教学目标
1.使学生了解命题、真命题和假命题等概念.
2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果……,那么……”的形式
重点和难点
分清命题的题设和结论,既是教学的重点又是教学的难点.
教学过程
一、引入
请大家随意说出一些语句,教师把它们写在黑板上.如:
(1)对顶角相等吗?
(2)作一条线段AB=2cm;
(3)我爱初二(1)班;
(4)两直线平行,同位角相等;
(5)相等的两个角,一定是对顶角.
二、新课
问:上述语句中,哪些是判断一件事情的句子?
答:(3)、(4)、(5)是判断一件事情的句子.
教师指出:判断是对事物进行肯定或否定的一种思维形式,判断一件事情的句子,叫做命题.数学课堂里,只研究数学命题,如(4)、(5).
例1请大家说出若干个(数学)命题,再分析一下,每一个命题由几部分组成?
(1)等角的补角相等;
(2)有理数一定是自然数;
(3)内错角相等两直线平行;
(4)如果a是有理数,那么a2>a;
(5)每一个大于4的偶数都可以表示成两个质数之和(即著名的哥德巴赫猜想).
教师启发学生得出:一个命题,由题设和结论两部分组成,都可以写成“如果……,那么……”的形式,也可以简称为“若A则B”.
练习:把上述(1)至(5),都按“如果……,那么……”的形式,表述一遍.
例2在例1的(1)至(5)个命题中,所作的判断是否都正确?怎么检验各个命题的真伪?
(l)“如果两个角是等角的补角,那么这两个角相等.”是正确的命题,已经由补角的定义得到证明.
(2)“如果是有理数,那么它一定是自然数”。是不正确的命题(判断),反例如是有理数但不是自然数。
(3)“如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.”是正确的命题,已证.
(4)“如果a是有理数,那么a2>a.”是不正确的命题,反例如a=1,a2=a.
(5)“如果是一个大于4的偶数,那么它可以表示成两个质数之和.”这个命题,至今没人举出一个反例,说明它不正确;也没有人完全证明它正确.我国著名数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”,即已经证明了“1+2”,离“1+1”这颗数学王冠上的珍珠,只差“一步之遥”.这是目前世界上对这个命题的真伪的判定,所能达到的最好结果.
教师帮助学生归纳:命题既然是一个判断,就有判断是否正确的区别.
真命题---如果题设成立那么结论一定成立,这样的命题叫做真命题.
假命题---如果题设成立,不能保证结论总是成立,也就是说结论不成立,这样的命题叫做假命题.注意:不是命题与假命题的区别!
怎样判断一个命题的真假?检验真理的唯一标准是实践.数学中,判断一个命题是真命题,要经过证明(或以公理形式,即由实践证明的形式出现);判断一个命题是假命题,只需举出一个反例即可.
例3试将下列各个命题的题设和结论相互颠倒或变为否定式,得到新的命题,并判断这些命题的真假.
(1)对顶角相等;
(2)两直线平行,同位角相等;
(3)若a=0,则ab=0;
(4)两条直线不平行,则一定相交;
(5)凡相等的角都是直角.
解:
(l)对顶角相等(真);
相等的角是对顶角(假);
不是对顶角不相等(假);
不相等的角不是对顶角(真).
(2)两直线平行,同位角相等(真);
同位角相等,两直线平行(真);
两直线不平行,同位角不相等(真);
同位角不相等,两直线不平行(真).
(3)若a=0,则ab=0(真);
若ab=0,则a=0(假);
若a≠0,则ab≠0(假);
若ab≠0,则a≠0(真).
(4)两条直线不平行,则一定相交(假);
两条直线相交,则一定不平行(真);
两条直线平行,则一定不相交(真);
两条直线不相交,则一定平行(假).
(注)本小题如果添上“在同一平面内”的大前提条件,那么假命题将变为真命题.
(5)凡相等的角都是直角(假);
凡直角都相等(真);
凡不相等的角不都是直角(真);
凡不都是直角的角不相等(假).
说明:本例,尤其是第(5)小题,视学生接受情况,教师灵活掌握.讲还是不讲,讲到什么程度,介不介绍四种命题(原、逆、否、逆否),都有较大的伸缩性.
