导航栏

×
范文大全 > 高中教案

“预设”与“生成”不是“你死我活”【推荐】

在我们的高中教学中都离不开教案的撰写,撰写教案有利于教研活动的进行,用心编写教案才能促进教学进一步发展,你是否在烦恼高中教案怎么写呢?下面是由小编为大家整理的“预设”与“生成”不是“你死我活”【推荐】,仅供参考,欢迎大家阅读。

“生成”是新课程倡导的一个重要教学理念。“生成”对应于“预设”。传统的课堂教学,常常只有预设而不见生成。教师期望学生按教案设想做出回答,不要“节外生枝”,否则就努力引导学生得出预定答案为止……

数学课标指出,教师与学生都是课程内容的开发者。教学不应是预先设计的教学方案执行的过程,而是持续生成教学内容的过程。它应该突破“预设”的樊笼,变“预设”为“生成与建构”,引导学生在“生成”中建构属于自己的认知结构。

请看下面《圆的周长》教学片断,由于新旧理念的不同,课堂教学的生成价值不同。

教研公开课上,教师在让学生讨论了测量圆的周长的方法后,给学生提供直径不同的圆硬纸片材料,探究圆的周长与直径有什么关系。并这样导入:我们知道正方形周长是边长的4倍,那么圆的周长与直径是否也存在一定的倍数关系呢?这个问题让同学们自己去发现,请分组测量圆片,填好实验报告单。这时,居然有很多学生小声地说:“我知道的,圆的周长是直径的3倍多一点。”“我知道圆的周长是直径的3.14倍”……

学生的小声议论,使教师原先精心设计的各个精妙的教学环节与预先设计好了的精心提问,一下子全泡了汤。

此时,上课的这位教师有些不自然:是吗,有些同学真聪明!现在请同学们小组合作,测量圆的周长与直径,看看圆的周长与直径到底有怎样的关系,填好实验报告单,然后汇报交流。

请看另一位教师是如何处理这样的问题的。教师略带兴奋地说:“请知道圆周长与直径关系的同学举一下手。”结果全班竟有半数的学生举起了手!是啊,学生有书,他们已经预习了。接着教师问学生:“你们是怎么知道的呢?”“从书上看来的?”“那么你知道书上的这个结论是怎么得出的吗?”“不知道”。这时这位教师即时肯定:“大家说得结论是正确的,你们能提前预习,这种主动学习的精神值得肯定,可是大家却不知道这个规律是怎么得出的,没经过我们自己的验证,大家想不想自己动手设计几个方案,来验证结论?”“想!”同学们异口同声地回答说。“今天老师就请你们自己当一回老师,你能用手中的这些圆片,以及刚才讨论的测量圆的周长的方法,来证明你们刚才说的这个规律吗?”“能!”“好!下面就开始,可以几个人组成学习小组合作验证,看哪个小组能利用手中的学具最先证明圆的周长是直径的3倍多一点。”教师适时地参与学生的讨论、交流、验证,在此基础上,组织学生逐步概括出圆的周长计算公式与方法。

【反思】:面对学生已经知道圆周长与直径的关系这一始料未及的问题,令全班学生和台下听课老师为之瞠目的时候,前一教师一带而过,继续按原来的教学预设组织教学,虽然顺利地完成了教学任务,但从某种程度上来说,这样的教学否定了事实,是对学生活力生成的阻碍、压抑。对同样的问题,后一教师随机应变,及时改变预设的程序,创造性地组织了以上的教学。这既是对学生发现的肯定,更是尊重学生的表现。这样的教学真正使学生成为了学习的主人,反映了课堂教学的真实自然。

【探讨】:生成对应于预设,深陷在“预设”的樊笼里,框得过死,显然不利于学生的发展。而纯粹的“生成”也属空中楼阁,矫枉过正。因此,我们应在预设基础上追求课堂教学的动态生成与主动建构。

1.教案设计:给生成留下足够的空间

课前设定越多,课上学生的自由空间也许就越小。受传统教学的影响,我们在设计时往往喜欢面面俱到。教师如何问,学生如何答;什么时候小结,过渡等等,环环相扣,不知不觉间给自己和学生来了个五花大绑!当课堂上学生搭不好长方体、正方体的时候,已经知道了圆周长与直径关系的时候,教学情境与预设不一致的时候,不少教师就感到束手无策,不知应变。因此,我们在教案设计的时候,就不妨为学生的主动参与留出时间和空间,为教学过程的动态生成创设条件。

2.教学流程:在生成中即时“变奏”

教学过程是一个生成性的动态过程,有着一些我们无法预见的教学因素和教学情境。因此,教学中经常会有与课前预设不一致甚至相矛盾的意外情况发生,这些意外,或许其中就蕴含着许多有价值的教学资源。如在课堂上,面对有的小组搭不好长方体、正方体这一意外,如果教师不拘泥于预设的教案,及时改变预设的程序----“让我们一起找找原因怎样”?教学效果是否会更好?这样,我们的教案、我们的教学必将在动态生成中峰回路转,更趋完善。

3.探究方案:在生成中适时“调整”

新课程倡导学生的自主探究、动手操作、合作交流,但课堂上我们却常常陷入尴尬的境地。为了让学生能够顺利地探究,提高40分钟的效率,我们常常主动地帮助学生设计好探究方案、目标,但学生在探究前却已经知道了答案,如本文中所讲的案例,学生已经知道了圆周长与直径的关系。此时,如果我们继续按照原来的预设进行教学,必然会出现一些形式化的“假”探究。因此,我们的探究方案要在新的生成性信息面前,适时调整,改变预设的程序,这样,课堂才会走入“柳暗花明又一村”的新境界。

JK251.com延伸阅读

复数的乘法与除法【推荐】


教学目标

(1)掌握复数乘法与除法的运算法则,并能熟练地进行乘、除法的运算;

(2)能应用i和的周期性、共轭复数性质、模的性质熟练地进行解题;

(3)让学生领悟到“转化”这一重要数学思想方法;

(4)通过学习复数乘法与除法的运算法则,培养学生探索问题、分析问题、解决问题的能力。

教学建议

一、知识结构

二、重点、难点分析

本节的重点和难点是复数乘除法运算法则及复数的有关性质.复数的代数形式相乘,与加减法一样,可以按多项式的乘法进行,但必须在所得的结果中把换成-1,并且把实部与虚部分合并.很明显,两个复数的积仍然是一个复数,即在复数集内,乘法是永远可以实施的,同时它满足并换律、结合律及乘法对加法的分配律.规定复数的除法是乘法的逆运算,它同多项式除法类似,当两个多项式相除,可以写成分式,若分母含有理式时,要进行分母有理化,而两个复数相除时,要使分母实数化,即分式的分子和分母都乘以分母的共轭复数,使分母变成实数.

