导航栏

×
范文大全 > 教案

数学多边形面积计算教学反思优秀模板

时间:2022-03-28 复习多边形的面积 正多边形的有关计算

数学《多边形面积计算》教学反思

下面,结合学生在《多边形面积计算》这一单元中的学习情况,谈一点自己的思考。

(一)多机械记忆,缺灵动思考。

应该说,课堂上每一个多边形面积公式的推导过程都是比较清晰的。无论是把平行四边形转化成长方形,还是把两个完全相同的三角形(或梯形)拼成平行四边形,从操作、比较,到发现转化前后图形之间的联系,最后得出计算公式,整个过程环节分明,条理清楚,学生都能很快掌握课堂上所学的内容。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。更有甚者,当老师提问:我们是怎样推导出平行四边形的面积公式的?他回答道:平行四边形的面积等于底乘高。问不对题!学生的反应,促使我对课堂教学进行思考:排除一些学生的领悟能力不强这一客观因素,作为老师,我有没有引导学生把探索活动真正落到实处,有没有关注学生在活动中是否有深刻的体会?而学生,对学习所表现出来的主动意识如何?是积极地自主探索和思考,还是墨守成规地接受书本知识呢?

反思课堂教学,我觉得要在以下几个方面进行改进。首先,要引导学生进入主动学习的状态。对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后抽象出面积公式等实践活动,理解相关面积公式的来龙去脉,并且产生深刻的体会;

其次,激发学生积极思考的意识,多边形面积公式的推导过程中,可以让学生在拼图的过程中多说说自己的发现,多说说转化前后图形之间的联系,同桌说,指名说,以说促思,也能增强学生对本课知识的理解;再次,恰当评价学生的学习情况以及参与意识,要使学生明白,学习的目的不仅仅是会做作业,学会学习是很重要的一件事,要积极在学习过程中培养自己的学习能力。

(二)面积单位进率严重遗忘

有关面积单位的进率是在学生三年级时教学的,现在五年级再用到,学生基本都忘了。作业中发现问题后,我在评讲作业时,利用一个边长1米的正方形,让学生分别用米作单位和用分米作单位计算面积,从而得出1平方米=100平方分米,再现了面积单位进率的推导过程,帮助学生找回记忆中的知识。但是作业中的情况反应,仍有错误存在。看来有些学生确实忘得一干二净,现在只是老师在黑板上画图说教,把进率塞进学生脑子,效果毕竟不行。但是重教一遍也不可能。另外,诸如千克和克,小时与分等单位之间的进率,遗忘也很多,有待于在复习梳理中加强记忆。学生为什么遗忘得那么严重呢?有人说,我们的教材知识点分得太散,不利于学生的记忆,这也许是原因之一。但是我想,学生在当初学习的时候,也许体验也不够深刻,所以导致容易遗忘。针对这种情况,教师应有意识地在平时的练习中,引导学生复习容易遗忘的知识点,达到常温常新的目的,以减少遗忘。

(三)审题不清甚至不会审题。

批改学生作业时,感受很深的一点是,很多学生都没有仔细审题的习惯。就拿这次单元测验来说吧,压路机的作业宽度是6米,每小时前进6千米,一块长方形布长4米,宽16分米等,单位名称不统一,应转化后再计算,结果,很多学生拿起来就做,根本没注意到这个问题。出现这样的情况,我分析原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯。

当然,关键还是要让学生发现自己存在的问题,主动产生纠正不良习惯的需求。如针对学生的作业错误,让学生自己分析错误原因,想想解决办法,使学生明白,做作业一定要静下心来,从认真读题开始,不读清楚题目不动笔,只有付出细心、耐心,才能把作业做好等。

总之,从这个单元的教学中,发现了很多值得反思的问题,有待于今后改进。在以后的教学中,我还准备把做好预习作为培养学生自主学习的一种策略,并且结合学生实际情况,安排每日一题的练习,拓展书本知识,激发学生的兴趣,培养学生的学习能力,以确保学生扎实、有效地学好知识。

jk251.coM小编推荐

多边形的面积课件


老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“多边形的面积课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

多边形的面积课件【篇1】

1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。(时针最短,秒针最长)

2、计量很短的时间,常用秒。秒是比分更小的时间单位。

3、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。

4、秒表:一般在体育运动中用来记录以秒为单位的时间。

5、常用时间单位:时、分、秒。

6、时间单位:时、分、秒,每相邻两个单位之间的进率都是60。

1时=60分 1分=60秒 半时=30分 30分=半时

7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。

8、计算一段时间,可以用结束的时刻减去开始的时刻。

小学数学去括号顺口溜

1去括号法则内容

去括号法则,是数学科的一条法则。括号前面是加号时,去掉括号,括号内的算式不变。括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。

法则的依据实际是乘法分配律。括号前面的符号,它是去括号后括号内各项是否变号的依据。

要注意,括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号。

2去、添括号顺口溜

去括号、添括号,关键看符号,

括号前面是正号,去、添括号不变号,

括号前面是负号,去、添括号都变号。

多边形的面积课件【篇2】

教学目标:

1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

2.培养学生观察能力、动手操作能力和类推迁移的能力.

3.培养学生勤于思考,积极探索的学习精神.

教学重点:

理解三角形面积计算公式,正确计算三角形的面积.

教学难点:

理解三角形面积公式的推导过程.

学具准备:

每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

提问:

(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底高)

(2)底是2厘米,高是1.5厘米,求它的面积。

(3)平行四边形面积的计算公式是怎样推导的?

2.出示三角形。三角形按角可以分为哪几种?

3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

(一)推导三角形面积计算公式.

1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.

2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

3.用两个完全一样的直角三角形拼.

①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?

4.用两个完全一样的锐角三角形拼.

教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

5.用两个完全一样的钝角三角形来拼.

6.讨论:

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(3)三角形面积的计算公式是什么?

7、引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形。

(3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)

(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

(一)总结这一节课的收获,并提出自己的问题.

(二)教师提问:

(1)要求三角形面积需要知道哪两个已知条件?

(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积.

(二)计算下面每个三角形的面积.

1.底是4.2米,高是2米;

2.底是3分米,高是1.3分米;

1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )

多边形的面积课件【篇3】

人教版小学五年级数学上册《多边形面积的计算》教案教学反思设计 教学内容:九年义务教育六年制小学教科书数学第九册第64~66页,练习十六第1~3题。

教学目的:

1.使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

2.通过操作、观察、比较,发展学生的空间观念,使学生初步认识转化的思考方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教具准备:

1.照课本第64页的方格纸上画着的平行四边形和长方形的插图制成演示教具。有投影片设备的也可制成投影片。

2.剪两个底40厘米、高30厘米的平行四边形,供教师演示用。有投影设备的也可按照上述底和高的比例制成推拉投影片。

3.每个学生准备一个平行四边形(可以用课本第137页的图剪下来贴在厚纸上。)和一把剪刀。

教学过程:

一、复习

1.出示方格纸上画的平行四边形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?

2.让学生指出平行四边形的底,再指出它的高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

二、新课 这节课我们共同研究平行四边形面积的计算。(板书:平行四边形面积的计算)

1.用数方格的方法计算平行四边形的面积。

(1)我们学习计算长方形的面积时,曾经用数方格的方法来计算面积的大小,现在我们学习习近平行四边形面积的计算,也先在方格图上数一数它的面积是多少?请打开书看第64页左边的平行四边形,每一个方格表示一平方厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。

(3)比较。提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢? 启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

(4)小结。从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得精确。特别是较大的平行四边形,如像教室这么大就不好数了。想一想,能不能像计算长方形面积那样,也找出计算平行四边形面积的计算方法。2.通过操作总结平行四边形面积的计算公式。

(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。(2)教师示范平行四边形转化成长方形的过程。刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

(3)引导学生比较。(黑板上在剪拼成的长方形上面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系? 教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。(4)引导学生总结平行四边形面积计算公式。这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

(5)教学用字母表示平行四边形的面积公式。板书:S=a×h,告知S和h的读音。说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。

(6)看课本中讲解的相应的内容,并完成第65页中间的“填空”。3.应用总结出的面积公式计算平行四边形的面积。

(1)课本第66页例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。

(2)完成课本第66页“做一做”第1、2题。共同订正。(3)把自己准备的平行四边形量一量,底、高各是多少厘米?再求出面积。

三、巩固练习练习十六第1题。

四、全课小结 这节课我们共同研究了什么? 怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?

