导航栏

×
范文大全 > 教案

[教案系列] 长方体的体积教案其六

老师职责的一部分是要弄自己的教案课件,每天,老师都需要写自己的教案课件。只有将教案课件提前准备充分,才能让学生更加快速地理解各知识点。你不是否正为教案课件而苦恼呢?下面是小编帮大家编辑的《[教案系列] 长方体的体积教案其六》,欢迎您阅读和收藏,并分享给身边的朋友!

教学内容:

人教版数学第十册第29页——30页的内容及相应的练习题教学目的:

1、通过实验探究长方体的体积计算公式,并能应用公式解决相应的实际问题。

2、让学生经历长方体体积公式的推导过程,理解体积计算公式。

3、培养学生动手拼摆能力,观察、归纳推理能力。教学重点:

体积公式的推导过程、体积公式的应用。教学难点:

体积公式的推导过程(每排个数、排数、层数和长方体长、宽、高之间的关系)教学准备:

学生分成2人小组,每组准备一些数量的小正方体、练习题单。教学过程:

一、直接导入

师:前面我们学习了常用的体积单位,今天我们来探究长方体的体积求法。

板书:长方体的体积

二、猜测、为学生指名探究方向

1、课件出示:一个长方体。师:你有什么方法能知道这个长方体的体积?

2、课件演示:把长方体切割成一个个的小正方体,数出每排个数、排数和层数;并用每排个数×排数×层数=总个数(即体积数)

3、师:(1)数小正方体个数的方法能解决所有的长方体体积问题吗?看来有必要得出一个求长方体体积的计算公式。

(2)猜测一下长方体的体积可能和长方体的什么有关?

4、课件演示,让学生理解长方体的体积与长方体的长宽高都有关系。

三、探究体积公式推导过程

1、师:接下来我们就一起用小正方体通过拼摆,来探究一下长方体的体积和长宽高之间到底有什么关系。

2、同桌合作:课件出示:合作要求:(1)齐读要求

(2)先摆,再观察,最后再填表。

3、学生动手操作,教师巡视指导

4、全班交流(1)小组汇报结果

(2)观察表格思考:你有什么发现?同桌先互说(3)全班交流发现

(4)师补充提问:每排个数、排数、层数和长方体的什么有关系?它们之间有什么关系呢?

结合学生的回答,观察一个摆好的长方体,理解每排个数、排数、层数和长宽高之间的对应关系。并多抽几个学生说说它们之间的关系。

5、师:你能推导出长方体的体积计算公式了吗?学生回答,教师适时板书:长方体的体积=长×宽×高

V=abh

6、回顾刚才的推导过程,同桌互说。

7、及时练习:出示一个长方体的文具盒

师:要求这个长方体文具盒的体积要知道什么条件?教师给出长宽高,学生计算,强调书写格式。

四、课堂练习

1、口算填表(见题单)

2、小法官

(1)两个体积相等的长方体,它们的长宽高一定相等。( ) (2)一个长方体的长宽高都扩大到原来的2倍,它的体积就扩大到原来的2倍。( )

3、建筑工地要挖一个长50米,宽30米,深50厘米的长方体土坑,一共要挖出多少方的土?(在工程中,1m3的土、沙、石等均简称“1方”)

4、考考你:下列长方体的体积各是多少立方厘米?(小正方体的棱长1厘米)(见题单)

五、小结下课

通过学习,你有什么收获?(方法和知识两个方面来说)板书:长方体的体积长方体所含体积单位的数量=每排个数×排数×层数长方体的体积=长×宽×高V=abh

课后反思:

1、对推导过程的关键地方突出不够,即,每排个数、排数、层数与长方体的长宽高的关系理解说理不够,应该让学生多说,还可以通过课件演示一下。

2、教师语言还不够准确、精炼,提出的数学问题还可以更加准确具有指向性,对于关键地方的引导还不够合理。

3、应该板书出:1立方米=1方。加强学生对两个单位关系的理解。

4、本节课对于时间的安排差不多,比以前的课堂要合理得多,基本上是按照预定的时间完成的,这是我本节课最满意的地方。

jk251.cOm扩展阅读

[课件分享] 长方体的体积教案范文


教师上课前最好是准备一份教案,教案也是老师教学活动的依据,要想在教学中不断进取,其秘诀之一就是编写好教案。怎样才能写好教案?下面是小编为大家整理的“[课件分享] 长方体的体积教案范文”相关内容,仅供参考,欢迎大家阅读。

