导航栏

×
范文大全 > 教案

随机事件的概率教案

2024随机事件的概率教案经典。

随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件。下面由小编精心整理的随机事件教学设计,希望可以帮到你哦!

随机事件的概率教案 篇1

第一课时 3.1.1 随机事件的概率

教学要求:了解随机事件、必然事件、不可能事件的概念;正确理解事件A出现的频率的意义;正确理解概率的概念,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;利用概率知识正确理解现实生活中的实际问题.

教学重点:事件的分类;概率的定义以及概率和频率的区别与联系.

教学难点:随机事件及其概率,概率与频率的区别和联系.

教学过程:

1.讨论:①抛一枚硬币,它将正面朝上还是反面朝上? ②购买本期福利彩票是否能中奖?

2.提问:日常生活中,有些问题是很难给予准确无误的回答的,但当我们把某些事件放在一起时,会表现出令人惊奇的规律性.这其中蕴涵什么意思?

二、讲授新课:

1.教学基本概念:

1实例:①明天会下雨②母鸡会下蛋③木材能导电

2必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

3不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

4确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;随机事件:……

5频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率;

6频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率.

2.教学例题:

1出示例1:指出下列事件是必然事件、不可能事件还是随机事件?

(1)如果都是实数,;(2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签.

2出示例2某射手在同一条件下进行射击,结果如下表所示:

射击次数n

10

20

50

100

200

500

击中靶心次数m

8

19

44

92

178

455

击中靶心的频率

(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?

(教法:先依次填入表中的数据,在找出频率稳定在常数,即为击中靶心的概率)

3练习:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?

3. 小结:随机事件、必然事件、不可能事件的概念;事件A出现的频率的意义,概率的概念

三、巩固练习:

1.练习:1.教材P105 1、2 2.作业2、3

第二课时 3.1.2 概率的意义

教学要求:正确理解概率的意义,并能利用概率知识正确解释现实生活中的实际问题.

教学重点:概率意义的理解和应用.

教学难点:用概率知识解决现实生活中的具体问题.

教学过程:

一、复习准备:

1.讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?

2.提问:如果某种彩票的中奖概率是,那么买1000张这种彩票一定能中奖吗?

二、讲授新课:

1.教学基本概念:

1概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的'概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.

2概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)

3游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的

4决策中的概率思想:以使得样本出现的可能性最大为决策的准则

5天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.

6遗传机理中的统计规律:

2.教学例题:

1出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?

2练习:如果某种彩票的中奖概率是,那么买1000张这种彩票一定能中奖吗?请用概率的意义解释.

(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。)

3出示例2:在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性.

(分析:先发球的概率是0.5,取得的发球权的概率是0.5)

4练习:经统计某篮球运动员的投篮命中率是90%,对此有人解释为其投篮100次一定有90次命中,10次不中,你认为正确吗?

3. 小结:概率的意义,丰富对概率事件的体验,增强对概率背景的认识,体会概率的意义.

三、巩固练习:1.练习:教材P111 1、2 作业:P111 3 P117 5

2.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?

2.孟德尔的豌豆试验数据,孟德尔用黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的第二年,当他把第一年收获的黄色豌豆再种下时,收获的豌豆既有黄色的,又有绿色的具体的数据如下表:(用概率的知识解释一下这个遗传规律)

性状

显性

隐性

显性:隐性

用子叶的颜色

黄色6022

绿色20xx

3.01:1

第三课时 3.1.3 概率的基本性质

教学要求:正确理解事件的包含、并和、交积、相等,及互斥事件和对立事件的概念;掌握概率的几个基本性质;正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.

教学重点:概率的加法公式及其应用,事件的关系与运算.

教学难点:概率的加法公式及其应用,事件的关系与运算.

教学过程:

一、复习准备:

1.讨论:集合有相等、包含关系,如{1,3}={3,1},{2,4}{2,3,4,5}等;

2.提问:在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}……,这些事件是否存在一定的联系?

二、讲授新课:

1.教学基本概念:

1事件的包含、并、交、相等见课本P115;

2若A∩B为不可能事件,即A∩B=,那么称事件A与事件B互斥;

3若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

4当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).

2.教学例题:

1出示例1:一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?

事件A:命中环数大于7环; 事件B:命中环数为10环;

事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环.

2出示例2:如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方块(事件B)的概率是,问:

(1)取到红色牌(事件C)的概率是多少?

(2)取到黑色牌(事件D)的概率是多少?

(讨论:事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1—P(C).)

3练习:袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?m.Jk251.COM

(分析:利用方程的思想及互斥事件、对立事件的概率公式求解.)

3. 小结:概率的基本性质;互斥事件与对立事件的区别与联系.

三、巩固练习:

1.练习:教材P114 第1、2、5题.

