重新组合;二是dna拼接技术即基因工程。

答案:ac

jk251.cOm扩展阅读

高中教案共点力平衡条件的应用【荐】


教学目标

知识目标

1、知道什么叫共点力作用下的平衡状态.

2、掌握共点力的平衡条件.

3、会用共点力的平衡条件解决有关平衡问题.

能力目标

1、培养学生应用力的矢量合成法则平行四边形定则进行力的合成、力的分解的能力.

2、培养学生全面分析问题的能力和推理能力.

情感目标

1、教会学生用辨证观点看问题,体会团结协助.

典型例题

关于斜面物体的摩擦力的两种分析方法以及拓展

例1如图,一物块静止在倾角为37°的斜面上,物块的重力为20N,请分析物块受力并求其大小.

分析:物块受竖直向下的重力,斜面给物块的垂直斜面向上的支持力,斜面给物块的沿斜面向上的静摩擦力.

解:

1、方法1——用合成法

(1)合成支持力和静摩擦力,其合力的方向竖直向上,大小与物块重力大小相等;

(2)合成重力和支持力,其合力的方向沿斜面向下,大小与斜面给物块的沿斜面向上的静摩擦力的大小相等;

(3)合成斜面给物块的沿斜面向上的静摩擦力和重力,其合力的方向垂直斜面向下,大小与斜面给物块的垂直斜面向上的支持力的大小相等.

合成法的讲解要注意合力的方向的确定是唯一的,这有共点力平衡条件决定,关于这一点一定要与学生共同分析说明清楚.

2、方法2——用分解法

理论上物块受的每一个力都可分解,但实际解题时要根据实际受力情况来确定分解哪个力(被确定分解的力所分解的力大小方向要明确简单易于计算),本题正交分解物块所受的重力,利用平衡条件,,列方程较为简便.

为了学生能真正掌握物体的受力分析能力,要求学生全面分析使用力的合成法和力的分解法,要有一定数量的训练.

方法2的拓展1:一物块静止在倾角为的斜面上,物块的重力为,请分析物块受力并分析当倾角慢慢减小到零的过程其大小的变化情况.

解:依题意用分解法将物块受的重力正交分解,利用,的平衡条件,得斜面给物块的垂直斜面向上的支持力的大小为,

斜面给物块的沿斜面向上的静摩擦力的大小.

物块受的重力是不变的(关于这一点学生非常清楚),根据数学的知识的分析可以知道当倾角慢慢减小到零的过程,

逐渐增大,最后等于物块的重力;

逐渐减小,最后等于零.

适当的时候,提醒学生分析的方法和结论;提醒学生极限法的应用,即倾角等于零时的极限情况下分析题目.

方法2的拓展2:一物块放在倾角为的斜面上,物块的重力为,斜面与物块的动摩擦因数为,请分析物块受力的方向并分析当倾角慢慢由零增大到90°的过程,物块对斜面的压力受到的摩擦力其大小的变化情况.

分析物块受力:时,只受两个力重力和斜面给的支持力,此时没有摩擦力;

时,物块只受一个力,物块的重力.(此亦为极限法处理).

借此,和学生一起分析,可知物块的运动状态是变化的,既开始时物块静止在斜面上,这时物块受三个力.

物块的重力,斜面给物块的支持力和斜面给物块的静摩擦力.

在斜面给物块的静摩擦力等于物块的下滑力时,物块开始滑动,此时物块依旧受三个力,物块的重力,斜面给物块的支持力和斜面给物块的滑动摩擦力.物块处于加速运动状态.(这里学习应用了运动性质的分段处理方法).在此基础上分析每个力的大小变化情况.(利用物体平衡条件和滑动摩擦力的性质来分析求解).

重力大小不变;斜面给物块的支持力的大小逐渐减小;斜面给物块的摩擦力的大小是先增大后减小.

利用正交分解分析物体的受力情况

例2质量为的物体,用水平细绳拉着,静止在倾角为的光滑固定斜面上,求物体对斜面的压力的大小.如图所示.

解:解决力学问题首先对(研究对象)物体进行受力分析,物体在斜面上受三个力:重力、支持力、绳的拉力.以作用点为原点建立如图所示的平面直角坐标系.

由平衡条件即,(找准边角关系)可得:

由此得到斜面对物体的垂直作用力为:

由牛顿第三定律(作用力和反作用力的关系)可知:

物体对斜面的压力的大小为:

探究活动

作图法

根据力的平行四边形定则,利用直尺(一般常用的是毫米刻度尺)去求几个力的合力或去求合力的某一个分力.利用作图法解决共点力作用下物体的平衡问题,虽然此种方法简洁、直观、方便,但由于在利用作图法过程中误差的存在(包括作图误差、视图误差、测量误差等)不可避免,得到的结果太粗糙.因此,我们在解题时一般不用作图法.而只是在探讨力的变化规律及相互关系时使用.