五、布置作业 练习十六第2、3题。

教材先给出方格纸上的平行四边形和长方形,从数图形中的方格数引入平行四边形的面积。利用数方格的方法来计算面积仍然是一种计量面积的方法。遇到图形中的边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。教材通过实际数方格的个数让学生学会这种计算面积的方法。教材中左右两个方格图上,平行四边形的底与长方形的长,平行四边形的高与长方形的宽分别相等,暗含着两种图形的联系。长方形画在方格纸上,实际是给出了它的长和宽。通过数和算,使学生知道两个图形的面积相等;再通过比较,使学生看出左右两个图形的底与长、高与宽分别相等,从而初步看到平行四边形和长方形的面积和它们的边长和高之间有一定的联系。这样就为学生进一步探寻平行四边形面积的计算方法做了准备。接着教材再提出问题,平行四边形的面积怎样计算,能不能转化为长方形来算。转化的方法是一种数学方法,利用这种方法,可以把新知识转化为旧知识,从而使新问题得到解决。在教学一个数除以小数时,已经用到了转化方法。即根据被除数和除数都扩大相同倍数商不变的性质,把除数是小数的除法转化成学过的除数是整数的小数除法。教材在这里教学平行四边形的面积时利用转化方法,通过学生动手操作、探索,把平行四边形转化成已学过的长方形,从而把计算平行四边形的面积转化为计算长方形的面积。教材改变了过去简单的割补方法,在引导学生操作时渗透了平移思想。教材用图说明平移的方法,把从左面剪下的直角三角形,底边沿着原来的底边向右平着移动,直到直角三角形的左下角的顶点和原平行四边形右下角的顶点重合,直角三角形的斜边和原平行四边形的右边重合为止。通过这样操作,学生把一个平行四边形转化为一个与它面积相同的长方形。然后让学生自己找出长方形的长、宽与原来平行四边形的底、高的关系,推导出平行四边形的面积计算公式。接着通过例题和“做一做”巩固新学的计算公式。“做一做”中第1题图形的底和高的数值都很简单,但图形位置各不相同。这样可使学生加深对图形的认识,正确分清平行四边形的底和高。第2题出现一个接近平行四边形的地面图,让学生计算它的面积,以便加强与实际的联系。练习题由浅入深,而且不全是按照所给的数据直接计算面积的,也有运用图形知识的题目。还注意培养学生动手测量的能力。如第3题让学生自己动手量平行四边形的底和高,这就要求学生首先要会找出哪是底,哪是高,然后才能量出相应的底和高。第6题需要学生综合运用知识,进行逻辑推理,使学生明白平行四边形的面积只与底和高有关,与相邻两边组成的角度大小无关。第8题和第9题是联系实际的题目,需要先计算土地的面积,再根据数量关系解答问题。第11题渗透函数思想,通过木条围成的图形的变化,以及面积、周长的变化,可以加深学生对长方形和平行四边形之间的联系的理解,使学生知道4根木条围成的长方形面积最大,左右两边的木条斜度越大,围成的平行四边形的高越小,从而面积也越小。

多边形的面积课件【篇4】

复习要求:使学生进一步理解多边形面积之间的内在联系,掌握多边形面积的计算公式,能够比较熟练地计算多边形的面积。

复习重点:多边形面积的计算公式。

复习过程:

一、基本练习

1.填空。

(1)等腰直角三角形的底边长12厘米,这条底边上的高是()厘米,面积是()平方厘米。

(2)两个完全相同的梯形可以拼成一个(),一个梯形的面积是()面积的()。

(3)梯形的面积=上底+下底)X高2,当上底等于零时,梯形变成(),这时面积=();当上底与下底相等时,梯形变成()形,这时面积=()。

2.判断。(对的打,错的打X。)、

(1)平行四边形的面积等于三角形面积的2倍。()

(2)一个平行四边形的面积是82平方厘米,与它等底等高酌

三角形的面积是41平方厘米。()

(3)等腰直角三角形的一条直角边是7厘米,这个三角形的

面积是49平方厘米。()

(4)一个三角形底长3分米,高2分米。将这样的两个三角

形拼成一个平行四边形,这个平行四边形的面积是3平方分米。

()

(5)一个三角形和一个平行四边形面积相等,底也相等,则三

角形的高是平行四边形的高的2倍。()

(6)梯形的上底要比下底短。()

二、复习指导

1.多边形面积的计算公式及推导。

(1)平行四边形的面积计算公式是怎样的?它是怎样推导出来的?(把一个平行四边形割补成一个长、宽分别与这个平行四边形的底、高相等的长方形,再根据长方形的面积计算公式推导出平行四边形的面积计算公式。)

板书:平行四边形的面积=底高

S=ah

要求平行四边形的面积,必须知道什么条件?(必须知道平行四边形的底和底边上的高。)

(2)三角形和梯形的面积计算公式是怎样的?它们与平行四边形的面积有什么关系?

使学生理解三角形和梯形的面积计算公式都是在平行四边形的面积计算公式的基础上推导出来的,要加深对这两种图形的面积与平行四边形面积的内在联系的认识。

2.多边形面积的计算。

师出示P.136页总复习的第5题,请学生独立完成。做完后,指名学生说出计算结果,集体订正。

三、课堂练习

练习三十二第5-8题。

多边形的面积课件【篇5】

教学内容:教科书第70页一第72页的内容,完成练习十七的第l~3题。

教学目的:1.使学生在理解的基础上掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。

2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。

教学难点:通过操作和对图形的观察、比较,发展学生的空间观念。

教具准备:参照教科书第70页的方格纸,投影片;

教学过程:一、复习

1.出示方格纸上画的平行四边形。提问:方格纸上面的是什么图形?什么叫平行四边形?它有什么特征?

2让学生指出平行四边形的底,再指出它的高。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

教师:今天我们就来学习平行四边形面积的计算方法。

板书课题:平行四边形的面积

二、新课

1.用数方格的方法计算平行四边形的面积。

(1)我们在计算长方形的面积时,曾经用数方格的方法来计算它的面积,现在我们学习平行四边形面积的计算,也先用数方格的方法数一数它的面积是多少。请打开教科书,看第70页上边的平行四边形图,每一个方格表示一平方厘米,自己数一数是多少平方厘米?

请同学们认真观察一下,平行四边形在方格纸上出现了不满一格的,该怎么数呢?(可以都按半格计算。)然后指名说出数得的结果,并说一说是怎样数的。

(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。

(3)比较平行四边形和长方形。

提问:平行四边形的底和长方形的长有什么关系?平行四边形的高和长方形的宽呢?它们的面积怎么样?

启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的党分别相等,它们的面积也相等。

(4)小结:从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的平行四边形,像一块平行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出平行四边形面积的计算方法呢?

多边形的面积课件【篇6】

一、【课题】多边形的面积复习课

二、【复习目标分析依据】

1、课程标准中的相关陈述:

利用方格纸或割补等方法,探索并掌握平行四边形、三角形和梯形的面积计算公式。

2、教材分析:

本节课是五年级上册第八单元多边形的面积的复习。复习的主要内容包括平行四边形、三角形、梯形的面积和组合图形的面积。教材要求要先对本单元的知识进行系统整理,然后通过练习巩固多边形面积计算。从教材上安排的习题来看,注重知识形成的过程,着重培养学生灵活解决问题的能力。

3、学情分析:

在之前学习当中,学生已经通过数方格和剪拼的方法初步探索和掌握了平行四边形、三角形和梯形的面积计算公式、并能够计算一般组合图形的面积。通过复习,知识进一步系统化,学生解决问题的能力进一步提高,空间观念进一步提升,从而达到学期目标。

三、【复习目标】

(1)通过回忆、小组合作,进一步理解和掌握多边形面积计算公式的推导过程,并构建知识网络。

(2)通过拼摆和讨论,学生对转化这一数学思想理解更加深刻。(3)通过练习,能够结合具体情景灵活解决实际问题。

四、【复习重、难点】

复习重点:多边形面积公式的推导过程。

复习难点:理解多边形面积之间的联系。

五、【评价设计】

1、在回顾整理和融会贯通环节中根据学生对多边形面积推导过程的汇报和对知识网络的构建完成对目标1的评价。

2、在回顾整理环节中根据学生拼摆、讨论和汇报对目标2进行综合评价。

3、在练习环节中观察学生能否运用所学知识解决实际问题对目标3进行评价。

六、【复习活动预案】

(一)引入课题

板书课题,这节课我们就一起来复习多边形的面积。

(二)回顾整理。

1、出示郑州地铁图,问:我们能在图上找到哪些之前学过的图形?