三、教学建议

1.在学习复数的代数形式相乘时,复数的乘法法则规定按照如下法则进行.设是任意两个复数,那么它们的积:

也就是说.复数的乘法与多项式乘法是类似的,注意有一点不同即必须在所得结果中把换成一1,再把实部,虚部分别合并,而不必去记公式.

2.复数的乘法不仅满足交换律与结合律,实数集R中整数指数幂的运算律,在复数集C中仍然成立,即对任何,,及,有:

,,;

对于复数只有在整数指数幂的范围内才能成立.由于我们尚未对复数的分数指数幂进行定义,因此如果把上述法则扩展到分数指数幂内运用,就会得到荒谬的结果。如,若由,就会得到的错误结论,对此一定要重视。

3.讲解复数的除法,可以按照教材规定它是乘法的逆运算,即求一个复数,使它满足(这里,是已知的复数).列出上式后,由乘法法则及两个复数相等的条件得:

由此

于是

学习知识和提高能力却十分重要。它可以有效地锻炼我们的逆向思维,拓宽和加深我们的知识,使我们对一个问题的认识更加全面。

5.教材194页第6题这是关于复数模的一个重要不等式,在研究复数模的最值问题中有着广泛的应用。在应用上述绝对值不等式过程中,要特别注意等号成立的条件。

教学设计示例

复数的乘法

教学目标

1.掌握复数的代数形式的乘法运算法则,能熟练地进行复数代数形式的乘法运算;

2.理解复数的乘法满足交换律、结合律以及分配律;

3.知道复数的乘法是同复数的积,理解复数集C中正整数幂的运算律,掌握i的乘法运算性质.

教学重点难点

复数乘法运算法则及复数的有关性质.

难点是复数乘法运算律的理解.

教学过程设计

1.引入新课

前面学习了复数的代数形式的加减法,其运算法则与两个多项式相加减的办法一致.那么两个复数的乘法运算是否仍可与两个多项式相乘类似的办法进行呢?

教学中,可让学生先按此办法计算,然后将同学们运算所得结果与教科书的规定对照,从而引入新课.

2.提出复数的代数形式的运算法则:

指出这一法则也是一种规定,由于它与多项式乘法运算法则一致,因此,不需要记忆这个公式.

3.引导学生证明复数的乘法满足交换律、结合律以及分配律.

4.讲解例1、例2

例1求.

此例的解答可由学生自己完成.然后,组织讨论,由学生自己归纳总结出共轭复数的一个重要性质:.

教学过程中,也可以引导学生用以上公式来证明:

例2计算.

教学中,可将学生分成三组分别按不同的运算顺序进行计算.比如说第一组按进行计算;第二组按进行计算.讨论其计算结果一致说明了什么问题?

5.引导学生得出复数集中正整数幂的运算律以及i的乘方性质

教学过程中,可根据学生的情况,考虑是否将这些结论推广到自然数幂或整数幂.

6.讲解例3

例3设,求证:(1);(2)

讲此例时,应向学生指出:(1)实数集中的乘法公式在复数集中仍然成立;(2)复数的混合运算也是乘方,乘除,最后加减,有括号应先处括号里面的.

此后引导学生思考:(1)课本中关于(2)小题的注解;(2)如果,则与还成立吗?

7.课堂练习

课本练习第1、2、3题.

8.归纳总结

(1)学生填空:

;==.

设,则=,=,=,=.

设(或),则,.

(2)对复数乘法、乘方的有关运算进行小结.

9.作业

课本习题5.4第1、3题.

运动的合成与分解【推荐】


教学目标

知识目标

1、通过对多个具体运动的演示及分析,使学生明确什么是合运动,什么是分运动;合、分运动是同时发生的,并且不互相影响.

2、利用矢量合成的原理,解决运动合成和分解的具体情况,会用作图法、直角三角形的知识解决有关位移、速度合成和分解的问题.

能力目标

培养学生应用数学知识解决物理问题的能力.

情感目标

通过对运动合成与分解的练习和理解,发挥学生空间想象能力,提高对相关知识的综合应用能力.

教学建议

教材分析

本节内容可分为四部分:演示实验、例题、对运动合成和分解轨迹的分析、思考与讨论,但都是围绕演示实验而展开的,层层深入,由提出问题到找出解决问题的方法,以至最后对运动合成和分解问题的进一步讨论.

教法建议

关于演示实验所用的器材、材料都比较容易得到,实验也容易成功.此实验是本节的重点.一些重要的结论规律都是由演示实验分析得出的.观察红蜡块的实际运动引出合运动,并分析红蜡块的运动可看成沿玻璃管竖直方向的运动,和随管一起沿水平方向的运动,从而得出分运动的概念.着重分析蜡块的合运动和分运动是同时进行的,并且两个分运动之间是不相干的.合运动和分运动的位移关系,在演示中比较直观.而明确了它们的同时性,就容易得出合运动和分运动的速度关系.因此,课本在这里同时讲述了合运动和分运动的位移及速度的关系.即找到了解决运动合成和分解的方法——平行四边形定则.它是解决运动合成和分解的工具,所以在处理一个复杂的运动时,首先明确哪个是合运动,哪个是分运动,才能用平行四边形法则求某一时刻的合速度、分速度、加速度,某一过程的合位移、分位移.课本中合运动的定义是:红蜡块实际发生的运动,(由)通常叫合运动,即实际发生的运动,也理解为研究对象以地面为参照物的运动,再给学生举几个实例来说明如何确定合运动.如:

1、风中雨点下落表示风速,表示没风时雨滴下落速度,v表示雨滴合速度.