题1验证两个分力和合力的关系遵从平行四边形定则

题2探讨随着两个共点力大小及夹角发生变化时合力的变化规律

上面两个例题请同学们自己用直尺动手作一下实地的研究.

力矩平衡条件的应用【荐】


教学目标

知识目标

1、理解力臂的概念,

2、理解力矩的概念,并会计算力矩

能力目标

1、通过示例,培养学生对问题的分析能力以及解决问题的能力

情感目标:

培养学生对现象的观察和探究能力,同时激发学习物理的兴趣。

典型例题

关于残缺圆盘重心的分析

例1一个均匀圆盘,半径为,现在在园盘靠着边缘挖去一个半径为的圆孔,试分析说明挖去圆孔后,圆盘的重心在何处.

解析:由于圆盘均匀,设圆盘的单位面积的重力为,

为了思考问题的方便,我们设想在大圆盘的另一侧对称地再挖去一个半径等于的小圆,如图所示,我们要求的是红色的小圆盘与灰色部分的重心位置,根据对称性,一定是大圆圆心与小圆圆心连线上,设,则.

如果我们用手指支撑在点,则这个物体会保持平衡,这两部分的重心对点的力矩满足平衡条件.这两部分的重力分别是及.

可列出力矩平衡方程

解方程,得出:.

关于一端抬起的木杆重力问题

例2一个不均匀的长木杆,平放在地面上,当我们抬起它的一端(另一端支在地面上),需要用500N的力;如果抬另一端,发现这回需要用800N才能抬起.请分析说明这根木杆的重力是多少?

解析:设木杆长为,重力为,已知抬起端时用力为500N,抬起端时用力大小为800N.可以假设木杆的重心距端为,距端为.

抬端时,以端点为轴由力矩平衡条件可得

抬端时,以端点为轴由力矩平衡条件可得

联立上面的两方程式可得

关于圆柱体滚台阶的问题

例3如图所示,若使圆柱体滚上台阶,要使作用力最小,试分析作用力的作用点应作用在圆柱体截面的什么位置?

解析:根据题意:

在圆柱体滚上台阶的过程中,圆柱体与台阶相接处为转动轴.

由固定转动轴物体的平衡条件可知:在匀速转动时圆柱体的重力的力矩应与作用力的力矩相等.又因为圆柱体的重力和它对转动轴的力臂是确定的,所以要使作用力最小其力臂一定最长,又因为转动轴在圆柱体的边缘上,作用力的作用点也要在圆柱体的边缘上,要想作用力的力臂最长就只有圆柱体截面的直径,如图;作用力的方向是垂直圆柱体截面直径向上,如图所示:

牛顿运动定律的应用【荐】


教学目标

1、知识目标:

(1)能结合物体的运动情况进行受力分析.

(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.

2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.

3、情感目标:培养严谨的科学态度,养成良好的思维习惯.

教学建议

教材分析

本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.

教法建议

1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.

2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.

3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.

教学设计示例

教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.

教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.

示例:

一、受力分析方法小结

通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)

1、练习:请对下例四幅图中的A、B物体进行受力分析.

答案:

2、受力分析方法小结

(1)明确研究对象,把它从周围物体中隔离出来;

(2)按重力、弹力、摩擦力、外力顺序进行受力分析;

(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.

不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.

二、动力学的两类基本问题

1、已知物体的受力情况,确定物体的运动情况.

2、已知物体的运动情况,确定物体的受力情况.

3、应用牛顿运动定律解题的一般步骤:

选取研究对象;(注意变换研究对象)

画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)

进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)

根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)

对解的合理性进行讨论.

四、处理连接体问题的基本方法

1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.

2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)

3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.

以上各问题均通过典型例题落实.

探究活动

题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.

题量:4-6道.

要求:给出题目详细解答,并注明选题意图及该题易错之处.

评价:可操作性、针对性,可调动学生积极性.

共点力平衡条件的应用【荐】


教学目标

知识目标

1、知道什么叫共点力作用下的平衡状态.

2、掌握共点力的平衡条件.

3、会用共点力的平衡条件解决有关平衡问题.

能力目标

1、培养学生应用力的矢量合成法则平行四边形定则进行力的合成、力的分解的能力.

2、培养学生全面分析问题的能力和推理能力.