2、回忆公式。还记得这些图形的面积公式吗?先用文字叙述,再用字母表示。学生汇报。

通过回忆再现完成目标1。

3、梳理公式推导过程。

数学是一门很严密的学科,不但要知道是什么,还要知道为什么。你知道这些计算公式是怎样推导过程出来的呢?请同学们在小组内选一个或几个你喜欢的图形拼一拼、摆一摆、说一说。(小组活动)

4、各小组汇报。

哪个小组讨论的是平行四边形的面积公式推导过程?(把平行四边形贴在黑板上)在学生汇报展示面积公式推导过程的时候,如果学生回答的不完整,小组成员可以补充,或者老师补充提问,如果学生回答不好而且没人补充,老师演示课件。

哪个小组愿意派代表来说说三角形的面积公式推导过程?(把三角形贴在黑板上)哪个小组愿意派代表来说说梯形的面积公式推导过程?(把梯形贴在黑板上)学生进一步掌握多边形面积公式推导过程,完成目标1。总结内化,完成目标2。

6、构建知识网络。

同学们再来想一想这三种图形的面积计算公式的推导有哪些相同之处呢? 因此我们可以用箭头来表示转化的过程。大家想想,这个箭头我应该怎么画?为什么?(在黑板上图形之间标上箭头)

如果我们想在这个结构图中加上长方形,那么应该把它放在哪里合适呢?(平行四边形的下边)教师贴上长方形,画上箭头。如果把箭头反过来又表示什么呢?(推导)这样就形成了一个完整的知识结构图。如果把这个图看成一棵大树的话,那么长方形相当于?(树根)平行四边形相当于?(树干)三角形和梯形相当于(树枝和树叶)

师在黑板上画出树的形状。

从这个图中我们可以发现转化把这几种图形紧密的联系在了一起,转化也是我们学习数学的重要方法。

构建知识网络,完成目标1。理解图形间的内在联系,完成目标2。

(三)巩固提升。

下面,我们利用刚才复习的知识来做几组练习,在这个环节中我们要充分发挥自己的聪明才智,向大家展示出最优秀的自己,有信心吗?

第一个环节,判断对错并说出理由,看谁更快。

1、(1)、把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。()(2)面积相等的两个梯形,一定能拼成一个平行四边形。()(3)两个平行四边形的面积相等,那么它们的底和高都相等()(4)两个面积相等的三角形,形状一定相同。()

(5)一个三角形的底扩大2倍,高不变,它的面积也会扩大2倍。()

2、下面这块地种了三种蔬菜,茄子、西红柿和黄瓜各种了多少平方米?这块地共有多少公顷?(把计算过程写在学习任务单1的相应位置)

在计算多边形面积的时候,你想提醒同学们注意什么?

3、如果学校空地的形状如下图所示,你能求出它的面积吗?(单位:厘米)小组内任选一种方法解答,然后学生汇报,把学生采用的不同方法展示出来。)学生把计算过程写在学习任务单2上。

4、学校想在这片空地上建一个面积是48平方米的花圃,请你设计这个花圃的形状?(鼓励学生设计不同的图形,最好是组合图形。)汇报展示。

张明同学设计了一种长方形图案,长9 米,宽7米,空白处是小路,路宽1 米。判断一下他设计的对吗?你是怎样想的?

通过练习学生解决实际问题的能力得到提升,完成对目标3。

(四)复习总结

通过本节课的复习,同学们一定有了新的收获,在以后的学习中希望大家能够在新知识和旧知识之间建立联系,这样才能学的更好。

多边形的面积课件【篇7】

第四课时:多边形的面积复习

教学内容:教材P113第2题及练习二十五第7、20题。

教学目标:

知识与技能:通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。

过程与方法:通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。

情感、态度与价值观:通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。

教学重点:整理完善知识结构,灵活运用面积公式解决问题。

教学难点:沟通多边形面积公式之间的内在联系。

教学方法:归纳整理,演示讲解;复习回顾。

教学准备:多媒体。

教学过程

一、 构建网络,新知汇总

二、整理复习

1.复习面积单位之间的进率。

说说我们学过的面积单位有哪些,他们之间的进率是多少?板书:

平方厘米 平方分米 平方米 公顷 平方千米

100 100 10000 100

2.及时练习

520平方米=(??)公顷?????300平方千米=( )公顷

4.2公顷=( )平方米 0.12平方米=( )平方分米

三、巩固深化

我们对本单元的知识和方法进行了整理与复习,接下来我们要做一些练习进一步巩固,使同学们把这部分知识掌握得更好。

(一)按要求解答。(只列式,不计算)

1、平行四边形底是4分米,高2.7分米,求它的面积?

2、三角形面积是30平方米,底8分米,求它的高?

3、梯形的面积是84平方米,高10米,上底5米,求下底?

师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。

(二)判断题:

1.三角形面积是平行四边形面积的一半。( )

2.两个面积相等的梯形,形状是相同的。( )

3.两个完全一样的梯形可以拼成一个平行四边形。( )

4.两个三角形的高相等,它们的面积就相等。( )

5.把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。( )

看来 ,同学们的分析和表达能力都很强,现在,我们来解决实际问题。

(三)解决问题

1.教材第113页第2题。

出示第2题,引导学生看题。学生独立解答,并在小组中互相检查。

教师指名板演,然后集体订正。

师:通过计算这些图形面积,你想提醒大家什么?(计算图形面积时,底和高要对应)

2.1.课件出示教材第116页练习二十五第7题。

(1)学生独立解题。

(2)汇报评价。

3.课件出示教材第116页练习二十五第8题。

(1)学生独立解题。

(2)汇报评价。

4.教材第116页练习二十五第9题。

(1)组织学生用剪刀把正方形纸片按题目要求剪一剪。

(2)算一算剩下的面积是多少。

5.教材第116页练习二十五第10题。

(1)组织学生在小组中讨论:怎样计算这个图形的面积呢?

(2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:

①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。

教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。

②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。

③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。

(3)全班交流,集体订正。

四、课堂小结。

多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。

布置作业:

板书设计

多边形的面积总复习

多边形的面积课件【篇8】

小学多边形面积数学知识点

1、公式:

长方形:周长=(长+宽)×2--【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2

面积=面积=长×宽字母公式:S=ab

正方形:周长=边长×4字母公式:C=4a

平行四边形的面积=底×高字母公式:S=ah

三角形的面积=底×高÷2--【底=面积×2÷高;高=面积×2÷底】字母公式:S=ah÷2

梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2

【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】

2、平行四边形面积公式推导:剪拼、平移

3、三角形面积公式推导:旋转

平行四边形可以转化成一个长方形;

两个完全一样的三角形可以拼成一个平行四边形,

长方形的长相当于平行四边形的底;

平行四边形的底相当于三角形的底;

长方形的宽相当于平行四边形的高;

平行四边形的高相当于三角形的高;

长方形的面积等于平行四边形的面积,

平行四边形的面积等于三角形面积的2倍,

因为长方形面积=长×宽,所以平行四边形面积=底×高。

因为平行四边形面积=因为平行四边形面积=底×高,所以三角形面积=底×高÷2

4、梯形面积公式推导:旋转

5、三角形、梯形的第二种推导方法老师已讲,自己看书

两个完全一样的梯形可以拼成一个平行四边形,知道就行。

平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;

平行四边形面积等于梯形面积的2倍,

因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

6、等底等高的平行四边形面积相等;

等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

7、长方形框架拉成平行四边形,周长不变,面积变小。

8、组合图形:转化成已学的简单图形,通过加、减进行计算。

使用括号解题的注意点

1、在计算中,代入数值后,要适当添上括号,如把负数、分数、幂、根式看作一个整体括起来,即见负必括、见分必括、见幂必括、见根必括,否则,会发生计算错误。此规则在列式中类同。

2、在解方程中,遇到去分母的情况,如果分子是一个多项式,应该看作一个整体,在去分母时,应将它加上括号;分母有理化时,有理化因式如果是一个多项式,应看作一个整体括起来,即见多必括。

3、用分配律和去括号法则、添括号法则时,要正确使用,用分配律时千万勿漏乘某一项,即见律勿漏。

4、注意去、添括号时不要改变式子的值,即注意恒等。

数学学习方法总结

课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.