小结:
命题---判断一件事情的句子;
命题的结构---;如果(题设)……,那么(结论)……;
命题的真假---正确或错误的判断;
四种命题---原、逆、否、逆否.
(用投影片显示或挂小黑板)
三、作业
1.在下列语句中,指出哪些是命题,哪些不是命题.如果是命题,指出命题的真假,并仿照例3说出一些新的命题来.
(l)如果AB⊥CD于O,那么∠AOC=90°;
(2)取线段AB的中点C;
(3)两条直线相交,有且只有一个交点;
(4)一个平角的度数是180°;
(5)若a=b,则a2=b2;
(6)如果一个数的末位数字是0,那么它一定能够被5整除;
(7)同角的余角相等;
(8)周角的一半等于直角.
2.选作题
判断命题“如果n是自然数,那么n2+n+17是质数”的真假.
统计图的选择教学目标:1、通过比较三种统计图,理解三种统计图的特点,并能根据不同问题选择适当的统计图描述数据。2、进一步发展学生的数感和统计观念。重点和难点:重点:通过比较三种统计图,理解三种统计图各自的特点,并能根据不同问题选择适当统计图描述数据。难点:条形统计图与折线统计图的联系与区别。教学方法:观察法、讨论法相结合。能力培养:能根据不同问题选择适当统计图描述、整理数据,制作统计图要因题而定。培养学生合作探究的能力。情感态度与价值观:在教学中渗透保护环境的观念,培养学生热爱自然,爱护动物的意识。课前准备:多媒体课件、小黑板、白纸、彩笔(学生自备)教材分析和教学设计:本节课是在学完扇形统计图之后,通过对例题中报纸上数据的分析,使学生理解三种统计图的不同特点,并能根据具体问题选择适当的统计图描述数据。针对这节课的教学重点和难点,作了如下的教学设计:1、创设情景2、探索知识3、难点突破4、巩固练习5、探究升级学生在比较折线统计图和条形统计图时有一定困难,因此在教学中利用课件安排了对比很明显的两组数据来帮助学生理解它们的联系和区别。让学生从实际中来体会。最后在探究升级部分使学生明确,在很多情况下,三种统计图可以互相转化,它们在表示数据时的侧重点不同。但在特殊的情况下,只能选择一种统计图来呈现结果。教学中以自制的配套课件辅助。学法指导:在整个教学过程中,注重学生观察能力、分析能力、自学能力、相互合作能力的培养,改过去被动的接受为主动的探究,通过自己的观察、分析、讨论来理解知识,并在此过程中体会出数学的学习方法,以利于今后的学习。新课教学过程(教学程序及内容)学生活动设计一、创设情境:(教师活动):引入可由前面刚学过的折线图、条形图引入,在具体表示数据时,究竟选择哪种统计图合适呢?从而引入本节内容:统计图的选择。(出示幻灯片1)让学生观察反映世界人口情况的数据,尽可能多的获取信息。问:同学们从中了解到了什情况?(出示幻灯片2)小明根据上面的数据制成了上面三幅统计图。问:1、三幅统计图分别是什麽统计图?2、你喜欢哪幅统计图,说出你的理由?二、探索知识:在学生初步感受了三种统计图后,逐渐引导学生观察、讨论三种统计图的特点。启发学生围绕以下问题展开讨论。1、你们知道三幅统计图分别表示了什麽内容吗?2、从哪幅统计图可看出世界人口的变化情况?3、2050年非洲人口大约将达到多少亿呢?你从哪幅统计图中得到这个数据的?4、哪个洲的人口较多?你从哪幅统计图中得到此结论?怎麽得到的?5、同学们比较三种统计图的特点,你们发现了什麽?(出示幻灯片3)三种统计图的特点:条形统计图能清楚地表示出各个项目的具体数据。扇形统计图能清楚地表示出各部分在总体中所占的百分比。折线统计图能清楚的反映同一事物的变化情况。