2、关于小船渡河(如图):表示船在静水中的运动速度,方向由船头指向确定.表示水的流速,v表示雨滴合速度.

在研究雨滴和船的运动时,解决问题的关键是先确定雨滴、小船实际运动(合运动).

注意应用平行四边形定则时,合矢量在对角线上,问题马上得到解决.

关于例题:例1:将演示实验过程定量讨论.给出两个分运动、及合、分运动的时间,求合速度.

法一;先求出两个分速度再利用矢量合成求v.

法二:先利用矢量合成求出s,再由求出v.

例2:飞机飞行给出及与某一分速度角度,来求另外两个分速度.其思路先由平行四边形法则画出几何关系,再利用数学计算解决分速度问题.

两道例题很简单,但合、分运动关系及解决问题的方法、思路充分体现出来.通过练习使学生们加深了对合、分运动的理解.

关于分运动的性质决定合运动的性质和轨迹:课本以蜡块的运动说明两个直线运动的合运动不一定都是直线运动.为了搞清楚蜡块哪种情况下做直线运动,哪种情况下做曲线运动.这里可以让学生自己探究,得出结论:两个直线的合运动也可以是曲线运动.研究复杂的运动,可以根据不同方向分运动来研究复杂运动情况.

关于思考与讨论:本节只研究了互成角度的运动,其合成和分解遵从矢量合成规律——平行四边形定则.那么初速度为的匀变速直线运动,可以看作同一直线上哪两个分运动的合运动?引导学生对同一直线上的运动合成和分解问题进行讨论,得出该运动也满足矢量合成规律(注意正方向),使我们对矢量合成与分解的规律有了更深的理解.

教学设计方案

运动的合成和分解

教学重点:

对于一个具体运动确定哪个是合运动以及合、分运动的关系(矢量图),并能用矢量合成规律解决实际问题.

教学难点:对合运动的理解.

主要教学设计:

由演示实验引出课题.首先介绍实验装置及研究对象,然后演示两个过程:红蜡块匀速上升;红错块匀速上升的同时将玻璃管向右水平匀速移动.观察蜡块轨迹——倾斜直线,从而引出课题.我们研究较复杂的运动,可以用到运动的合成和分解知识.实际运动参与两个运动,本例中竖直方向和水平方向,而实际运动沿倾斜直线运动.

一、如何确定一个具体运动的合运动及分运动?

1、合运动----研究对象实际发生的运动

2、合运动在中央,分运动在两边

讨论:有风天气雨滴下落、小船过河,加深同学们对合运动,就是研究对象实际发生运动的理解.(结合课件1、2).

引导分析:雨点斜落向落到地面,此实际运动方向为合速度方向;注意区别船头方向为分速度方向,而船实际航行方向为合速度方向.

进一步研究合、分运动关系,(由演示实验说明)重新演示红蜡块运动的两个分运动:管不动,蜡块匀速上升管长度所用时间,管水平匀速移动蜡块匀速上升,观察并记录直到蜡块到达管顶所用时间t.由和t的关系再结合课件l、2得出:

二、合、分运动关系

1、合、分运动的等时性

2、合、分运动关系符合平行四边形定则

三、利用矢量合成与分解规律解决实际问题

例1学生自己分析:已知两分运动位移、及合运动时间(先画v、s矢量图)

方法一:

方法二:

例2思路:先画矢量图,并标已知、未知,然后由几何关系求两分速度

四、两个直线运动的合运动轨迹的确定

演示实验中蜡块同时参与竖直向上和水平向右两个运动,其合运动轨迹是直线.任何两个直线运动的合运动轨迹一定是直线吗?

讨论方法:图像方法

写出关于两个方向运动性质位移方程,取不同时刻描点.

分两层次:基础差的学生利用课件3演示

基础好的学生探究活动(活动方案见下面)

探究活动

研究方法:

要求学生自己阅读本章节最后两段及习题中最后一道题,然后找出研究方法.(图像方法)

互相交流:

满足什么条件可以得出这个结论——怎样得出这个结论.

总结:

对学生的研究过程给予评价,最后提出若两个分运动都是匀加速运动,其运动轨迹如何?两个分运动都是初速度为零的匀加速运动,其运动轨迹又是如何?

清兵卫与葫芦教案(小编推荐)


一、导入

我们已经学习了很多关于小说的理论知识,如叙述、场景、人物、主题等。

这些都不可或缺,但我们在平时的阅读中却都感受到,决定一篇小说能引人入胜的是?(停顿,等学生回答出“情节”后板书情节)今天,我们一起走入日本作家志贺直哉的《清兵卫与葫芦》,来探讨情节的奥秘。

二、梳理情节

请用一两句话概括小说情节四个部分——发生(开端)、发展、高潮、结局的主要内容(ppt2)。等两三位同学发言后,教师出示ppt3。

三、探究一:情节设置的用意

从同学的回答可以发现,大家比较困惑的是小说的开端和高潮。是的,这篇小说有两处与一般小说不同,一是发生部分很长,尤其是7-20段花了大量笔墨;二是设置了两个高潮。那么请大家思考(ppt4),可相互交流一下。

学生回答。回答对的直接出示ppt5、6

教师总结,完成板书情节模式,下面写上的“生发”、“揭示主题”。

四、探究二:摇摆及其作用

我们还发现,这篇小说情节并不复杂,主要事件无非是开端的赏玩葫芦(2

-6)、课堂上没收葫芦(28、29)、教员家访父亲砸葫芦(31-36)等几处。你能体会到作家是如何设置这三部分的情节的吗?这样有何作用(ppt7)?

学生小组讨论后回答。若回答提到起伏等内容,教师出示ppt8、9,并板书

摇摆。

学生继续回答。在回答过程中教师逐渐展示ppt10、11、12、13。

教师总结摇摆的作用(ppt14)。

五、小结:情节模式及情节原理

可以出示ppt15,也可以跳过。

六、拓展运用

请大家阅读课后p68-70的知识短文和美国小说家欧•亨利的《警察与赞美诗》,看看作家是如何在小说中运用情节理论的。可试着写一篇或一段文学评论。

充分条件与必要条件【推荐】


教学目标

(1)正确理解充分条件、必要条件和充要条件的概念;

(2)能正确判断是充分条件、必要条件还是充要条件;

(3)培养学生的逻辑思维能力及归纳总结能力;

(4)在充要条件的教学中,培养等价转化思想.教学建议

(一)教材分析

1.知识结构

首先给出推断符号“”,并引出的意义,在此基础上讲述了充要条件的初步知识.