2.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数,事件B为出现2点,已知P(A)=,P(B)=,求出现奇数点或2点的概率之和.

3.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:(1)射中10环或9环的概率;(2)少于7环的概率.

4.作业 P114 第3题 P117 第6题.

随机事件的概率教案 篇2

一、教学目标

知识与技能目标:了解生活中的随机现象;了解必然事件,不可能事件,随机事件的概念;理解随机事件的频率与概率的含义。

过程与方法目标:通过做实验的过程,理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解频率和概率的关系;通过一系列问题的设置,培养学生独立思考、发现问题、分析问题和解决问题的能力。

情感、态度、价值观目标:渗透偶然寓于必然,事件之间既对立又统一的辩证唯物主义思想;增强学生的科学素养。

二、教学重点、难点

教学重点:根据随机事件、必然事伯、不可能事件的概念判断给定事件的类型,并能用概率来刻画生活中的随机现象,理解频率和概率的区别与联系。

教学难点:理解随机事件的频率定义与概率的统计定义及计算方法,理解频率和概率的区别与联系。

三、教学准备

多媒体课件

四、教学过程

(一)情境设置,引入课题

相传古代有个国王,由于崇尚迷信,世代沿袭着一条奇特的法规:凡是死囚,在临刑时要抽一次“生死签”,即在两张小纸片上分别写着“生”和“死”的字样,由执法官监督,让犯人当众抽签,如果抽到“死”字的签,则立即处死;如果抽到“生”字的签,则当场赦免。

有一次国王决定处死一个敢于“犯上”的大臣,为了不让这个囚臣得到半点获赦机会,他与几个心腹密谋暗议,暗中叮嘱执法官,把两张纸上都写成“死”。

但最后“犯上”的大臣还是获得赦免,你知道他是怎么做的吗?

相信聪明的同学们应该知道“犯上”的大臣的聪明之举:将所抽到的签吞毁掉,为证明自己抽到“生”字的'签,只需验证所剩的签为“死”签。

我们如果学习了随机事件的概率,便不难用数学的角度来解释“犯上”的大臣的聪明之举。下面中公资深讲师跟大家来认识一下事件的概念。(二)探索研究,理解事件

问题1:下面有一些事件,请同学们从这些事件发生与否的角度,分析一下它们各有什么特点?

①“导体通电后,发热”;

②“抛出一块石块,自由下落”;

③“某人射击一次,中靶”;

④“在标准大气压下且温度高于0℃时,冰自然融化”;

⑦“某地12月12日下雨”;

⑧“从标号分别为1,2,3,4,5的5张标签中,得到1号签”。

给出定义:

事件:是指在一定条件下所出现的某种结果。它分为必然事件、不可能事件和随机事件。

问题2:列举生活中的必然事件,随机事件,不可能事件。

问题3:随机事件在一次试验中可能发生,也可能不发生,在大量重复试验下,它是否有一定规律?

实验1:学生分组进行抛硬币,并比较各组的实验结果,引发猜想。

给出频数与频率的定义

问题4:猜想频率的取值范围是什么?

实验2:计算机模拟抛硬币,并展示历史上大量重复抛硬币的结果。

问题5:结合计算机模拟抛硬币与历史上大量重复抛硬币的结果,判断猜想正确与否。

频率的性质:

1、频率具有波动性:试验次数n不同时,所得的频率f不一定相同。

2、试验次数n较小时,f的波动性较大,随着试验次数n的不断增大,频率f呈现出稳定性。

概率的定义

事件A的概率:在大量重复进行同一试验时,事件A发生的频率m/n总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。

概率的性质

由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0。

频率与概率的关系

①一个随机事件发生于否具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性,而频率的稳定性又是必然的,因此偶然性和必然性对立统一。

②不可能事件和确定事件可以看成随机事件的极端情况。③随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率。

④概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果。

⑤概率是频率的稳定值,频率是概率的近似值。

例某射手在同一条件下进行射击,结果如下表所示:

(1)填写表中击中靶心的频率;

(2)这个射手射击一次,击中靶心的概率约是什么?

问题6:如果某种彩票中奖的概率为1/1000,那么买1000张彩票一定能中奖吗?请用概率的意义解释。

(三)课堂练习,巩固提高

1、将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )

A、必然事件B、随机事件

C、不可能事件D、无法确定

2、下列说法正确的是( )

A、任一事件的概率总在(0.1)内

B、不可能事件的概率不一定为0

C、必然事件的概率一定为1

D、以上均不对

3、下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。

(1)完成上面表格:

(2)该油菜子发芽的概率约是多少?4。生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?

(四)课堂小节

概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。

五、板书设计

六、教学反思

略。

随机事件的概率教案 篇3

教学要求:

正确理解事件的包含、并和、交积、相等,及互斥事件和对立事件的概念;掌握概率的几个基本性质;正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.