三、难点突破:(出示幻灯片4)班上某位学生在前5单元的数学测验成绩的统计表。让学生根据三种统计图的特点选择适当的统计图来表示这些数据。让学生说出理由。学生会选择条形统计图或折线统计图,自然引出了二者的比较。(出示幻灯片5)通过具体的例子让学生充分体会条形统计图和折线统计图的区别与联系。学生讨论围绕以下问题展开:(1)、哪个车间的产值高?两个车间的总产值哪个季度高?(2)、哪个车间的产值增长快?第三季度哪个车间的产值是下降的?(3)、以上结论你是分别从哪张统计图得到的?那这组数据选择什麽统计图好呢?对比了条形统计图和折线统计图的特点可以得出:该同学的成绩用折线统计图较好。让学生说出理由。建议学生制作一幅自己学习成绩统计图,来督促自己努力学习。四、巩固练习:(出示幻灯片6)让学生根据总结出的每种统计图的特点来选择适当的统计图,教师适时引导,让学生充分表达自己的理由。在教学中渗透爱护环境的观念,培养学生热爱自然,爱护动物的意识。1、几种濒危动物数量;2、家庭主要支出情况调查数据五、探究升级:让学生轻松一下,想像这样一幅画面,在夏天晴朗的夜晚,天上的星星一闪一闪,偶尔还会有流星划过寂静的夜空。一幅多麽美丽的画面呀!今天老师就给同学们带来了一组有关星星的数据(出示幻灯片7)。九大行星拥有的卫星数。让学生结合数据来谈谈感受,选择适当的统计图表示这些数据。同桌两人互相交流,尽可能多的获取信息和数据。观察统计图,思考统计图的含义。谈谈自己的理解。(1)、让学生独立观察,思考,用自己的语言描述这三种统计图的各自特点;(2)、组织学生充分交流;(3)、在学生充分交流后,教师明晰三种统计图的特点。学生相互讨论,交流,答案只要合理就给予肯定。给学生充分的时间,让学生通过观察和讨论,得出条形统计图与折线统计图的联系与区别:两种统计图都能表示出数据的大小。但条形统计图的柱形高低可以更直观的表示出数据的大小关系。折线统计图能体现出同一事物数据的变化情况。经过讨论得出问题的答案:1、条形统计图较好。2、扇形统计图较好。并阐述理由。独立思考做出选择。画草图分析,得出结论。小结:学生小结,老师对学生的努力探究,积极合作解决问题的态度给予肯定。作业:出示幻灯片7板书设计:
条形统计图数据大小折线统计图数据变化扇形统计图各部分占总体的百分比
教学目标:1.学会用示意图分析数量关系解决问题,体会示意图与表格在分析应用题中的特点;会根据问题中的数量关系列出方程组求解,会检验结试论是否符合题意.2.经历和体验列二元一次方程组解决实际问题的过程,进一步体会方程组是刻划现实世界的有效数学模型,及数学的应用价值;提高学生的分析问题和解决问题的能力.教学重点:1.用示意图结合表格分析问题中的数量关系的方法.2.熟悉常见问题情境的含意.教学难点:让学生理解具体问题的情境,找出数量关系列出方程组.教学准备:用实物讲解问题(5),用多媒体课件讲解问题(6)教学过程:1.情境创设:1.1.呈现问题(5)1.2.问题:从图中你可获得什么信息?1.3.展示实物让学生进一步理解示意图.【学生活动:先观察图形再与同学交流,再观察实物分析解决问题】2.解决问题:2.1.设可制作甲种纸盒子x个,乙种纸盒y个,你会如何分配这两种材料呢?2.2.解(略)2.3.检验:求出的解符合题意吗?【学生活动:在老师指导下,尝试列表、分析解决问题】3.情境之二:3.1.投影问题(6)及图片,让学生先想象问题的具体情境,理解示意图.【学生活动:尝试分析问题,想象情境,试画出示意图】3.2.动画演示情境,帮助学生丰富经验,理解题意.【学生活动:观察动画,丰富自己的知识经验】3.3.用示意图结合表格分析.