2.重点难点分析

本节的重点与难点是关于充要条件的判断.

(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.

(2)在判断条件和结论之间的因果关系中应该:

①首先分清条件是什么,结论是什么;

②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;

③最后再指出条件是结论的什么条件.

(3)在讨论条件和条件的关系时,要注意:

①若,但,则是的充分但不必要条件;

②若,但,则是的必要但不充分条件;

③若,且,则是的充要条件;

④若,且,则是的充要条件;

⑤若,且,则是的既不充分也不必要条件.

(4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断.

①若,则是的充分条件;

显然,要使元素,只需就够了.类似地还有:

②若,则是的必要条件;

③若,则是的充要条件;

④若,且,则是的既不必要也不充分条件.

(5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.

(二)教法建议

1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题.

2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.

3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.

4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.

教学设计示例

充要条件

教学目标:

(1)正确理解充分条件、必要条件和充要条件的概念;

(2)能正确判断是充分条件、必要条件还是充要条件;

(3)培养学生的逻辑思维能力及归纳总结能力;

(4)在充要条件的教学中,培养等价转化思想.

教学重点难点:关于充要条件的判断

教学用具:幻灯机或实物投影仪

教学过程设计

1.复习引入

练习:判断下列命题是真命题还是假命题(用幻灯投影):

(1)若,则;

(2)若,则;

(3)全等三角形的面积相等;

(4)对角线互相垂直的四边形是菱形;

(5)若,则;

(6)若方程有两个不等的实数解,则.

(学生口答,教师板书.)

(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.

置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的?

答:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.

对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作.

2.讲授新课

(板书充分条件的定义.)

一般地,如果已知,那么我们就说是成立的充分条件.

提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.

(学生口答)

(1)“,”是“”成立的充分条件;

(2)“三角形全等”是“三角形面积相等”成立的充分条件;

(3)“方程的有两个不等的实数解”是“”成立的充分条件.

从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的条件,也就是必要条件.

(板书必要条件的定义.)

提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.

(学生口答).

(1)因为,所以是的充分条件,是的必要条件;

(2)因为,所以是的必要条件,是的充分条件;

(3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;

(4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;

(5)因为,所以是的必要条件,是的充分条件;

(6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件.

总结:如果是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作.

(板书充要条件的定义.)

3.巩固新课

例1(用投影仪投影.)

B

A是B的什么条件

B是的什么条件

是有理数

是实数

、是奇数

是偶数

是4的倍数

是6的倍数

(学生活动,教师引导学生作出下面回答.)

①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件;

②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件;

③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件;

④表示或,所以是成立的必要非充分条件;

⑤由交集的定义可知且是成立的充要条件;

⑥由知且,所以是成立的充分非必要条件;

⑦由知或,所以是,成立的必要非充分条件;

⑧易知“是4的倍数”是“是6的倍数”成立的既非充分又非必要条件;

(通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)

例2已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影)

解:由已知得

所以是的充分条件,或是的必要条件.

4.小结回授

今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.

课内练习:课本(人教版,试验修订本,第一册(上))第35页练习l、2;第36页练习l、2.

(通过练习,检查学生掌握情况,有针对性的进行讲评.)

5.课外作业:教材第36页习题1.81、2、3.

研究性课题与实习作业【推荐】


教学目标

(1)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

(2)了解线性规化问题的图解法;

(3)培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;

(4)引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.

教学建议

一、重点难点分析

学以致用,培养学生“用数学”的意识是本节的重要目的。学习线性规划的有关知识其最终目的就是运用它们去解决一些生产、生活中问题,因而本节的教学重点是:线性规划在实际生活中的应用。困难大多是如何把实际问题转化为数学问题(既数学建模),所以把一些生产、生活中的实际问题转化为线性规划问题,就是本节课的教学难点。突破这个难点的关键就在于尽快熟悉生活,了解实际情况,并与所学知识紧密结合起来。

二、教法建议

(l)建议可适当采用电脑多媒体和投影仪等先进手段来辅助教学,以增加课堂容量,增强直观性,进而提高课堂效率.

(2)课堂上可以设计几个实际让学生分组研讨解答,一方面是复习线性规划问题的一般解法,为总结线性规划问题的数学模型和常见类型作铺垫;另一方面,也为接下来到外面分组调研积累经验,让学生在讨论、探究过程中初步学会沟通与合作,共同完成活动任务.

(3)确定研究课题,建议各小组以三个常见问题为主,或者根据本小组实际自拟课题.

(4)活动安排,建议要求各小组分式明确,团结协作,听从指挥,注意安全.学生研究活动的成果,可以用研究报告或论文的形式体现.一切以学生自己的自主探究活动为主,教师不能越俎代庖.

(5)对学生在课余时间开展的研究性课题,建议作做好成果展示、评估和交流.展示不仅可以让全体学生来分享成果,享受成功的喜悦,而且还可以锻炼学生的组织表达能力,增强学生的自信心.通过评估,可以使同学清楚地看到自己的优点与不足.通过交流研讨,分享成果,进行思维碰撞,使认识和情感得到提升.

教学设计方案

教学目标

(1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

(2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;

(3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;

(4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.

重点难点

理解二元一次不等式表示平面区域是教学重点。

如何扰实际问题转化为线性规划问题,并给出解答是教学难点。

教学步骤

(一)引入新课

我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?

(二)线性规划问题的教学模型

线性规划研究的是线性目标函数在线性约束条件下取最大值或最小值问题,一般地,线性规划问题的数字模型是

已知其中都是常数,是非负变量,求的最大值或最小值,这里是常量。

前面我们计论了两个变量的线性规划问题,这类问题可以用图解法来求最优解,涉及更多变量的线性规划问题不能用图解法求解。比如线性不等式不能用图形来表示它,那么对四元线性规划问题就不能用图形来求解了,对这样的线性规划问题怎样求解,同学们今后在大学学习中会得到解决。

线性规划在实际中的应用

线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务,常见问题有:

1.物调运问题

例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调运方案,能使总运费最小?