情感目标

1、教会学生用辨证观点看问题,体会团结协助.

典型例题

关于斜面物体的摩擦力的两种分析方法以及拓展

例1如图,一物块静止在倾角为37°的斜面上,物块的重力为20N,请分析物块受力并求其大小.

分析:物块受竖直向下的重力,斜面给物块的垂直斜面向上的支持力,斜面给物块的沿斜面向上的静摩擦力.

解:

1、方法1——用合成法

(1)合成支持力和静摩擦力,其合力的方向竖直向上,大小与物块重力大小相等;

(2)合成重力和支持力,其合力的方向沿斜面向下,大小与斜面给物块的沿斜面向上的静摩擦力的大小相等;

(3)合成斜面给物块的沿斜面向上的静摩擦力和重力,其合力的方向垂直斜面向下,大小与斜面给物块的垂直斜面向上的支持力的大小相等.

合成法的讲解要注意合力的方向的确定是唯一的,这有共点力平衡条件决定,关于这一点一定要与学生共同分析说明清楚.

2、方法2——用分解法

理论上物块受的每一个力都可分解,但实际解题时要根据实际受力情况来确定分解哪个力(被确定分解的力所分解的力大小方向要明确简单易于计算),本题正交分解物块所受的重力,利用平衡条件,,列方程较为简便.

为了学生能真正掌握物体的受力分析能力,要求学生全面分析使用力的合成法和力的分解法,要有一定数量的训练.

方法2的拓展1:一物块静止在倾角为的斜面上,物块的重力为,请分析物块受力并分析当倾角慢慢减小到零的过程其大小的变化情况.

解:依题意用分解法将物块受的重力正交分解,利用,的平衡条件,得斜面给物块的垂直斜面向上的支持力的大小为,

斜面给物块的沿斜面向上的静摩擦力的大小.

物块受的重力是不变的(关于这一点学生非常清楚),根据数学的知识的分析可以知道当倾角慢慢减小到零的过程,

逐渐增大,最后等于物块的重力;

逐渐减小,最后等于零.

适当的时候,提醒学生分析的方法和结论;提醒学生极限法的应用,即倾角等于零时的极限情况下分析题目.

方法2的拓展2:一物块放在倾角为的斜面上,物块的重力为,斜面与物块的动摩擦因数为,请分析物块受力的方向并分析当倾角慢慢由零增大到90°的过程,物块对斜面的压力受到的摩擦力其大小的变化情况.

分析物块受力:时,只受两个力重力和斜面给的支持力,此时没有摩擦力;

时,物块只受一个力,物块的重力.(此亦为极限法处理).

借此,和学生一起分析,可知物块的运动状态是变化的,既开始时物块静止在斜面上,这时物块受三个力.

物块的重力,斜面给物块的支持力和斜面给物块的静摩擦力.

在斜面给物块的静摩擦力等于物块的下滑力时,物块开始滑动,此时物块依旧受三个力,物块的重力,斜面给物块的支持力和斜面给物块的滑动摩擦力.物块处于加速运动状态.(这里学习应用了运动性质的分段处理方法).在此基础上分析每个力的大小变化情况.(利用物体平衡条件和滑动摩擦力的性质来分析求解).

重力大小不变;斜面给物块的支持力的大小逐渐减小;斜面给物块的摩擦力的大小是先增大后减小.

利用正交分解分析物体的受力情况

例2质量为的物体,用水平细绳拉着,静止在倾角为的光滑固定斜面上,求物体对斜面的压力的大小.如图所示.

解:解决力学问题首先对(研究对象)物体进行受力分析,物体在斜面上受三个力:重力、支持力、绳的拉力.以作用点为原点建立如图所示的平面直角坐标系.

由平衡条件即,(找准边角关系)可得:

由此得到斜面对物体的垂直作用力为:

由牛顿第三定律(作用力和反作用力的关系)可知:

物体对斜面的压力的大小为:

探究活动

作图法

根据力的平行四边形定则,利用直尺(一般常用的是毫米刻度尺)去求几个力的合力或去求合力的某一个分力.利用作图法解决共点力作用下物体的平衡问题,虽然此种方法简洁、直观、方便,但由于在利用作图法过程中误差的存在(包括作图误差、视图误差、测量误差等)不可避免,得到的结果太粗糙.因此,我们在解题时一般不用作图法.而只是在探讨力的变化规律及相互关系时使用.

题1验证两个分力和合力的关系遵从平行四边形定则

题2探讨随着两个共点力大小及夹角发生变化时合力的变化规律

上面两个例题请同学们自己用直尺动手作一下实地的研究.