v
s
t
情形(1)
情形(2)
【学生活动:在老师指导下,尝试列表、分析解决问题】3.4.列方程组求解(略)3.5.检验合理性(略)4.拓展与延伸:两列火车分别在两平行的铁轨上行驶,其中快车长168m慢车长184m,如果相向而行,从相遇到离开需4s;如果同向而行,从快车追上慢车到离开需要16s;求两车的速度.4.1先让学生自行审题,画出示意图,想象情境.【学生活动:尝试分析问题,想象情境,试画出示意图】4.2动画演示情境,帮助学生理解题意.【学生活动:观察动画,丰富自己的知识经验】4.3列表列方程解决问题.【学生活动:在老师指导下,尝试列表、分析解决问题】5.巩固练习:课本p119页1、2【学生活动:练习,板演】6.小结:用示意图和表格分析问题各有什么特点?【学生活动:分小组议一议,在教师组织下达成共识】7.作业:课本p120-121:5、7板书设计:(略)
一、教学目的
1.使学生理解自变量的取值范围和函数值的意义。
2.使学生理解求自变量的取值范围的两个依据。
3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。
4.通过求函数中自变量的取值范围使学生进一步理解函数概念。
二、教学重点、难点
重点:函数自变量取值的求法。
难点:函灵敏处变量取值的确定。
三、教学过程
复习提问
1.函数的定义是什么?函数概念包含哪三个方面的内容?
2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?
(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的条件是什么?
(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)
4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。
新课
1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。
2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:
(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。
(2)自变量取值范围要使实际问题有意义。
3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。
推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。
4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:
(1)例3中的4个小题归纳起来仍是三类题型。
(2)求函数值的问题实际是求代数式值的问题。
补充例题
求下列函数当x=3时的函数值:
(1)y=6x-4;(2)y=--5x2;(3)y=3/7x-1;(4)。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小结
1.解析法的意义:用数学式子表示函数的方法叫解析法。
2.求函数自变量取值范围的两个方法(依据):
(1)要使函数的解析式有意义。
①函数的解析式是整式时,自变量可取全体实数;
②函数的解析式是分式时,自变量的取值应使分母≠0;
③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。
(2)对于反映实际问题的函数关系,应使实际问题有意义。
3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。
练习:P94中1,2,3。
作业:P95~P96中A组3,4,5,6,7。B组1,2。
四、教学注意问题
1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。
2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。
3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。
unit7foodsanddrinks(language)
教学目标1.让学生能掌握现在完成时的基本意义及形式。
2.帮助学生了解现在完成时中出现的副词:alreadyandyet;everandnever;sinceandfor;的用法及区别。
3.能在练习中较好地运用现在完成时。
教材分析
重点和难点1.掌握现在完成时的基本意义及形式
2.副词:alreadyandyet;everandnever;sinceandfor;的用法及区别。
3.过去分词的构成。
教具准备
教学过程
step1.leading-in
guessinggame,languagea1.showthepicturetothess,askthemtolistencarefullyandtrytofindoutwhatitis.
step2.revision(3mins)
reviewwhatwehavelearnedyesterday.
asksssomequestionsusingthepresentprefecttense.letthemanswerthequestionsinwholesentences.
e.g.t:“haveyouhadbreakfast?”
s:“yes,ihave.”/“no,lhaven’t.”
step3.learningandpractice(30mins)
1.alreadyandyet(10mins)
(1)t:"areyouhungry?”and“whydoyoufeelso?”
accordingtotheanswersofthess,theteachercanwritedownthesentenceswithalreadyandyetontheblackboard.andguidethemtofindtherulesinthistwoword.(groupwork)
rules:alreadycanbeusedinthepositivesentences.
yetcanbeusedinthenegativesentences.
(2)finishexaonpage103
2.everandnever(10mins)
(1)t:”whichbreakfastdoyoulike,westoreast?”tcanshowthepicturesatthesametime.t:”haveyouevervisitedaboard?”andwritedownthesentenceswitheverandneverontheblackboard.guidesstofindtherules.(groupwork)
(2)makeupasimilardialoguetoexbonpage104.
3.sinceandfor(10mins)
(1)readtheconversationbetweenhansanddoris.
a.introducethenewwords:”hamburg,hamburg.
b.askssfinishtheexerciseandtellthowtheyfindtheanswers.
(2)letthemsumuptheusageofsinceandfor.
step4.morepractice(6mins)
choosesomeexercisesfrombookb.
step5.homework(1mins)
(1)finishlanguageonbookb.
(2)makeupseveralsentencesaboutthelanguagespointstheyhavelearnedtoday.
教学反思
本文网址:http://m.jk251.com/jiaoan/4384.html