2.产品安排问题

例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,能使每月获得的总利润最大?

3.下料问题

例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?

4.研究一个例子

下面的问题,能否用线性规划求解?如能,请同学们解出来。

某家具厂有方木料,五合板,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料、五合板,生产每个书橱需要方木料、五合板,出售一张书桌可获利润80元,出售一个书橱可获利润120元,如果只安排生产书桌,可获利润多少?如何只安排生产书橱,可获利润多少?怎样安排生产时可使所得利润最大?

A.教师指导同学们逐步解答:

(1)先将已知数据列成下表

(2)设生产书桌x张,生产书橱y张,获利润为z元。

分析:显然这是一个二元线性问题,可归结于线性规划问题,并可用图解法求解。

(3)目标函数

①在第一个问题中,即只生产书桌,则,约束条件为

∴最多生产300张书桌,获利润元

这样安排生产,五合板先用光,方木料只用了,还有没派上用场。

②在第二个问题中,即只生产书橱,则,约束条件是

∴最多生产600张书橱,获利润元

这样安排生产,五合板也全用光,方木料用去了,仍有没派上用场,获利润比只生产书桌多了48000元。

③在第三个问题中,即怎样安排生产,可获利润最大?

,约束条件为

对此,我们用图解法求解,

先作出可行域,如图阴影部分。

时得直线与平行的直线过可行域内的点M(0,600)。因为与平等的过可行域内的点的所有直线中,距原点最远,所以最优解为,即此时

因此,只生产书橱600张可获得最大利润,最大利润是72000元。

B.讨论

为什么会出现只生产书橱,可获最大利润的情形呢?第一,书橱比书桌价格高,因此应该尽可能多生产书橱;第二,生产一张书橱只需要五合板,生产一张书桌却需要五合板,按家具厂五合板的存有量,可生产书橱600张,若同时又生产书桌,则生产一张书桌就要减少两张书橱,显然这不合算;第三,生产书橱的另种材料,即方木料是足够供应的,家具厂方木料存有量为,而生产600张书橱只需要方木料。

这是一个特殊的线性规划问题,再来研究它的解法。

C.改变这个例子的个别条件,再来研究它的解法。

将这个例子中方木料存有量改为,其他条件不变,则

作出可行域,如图阴影部分,且过可行域内点M(100,400)而平行于的直线离原点的距离最大,所以最优解为(100,400),这时(元)。

故生产书桌100、书橱400张,可获最大利润56000元。

总结、扩展

1.线性规划问题的数字模型。

2.线性规划在两类问题中的应用

布置作业

到附近的工厂、乡镇企业、商店、学校等作调查研究,了解线性规划在实际中的应用,或提出能用线性规划的知识提高生产效率的实际问题,并作出解答。把实习和研究活动的成果写成实习报告、研究报告或小论文,并互相交流。

探究活动

如何确定水电站的位置

小河同侧有两个村庄A,B,两村庄计划于河上共建一水电站发电供两村使用.已知A,B两村到河边的垂直距离分别为300m和700m,且两村相距500m,问水电站建于何处,送电到两村电线用料最省?

[解]视两村庄为两点A,B,小河为一条直线L,原问题便转化成在直线上找一点P,使P点到A,B两点距离之和为最小的问题.

以L所在直线为轴,轴通过A点建立直角坐标系,如图所示.作A关于轴的对称点,连,与轴交于点P.由平面几何知识得,点P即为所求.据已知条件,A(0,300),(0,-300).过B作轴于点,过A作,于点H.

由,,得B(300,700).于是直线的方程为

所以P点的坐标即为与轴的交点(90,0),即水电站应建在河边两村间且离A村距河边的最近点90m的地方

研究性课题与实习作业:线性规划的实际应用

电势差与电势强度的关系【推荐】


教学目标

知识目标

1、理解匀强电场中电势差与电场强度的定性、定量关系.对于公式要知道推导过程.

2、能够熟练应用解决有关问题.

能力目标

通过对匀强电场中电势差和电场强度的定性、定量关系的学习,培养学生的分析、解决问题的能力.

情感目标

从不同角度认识电场、分析寻找物理量之间的内在联系,培养学生对科学的探究精神,体会自然科学探究中的逻辑美.

教学建议

教材分析

前面几节的内容是研究描述电场的各个物理量,本节内容是研究电势差与电场强度的关系,注意电场强度是描述电场力的性质,电势是描述电场能的性质、电势差是跟电场力移动电荷做功相互联系(如下图),电场强度与电势差的关系、电场力与电势能的变化之间的关系,这两个关系之间的内部逻辑.教师在讲解时需要把握其内部联系.

教法建议

本节课是通过分析推理得出匀强电场的电势差与电场强度之间的关系的,教学中重视启发学生联想,分析物理量之间的关系,要使学生不仅知道结论,并会推导得出结论,在一定的条件下正确应用结论.

教学设计示例

电势差与电场强度关系

一、课题引入:

教师出示图片:

讲解:场强是跟电场对电荷的作用力相联系的,电势差是跟电场力移动电荷做功相联系的.那么场强与电势差有什么关系呢?我们以匀强电场场为例来研究.

问题1:如图所示匀强电场E中,正电荷q在电场力作用下从A点沿电场方向移动到B点,已知AB两点之间的距离为d,分析电场强度E与电势差之间有什么关系?

AB间距离为d,电势差为,场强为E.把正电荷q从A点移到B时,电场力所做的功为.利用电势差和功的关系,这个功又可求得为,比较这两个式子,可得,即:

这就是说,在匀强电场中,沿场强方向的两点间的电势场等于场强和这两点间距离的乘积.如果不是沿场强方向的呢?(学生可以进行讨论分析)

如图所示(教师出示图片)并讲解AD两点间电势差仍为U,设AD间距离s,与AB夹角,将正电荷从A移动到D,受电场力方向水平向右,与位移夹角,故电场力做功为,,所以.利用电势差和功的关系,,比较这两个式子可得.d为AB两点间距离,也是AB所在等势面间距离或者可以说是AD两点间距离s在场强方向的投影.