高中教案匀变速直线运动规律的应用【荐】


教学目标

知识目标

1、通过例题的讨论学习匀变速直线运动的推论公式及。

2、了解初速度为零的匀加速直线运动的规律。

3、进一步体会匀变速直线运动公式中矢量方向的表示方法。

能力目标

1、培养学生分析运动问题的能力以及应用数学知识处理物理问题的能力

教学建议

教材分析

教材通过例题1自然的引出推论公式,即位移和速度关系,通过思考与讨论对两个基本公式和推论公式做了小结,启发学生总结一般匀变速直线运动问题涉及到五个物理量,由于只有两个独立的方程式,因此只有在已知其中三个量的情况下,才能求解其余两个未知量,引导同学思考和总结初速度为零的匀加速直线运动的特殊规律.教材通过例题2,实际上给出了对于匀变速直线运动的平均速度特点,强调由两个基本公式入手推导出有用的推论的思想,培养学生分析运动问题的能力和应用用数学处理物理问题的能力.

教法建议

通过例题或练习题的讨论,让学生自己分析题目,画出运动过程草图,动手推导公式,教师适时地加以引导和总结,配合适当的课件,加强学生的认识.在推导位移公式时直接给出的,在这里应向学生说明,实质上它也是匀变速直线运动的两个基本公式的推论.

教学设计方案

教学重点:推论公式的得出及应用.

教学难点:初速度为零的匀变速直线运动的比例关系.

主要设计:

一、例题1的处理:

1、让学生阅读题目后,画运动过程草图,标出已知条件,,a,s,待求量.

2、请同学分析解题思路,可以鼓励学生以不同方法求解,如“先由位移公式求出时间,再利用速度公式求”等.

3、教师启发:上面的解法,用到两个基本公式,有两个未知量t和,而本题不要求求出时间t,能否有更简单的方法呢?可以启发学生两个基本公式的消去,能得到什么结论呢?

4、让学生自己推导,得到,即位移和速度的关系,并且思考:什么条件下用这个公式更方便?

5、用得到的推论解例题

二、思考与讨论的处理

1、(1)(2)(3)三个公式中共包括几个物理量?各个公式在什么条件下使用更方便?

2、用三个公式解题时,至少已知几个物理量?为什么?[(知三求二)因为三个公式中只有(1)(2)两个是基本公式,是独立的方程,(3)为推论公式,所以最多只能求解两个未知量]

3、如果物体的初速度等于零,以上三个公式是怎样的?请同学自己写出:

三、例题2的处理

1、让学生阅读题目后,画运动过程草题,标出已知量、、,待求量为.

2、放手让同学去解:可能有的同学用公式(3)和(1)联立先解出a再求出t;也可能有的同学利用前面学过的,利用求得结果;都应给予肯定,也可能有的同学受例1的启发,发现本题没让求加速度a,想到用基本公式(1)(2)联立消去a,得到.

3、得到后,告诉学生,把它与对比知,对于匀变速直线运动,也可以当作一个推论公式应用,此公式也可由,将位移公式代入.利用求得.(请同学自己推证一下)

4、用或解例2.

四、讨论典型例题(见后)

五、讨论教材练习七第(5)题.

1、请同学根据提示,自己证明.

2、展示课件,下载:初速度为零的匀加速直线运动(见媒体资料)

3、根据课件,展开讨论:

(1)1秒末,2秒末,3秒末……速度比等于什么?

(2)1秒内,2秒内,3秒内……位移之比等于什么?

(3)第1秒内,第2秒内,第3秒内……位移之比等于什么?

(4)第1秒内,第2秒内,第3秒内……平均速度之比等于什么?

(5)第1个1米,第2个1米,第3个1米内……所用时间之比等于什么?

探究活动

根据本节所学知识,请你想办法测出自行车刹车时的初速度及加速度,需要什么测量仪器?如何测量?如何计算?实际做一做.

离心现象及其应用【荐】


教学目标

知识目标:

1、知道离心运动及其产生的原因.

2、知道离心现象的一些应用和可能带来的危害.

能力目标:

1、培养学生应用理论知识解决实际问题的能力

情感目标

1、培养学生用理论解释实际问题的能力与习惯.

教学建议

教材分析

教材首先分析了离心现象发生的条件和离心运动的定义,接着从生产、生活的实际问题中说明离心运动的应用和危害,充分体现了学以致用的思想.

教法建议

学习离心运动的概念时,通过充分讨论,让学生明确几点:

第一:做圆周运动的物体,一旦失去向心力或向心力不足,都不能再满足把物体约束在原来的圆周上运动的条件,这时会出现物体远离圆心而去的现象.