教学目标:

1、在操作中,感知出长方体的体积大小与它的长、宽、高等有关,长方体的体积。

2、能运用长、正方体的体积公式,计算长、正方体的体积。并能运用所学知识解决一些实际问题。

3、借助学生自己的动手操作、动口表述及课件的动态演示,培养学生的空间观念。

教学重点:

体积公式的运用及公式的推导过程。

教学难点:

体验公式的推导过程。

教学过程:

一、比较大小,复习引入

1、比一比。出示书包、文具盒。问:谁大?谁小?

其实刚才我们在比他们的什么?体积指的是什么?

2、说出下列图形的体积是多大?你是怎么想的?(都是有棱长为1分米的正方体拼成的)

小结:要知道一个物体的体积,只要知道这个物体含有多少个这样的体积单位。

3、出示橡皮。问:什么形状?它有体积吗?体积多大?请你估一估,猜猜它有多大?

4、揭示课题。

二、动手操作,感知认识

1、拿出12个1立方分米的正方体,小组合作摆一个长方体,并说说它的长、宽、高是多少?体积是多大?

2、汇报交流。问:你们组摆的长方体的长、宽、高是多少?你能说说你们组是怎样摆的吗?体积是多少?

还有不同的摆法吗?(学生边说,老师边演示四种不同的摆法)

3、观察发现:通过刚才的摆,观察这些数据,你发现了什么?

4、再一次合作摆,小学数学教案《长方体的体积》。边摆边说你们组摆的长方体的长、宽、高是多少?又是怎么摆的?

三、启发探究,自主建构

1、出示长5分米、宽3分米、高2分米的长方体。

问:要摆成这样的长方体需要多少个棱长为1分米的正方体?体积是多少立方分米?你能利用手中的学具摆一摆吗?(开始活动,发现不够摆)

问:不够,怎么办?你能在头脑中想象,把它补充完整吗?(又开始活动)

2、汇报交流。并演示摆的过程。

3、出示长8分米、宽4分米、高3分米的长方体。你能摆这个吗?

4、听要求摆。

(1)自己摆一个长6分米、宽3分米、高2分米的长方体,并说说它的体积。

(2)想象一个9米、宽7米、高4米的长方体,并说说它的体积。

5、思考总结。体积与长、宽、高有怎样的关系呢?并快速验证黑板上的数据。

四、解决疑难,运用拓展

1、解决橡皮的体积。要求它的体积,需要知道什么?师提供测量数据,让学生求体积。

2、自己求数学书的体积。

3、出示:亚光纸箱厂生产一种正方体纸板箱,棱长是8分米。体积是多少立方分米?