关于公式,需要说明的是:

1、U为两点间电压,E为场强,d为两点间距离在场强方向的投影.

2、由,得,可得场强的另一个单位:

所以场强的两个单位伏/米,牛/库是相等的.注:此公式只适用于匀强场.

二、例题讲解(具体内容参考典型例题资料)

三、教师总结:

场强表示单位电量的电荷所受的电场力,而电场中两点间的电势差表示单位电量的电荷在这两点间移动时电场力所做功的大小,由于力和功是互相联系的,所以场强与电势差之间存在着必然的联系.在非匀强电场中,电势差与场强的关系要复杂的多,但是电场中两点间距离越小时的电势差越大,则该处场强就越大.只能是定性判断

关于运动的合成与分解的高中教案推荐


教学目标

知识目标

1、通过对多个具体运动的演示及分析,使学生明确什么是合运动,什么是分运动;合、分运动是同时发生的,并且不互相影响.

2、利用矢量合成的原理,解决运动合成和分解的具体情况,会用作图法、直角三角形的知识解决有关位移、速度合成和分解的问题.

能力目标

培养学生应用数学知识解决物理问题的能力.

情感目标

通过对运动合成与分解的练习和理解,发挥学生空间想象能力,提高对相关知识的综合应用能力.

教学建议

教材分析

本节内容可分为四部分:演示实验、例题、对运动合成和分解轨迹的分析、思考与讨论,但都是围绕演示实验而展开的,层层深入,由提出问题到找出解决问题的方法,以至最后对运动合成和分解问题的进一步讨论.

教法建议

关于演示实验所用的器材、材料都比较容易得到,实验也容易成功.此实验是本节的重点.一些重要的结论规律都是由演示实验分析得出的.观察红蜡块的实际运动引出合运动,并分析红蜡块的运动可看成沿玻璃管竖直方向的运动,和随管一起沿水平方向的运动,从而得出分运动的概念.着重分析蜡块的合运动和分运动是同时进行的,并且两个分运动之间是不相干的.合运动和分运动的位移关系,在演示中比较直观.而明确了它们的同时性,就容易得出合运动和分运动的速度关系.因此,课本在这里同时讲述了合运动和分运动的位移及速度的关系.即找到了解决运动合成和分解的方法——平行四边形定则.它是解决运动合成和分解的工具,所以在处理一个复杂的运动时,首先明确哪个是合运动,哪个是分运动,才能用平行四边形法则求某一时刻的合速度、分速度、加速度,某一过程的合位移、分位移.课本中合运动的定义是:红蜡块实际发生的运动,(由)通常叫合运动,即实际发生的运动,也理解为研究对象以地面为参照物的运动,再给学生举几个实例来说明如何确定合运动.如:

1、风中雨点下落表示风速,表示没风时雨滴下落速度,v表示雨滴合速度.

2、关于小船渡河(如图):表示船在静水中的运动速度,方向由船头指向确定.表示水的流速,v表示雨滴合速度.

在研究雨滴和船的运动时,解决问题的关键是先确定雨滴、小船实际运动(合运动).

注意应用平行四边形定则时,合矢量在对角线上,问题马上得到解决.

关于例题:例1:将演示实验过程定量讨论.给出两个分运动、及合、分运动的时间,求合速度.

法一;先求出两个分速度再利用矢量合成求v.

法二:先利用矢量合成求出s,再由求出v.

例2:飞机飞行给出及与某一分速度角度,来求另外两个分速度.其思路先由平行四边形法则画出几何关系,再利用数学计算解决分速度问题.

两道例题很简单,但合、分运动关系及解决问题的方法、思路充分体现出来.通过练习使学生们加深了对合、分运动的理解.

关于分运动的性质决定合运动的性质和轨迹:课本以蜡块的运动说明两个直线运动的合运动不一定都是直线运动.为了搞清楚蜡块哪种情况下做直线运动,哪种情况下做曲线运动.这里可以让学生自己探究,得出结论:两个直线的合运动也可以是曲线运动.研究复杂的运动,可以根据不同方向分运动来研究复杂运动情况.

关于思考与讨论:本节只研究了互成角度的运动,其合成和分解遵从矢量合成规律——平行四边形定则.那么初速度为的匀变速直线运动,可以看作同一直线上哪两个分运动的合运动?引导学生对同一直线上的运动合成和分解问题进行讨论,得出该运动也满足矢量合成规律(注意正方向),使我们对矢量合成与分解的规律有了更深的理解.

教学设计方案

运动的合成和分解

教学重点:

对于一个具体运动确定哪个是合运动以及合、分运动的关系(矢量图),并能用矢量合成规律解决实际问题.

教学难点:对合运动的理解.

主要教学设计:

由演示实验引出课题.首先介绍实验装置及研究对象,然后演示两个过程:红蜡块匀速上升;红错块匀速上升的同时将玻璃管向右水平匀速移动.观察蜡块轨迹——倾斜直线,从而引出课题.我们研究较复杂的运动,可以用到运动的合成和分解知识.实际运动参与两个运动,本例中竖直方向和水平方向,而实际运动沿倾斜直线运动.

一、如何确定一个具体运动的合运动及分运动?

1、合运动----研究对象实际发生的运动

2、合运动在中央,分运动在两边

讨论:有风天气雨滴下落、小船过河,加深同学们对合运动,就是研究对象实际发生运动的理解.(结合课件1、2).

引导分析:雨点斜落向落到地面,此实际运动方向为合速度方向;注意区别船头方向为分速度方向,而船实际航行方向为合速度方向.

进一步研究合、分运动关系,(由演示实验说明)重新演示红蜡块运动的两个分运动:管不动,蜡块匀速上升管长度所用时间,管水平匀速移动蜡块匀速上升,观察并记录直到蜡块到达管顶所用时间t.由和t的关系再结合课件l、2得出:

二、合、分运动关系

1、合、分运动的等时性

2、合、分运动关系符合平行四边形定则

三、利用矢量合成与分解规律解决实际问题

例1学生自己分析:已知两分运动位移、及合运动时间(先画v、s矢量图)

方法一:

方法二:

例2思路:先画矢量图,并标已知、未知,然后由几何关系求两分速度

四、两个直线运动的合运动轨迹的确定

演示实验中蜡块同时参与竖直向上和水平向右两个运动,其合运动轨迹是直线.任何两个直线运动的合运动轨迹一定是直线吗?