让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.

课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.

正多边形的计算教案模板


教学设计示例1

教学目标:

(1)会将正多边形的边长、半径、边心距和中心角、周长、面积等有关的计算问题转化为解直角三角形的问题;

(2)巩固学生解直角三角形的能力,培养学生正确迅速的运算能力;

(3)通过正多边形有关计算公式的推导,激发学生探索和创新.

教学重点:

把问题转化为解直角三角形的问题.

教学难点:

正确地将问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.

教学活动设计:

(一)创设情境、观察、分析、归纳结论

1、情境一:给出图形.

问题1:正n边形内角的规律.

观察:在图形中,应用以有的知识(多边形内角和定理,多边形的每个内角都相等)得出新结论.

教师组织学生自主观察,学生回答.(正n边形的每个内角都等于.)

2、情境二:给出图形.

问题2:每个图形的半径,分别将它们分割成什么样的三角形?它们有什么规律?

教师引导学生观察,学生回答.

观察:三角形的形状,三角形的个数.

归纳:正n边形的n条半径分正n边形为n个全等的等腰三角形.

3、情境三:给出图形.

问题3:作每个正多边形的边心距,又有什么规律?

观察、归纳:这些边心距又把这n个等腰三角形分成了个直角三角形,这些直角三角形也是全等的.

(二)定理、理解、应用:

1、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.

2、理解:定理的实质是把正多边形的问题向直角三角形转化.

由于这些直角三角形的斜边都是正n边形的半径R,一条直角边是正n边形的边心距rn,另一条直角边是正n边形边长an的一半,一个锐角是正n边形中心角的一半,即,所以,根据上面定理就可以把正n边形的有关计算归结为解直角三角形问题.

3、应用:

例1、已知正六边形ABCDEF的半径为R,求这个正六边形的边长、周长P6和面积S6.

教师引导学生分析解题思路:

n=6=30°,又半径为Ra6、r6.P6、S6.

学生完成解题过程,并关注学生解直角三角形的能力.

解:作半径OA、OB;作OG⊥AB,垂足为G,得Rt△OGB.

∵∠GOB=,

∴a6=2·Rsin30°=R,

∴P6=6·a6=6R,

∵r6=Rcos30°=,

∴.

归纳:如果用Pn表示正n边形的周长,由例1可知,正n边形的面积S6=Pnrn.

4、研究:(应用例1的方法进一步研究)

问题:已知圆的半径为R,求它的内接正三角形、正方形的边长、边心距及面积.

学生以小组进行研究,并初步归纳:

;;;;

;.

上述公式是运用解直角三角形的方法得到的.

通过上式六公式看出,只要给定两个条件,则正多边形就完全确定了.例如:(1)圆的半径或边数;(2)圆的半径和边心距;(3)边长及边心距,就可以确定正多边形的其它元素.

(三)小节

知识:定理、正三角形、正方形、正六边形的元素的计算问题.

思想:转化思想.

能力:解直角三角形的能力、计算能力;观察、分析、研究、归纳能力.

(四)作业

归纳正三角形、正方形、正六边形以及正n边形的有关计算公式.

教学设计示例2

教学目标:

(1)进一步研究正多边形的计算问题,解决实际应用问题;

(2)通过正十边形的边长a10与半径R的关系的证明,学习边计算边推理的数学方法;

(3)通过解决实际问题,培养学生简单的数学建模能力;

(4)培养学生用数学意识,渗透理论联系实际、实践论的观点.

教学重点:

应用正多边形的基本计算图解决实际应用问题及代数计算的证明方法.

教学难点:

例3的证明方法.

教学活动设计:

(一)知识回顾

(1)方法:运用将正多边形分割成三角形的方法,把正多边形有关计算转化为解直角三角形问题.

(2)知识:正三角形、正方形、正六边形的有关计算问题,.

;;;;

;.

组织学生填写教材P165练习中第2题的表格.

(二)正多边形的应用

方法是基本的几何计算知识之一,掌握这些知识,一方面可以为学生进一步学习打好基础,另一方面,这些知识在生产和生活中常常会用到,掌握后对学生参加实践活动具有实用意义.

例2、在一种联合收割机上,拨禾轮的侧面是正五边形,测得这个正五边形的边长是48cm,求它的半径R5和边心距r5(精确到0.1cm).

解:设正五边形为ABCDE,它的中心为点O,连接OA,作OF⊥AB,垂足为F,则OA=R5,OF=r5,∠AOF=.

∵AF=(cm),∴R5=(cm).

r5=(cm).

答:这个正多边形的半径约为40.8cm,边心距约为33.0cm

建议:①组织学生,使学生主动参与教学;②渗透简单的数学建模思想和实际应用意识;③对与本题除解直角三角形知识外,还要主要学生的近似计算能力的培养.

以小组的学习形式,每个小组自己举一个实际生活中的例子加以研究,班内交流.

例3、已知:正十边形的半径为R,求证:它的边长.

教师引导学生:

(1)∠AOB=?

(2)在△OAB中,∠A与∠B的度数?

(3)如果BM平分∠OBA交OA于M,你发现图形中相等的线段有哪些?你发现图中三角形有什么关系?

(4)已知半径为R,你能不通过解三角形的方法求出AB吗?怎么计算?

解:如图,设AB=a10.作∠OBA的平分线BM,交OA于点M,则

∠AOB=∠1=∠2=36°,∠OAB=∠3=72°.

∴OM=MB=AB=a10.

△OAB∽△BAMOA:AB=BA:AM,即R:a10=a10:(R-a10),整理,得

,(取正根).

由例3的结论可得.

回顾:黄金分割线段.AD2=DC·AC,也就是说点D将线段AC分为两部分,其中较长的线段AD是较小线段CD与全线段AC的比例中项.顶角36°角的等腰三角形的底边长是它腰长的黄金分割线段.

反思:解决方法.在推导a10与R关系时,辅助线角平分线是怎么想出来的.解决方法是复习等腰三角形的性质、判定及相似三角形的有关知识.

练习P.165中练习1

(三)总结

(1)应用解决实际问题;

(2)综合代数列方程的方法证明了.

(四)作业

教材P173中8、9、10、11、12.

探究活动

已知下列图形分别为正方形、正五边形、正六边形,试计算角、、的大小.

探究它们存在什么规律?你能证明吗?

(提示:.)