4、小结正方体的体积公式。

五、全课总结

长方体的体积

长方体正方体的体积的教学 优秀小学教案 教案精选


教学内容苏教版九年义务教育小学数学教科书六年级上册第25-26页。教学过程一、设疑激趣,引发问题1.师:同学们,非常高兴今天又能和大家一起探讨有趣的数学问题。上节课,我们已经学习了体积和体积单位,谁能说说什么叫做物体的体积?谁能用手势分别比划一下1cm3、1dm2、1m3的物体大约有多大?2.师:老师手上的这个小正方体棱长是lcm,它的体积是多少呢?3个小正方体拼成的长方体呢?6个呢?同学们,你是怎样想的?可见求一个长方体的体积,就是要看这个长方体含有多少个体积单位。这个长方体的体积是多少呢?如果求这本大词典的体积呢?如果求我们电教室这根水泥柱的体积呢?(生:疑惑)在现实生活当中,许多长方体不能切或切不开,我们该怎么办呢?(生:找出求长方体体积的一般方法)长方体可能与哪些数量有关呢?(再次让学生猜想:可能与长方体的长、宽、高有关)猜想就是我们的思维向导,长方体到底与哪些数量有关,怎样计算呢?这就是我们这节课要探讨的问题。(师揭示课题)[教学设想:通过师生共同直观演示,复习导入,拓展学生空间概念,并联系生活实际创设新旧知识之间矛盾冲突的问题情境,激发学生强烈的学习和探究欲望,培养学生的创新意识。]二、操作实验,探索新知(一)探究长方体体积的计算。1.同学们任意拿出一些小方块(允许学生拿出相同或不同数量的小方块),小组合作,在桌面上摆出不同的长方体,并把相关数据和你们的发现填人《实验报告单》。实验报告单长/cm宽/cm高/cm小方块的数量体积/cm2通过以上实验,我们发现了。2.请2~3个小组汇报、展示小组的探究成果,启发学生发现规律。3.老师在电脑上用同样多的小方块也摆了一些不同的长方体,能让老师也展示一下吗?(师多媒体依次演示,师生共同填写实验报告单,并让学生比较四种摆法的相同点和不同点,进一步引导学生发现规律)实验报告单长/cm宽/cm高/cm小方块的数量体积/cm2431121232212121211121262112124.比较分析:以上四种摆法,长、宽、高不同,所用小方块数量相同,即摆出的长方体体积相等。它们共同的规律是体积都正好等于长、宽、高的乘积。5归纳概括:同学们的实验与老师的实验都发现了什么共同的规律?长方体体积=长×宽×高(v=abh)6.练一练(学生自主完成):老师手上这个长方体教具,长7cm,宽4cm,高3cm,它的体积是多少cm3?[教学设想:学生小组合作,动手操作拼出不同的长方体,填写实验报告单,充分调动学生参与长方体体积公式推导的积极性,为学生自主探究创造了广阔的时空。同时通过学生交流,师生交流,让学生比较、分析、概括实验过程,自主地去感知、观察和发现长方体体积与长、宽、高的关系,让学生体验到“做”数学的乐趣,老师是学习的组织者和引导者。练一练让学生尝试运用长方体体积计算公式解答,培养了学生动手、动脑及实际应用的能力。](二)探究正方体体积的计算:1.师出示一个长方体,长4cm,宽和高都是3cm。问:这个长方体有什么特征?怎样求它的体积呢?如果老师把它的长也缩短到3cm,那么它就变成了一个什么物体?(师:正方体是长、宽、高都相等的长方体,它是一种特殊的长方体)那么正方体的体积应该怎样求呢?(引导学生推导出:正方体体积=棱长×棱长×棱长,v=a*a*a或v=a3)2.师强调:“a3”读作“a的立方”,表示3个a相乘。3.练一练(学生自主完成):一块正方体石料,棱长是6dm,这块石料的体积是多少?[教学设想:运用知识迁移,引导学生把正方体归为特殊长方体来学习,既加深了对长、正方体之间关系的理解,又加深了对正方体体积计算公式的理解。]三、灵活运用,巩固内化1.明察秋毫当判官。(1)0.73=0.7×o.7×o.7…………()(2)5x3=15x…………()(3)一个正方体棱长4分米,它的体积是:42=16(立方分米)…………()(4)一个长方体,长7米,宽4米,高2分米,它的体积是56立方分米……()(5)一个正方体棱长6cm,它的体积和表面积相等…………()2.讲究方法对巧快。长方体长/dm宽/dm高/dm体积/dm3622538正方体棱长/m体积/m30.32043.学会知识任我行。(1)一个长方体儿童游泳池,长30m,宽20m,水高1.2m。如果每立方米水约重1000千克,这个游泳池有水多少吨?(2)一个正方体魔方玩具的棱长总和是60cm,这个正方体魔方玩具的体积是多少?(请两位学生板演,教师集体评讲)4.轻松一刻请你猜。(游戏:让学生猜猜一个物体的表面积和体积什么变了?什么不变?如果变了是怎样变的?)①当你翻开书本自学新课的时候。②当你用积木搭一座20xx北京奥运城的时候。③只要功夫深,铁棒磨成针。④刀切豆腐——两面光。⑤竹筒倒豌豆——全抖出来。5.解决问题显身手。求下面物体的体积。6×2×l+2×2×1=16(cm3)或2×2×2+4×2×1=16(cm3)……[教学设想:利用新颖多样的题型,把基础认知与思维发展紧密结合起来,以达到内化新知、形成技能、发展思维的目的。]四、总结评价,拓展升华1.引导学生回顾本课学习内容,谈谈学习本课的收获。老师认为同学们这节课学得很棒!能评价一下吗?(启发学生从学习态度、学习方法等方面自评、互评)同学们的收获真不少,只要勤动手,勤思考,一定会获取更多的数学知识,同学们也会变得越来越聪明。2.挑战自己我快乐。(拓展题)“一块不规则的铁块,如果只能借助两种工具:一个装有水的正方体容器,一把直尺。你能求出这块不规则铁块的体积吗?”这个问题留给同学们课后去实验、去思考、去解答。[教学设想:进一步沟通知识间的内在联系,并从课内延伸到课外,拓宽知识面,提高学生思维水平,着眼于学生的可持续发展。]