讨论方法:图像方法

写出关于两个方向运动性质位移方程,取不同时刻描点.

分两层次:基础差的学生利用课件3演示

基础好的学生探究活动(活动方案见下面)

探究活动

研究方法:

要求学生自己阅读本章节最后两段及习题中最后一道题,然后找出研究方法.(图像方法)

互相交流:

满足什么条件可以得出这个结论——怎样得出这个结论.

总结:

对学生的研究过程给予评价,最后提出若两个分运动都是匀加速运动,其运动轨迹如何?两个分运动都是初速度为零的匀加速运动,其运动轨迹又是如何?

关于高二政治收入与分配的高中教案推荐


课题

经济生活第三单元收入与分配

执笔人

编写日期

执行人

执行日期

三维

教学

目标

(识记):财政收入与支出;税收及其种类(理解):社会公平的重要体现;依法纳税是公民的基本义务

重点

难点

(简单应用):多种分配方式并存;处理好效率与公平的关系(综合应用):财政及其作用

教法

教具

教具:多媒体

教学过程

特色教案

第三单元收入与分配【考点解析】1.多种分配方式并存(简单应用):按个体劳动者劳动成果分配;按生产要素分配(参与收益分配的生产要素主要有:劳动、资本、技术、管理、信息、土地等)2.社会公平的重要体现(理解):收入分配公平是社会主义分配原则的体现,它有助于协调人们之间的经济利益关系,实现经济发展、社会和谐。要实现收入分配的公平一是坚持和完善按劳分配为主体、多种分配方式并存的分配制度(制度保证);二是保证居民收入在国民收入分配中占合理比重、劳动报酬在初次分配中占合理比重;三是再分配更加注重公平。加强政府对收入分配的调节,保护合法收入,调节过高收入,取缔非法收入。通过强化税收调节,整顿分配秩序,把收入差距控制在一定范围之内,防止出现严重的两极分化,实现公平分配。3.处理好效率与公平的关系(简单应用):在社会主义市场经济条件下,效率与公平具有一致性,效率是公平的物质前提,公平是提高效率的物质保证。在初次分配和再分配中,都要处理好效率与公平的关系;既要提高效率又要促进公平;既要反对平均主义,又要反对收入差距悬殊;既要落实分配政策,又要提倡奉献精神;在鼓励人们创业致富的同时,提倡回报社会和先富帮后富。4.财政及其作用(综合应用):财政就是国家的收入和支出,它通过国家预算来实现。国家财政是促进社会公平、改善人民生活的物质保障;国家财政具有促进资源合理配置的作用;国家财政具有促进国民经济平稳运行的作用。5.财政收入与财政支出(识记):税收收入是构成财政收入最普遍的形式和最重要的来源;经济发展水平和分配政策是影响财政收入的因素。财政支出主要是经济建设、科教文卫、行政管理、国防、债务、社会保障等。财政收入和支出的关系:财政收支平衡、财政盈余、财政赤字。6.税收及其种类(识记):从本质上看,税收是国家为实现其职能,凭借政治权力,依法取得财政收入的基本形式。税收具有强制性、无偿性、固定性三个基本特征。增值税是对生产经营活动中的增值额征税。它可以避免重复征税和偷税行为。有利于促进生产的专业化和体现公平竞争,也有利于财政收入的稳定增长。个人所得税是对个人所得额征税。它是国家财政收入的重要来源,是调节个人收入,实现社会公平的重要手段。7.依法纳税是公民的基本义务(理解):税收是国家组织财政收入的基本形式,是实现国家职能的物质基础;我国税收取之于民,用之于民,国家通过税收实现全体人民的根本利益;依法纳税是公民应当履行的义务;自觉纳税是公民具有社会责任感和国家主人翁地位的体现。违反税法的行为有偷税、欠税、骗税、抗税。

教学

后记

例二面角的教学设计与评述(小编推荐)


教学目标:

知识目标:使学生正确理解和掌握“二面角”、“二面角的平面角”的概念。

技能目标:通过组织引导学生参与“二面角”、“二面角的平面角”概念的发现、形成和发展过程,培养学生探究能力及数学应用能力,并能解决有关简单的二面角问题。

情感目标:激发学生学习数学的热情。

教学方法:

探导式

教学过程:

引入

师:同学们爬过山吗?

生:爬过,爬过高山,爬过平坦的山,也爬过陡峭的山,很刺激。

师:怎样的山看上去陡峭?

生:山坡与水平面愈垂直,这样的山愈陡峭。

师:怎样的山看上去“平坦”?

生:山坡与水平面所成角愈小,这样的山就愈“平坦”。

师:山坡陡峭与否,跟山坡与水平面所成的角大小有关。

生:老师,山不是凹凸不平,弯曲的吗?它的坡面是不平的,那坡面与水平面所成的角,是怎么回事?

师:现实的山确实是这样凹凸不平,弯曲的,大家对这位同学所提的问题,意见如何?

(学生议论纷纷,思索着。)

生:若从全局来看整个山坡面是凹凸不平,弯曲的,但从局部小范围去看,山坡面可看作“平”,物理中不也是把山坡面看作平面,这样山坡面与水平面所成的角就是平面与平面所成的角。

师:这位同学讲得很好,现实生活中一些问题,只需给适当的数学化,便可转化到数学问题,然后用数学知识加以解决。今天我们研究平面与平面所成的角。

(老师板书课题)二面角

[评:教师的责任就是指导、激发学生积极地思考,帮助学生去观察、分析和判断。把二面角置于爬山的背景之中,这样引进新课,不仅自然,学生学起来兴趣、具体、生动,培养学生用数学意识,更重要的是让学生能够主动去想、去探究,在探究过程中不断检验、判断自己和他人的思维,更好的促使学生提出自己的创见]

新课

师:请同学们阅读课本p39--------p40上数第3行止。

(学生阅读课本)

师:什么是半平面?