复习多边形的面积 精选版


[教学目标]

1.掌握本单元所学的面积公式,能应用面积公式进行计算。

2.理解公式的算理,沟通知识之间的内在联系。培养学生利用所学知识解决实际问题的能力。

3.培养学生认真分析、认真思考的良好习惯。

[教学过程]

课前谈话:同学们,这个单元我们学习了平行四边形、三角形、梯形的面积及其计算。大家不仅要会利用面积公式求面积,还要掌握面积公式之间的联系。今天我们就来复习这部分知识。

(一)复习面积公式

老师在黑板上画出长方形后提问:长方形的面积公式是什么?(长方形面积=长×宽.S=ab)

板书:

教师提问:“根据长方形的面积怎样推导出平行四边形、三角形、梯形面积公式呢?”让学生互相说一说。学生讨论后,教师指名让学生说一说是怎么推导平行四边形、三角形、梯形面积公式的?学生边回答,教师边板书出示如下图形:

随后教师将这些图形用→连接起来。使学生看到这些公式的联系。

教师提问:在推导平行四边形、三角形和梯形面积公式的时候,我们运用了什么方法?学生回答后教师小结:推导平行四边形、三角形、梯形面积公式。根据转化的思想,运用了割补平行、旋转平移的方法,把所求的图形面积转化为学过的图形面积进行推导,这是一个重要的方法,以后学习新知识也要用这个方法。

教学意图:使学生清楚面积公式的算理,沟通知识之间的联系,而不是机械地识记公式。

(二)基本练习

1.判断题。

(1)两个底和高都分别相等的三角形面积一定相等。()

(2)两个底和高分别相等的梯形能拼成一个平行四边形。()

使学生清楚:底和高相等的梯形形状不一定相同,只有形状和面积都分别相等的梯形才能拼成一个平行四边形。

(3)平行四边形面积是三角形面积的2倍。()

使学生清楚:只有在等底等高的情况下,平行四边形的面积才是三角形面积的2倍。

(4)两个三角形的高相等,它们的面积就相等。()

使学生清楚:三角形的面积等于底乘高除以2。如果两个三角形的高相等而底不相等,它们的面积也不相等。

要求学生独立判断,并说明理由。

订正:(1)√(2)×(3)×(4)×

2.计算下面图形的面积。

让学生先识别每个图形是什么图形,想好求每个图形的面积应用什么公式,再独立列式计算。

做完后让学生说说计算图形面积时应注意什么?①看清是什么图形;②选择正确的公式;③正确的计算;④注意单位名称。

订正:(1)270平方厘米,144平方厘米,3.61平方米;(2)3.41平方米,4.5平方分米,357平方米

教学意图:培养学生的判断推理能力,会利用面积公式进行判断。

(三)综合练习

1.根据所给条件求面积。

(1)三角形的底是5分米,高是1分米。

(2)长方形的长是2厘米,宽是3厘米。

(3)平行四边形的底是4分米,高是2分米。

(4)梯形的上底是1厘米,下底是3厘米,高是2厘米。

要求学生口头列式说出结果,并想一想应用了哪个面积公式。

订正:(1)2.5平方分米,(2)6平方厘米,(3)8平方分米,(4)4平方厘米。

2.自己测量出求下面图形的面积所需的数据,并求出图形的面积。

订正时让学生说出是怎么测量的。测量时应注意什么。

3.下图是三角形小旗。同学们要做6面这样的小旗,一共要用纸多少平方厘米?

订正:38×38÷2×6=4332(平方厘米)

4.一块平行四边形的地,底长是280米,高是57.5米。共收油菜籽3542千克,平均每公顷产油菜籽多少千克?

订正:28×57.5=1610(平方米)

1610平方米=0.161公顷

3542÷0.161=22000(千克)

5.有一块平行四边形的地,(如图)分成三块种菜。第一块种西红柿,第二块种黄瓜,第三块种茄子。问:每种菜占地多少平方米?

订正:(1)3.8×4.4÷2=8.36(平方米)(2)4.2×4.4=18.48(平方米)(3)(5+1.2)×4.4÷2=13.64(平方米)

教学意图:能运用所学面积公式解决实际问题。

(四)总结质疑

教师将本节课所复习的知识归纳总结。解答学生提出的疑问。

出示思考题。(供学有余力的同学思考)

计算下面图形的面积。你能想出不同的解法吗?

思考题答案

这道题可以有以下几种解法:

正确答案:75平方厘米

正多边形的计算相关教学方案


教学设计示例1

教学目标:

(1)会将正多边形的边长、半径、边心距和中心角、周长、面积等有关的计算问题转化为解直角三角形的问题;

(2)巩固学生解直角三角形的能力,培养学生正确迅速的运算能力;

(3)通过正多边形有关计算公式的推导,激发学生探索和创新.

教学重点:

把问题转化为解直角三角形的问题.

教学难点:

正确地将问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.

教学活动设计:

(一)创设情境、观察、分析、归纳结论

1、情境一:给出图形.

问题1:正n边形内角的规律.

观察:在图形中,应用以有的知识(多边形内角和定理,多边形的每个内角都相等)得出新结论.

教师组织学生自主观察,学生回答.(正n边形的每个内角都等于.)

2、情境二:给出图形.

问题2:每个图形的半径,分别将它们分割成什么样的三角形?它们有什么规律?

教师引导学生观察,学生回答.

观察:三角形的形状,三角形的个数.

归纳:正n边形的n条半径分正n边形为n个全等的等腰三角形.

3、情境三:给出图形.

问题3:作每个正多边形的边心距,又有什么规律?

观察、归纳:这些边心距又把这n个等腰三角形分成了个直角三角形,这些直角三角形也是全等的.

(二)定理、理解、应用:

1、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.

2、理解:定理的实质是把正多边形的问题向直角三角形转化.

由于这些直角三角形的斜边都是正n边形的半径R,一条直角边是正n边形的边心距rn,另一条直角边是正n边形边长an的一半,一个锐角是正n边形中心角的一半,即,所以,根据上面定理就可以把正n边形的有关计算归结为解直角三角形问题.

3、应用:

例1、已知正六边形ABCDEF的半径为R,求这个正六边形的边长、周长P6和面积S6.

教师引导学生分析解题思路:

n=6=30°,又半径为Ra6、r6.P6、S6.

学生完成解题过程,并关注学生解直角三角形的能力.

解:作半径OA、OB;作OG⊥AB,垂足为G,得Rt△OGB.

∵∠GOB=,

∴a6=2·Rsin30°=R,

∴P6=6·a6=6R,

∵r6=Rcos30°=,

∴.

归纳:如果用Pn表示正n边形的周长,由例1可知,正n边形的面积S6=Pnrn.

4、研究:(应用例1的方法进一步研究)

问题:已知圆的半径为R,求它的内接正三角形、正方形的边长、边心距及面积.

学生以小组进行研究,并初步归纳:

;;;;

;.

上述公式是运用解直角三角形的方法得到的.

通过上式六公式看出,只要给定两个条件,则正多边形就完全确定了.例如:(1)圆的半径或边数;(2)圆的半径和边心距;(3)边长及边心距,就可以确定正多边形的其它元素.

(三)小节

知识:定理、正三角形、正方形、正六边形的元素的计算问题.

思想:转化思想.

能力:解直角三角形的能力、计算能力;观察、分析、研究、归纳能力.

(四)作业

归纳正三角形、正方形、正六边形以及正n边形的有关计算公式.

教学设计示例2

教学目标:

(1)进一步研究正多边形的计算问题,解决实际应用问题;

(2)通过正十边形的边长a10与半径R的关系的证明,学习边计算边推理的数学方法;

(3)通过解决实际问题,培养学生简单的数学建模能力;

(4)培养学生用数学意识,渗透理论联系实际、实践论的观点.

教学重点:

应用正多边形的基本计算图解决实际应用问题及代数计算的证明方法.

教学难点:

例3的证明方法.

教学活动设计:

(一)知识回顾

(1)方法:运用将正多边形分割成三角形的方法,把正多边形有关计算转化为解直角三角形问题.

(2)知识:正三角形、正方形、正六边形的有关计算问题,.

;;;;

;.

组织学生填写教材P165练习中第2题的表格.

(二)正多边形的应用

正多边形的有关计算方法是基本的几何计算知识之一,掌握这些知识,一方面可以为学生进一步学习打好基础,另一方面,这些知识在生产和生活中常常会用到,掌握后对学生参加实践活动具有实用意义.

例2、在一种联合收割机上,拨禾轮的侧面是正五边形,测得这个正五边形的边长是48cm,求它的半径R5和边心距r5(精确到0.1cm).

解:设正五边形为ABCDE,它的中心为点O,连接OA,作OF⊥AB,垂足为F,则OA=R5,OF=r5,∠AOF=.

∵AF=(cm),∴R5=(cm).

r5=(cm).

答:这个正多边形的半径约为40.8cm,边心距约为33.0cm

建议:①组织学生,使学生主动参与教学;②渗透简单的数学建模思想和实际应用意识;③对与本题除解直角三角形知识外,还要主要学生的近似计算能力的培养.

以小组的学习形式,每个小组自己举一个实际生活中的例子加以研究,班内交流.

例3、已知:正十边形的半径为R,求证:它的边长.

教师引导学生:

(1)∠AOB=?