长方体正方体体积统的计算教案 优秀小学教案 教案精选


第三课长方体和正方体体积统一的计算

教学内容教材第43页的内容

教学目标

知识与技能

(1)在理解底面积的基础上,使学生掌握长方体和正方体体积统一计算公式

(2)提高学生综合运用知识的能力,发展学生的空间观念。

过程与方法

(1)通过探索研究将长方体和正方体体积的计算公式统一起来。

(2)通过解决实际问题加深对所学知识的理解。

情感态度与价值观

(1)体验合作探究的乐趣。

(2)感受数学与现实生活的密切联系,发展学生的思维。

教学重点理解底面积的含义,统一公式的推导。

教学难点对长方体和正方体统一的体积公式的理解和运用。

教学准备课件

教学过程

一、创设情境

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)

2、填空。

(1)长、正方体的体积大小是由确定的。

(2)长方体的体积=。

(3)正方体的体积=。

二、探索研究

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)

结论:长方体的体积=底面积×高

正方体的体积=底面积×棱长

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

结论:长方体(或正方体)的体积=底面积×高,用字母表示:

v=sh

三、课堂实践

1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。

2.做第35页的“做一做”的第2题。

首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。

3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。

四、课堂小结

学生小结今天学习的内容

五、课后实践

做练习七的第10、11、12题。

旁批:

后记:

长方体正方体的认识 教案精选


长方体和正方体的认识太仓市教师培训与教育研究中心杨惠娟[教学内容]教科书第10-11页的例1、例2,以及随后的“练一练”和练习三第1~5题。[教材简析]长方体和正方体是最基本的立体图形,从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。学生在低年级虽然接触过长方体和正方体,但只是直观形象的认识,本节课就是要在学生初步认识长方体和正方体的基础上,引导学生进一步探索长方体和正方体的特征,为继续学习长方体和正方体的表面积和体积奠定基础。[教学目标]1.学生通过观察、操作等活动认识长方体和正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征,理解它们之间的关系。2.学生在活动中进一步积累探索经验,增强空间观念,发展数学思考。3.学生体会立体图形学习与实际生活的联系,感受其价值,增强数学学习的兴趣和学好数学的自信心。[教学重点]探索长方体特征。[教学难点]理解长方体直观图;理解长方体和正方体之间关系。[教学准备]每生带一个长方体实物;课件。[教学过程]一、创设情境,激发兴趣1.请观察日常生活中常见的、典型的物体(课件呈现),提问:哪些物体的形状是长方体?2.说说生活中还有哪些物体的形状是长方体?[说明:通过观察激活学生已有的关于长方体的直观经验,通过交流不断积累长方体表象。]二、自主探究、合作交流1.观察物体,理解直观图。(1)师激疑:从不同角度观察一个长方体,最多能同时看到几个面?生试着从不同角度观察自己带来的长方体实物。汇报交流,达成共识:不论从哪个角度观察,最多只能同时看到3个面。相机呈现长方体直观图(动画演示:先画出能够看到的面,再勾出不能看到的面)。(2)认识面、棱、顶点。观察直观图,说说从一个角度看到了哪些面?哪些面不能看到?结合长方体直观图,师向学生介绍:两个面相交的线叫做棱,三条棱相交的点叫做顶点。(课件同时在图中作出标注)结合直观图中棱和顶点,说说它们分别是由哪些面(或棱)在此相交得到的?在小组里互相摸一摸,指一指长方体物体的面、棱和顶点。[说明:让学生在观察物体的基础上,借助多媒体演示,理解长方体的直观图,认识它的面、棱和顶点,这样既遵循了他们的认识规律,又有利于培养他们的空间观念。]2.探究长方体特征。(1)分小组研究长方体特征,填写“长方体的认识”研究报告单。“长方体的认识”研究报告单面棱顶点研究小组:看一看,量一量,比一比,并在小组里交流。(课件出示研究提纲)①长方体每个面都是什么形状?哪些面完全相同?②长方体有几条棱?哪些棱的长度相等?③长方体有几个顶点?(2)展示成果,交流方法。师提问:①面怎样数不重复不遗漏?你们是如何发现长方体相对的面完全相同?②棱怎样数不重复不遗漏?你们又是如何发现相对的棱的长度相等的?③顶点怎样数不重复不遗漏?学生交流方法,同时配课件演示。引导小结:长方体有6个面,12条棱,8个顶点,每个面都是长方形,相对面完全相同(也可能有两个相对面是正方形),相对的棱长度相等。(3)认识长、宽、高师:长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高,通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(课件演示)拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,告诉学生不管相交于哪个顶点的三条棱,都可以叫做这个长方体的长、宽、高。完成练一练和练习三第1题。[说明:学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试,让学生带着问题去观察操作,目标明确,任务具体。交流反馈时老师又一次提醒学生“是怎样数的”、“如何发现的”,目的是把握一切机会教学生学会学习方法。]3.探究正方体特征。课件演示长方体渐渐变成正方体,认真观察,发现了什么?(师述:长、宽、高都相等的长方体叫正方体(也叫做立方体)由于长、宽、高都相等所以称棱长)根据刚才研究的方法,请你们小组讨论研究出正方体的特征,填写“正方体的认识”研究报告单。展示成果,交流方法。归纳小结:正方体的6个面是完全相同的正方形,正方体的12条棱长度相等。[说明:让学生把学习长方体的特征的学习方法迁移到学习正方体的特征上来,使他们又对又快地达到学习目标。]4.比较长、正方体的特征,说说它们的相同点和不同点。老师引导学生按照面、棱、顶点的次序,引导学生找出它们的相同点和不同点并整理成表格。形体相同点不同点面棱顶点面的形状面积棱长长方体6个12条8个6个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的面积相等每一组互相平行的四条棱的长度相等正方体6个12条8个6个面都是正方形6个面的面积都相等12条棱的长度都相等练习三第3题。独立完成每小题,再交流反馈。[说明:学生已经基本掌握了长方体、正方体各自的特征,所以可以引导学生按照面、棱、顶点的顺序,通过讨论交流,来总结和概括它们的相同点和不同点,最后整理成表格,使学生明确正方体是特殊的长方体,渗透子集思想。表格的设计把本节的重点内容以图文表结合的形式生动形象直观地展现出来,给人铭刻记忆,融会贯通。]三、巩固运用拓展创新1.练习三第2题。借助直观图,根据图中标注的数据先同桌有条理地指一指、说一说每个面的长和宽,说说相关面之间的关系再独立把有关面的形状和长、宽有条理地写下来。2.练习三第4题。(1)先判断课本中摆出的几个图形中分别是长方体还是正方体,再同桌互相指一指每个图形中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。(2)每个学生用棱长1厘米的正方体摆一个长方体或正方体,在小组内互相说说摆出的长方体(正方体)的长、宽、高(棱长)。3.练习三第5题。[说明:练习内容丰富,多样,既加强了基础知识的训练,又提高学生的思维能力。]四、梳理知识反思总结你认为本节课,你最大的收获是什么?[总说明]1.现代学习心理学认为,知识并不能简单地由教师或其他人“传授”给学生,而只能由每个学生依据自己已有的知识和经验主动地加以“建构”。所以在本节课中,从学生的已有经验出发,让学生亲身经历数学知识的“再发现”、“再创造”过程,调动学生的学习主动性和积极性,在学知识过程中既发展了空间观念,又培养了能力;既培养独立思考能力,又培养了合作交流的能力,让学生感受到成功的喜悦。教师只是起着组织者、引导者、合作者的作用。2.把教学数学知识(特征及其相互关系)、数学方法(观察、数、发现的方法)、数学思想(子集思想)三者有机地结合起来,使学生既学数学知识,又学数学方法和数学思想。(此文发表在小学数学备课手册五年级下册)