教学重点:

概率的加法公式及其应用,事件的关系与运算.

教学难点:

概率的加法公式及其应用,事件的关系与运算.

教学过程:

一、复习准备:

1.讨论:集合有相等、包含关系,如{1,3}={3,1},{2,4}{2,3,4,5}等;

2.提问:在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}……,这些事件是否存在一定的联系?

二、讲授新课:

1.教学基本概念:

1)事件的包含、并、交、相等见课本P115;

2)若A∩B为不可能事件,即A∩B=,那么称事件A与事件B互斥;

3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).

2.教学例题:

1)出示例1:一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?

事件A:命中环数大于7环; 事件B:命中环数为10环;

事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环.

2)出示例2:如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方块(事件B)的概率是,问:

(1)取到红色牌(事件C)的概率是多少?

(2)取到黑色牌(事件D)的概率是多少?

(讨论:事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1—P(C).)

3)练习:袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?

(分析:利用方程的思想及互斥事件、对立事件的概率公式求解.)

3. 小结:概率的基本性质;互斥事件与对立事件的区别与联系.

三、巩固练习:

1.练习:教材P114 第1、2、5题.

2.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数,事件B为出现2点,已知P(A)=,P(B)=,求出现奇数点或2点的概率之和.

3.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:

(1)射中10环或9环的概率;

(2)少于7环的概率.

4.作业 P114 第3题 P117 第6题.

随机事件的概率教案 篇4

教学要求:

了解随机事件、必然事件、不可能事件的概念;正确理解事件A出现的频率的意义;正确理解概率的概念,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;利用概率知识正确理解现实生活中的实际问题.

教学重点:

事件的分类;概率的定义以及概率和频率的区别与联系.

教学难点:

随机事件及其概率,概率与频率的区别和联系.

教学过程:

1.讨论:

①抛一枚硬币,它将正面朝上还是反面朝上?

②购买本期福利彩票是否能中奖?

2.提问:日常生活中,有些问题是很难给予准确无误的回答的,但当我们把某些事件放在一起时,会表现出令人惊奇的规律性.这其中蕴涵什么意思?

二、讲授新课:

1.教学基本概念:

1)实例:①明天会下雨②母鸡会下蛋③木材能导电

2)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

3)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

4)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;随机事件:……

5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率;

6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率.

2.教学例题:

1)出示例1:指出下列事件是必然事件、不可能事件还是随机事件?

(1)如果都是实数,;

(2)没有水分,种子发芽;

(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签.

2)出示例2某射手在同一条件下进行射击,结果如下表所示:

射击次数n

10

20

50

100

200

500

击中靶心次数m

8

19

44

92

178

455

击中靶心的频率

(1)填写表中击中靶心的频率;

(2)这个射手射击一次,击中靶心的概率约是什么?

(教法:先依次填入表中的数据,在找出频率稳定在常数,即为击中靶心的概率)

3)练习:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?

3. 小结:随机事件、必然事件、不可能事件的概念;事件A出现的频率的意义,概率的概念

三、巩固练习:

1.练习:1.教材P105 1、2 2.作业2、3

随机事件的概率教案 篇5

教学要求:

正确理解概率的意义,并能利用概率知识正确解释现实生活中的'实际问题.

教学重点:

概率意义的理解和应用.

教学难点:

用概率知识解决现实生活中的具体问题.

教学过程:

一、复习准备:

1.讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?

2.提问:如果某种彩票的中奖概率是,那么买1000张这种彩票一定能中奖吗?

二、讲授新课:

1.教学基本概念:

1)概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.

2)概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)

3)游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的

4)决策中的概率思想:以使得样本出现的可能性最大为决策的准则

5)天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.

6)遗传机理中的统计规律:

2.教学例题:

1)出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?

2)练习:如果某种彩票的中奖概率是,那么买1000张这种彩票一定能中奖吗?请用概率的意义解释.

(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。)

3)出示例2:在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性.

(分析:先发球的概率是0.5,取得的发球权的概率是0.5)

4)练习:经统计某篮球运动员的投篮命中率是90%,对此有人解释为其投篮100次一定有90次命中,10次不中,你认为正确吗?

3. 小结:概率的意义,丰富对概率事件的体验,增强对概率背景的认识,体会概率的意义.

三、巩固练习:1.练习:教材P111 1、2 作业:P111 3 P117 5

2.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?

2.孟德尔的豌豆试验数据,孟德尔用黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的第二年,当他把第一年收获的黄色豌豆再种下时,收获的豌豆既有黄色的,又有绿色的具体的数据如下表:(用概率的知识解释一下这个遗传规律)

性状

显性

隐性

显性:隐性

用子叶的颜色

黄色6022

绿色2001

3.01:1

本文网址://m.jk251.com/jiaoan/219908.html

相关文章
最新更新

热门标签