(2)在△OAB中,∠A与∠B的度数?

(3)如果BM平分∠OBA交OA于M,你发现图形中相等的线段有哪些?你发现图中三角形有什么关系?

(4)已知半径为R,你能不通过解三角形的方法求出AB吗?怎么计算?

解:如图,设AB=a10.作∠OBA的平分线BM,交OA于点M,则

∠AOB=∠1=∠2=36°,∠OAB=∠3=72°.

∴OM=MB=AB=a10.

△OAB∽△BAMOA:AB=BA:AM,即R:a10=a10:(R-a10),整理,得

,(取正根).

由例3的结论可得.

回顾:黄金分割线段.AD2=DC·AC,也就是说点D将线段AC分为两部分,其中较长的线段AD是较小线段CD与全线段AC的比例中项.顶角36°角的等腰三角形的底边长是它腰长的黄金分割线段.

反思:解决方法.在推导a10与R关系时,辅助线角平分线是怎么想出来的.解决方法是复习等腰三角形的性质、判定及相似三角形的有关知识.

练习P.165中练习1

(三)总结

(1)应用解决实际问题;

(2)综合代数列方程的方法证明了.

(四)作业

教材P173中8、9、10、11、12.

探究活动

已知下列图形分别为正方形、正五边形、正六边形,试计算角、、的大小.

探究它们存在什么规律?你能证明吗?

(提示:.)

数学教案-正多边形的计算初中教案精选


教学设计示例1

教学目标:

(1)会将正多边形的边长、半径、边心距和中心角、周长、面积等有关的计算问题转化为解直角三角形的问题;

(2)巩固学生解直角三角形的能力,培养学生正确迅速的运算能力;

(3)通过正多边形有关计算公式的推导,激发学生探索和创新.

教学重点:

把正多边形的有关计算问题转化为解直角三角形的问题.

教学难点:

正确地将正多边形的有关计算问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.

教学活动设计:

(一)创设情境、观察、分析、归纳结论

1、情境一:给出图形.

问题1:正n边形内角的规律.

观察:在图形中,应用以有的知识(多边形内角和定理,多边形的每个内角都相等)得出新结论.

教师组织学生自主观察,学生回答.(正n边形的每个内角都等于.)

2、情境二:给出图形.

问题2:每个图形的半径,分别将它们分割成什么样的三角形?它们有什么规律?

教师引导学生观察,学生回答.

观察:三角形的形状,三角形的个数.

归纳:正n边形的n条半径分正n边形为n个全等的等腰三角形.

3、情境三:给出图形.

问题3:作每个正多边形的边心距,又有什么规律?

观察、归纳:这些边心距又把这n个等腰三角形分成了个直角三角形,这些直角三角形也是全等的.

(二)定理、理解、应用:

1、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.

2、理解:定理的实质是把正多边形的问题向直角三角形转化.

由于这些直角三角形的斜边都是正n边形的半径R,一条直角边是正n边形的边心距rn,另一条直角边是正n边形边长an的一半,一个锐角是正n边形中心角的一半,即,所以,根据上面定理就可以把正n边形的有关计算归结为解直角三角形问题.

3、应用:

例1、已知正六边形ABCDEF的半径为R,求这个正六边形的边长、周长P6和面积S6.

教师引导学生分析解题思路:

n=6=30°,又半径为Ra6、r6.P6、S6.

学生完成解题过程,并关注学生解直角三角形的能力.

解:作半径OA、OB;作OG⊥AB,垂足为G,得Rt△OGB.

∵∠GOB=,

∴a6=2Rsin30°=R,

∴P6=6a6=6R,

∵r6=Rcos30°=,

∴.

归纳:如果用Pn表示正n边形的周长,由例1可知,正n边形的面积S6=Pnrn.

4、研究:(应用例1的方法进一步研究)

问题:已知圆的半径为R,求它的内接正三角形、正方形的边长、边心距及面积.

学生以小组进行研究,并初步归纳:

;;;;

;.

上述公式是运用解直角三角形的方法得到的.

通过上式六公式看出,只要给定两个条件,则正多边形就完全确定了.例如:(1)圆的半径或边数;(2)圆的半径和边心距;(3)边长及边心距,就可以确定正多边形的其它元素.

(三)小节

知识:定理、正三角形、正方形、正六边形的元素的计算问题.

思想:转化思想.

能力:解直角三角形的能力、计算能力;观察、分析、研究、归纳能力.

(四)作业

归纳正三角形、正方形、正六边形以及正n边形的有关计算公式.

教学设计示例2

教学目标:

(1)进一步研究正多边形的计算问题,解决实际应用问题;

(2)通过正十边形的边长a10与半径R的关系的证明,学习边计算边推理的数学方法;

(3)通过解决实际问题,培养学生简单的数学建模能力;

(4)培养学生用数学意识,渗透理论联系实际、实践论的观点.

教学重点:

应用正多边形的基本计算图解决实际应用问题及代数计算的证明方法.

教学难点:

例3的证明方法.

教学活动设计:

(一)知识回顾

(1)方法:运用将正多边形分割成三角形的方法,把正多边形有关计算转化为解直角三角形问题.

(2)知识:正三角形、正方形、正六边形的有关计算问题,正多边形的有关计算.

;;;;

;.

组织学生填写教材P165练习中第2题的表格.

(二)正多边形的应用

正多边形的有关计算方法是基本的几何计算知识之一,掌握这些知识,一方面可以为学生进一步学习打好基础,另一方面,这些知识在生产和生活中常常会用到,掌握后对学生参加实践活动具有实用意义.

例2、在一种联合收割机上,拨禾轮的侧面是正五边形,测得这个正五边形的边长是48cm,求它的半径R5和边心距r5(精确到0.1cm).

解:设正五边形为ABCDE,它的中心为点O,连接OA,作OF⊥AB,垂足为F,则OA=R5,OF=r5,∠AOF=.

∵AF=(cm),∴R5=(cm).

r5=(cm).

答:这个正多边形的半径约为40.8cm,边心距约为33.0cm

建议:①组织学生,使学生主动参与教学;②渗透简单的数学建模思想和实际应用意识;③对与本题除解直角三角形知识外,还要主要学生的近似计算能力的培养.

以小组的学习形式,每个小组自己举一个实际生活中的例子加以研究,班内交流.

例3、已知:正十边形的半径为R,求证:它的边长.

教师引导学生:

(1)∠AOB=?

(2)在△OAB中,∠A与∠B的度数?

(3)如果BM平分∠OBA交OA于M,你发现图形中相等的线段有哪些?你发现图中三角形有什么关系?

(4)已知半径为R,你能不通过解三角形的方法求出AB吗?怎么计算?

解:如图,设AB=a10.作∠OBA的平分线BM,交OA于点M,则

∠AOB=∠1=∠2=36°,∠OAB=∠3=72°.

∴OM=MB=AB=a10.

△OAB∽△BAMOA:AB=BA:AM,即R:a10=a10:(R-a10),整理,得

,(取正根).

由例3的结论可得.

回顾:黄金分割线段.AD2=DCAC,也就是说点D将线段AC分为两部分,其中较长的线段AD是较小线段CD与全线段AC的比例中项.顶角36°角的等腰三角形的底边长是它腰长的黄金分割线段.

反思:解决方法.在推导a10与R关系时,辅助线角平分线是怎么想出来的.解决方法是复习等腰三角形的性质、判定及相似三角形的有关知识.

练习P.165中练习1

(三)总结

(1)应用正多边形的有关计算解决实际问题;

(2)综合代数列方程的方法证明了.

(四)作业

教材P173中8、9、10、11、12.

探究活动

已知下列图形分别为正方形、正五边形、正六边形,试计算角、、的大小.

探究它们存在什么规律?你能证明吗?

经典初中教案正多边形的计算


教学设计示例1

教学目标:

(1)会将正多边形的边长、半径、边心距和中心角、周长、面积等有关的计算问题转化为解直角三角形的问题;

(2)巩固学生解直角三角形的能力,培养学生正确迅速的运算能力;

(3)通过正多边形有关计算公式的推导,激发学生探索和创新.

教学重点:

把问题转化为解直角三角形的问题.

教学难点:

正确地将问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.