教案推荐: 《长方体》教学设计


提起教案,我相信大家都不陌生,做好教案有利于教学活动的开展,要想在教学中不断进取,其秘诀之一就是编写好教案。有没有可以参考的教案呢?下面是小编特地为大家整理的“教案推荐: 《长方体》教学设计”。

教学目标:

1、让学生在动手的过程中初步认识长方体,掌握长方体的特征。

2、能从不同角度认识长方体的长、宽、高

3、培养学生的空间观念和空间想像能力。

教学重点:

掌握长方体的特征,认识长方体的长、宽、高

教学难点:

掌握长方体面和棱的特征。

教、学具准备:长方体模型、多媒体课件、长短不同的三种小棒若干、每人准备一个长方体盒子,剪刀,尺子,彩色笔

教学过程:

课前游戏:

你们喜欢旅游吗?都去过哪些地方?下面我们这个游戏就是考考大家的见识广不广。请大家闭上眼睛,老师叫一、二,你们睁开眼,立马喊出这些建筑物的名称。(课件出示各张图片)

一、激趣导入

刚才同学们欣赏了许多有名的建筑,老师还藏了一个。它是20xx年的焦点建筑,它通体透明,非常漂亮,你们猜一猜,它是什么?(水立方)

课件出示水立方图

从外观看,水立方是一个什么形体?(长方体)

如果工人叔叔现在要给水立方的这些地方(课件闪动顶点部分)安上射灯,给这些地方(课件闪动棱部分)装上彩条,对四周墙面进行装饰,需要运用长方体的哪些知识来解决呢?这节课我们就来研究长方体

二、探究长方体的特征

1、认识长方体面、棱、顶点的含义

请同学们拿出你身边的长方体,像老师这样(手平拖起长方体)

摸一摸这平平的部分,叫什么,你知道吗?(板书:面)

孩子们,再看,两个面相交的部分,叫什么?(板书:棱)

三条棱相交的一点,叫顶点(板书:顶点)

认识了长方体的面、棱、顶点,我来考考大家,我说什么,你就指什么?

2、要帮工人叔叔解决刚才提出的问题,还需要进一步学习长方体面、棱、顶点等各部分的特征。那下面我们就合作探究长方体的特征。

在探究之前,注意老师的要求,请看大屏幕:

(1)以小组为单位展开研究。

(2)通过量一量,比一比,剪一剪,说一说,找出长方体的特征。

(3)在组长的组织下分工合作填好表格。

(4)各组选派一到二名同学进行交流汇报。

1、长方体有()个面

2、每个面都是()形

3、特殊情况下有()个面是()形棱1、长方体有()条棱

2、可以分成()组,每组有()条棱顶点长方体有()个顶点

3、学生汇报交流

长方体有6个面,每个面是长方形,特殊情况下有两个面是正方形。相对的面大小、形状相同。(你们同意他的研究结果吗?板书特征)

有12条棱,分成3组,每组有4条,每组的棱长度相等(你们同意吗?板书)

有8个顶点(是这样吗?板书)

老师有几个问题想问你们可以吗?你凭什么说长方体相对的面大小相同?

你们所研究的棱是分成哪三组的,能指给大家看看吗?你是用什么方法证明每组棱长度相等的?

