导航栏

×
范文大全 > 小学教案

“相邻体积单位间的进率”教学设计

时间:2022-03-24 圆锥的体积教学设计 范进中举教学设计

[教材分析]这部分内容教学相邻体积单位间的进率,是在学生认识了体积单位,学习了长方体、正方体体积计算后,进行教学的。让学生根据进率进行相邻体积单位的换算。在教学中让学生通过计算,探索发现相邻两个体积单位间的进率。教材通过两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算他们的体积。根据体积单位的定义:棱长1分米的正方体,体积是1立方分米,第一个正方体的体积就是1立方分米。通过计算,棱长10厘米的正方体体积是1000立方厘米。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,放手让学生根据前面探索中得到的经验自主进行推算。[教学重点]:体积单位间的进率和单位之间的互化。[教学目标]1、了解并掌握体积单位间的进率。2、理解并掌握体积高级单位与低级单位间的化和聚。3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。[教学过程]一、知识准备1、同学们今天我们要学习相邻体积单位间的进率。(板书课题)2、看了课题,能回忆回忆我们都学习过哪些相邻单位间的进率呢?3、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、液体体积单位间的进率。4、说说这些已经学过的相邻单位间的进率是多少?(教师板书)板书:长度单位1米=10分米1分米=10厘米面积单位1平方米=100平方分米1平方分米=100平方厘米质量单位1吨=1000千克1千克=1000克液体体积单位1升=1000毫升5、猜想今天我们学习的相邻体积单位间的进率可能是多少?6、提炼猜想,为研究作好必要的准备。学生出现的猜想:1立方米=1000立方分米1立方分米=1000立方厘米[设计意图]从学生平时接触过的单位间的进率入手,给学生一种亲切与熟悉的感觉,能更好地使学生从心理上拉近数学与生活的距离,让学生回忆和整理已有知识,有利于他们主动地梳理头脑中原有的知识体系,加强理解知识间的内在联系,使知识在孩子们的头脑中形成网络。二、实践探究、学习新知(一)探究立方分米与立方厘米间的进率1、指导学生分组进行探究,出示自学纲要:①棱长1分米的正方体的体积是多少?②棱长10厘米的正方体的体积是多少?③1立方分米与1000立方厘米,哪个大?为什么?2、学具提供:①教师提供1立方分米的正方体2个,一个标上棱长1分米,一个标上棱长10厘米,供学生观察使用。②挂图,让学生可以观察分析,从而为得出结论提供感官上的支持。3、交流学习结果,分组汇报:因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米×1分米×1分米=1立方分米10厘米×10厘米×10厘米=1000立方厘米所以:1立方分米=1000立方厘米4、让学生在回顾一下思维的过程,再说说自己的理解。[设计意图]一个环节教学后,让学生谈谈自己的理解,给学生一个自我反思、自我总结的机会,为学生的后续学习埋下伏笔。(二)独立探究立方米与立方分米之间的进率1、教师提问:请同学们猜想一下,立方米与立方分米之间的进率2、用什么方法可以验证自己的想法是正确的呢?3、学生自己尝试解决问题4、交流各自的思维过程:棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。所以1立方米=1000立方分米(板书)5、小结:相邻的两个体积单位之间的进率是1000。6、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?7、完成书上31页练习七的第1题让学生独立完成填表,让学生联系填表的过程再一次说说长度单位、面积单位、体积单位之间的联系与区别。[设计意图]让学生自主想办法探索并进行验证,学生自己动手观察、比较,通过师生间、生生间的交流合作,最终有了自己的发现1立方米=1000立方分米的关系,使学生在自主探索的过程中,学到了知识,提高了能力,获得了成功的喜悦。(三)完成书上30页练一练1、让学生先想一想:审题时先注意什么?试着说说要解决这些题目的过程和算理。2、在学生独立完成的基础上,适当总结把相关体积单位进行换算的基本思考方法。要提醒学生运用小数点的位置移动的方法计算一个数乘或除以1000的得数。3、小结:体积单位间的进率转化与我们学过的长度单位、面积单位、质量单位之间的转化有什么相同处与不同处。三、解决实际问题,巩固所学方法1、完成31页第2题让学生先审题,观察这一组题目有什么特点?在解决的过程中要突出面积单位换算与体积单位换算的区别,还可以让学生认识到:把高级单位的数量换算成低级单位的数量,都要乘相应的进率。2、完成31页第3题让学生独立完成这一题。说说自己的思考的过程。帮助学生巩固方法,形成技能。3、完成31页第4题让学生在练习中回顾升与毫升的关系,进一步掌握升、毫升与本单元所学的立方分米、立方厘米的关系。四、全课总结今天的学习中你有什么收获?学到了什么?还有哪些疑惑?[设计意图]让学生说说自己的收获和疑问,体现了“带着问题进课堂,出带着问题出课堂”的思想,让数学能最大限度地影响着、激励着一部分学生。五、布置课堂作业(略)

JK251.com延伸阅读

圆锥的体积教学分析 小学教案范例


对于《圆锥的体积》这一节教学实录课我感受颇深,尤其是实验这一环节,使我更深刻地认识到《数学课程标准》指出的有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式的重要性。动手操作活动能很好地使大脑处于积极的思维状态,有利于思维的发展,培养学生良好的思维品质。教师首先给每个小组配有圆柱和圆锥圆器以及一些沙子,有的组圆柱和圆锥等底等高,有的组等高不等底,有的组等底不等高,还有的组不等高也不等底

师:你想用什么方法推导圆锥的体积?