教学活动设计:

(一)创设情境、观察、分析、归纳结论

1、情境一:给出图形.

问题1:正n边形内角的规律.

观察:在图形中,应用以有的知识(多边形内角和定理,多边形的每个内角都相等)得出新结论.

教师组织学生自主观察,学生回答.(正n边形的每个内角都等于.)

2、情境二:给出图形.

问题2:每个图形的半径,分别将它们分割成什么样的三角形?它们有什么规律?

教师引导学生观察,学生回答.

观察:三角形的形状,三角形的个数.

归纳:正n边形的n条半径分正n边形为n个全等的等腰三角形.

3、情境三:给出图形.

问题3:作每个正多边形的边心距,又有什么规律?

观察、归纳:这些边心距又把这n个等腰三角形分成了个直角三角形,这些直角三角形也是全等的.

(二)定理、理解、应用:

1、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.

2、理解:定理的实质是把正多边形的问题向直角三角形转化.

由于这些直角三角形的斜边都是正n边形的半径R,一条直角边是正n边形的边心距rn,另一条直角边是正n边形边长an的一半,一个锐角是正n边形中心角的一半,即,所以,根据上面定理就可以把正n边形的有关计算归结为解直角三角形问题.

3、应用:

例1、已知正六边形ABCDEF的半径为R,求这个正六边形的边长、周长P6和面积S6.

教师引导学生分析解题思路:

n=6=30°,又半径为Ra6、r6.P6、S6.

学生完成解题过程,并关注学生解直角三角形的能力.

解:作半径OA、OB;作OG⊥AB,垂足为G,得Rt△OGB.

∵∠GOB=,

∴a6=2·Rsin30°=R,

∴P6=6·a6=6R,

∵r6=Rcos30°=,

∴.

归纳:如果用Pn表示正n边形的周长,由例1可知,正n边形的面积S6=Pnrn.

4、研究:(应用例1的方法进一步研究)

问题:已知圆的半径为R,求它的内接正三角形、正方形的边长、边心距及面积.

学生以小组进行研究,并初步归纳:

;;;;

;.

上述公式是运用解直角三角形的方法得到的.

通过上式六公式看出,只要给定两个条件,则正多边形就完全确定了.例如:(1)圆的半径或边数;(2)圆的半径和边心距;(3)边长及边心距,就可以确定正多边形的其它元素.

(三)小节

知识:定理、正三角形、正方形、正六边形的元素的计算问题.

思想:转化思想.

能力:解直角三角形的能力、计算能力;观察、分析、研究、归纳能力.

(四)作业

归纳正三角形、正方形、正六边形以及正n边形的有关计算公式.

教学设计示例2

教学目标:

(1)进一步研究正多边形的计算问题,解决实际应用问题;

(2)通过正十边形的边长a10与半径R的关系的证明,学习边计算边推理的数学方法;

(3)通过解决实际问题,培养学生简单的数学建模能力;

(4)培养学生用数学意识,渗透理论联系实际、实践论的观点.

教学重点:

应用正多边形的基本计算图解决实际应用问题及代数计算的证明方法.

教学难点:

例3的证明方法.

教学活动设计:

(一)知识回顾

(1)方法:运用将正多边形分割成三角形的方法,把正多边形有关计算转化为解直角三角形问题.

(2)知识:正三角形、正方形、正六边形的有关计算问题,.

;;;;

;.

组织学生填写教材P165练习中第2题的表格.

(二)正多边形的应用

方法是基本的几何计算知识之一,掌握这些知识,一方面可以为学生进一步学习打好基础,另一方面,这些知识在生产和生活中常常会用到,掌握后对学生参加实践活动具有实用意义.

例2、在一种联合收割机上,拨禾轮的侧面是正五边形,测得这个正五边形的边长是48cm,求它的半径R5和边心距r5(精确到0.1cm).

解:设正五边形为ABCDE,它的中心为点O,连接OA,作OF⊥AB,垂足为F,则OA=R5,OF=r5,∠AOF=.

∵AF=(cm),∴R5=(cm).

r5=(cm).

答:这个正多边形的半径约为40.8cm,边心距约为33.0cm

建议:①组织学生,使学生主动参与教学;②渗透简单的数学建模思想和实际应用意识;③对与本题除解直角三角形知识外,还要主要学生的近似计算能力的培养.

以小组的学习形式,每个小组自己举一个实际生活中的例子加以研究,班内交流.

例3、已知:正十边形的半径为R,求证:它的边长.

教师引导学生:

(1)∠AOB=?

(2)在△OAB中,∠A与∠B的度数?

(3)如果BM平分∠OBA交OA于M,你发现图形中相等的线段有哪些?你发现图中三角形有什么关系?

(4)已知半径为R,你能不通过解三角形的方法求出AB吗?怎么计算?

解:如图,设AB=a10.作∠OBA的平分线BM,交OA于点M,则

∠AOB=∠1=∠2=36°,∠OAB=∠3=72°.

∴OM=MB=AB=a10.

△OAB∽△BAMOA:AB=BA:AM,即R:a10=a10:(R-a10),整理,得

,(取正根).

由例3的结论可得.

回顾:黄金分割线段.AD2=DC·AC,也就是说点D将线段AC分为两部分,其中较长的线段AD是较小线段CD与全线段AC的比例中项.顶角36°角的等腰三角形的底边长是它腰长的黄金分割线段.

反思:解决方法.在推导a10与R关系时,辅助线角平分线是怎么想出来的.解决方法是复习等腰三角形的性质、判定及相似三角形的有关知识.

练习P.165中练习1

(三)总结

(1)应用解决实际问题;

(2)综合代数列方程的方法证明了.

(四)作业

教材P173中8、9、10、11、12.

探究活动

已知下列图形分别为正方形、正五边形、正六边形,试计算角、、的大小.

探究它们存在什么规律?你能证明吗?

(提示:.)

多边形的内角教案模板


教学建议

1.教材分析

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

教学目标:

1.使学生掌握四边形的有关概念及四边形的内角和定理;

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

四边形的内角和定理.

教学难点:

四边形的概念

教学过程:

(一)复习

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

(四)四边形的内角和定理

定理:四边形的内角和等于.

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思

例1已知:如图,直线,垂足为B,直线,垂足为C.

求证:(1);(2)

证明:(1)(四边形的内角和等于),

(2)

.

练习:

1.课本124页3题.

2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?

小结:

知识:四边形的有关概念及其内角和定理.

能力:向学生渗透类比和转化的思想方法.

作业:课本130页2、3、4题.

数学教案-多边形的内角教案模板


一、素质教育目标

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点难点疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第2课时

七、教学步骤

【复习提问】

1.什么叫四边形?四边形的内角和定理是什么?

2.如图4-9,求的度数(打出投影).

【引入新课】

前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.

【讲解新课】

1.四边形的外角

与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.

2.外角和定理

例1已知:如图4-11,四边形ABCD的四个内角分别为,每一个顶点处有一个外角,设它们分别为.

求.

(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).

(2)教给学生一组外角的画法——同向法.

即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.

(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.

证得:

360°

外角和定理:四边形的外角和等于360°

3.四边形的不稳定性

①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?

(学生回答)

②若以为边作四边形ABCD.

提示画法:①画任意小于平角的.

②在的两边上截取.

③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点.

④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13.

大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为的大小不固定,所以四边形的形状不确定.

③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性.

教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:

①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.

(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.

【总结、扩展】

1.小结:

(1)四边形外角概念、外角和定理.

(2)四边形不稳定性的应用和克服不稳定性的理论根据.

2.扩展:如图4-15,在四边形ABCD中,,求四边形ABCD的面积

八、布置作业

教材P128中4.

九、板书设计

十、随堂练习

教材P124中1、2

补充:(1)在四边形ABCD中,,是四边形的外角,且,则度.

(2)在四边形ABCD中,若分别与相邻的外角的比是1:2:3:4,则度,度,度,度

(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.