第二:可补充加上提供的向心力F大于物体所需向心力时,(),表现为向心的趋势(离圆心越来越近)这对学生全面理解“外力必须等于时,物体才可做匀速圆周运动”有好处.

第三:离心运动是物体具有惯性的表现,而不是物体受到“离心力”作用的结果.有些学生可能提出,“离心力”的问题,教师可以说明那是在另一参照系(非惯性系)中引入的概念,在中学阶段不予研究.

关于离心运动的应用和防止,可引导同学讨论完成.

教学设计方案

教学重点:离心运动产生的条件

教学主要设计:

一、离心运动

(一)讨论:在光滑水平面上,用细绳系一个小球,使其在桌面上做匀速圆周运动.若细绳突然断了,小球将如何运动?若拉绳的力变小了,小球如何运动?若拉绳的力变大了,小球如何运动?

(二)展示“魔盘”娱乐设施的动画资料

讨论:“魔盘”上的人所需向心力由什么力提供?为什么转速一定时,有的人能随之一块做圆周运动,而有的人逐渐向边缘滑去?

(三)用提供的力与需要的向心力的关系角度解释上述现象,得到离心运动的条件和概念.(配合课件1)

二、离心运动的应用和防止:

可提出一些问题让学生讨论解决:如:

(1)洗衣机的脱水筒中的衣物上的水滴,在脱水筒工作时,水滴需要的向心力由什么决定?提供的向心力由什么决定?什么情况下,水滴将被甩出?

(2)在公路转弯处,为什么车辆行驶不允许超过规定的速度?

(3)为什么砂轮、飞轮等都不得超过允许的最大转速?等等

探究活动

观察并思考:

1、汽车、自行车等在水平面上转弯时,为什么速度不能过大?

2、滑冰运动员及摩托车运动员在弯道处的姿势,并分析其受力情况?

物理教案 离心现象及其应用【荐】


教学目标

知识目标:

1、知道离心运动及其产生的原因.

2、知道离心现象的一些应用和可能带来的危害.

能力目标:

1、培养学生应用理论知识解决实际问题的能力

情感目标

1、培养学生用理论解释实际问题的能力与习惯.

教学建议

教材分析

教材首先分析了离心现象发生的条件和离心运动的定义,接着从生产、生活的实际问题中说明离心运动的应用和危害,充分体现了学以致用的思想.

教法建议

学习离心运动的概念时,通过充分讨论,让学生明确几点:

第一:做圆周运动的物体,一旦失去向心力或向心力不足,都不能再满足把物体约束在原来的圆周上运动的条件,这时会出现物体远离圆心而去的现象.

第二:可补充加上提供的向心力F大于物体所需向心力时,(),表现为向心的趋势(离圆心越来越近)这对学生全面理解“外力必须等于时,物体才可做匀速圆周运动”有好处.

第三:离心运动是物体具有惯性的表现,而不是物体受到“离心力”作用的结果.有些学生可能提出,“离心力”的问题,教师可以说明那是在另一参照系(非惯性系)中引入的概念,在中学阶段不予研究.

关于离心运动的应用和防止,可引导同学讨论完成.

教学设计方案

离心现象及其应用

教学重点:离心运动产生的条件

教学主要设计:

一、离心运动

(一)讨论:在光滑水平面上,用细绳系一个小球,使其在桌面上做匀速圆周运动.若细绳突然断了,小球将如何运动?若拉绳的力变小了,小球如何运动?若拉绳的力变大了,小球如何运动?

(二)展示“魔盘”娱乐设施的动画资料

讨论:“魔盘”上的人所需向心力由什么力提供?为什么转速一定时,有的人能随之一块做圆周运动,而有的人逐渐向边缘滑去?

(三)用提供的力与需要的向心力的关系角度解释上述现象,得到离心运动的条件和概念.(配合课件1)

二、离心运动的应用和防止:

可提出一些问题让学生讨论解决:如:

(1)洗衣机的脱水筒中的衣物上的水滴,在脱水筒工作时,水滴需要的向心力由什么决定?提供的向心力由什么决定?什么情况下,水滴将被甩出?

(2)在公路转弯处,为什么车辆行驶不允许超过规定的速度?

(3)为什么砂轮、飞轮等都不得超过允许的最大转速?等等

探究活动

观察并思考:

1、汽车、自行车等在水平面上转弯时,为什么速度不能过大?

2、滑冰运动员及摩托车运动员在弯道处的姿势,并分析其受力情况?

本文网址://m.jk251.com/jiaoan/17205.html

相关文章
最新更新

热门标签