生1:我们用圆柱体切割的方法推。

生2:用圆柱体容器和圆锥体容器推。

教师这时让学生通过实验的方法来推。

师:实验时请大家搞清两点:1.圆柱和圆锥容器底面积和高有怎样的关系?2.圆锥的体积和圆柱的体积之间有怎样的关系?

学生实验后每小组选两个代表到讲台前。

a组一生实验时,另一生做讲解员讲解,发现圆锥和圆柱等底等高时,圆锥的体积是圆柱的三分之一。

b组只拿容器不演示,发现圆锥和圆柱等底但不等高,圆锥体积是圆柱的六分之一。

c组同样只拿着容器直接汇报演示结果。

教师及时将六个组实验结果列表放在投影上,引导学生分析思考:圆锥和圆柱的体积究竟有怎样的关系呢?

结论的不确定,让学生产生了极大的兴趣,这时有的学生发现有三组结论是一致的,即当圆锥和圆柱等底等高时,圆锥的体积是圆柱体积的三分之一。这时教师并没有急切地给出结论,而是又进一步的追问:为什么这些圆锥和圆柱的形状都不相同而体积之间都有相同的关系呢?这样的追问,让学生进步明白做实验的圆锥和圆柱必须等底等高,这时教师再重新分配容器,每组实验的容器都是等底等高的,再次让学生实验。案例中教师在课堂上让学生反思不同的操作结果,进而再次操作,自主发现问题、提出问题、分析问题、解决问题。学生不仅切实体验了知识形成的过程,而且,思维得到了有效的提升,充分发展了思维能力和实践能力。

通过这样的教学活动,我们看到,课堂上通过学生的猜想、操作、观察、比较,让他们感受到了数学思考过程的条理性,提升了思维的价值,发展了有效的思维方式。

本节课上,我觉得也有些地方需要进一步改进,例如,在巩固练习这一环节上,练习要有梯度,这节课上一开始练习的几道题,无论是口答题还是笔答题都是已知圆锥的底面积和高,求圆锥的体积,这样的题目一是机械重复,二是不能培养学生运用知识的应用能力。我想如果把开始讲圆锥特征时用的圆锥实物拿出来,让学生思考,如果要想知道这个圆锥的体积,怎么办呢?这时让学生充分思考后再分组讨论交流,学生自然而然地会想到,求圆锥的体积除了要测量圆锥的底面积和高外,还可以测量圆锥的底面半径和高、底面直径和高、底面周长和高。

总之,在动手操作活动的学习中,教师要对学生进行适时的引导,学生才能体验到数学活动充满着探索性和挑战性,感受到数学思考的条理性和数学结论的确定性。

圆锥的体积 教案精选篇


第2课时

教学内容:圆锥的体积练习

教学目标:

1、进一步巩固圆锥体积的计算方法,能根据不同的条件求圆锥的体积。

2、能运用圆锥体积公式解决实际生活中的一些问题。

教学重点:

能运用圆锥体积公式解决实际生活中的一些问题。

教学难点:

能运用圆锥体积公式解决实际生活中的一些问题。

教学预案:

一、复习旧知,揭示课题:圆锥的体积

1、提问:圆锥的体积怎样计算?(板书公式)追问:为什么要乘1/3?

2、填空:

(1)一个圆锥的体积是2.4立方分米,与它等底等高的圆锥的体积是()。

(2)一个圆锥的体积是2.4立方分米,与它等底等高的圆柱的体积是()。

3、口答下列各圆锥的体积

(1)底面积3平方分米,高2分米。

(2)底面积0.4平方分米,高45厘米。

二、解决生活中的实际问题

1、一个圆锥形沙堆,底面半径是1米,高0.6米。这个沙堆的体积约是多少立方米?

(1)出示题目后,学生解答。(一人板演)

(2)解答后交流自己的思路。

2、有一个近似于圆锥形状的谷堆,底面周长是18.84米,高是8分米。这个谷堆的占地面积是多少平方米?如果每立方分米的稻谷约重200千克,那么这个谷堆的稻谷约重多少千克?

3、张师傅要把一根圆柱形木料(如图)削成一个圆锥。

(1)削成的圆锥的体积最大是多少立方分米?

(2)最少削掉多少木料才能得到一个最大的圆锥?

4、如图,是一个草垛,请计算这草垛的体积

(1)让学生看图后发现这个草垛是由一个圆柱和圆锥组成的。

(2)这个圆柱和圆锥的底面积是相等的。

(3)请学生解答后交流。

三、应用与拓展

1、第32页上第10题,将带来的圆锥物体进行测量并计算,交流测量方法合计算方法。

2、思考题:读题后分析理解。

四、独立作业:第32页上的第6、7、8、9题,如有时间当堂组织校对交流。

本文网址://m.jk251.com/jiaoan/21052.html

相关文章
最新更新

热门标签