数学教案-探索多边形内角教案模板


课题

探索多边形内角和

教学目标

知识目标

1.探索多边形内角和定义、公式

2.正多边形定义

能力目标

1.发展学生的合情推理意识、主动探索的习惯

2.发展学生的说理能力和简单的推理意识及能力

德育目标

培养用多边形美花生活的意识

教学重点

多边形内角和公式的推导

学难点

多边形内角和公式的简单运用

教学方法

探索、讨论、启发、讲授

教学手段

利用学生剪纸、投影仪进行教学

教学过程:

一、引入:

1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。

2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。

二、多边形内角和公式:

1、三角形的内角和是多少度?任意四边形的内角和是多少度?怎样得到的?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?

2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)

(1)量出每个内角度数然后相加为540°;

(2)从五边形的任一顶点出发,连结不相邻的两个顶点,将五边形分割成三个三角形,得出五边形内角和为540°(如图一);

(3)在五边形内任取一点,连结各顶点,将五边形分割成五个三角形,得出五边形内角和为5×180°-360°=540°(如图二);

(4)从五边形任意一边上取一点,连接不相邻的顶点,将五边形分割成四个三角形内角和为4×180°-180°=540°(如图三);

(5)六边形可怎样剪成三角形求内角和?n边形呢?

(6)总结规律:多边形内角和为(n-2)×180°(n≥3)。

3、议一议:

(1)过四边形一个顶点的对角线把四边形分成两个三角形;

(2)过五边形一个顶点的对角线把五边形分成()个三角形;

(3)过六边形一个顶点的对角线把六边形分成()个三角形。

(4)过n边形一个顶点的对角线把n边形分成()个三角形;

二、正多边形定义:

1、出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)

2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。

3、填表:

正多边形的边数

3

4

5

6

8

n

正多边形的内角和

180°

360°

540°

720°

1080°

正多边形每个内角的度数

60°

90°

108°

120°

135°

四、小结:主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。

五、布置作业:

课本P110、习题4、10第1、2、3题。

附:选用随堂练习:

1、一个多边形的每个内角都是140º,它是()边形?

2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成()个三角形。

3、过六边形的一个顶点的对角线把它分成()个三角形,过n边形的一个顶点的对角线把n边形分成()个三角形。

4、一个多边形的每个内角都是140°,这个多边形是()边形。

5、如果一个多边形的边数增加1,那么这时它的内角和增加了()度。

6、下列角能成为一个多边形的内角和的是()

A、270°B、560°C、1800°D、1900°

思考题:如图(1),求∠A+∠B+∠C+∠D+∠E+∠F等于多少度?

F

画正多边形教案模板


教学设计示例1

教学目标:

(1)了解用量角器等分圆心角来等分圆;掌握用尺规作圆内接正方形和正六边形,能作圆内接正八边形、正三角形、正十二边形;

(2)通过画图培养学生的画图能力;

(3)对学生进行审美教育,提高学生的审美能力,促进学生对几何学习的热情.

教学重点:

(1)量角器等分圆心角来等分圆;

(2)尺规作圆内接正方形和正六边形.

教学难点:

准确作图.

教学活动设计:

(一)提出问题:

由于正多边形在生产、生活实际中有广泛的应用性,所以会应是学生必备能力之一.

问题1:已知⊙O的半径为2cm,求作圆的内接正三角形.

教师组织学生进行,方法不限.

目的:充分发展学生的发散思维.

(二)解决问题:

以下为解决问题的参考方案:(上课时教师归纳学生的方法)

(1)度量法:①用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°.

②用量角器度量,使∠AOB=∠BOC=∠COA=120°.

(2)尺规法:(如上右图)用圆规在⊙O上截取长度等于半径(2cm)的弦,连结AB、BC、CA即可.

(3)计算与尺规结合法:由正三角形的半径与边长的关系可得,正三角形的边长=R=2(cm),用圆规在⊙O上截取长度为2(cm)的弦AB、AC,连结AB、BC、CA即可.

(三)研究、归纳

1、用量角器等分圆:

依据:等圆中相等的圆心角所对应的弧相等.

操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大.

问题2:把半径为2cm⊙O九等份.

(先画半径2cm的圆,然后把360°的圆心角9等份,每一份40°)

归纳:用量角器等分圆,方法简便,可以把圆任意n等分,但有误差.

2、用尺规等分圆:

(1)问题3:作正四边形、正八边形.

教师组织学生,分析、作图.

归纳:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……

(2)问题4:作正六、三、十二边形.

教师组织学生,分析、作图.

归纳:先作出正六边形,则可作正三角形,正十二边形,正二十四边形………理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画.

(四)总结

(1)用量角器等分圆周作正n边形;

(2)用尺规作正方形及由此扩展作正八边形、用尺规作正六边形及由此扩展作正12边形、正三角形.

(五)作业教材P173中13.

教学设计示例2

教学目标:

1、能应用解决实际问题;会画正五边形的近似图;了解等分圆的美丽图形;

2、通过运用正多边形的有关计算和画图解决实际问题培养学生分析问题、解决问题的能力;

3、对学生进行审美教育和文化传统教育和爱国教育;

4、渗透数学建模思想.

教学重点:

应用正多边形的计算与画图解决实际问题.

教学难点:

数学模型的建立,和正多边形的有关计算问题.

教学活动设计:

(一)知识回顾:

分别画半径2cm的圆内接正六边形、内接正三角形、内接正十二边形、内接正方形、内接正八边形.

要求①尺规作图;②说明画法;③指出作图依据;④学生独立完成.

教师巡视,对画的好的学生给于表扬,对有问题的学生给于指导.

(二)画图应用:

例1、有一个亭子,它的地基是半径为4m的正八边形,(1)用1∶200的比例尺画出地基平面图;(2)求地基的边长a8(精确到0.01m)和面积S8(精确到0.1m2)

教师引导学生分析:①比例尺=;②正八边形的半径R=2cm;③如何解正八边形和近似计算.

(1)画法:1.以任意一点O为圆心,以4m的,即2cm为半径画⊙O(如图).

2.作⊙O的直径AC、BD,使AC⊥BD.

3.作平分、的直径EG、FH.

4.顺次连结AE、EB、BF、FC、CG、GD、DH、HA.

八边形AEBFCGDH就是亭子地基的正八边形.

(2)解(学生分析解题方法):

(m)

(m)

(m2)

答:(略)

我国民间相传有五边形的近似画法,画法口诀是:“九五顶五九,八五两边分”,它的意义如图:如果正五边形的边长为10,作它的中垂线AF,取AF=15.4,在AF上取FM=9.5,则AM=5.9,过点M作BE⊥AF,在BE上取BM=ME=8.连结AB、BC、DE、EA即可.

例2、用民间相传画法口诀,画边长为20mm的正五边形.

分析:要画边长20mm的正五边形,关键在于计算出口诀中各部分的尺寸,由于要画的正五边形与口诀正五边形相似,所以要画的正五边形的各部分应与口诀正五边形各部分对应成比例.由已知知道要画正五边形的边CD=20mm.请同学们算出各部分的尺寸,并按口诀画出正五边形ABCDE.

(画法:略.参看教材P170)

说明:虽然这种画法是近似画法,但是这种画法的精确度却是很高的.有能力的学生课下可以探究和计算.

通过正五边形的民间近似画法的教学弘扬民族文化,揭示其科学性,渗透实践出真知的观点.

(三)优美图案欣赏和画法:

请学生欣赏下列图案,分析图案结构,画出图案.

组织学生进行,可以让学生独立完成,也可以让学生协作完成,对画的较好的同学给予表彰.

(四)总结

1、运用正多边形的知识解决实际问题;

2、学习了民间画正五边形的近似画法;

3、学习了分解与组合有关正多边形的几何图案.

(五)作业

教材P171中练习1;P173中12;P173中14.

探究活动

图案设计

某学校在教学楼前的圆形广场中,准备建造一个花园,并在花园内分别种植牡丹、月季和杜鹃三种花卉。为了美观,种植要求如下:

(1)种植4块面积相等的牡丹、4块面积相等的月季和一块杜鹃。(注意:面积相等必须由数学知识作保证)

(2)花卉总面积等于广场面积

(3)花园边界只能种植牡丹花,杜鹃花种植在花园中间且与牡丹花没有公共边。

请你设计种植方案:(设计的方案越多越好;不同的方案类型不同.)

答案提示:

本文网址://m.jk251.com/jiaoan/22372.html

相关文章
最新更新

热门标签