为了让大家看得更清楚长方体的特征,我们用大屏幕演示一下。(出示长方体面、棱、顶点的课件)

4、长方体长、宽、高的认识

指着黑板上的长方体:相交于一个顶点的有几条棱?它们分别叫长方体的长、]宽、高。

长方体的长、宽、高不是一层不变的,它会随着其摆放的位置不同而改变。

展示长方体模型,让学生从不同角度说出长方体的长、宽、高。

三、效果测评

在大家的共同努力下,我们找到了长方体面、棱、顶点的特征,清楚了吗?那我考考大家。

出示题一:连线题:长方体有几条棱,有几个顶点,有几个面

出示题二:填图题:根据长方体图形分别填出它的长、宽、高分别是多少

出示题三:判断题:

1、长方体相邻的两个面一定相等()

2、长方体有6个面,每个面有4条棱,总共是四六二十四条棱()

3、长方体有6个面,12条棱,8个顶点()

四、课堂小结

带着学生一起回顾本节课所学的内容。你都知道了长方体的什么知识呢?请学生拿着长方体上台边指着长方体,边说自己的收获。

这些就是教材P27-P29页的内容,请大家打开数学书,迅速浏览。

五、拓展提高

你们还有什么问题吗?那好,我相信大家一定学得很不错了,现在能解决刚才提出的水立方的问题了吗?

出示水立方及问题图

1、要给水立方的各个顶点装上射灯,一共需要多少个?

2、给水立方的每条棱(底面除外)都拉上彩条,至少需要多长的彩条?

3、如果对水立方的四周进行墙面装饰,需要装饰的墙面面积是多少平方米?

4、如果改变水立方长、宽、高,它会有什么变化呢?

课件演示整个变化过程

看来这些图形之间也有着内在联系的,在一定条件下还会相互转化。这就是学习几何图形有趣的地方。老师相信,你们一定能运用我们今天所学的知识,走进生活,去解决诸如水立方的实际问题。对吗?

教案推荐: 长方体、正方体的认识教案写作范例


教案课件是每个老师工作中上课需要准备的东西,写教案课件是每个老师每天都在从事的事情。写好了完备的教案课件,学生才能更好地接受各知识要求。你对于写教案课件有哪些疑问呢?下面是小编精心为您整理的“教案推荐: 长方体、正方体的认识教案写作范例”,欢迎阅读,希望您能阅读并收藏。

【教材分析】

苏教版课程标准教材编写的《长方体和正方体的认识》以学生已有的观察物体的丰富经验为基础,先明确长方体有几个面,从不同的角度观察一个长方体最多能同时看到几个面等知识,自然地由实物图抽象出直观图。在介绍棱和顶点的概念后,引导研究有几条棱、几个顶点,接着研究面和棱的特征。教材力图沟通棱、顶点和面之间的联系,引导学生用看一看、量一量、比一比的方法,在合作交流中探究长方体的特征。

在以往的教学中,我们大多注重用“直观实证”的方式研究长方体的特征,而对面、棱、顶点之间关系的认识更多停留在定义所描述的层次。这也就限制了这一内容对发展学生空间观念的作用。事实上,学生在以往的学习和日常生活的经验中,已经积累了关于长方体和正方体的一些认识。如何在此基础上,系统地、深层次构建对长方体特征的认识是值得研究的问题。学生学习“体”的困难往往在于缺少从面到体过渡的桥梁,从点、线、面到体的认识发展需要充分地在“体”上寻找点、线、面之间的联系,实现认知结构的顺应,这是空间观念建立的关键。

【教学片段】

师:刚才,同学们动脑筋有条理地数出了长方体有──

生(齐):6个面,12条棱,8个顶点。

师:我们的研究不能满足于“是什么”,还要探究“为什么”。

(学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)

师:没问题?我先来说一个,长方体有6个面,每个面都是(长方形),长方形有4条边,这些边就是长方体的(棱)。那长方体就应该有6×4=24条棱,可为什么只有12条棱呢?

(学生仔细打量眼前的长方体模型,积极探索着答案。)

生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。

师:那应该怎样算呢?

生(齐):6×4÷2=12条棱。

师:你现在也能提一些“为什么”的问题吗?

生1:长方体的6个面,每个面上有4个顶点,能算出24个顶点,为什么只有8个顶点?

师:问得好!你有答案吗?

生1:我有答案,但想让其他同学回答。

生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6×4÷3=8个顶点。

师:真是太好了!刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?

生1:能不能由棱的条数推算出顶点的个数、面的个数?