生:一个平面内的一条直线,把这个平面分成两部分,其中一部分叫做半平面。

师:什么是二面角?及表示方法怎样?

生:从一条直线出发的两个半平面所组成的图形叫做二面角。可表示为

二面角α----ab----β,α,β分别是二面角的面,ab叫二面角的棱。

[评:引导学生阅读课本,对二面角的定义理解及学生自学能力的培养必有好处。]

师:(放出幻灯)以下哪些图形是表示一个二面角?

生:(1)--------(5)是一个二面角,(6)是二个二面角。

[评:对二面角的图形进行变式,有利于学生更深刻理解二面角的本质含义。]

师:(提出问题,老师边演示山的模具,边讲述题意)

山上有一条直道cd与山脚线成30°,一人沿着cd爬上100米后,问这时此人站的地方有多高?

生:此人这时站的高度不定,跟山坡陡度大小有关,当陡度大,此人站的位置就要高,反之,就低。

师:山坡陡度就是山坡面与水平面所成二面角的大小有关,而二面角大小如何去度量呢?

(学生思考)

师:斜线与平面所成角的大小是怎样度量?

生:我知道,斜线和斜线在平面上的射影所成角的大小规定为斜线与平面所成角的大小。

师:对,即把斜线与平面所成角转化为平面几何中的线和线所成角。下面请同学们讨论二面角的度量方法。

(学生独立思考,动手摆弄二面角模具,并与同桌、前后桌同学之间共同讨论。)

师:谁来谈自己的想法。

(学生讲述各自的想法,老师板书。)

生:分别在二个半平面上,过棱上一点o作oa⊥a、ob⊥a,把∠aob大小规定为二面角大小(图1)。

生:在一个半平面上取一点a,作ab垂直另一个半平面,b为垂足,过b作ob垂直棱,o为垂足,连oa,把∠aob大小规定为二面角大小(图2)。

生:过二面角棱上一点0作平面垂直棱,分别交两个面oa,ob,把∠aob大小规定为二面角大小(图3)。

师:以上几位同学得出∠aob有什么共同点?

师生一起归纳小结:(1)两条射线oa,ob分别在α,β上,且o在棱a上。(2)oa⊥a,ob⊥a。

师:对于同一个二面角以上三种作法得出的∠aob大小相同吗?

生:相同。

师:我也有一种想法,请同学们讨论一下。这样行不行。

放出幻灯并讲述想法:如图(4)若∠aob=30°∠bod=45°,把∠aob的大小规定为二面角α--cd--β的大小。

生:不行,当两个面合拢的时候,∠aob=15°、但二面角为0°,不合常规。

师:如图(5)若“∠bod=45°”改为“∠bod=30°”结果又怎样?

生:也不行,当两个平面转“平”的时候,二面角为180°,而∠aob=60°不合常规。

师:我们把图(1)、(2)、(3)中∠aob称为二面角α--ab--β的平面角。∠aob大小就是二面角大小。这样规定,合情合理。同学们提出的图(1)、(2)、(3)是作二面角的平面角常用三种方法。一个二面角中它的平面角是否只有一个?

生:有无数个,但它们大小相等。

[评:学生在参与探讨度量二面角大小方法过程中,生生之间、师生之间互相交流,共同讨论,变单向传递为多向交流,这样既发挥了学生主体作用,又有利于学生协作意识形成和创新能力培养。]

师:(放出幻灯)

在正方体----中(如图6)

求二面角--------大小,(2)求二面角--------大小,(3)求二面角--------的正切值,(4)若为中点,作出二面角--------的平面角。(师生一起讨论完成)

(过程略)

[评:从一道题出发通过一题多变,进行变式练习,不仅是使学生掌握知识、形成技能的有效手段,更有利于学生形成完整的知识结构,培养学生思维的灵活性]

如图7:山坡的倾斜度(坡面与水平面所成二面角的度数)是60°,山坡上有一条直道,它和坡脚的水平线的夹角是30°,沿这条路上山,行走100米后,升高了多少米?

图7

解:已知=100米,设垂直于过的水平平面,垂足为,线段的长度就是所求的高度。在平面内,过点作,垂足是,连结。

平面,

因此,就是坡面和水平平面所成的二面角的平面角,=60°。由此得=sin60°=sin30°sin60°=100sin30°sin60°=

答:沿直道前进100米,升高约43。3米。

[评:从实际问题出发,又以实际问题结束,将理论与实际相结合的数学原理,提到了更重要的高度。]

三、小结:

师:同学们把上图中山“去掉”留下的图形是什么几何体?有哪些特征?

生:是一个四面体,这个四面体四个面都是直角三角形。这个图中还包含二面角的平面角、线与面所成角、点到线距离、点到面距离等。

师:这个四面体是立体几何中最常用的一个基本图形,立体中许多问题都可化归到这个四面体进行求解,这就是数学中最常用一种化归思想。关于二面角计算题或证明题,关键找(作)出二面角的平面角,今天我们讲了作二面角的平面角三种方法。这节课讲的两个例题用图(2)方法----三垂线法作二面角的平面角,这样通过作二面角的平面角,把立体几何问题化归为平几问题来处理。许多实际应用题,通过建模,可转化为数学问题来解决。我们的周围处处有数学,希望同学们学会从数学的角度发现和提出问题,并加以探索和研究。

四、作业:p451--6

[评:大多数学生之所以学习有困难,解决问题能力差,问题在于他们所获得的概念、知识不是通过研究事实和现象的途径形成的,而是死记硬背得来的。本课例设计不是简单地将二面角及二面角的平面角定义直接传受给学生,而是考虑到知识的形成过程,设法从学生的数学现实出发,创设“爬山”的实际问题情景,调动学生积极参与探索、发现、问题解决全过程,这样,学生学到的不单是知识本身,也经历了知识的发生、形成过程,同时在分析、探索过程中,依靠自己的独立智慧努力,而获得了一些能够概括大量事实现象和知识,这种知识对学生来说是极为宝贵。]

本文网址:http://m.jk251.com/jiaoan/5597.html

相关文章
最新更新

热门标签