生2:由顶点的个数是不是也能推算出面的个数和棱的条数?

师:真会提问题!同学们有兴趣研究吗?

(学生兴致勃勃地研究并汇报了两个问题。)

师:观察一下这6道算式,在利用面、棱、顶点之间关系推算时,有什么规律?

生1:都先算出了24。这是为什么?

(学生陷入了沉思,不一会儿,陆续举起手。)

生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。

生3:推算时,就要先算出24条边或24个顶点,再看看与要求的面、棱、顶点之间的数量关系,计算出最后的结果。

师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么”。

……

师:同学们通过看一看、量一量、比一比等多种方法发现了长方体面和棱的特征。除此之外,有没有其他方法研究面和棱的特征?

生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。

师:反过来呢?

生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。

师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。

【教学反思】

一、数学学习是经验的,也是推理的

新课程注重向学生提供充分的从事数学活动的机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。

二、空间观念是具象的,也是关系的

一般认为,小学阶段几何图形教学承载的空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素——面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的观念基础。

三、课堂思考是个体的,也是群体的

学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。

时长方体正方体的认识 教案精选


第二课时长方体和正方体的认识(2)

教学内容:教科书p12页例3,“试一度”、练习三(6、7)。

教学目标:

1、使学生通过观察、操作等活动认识长方体、正方体的侧面展开图。强化对长方体面和棱特征的认识。

2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

教学重点与难点:认识长方体的侧面展开图。

学前准备:长、正方体模型、课件、长、正方体形状的纸盒等

教学过程:

一、复习引入

谈话:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

指名说说,全班交流补充。

二、探究新知

(1)除了同学们说的这些,长方体和正方体还有什么特征呢,这节课我们就继续来进行学习。

出示正方体纸盒:

你能够沿着这个正方体的棱把这个正方体纸盒剪开吗?

要求:剪的时候要沿着沿着棱剪,冰且各个面要互相联在一起。

学生尝试操作。

小组里交流。

(2)这个长方体纸盒你也能够沿着棱把它剪开吗?

学生独立操作。

看看长方体的展开图,你有什么发现?引导学生观察交流。

追问:你能从展开图中找到3组相对的面吗?

(3)完成练一练第1题

标注完后引导学生具体说说思考的过程。

(4)完成练一练第3题

先引导学生通过想象进行判断,在此基础上再动手操作进行验证。

三、巩固练习

1、完成练习三第6题

学生小组交流,独立操作验证。

2、完成练习三第7题

学生独立完成,全班交流,指名说说自己连现实的思考过程。

3学有余力时可完成思考题

启发学生思考:要围成一个长方体或正方体需要几张硬纸片,这几张硬纸片的形状的大小有什么联系?

让学会僧通过操作逐步掌握其中的规律。

三、全课总结

通过这节课的学习你有哪些收获?你认为今天学习的内容什么是重点?

四、作业

自己动手制作一个长方体纸盒。

教学反思:

教学长方体正方体的认识 教案精选


《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索、合作交流是学生学习数学的重要方式。”而《长方体和正方体的认识》一课是小学生学习立体几何图形的起始课,因此,如何在课堂上引导学生主动认识长方体和正方体的特征是本节课教学的难点。这节课我遵循了学生的认识规律而设计教案,是按“认识概念——合作研究长方体特征——自由学习正方体特征——总结二者关系——运用”的层次来安排的,使学生的理解一步步加深。不足之处是建立长方体的概念的时候,还要使学生多了解一些立体图形,以帮助他们正确区分平面图形和立体图形,增强对立体图形的感知。另外,我也缺乏足够的教具和学具,没能提供多种学具给所有的学生充分操作实践的机会,让他们都能通过亲手摸一摸、数一数、量一量来认识发现长方体的特征。如果让学生通过各种感官去认识长方体,那么他们将对学习的新知印象更加深刻。在练习方面,我觉得还需多准备一些有层次的、有针对性的的习题。这样,才能帮助学生进一步加深对几何形体的认识,牢牢掌握长方体和正方体的特征,发展空间观念,也为后面学习表面积的计算打下基础。

本文网址:http://m.jk251.com/jiaoan/52501.html

相关文章
最新更新

热门标签