导航栏

×
范文大全 > 教案

「教案模板」小学数学方程教案其四

时间:2022-11-01 小学数学教学设计 教学设计小学数学

为了促进学生掌握上课知识点,老师需要提前准备教案,按要求,每个教师都应该在准备教案课件。我们需要提前做好教案课件的准备,这样学生才能更快地理解各知识要点。优质的教案课件是在哪些地方有值得借鉴的地方呢?以下是小编为大家收集的“「教案模板」小学数学方程教案其四”但愿对您的学习工作带来帮助。

教学目标:

1.在数实物的过程中,体验不同的数数方法,能用不同的方法数数。

2.结合"先估计再数"的数学活动,培养学生估计的习惯和能力。

3.感受数学与生活的联系,增强学习的数学的信心。

教学重点:体验不同的数数方法。

教学难点:能用不同的方法数数。

教学过程:

一、故事形式引入新课。

1、小朋友们,老师想给好朋友写封信,于是我就去买了一个信封,写好了信放在里边,贴好就去邮局邮信了,你们猜我的信邮出去了吗?

(学生说结果并说明理由)如果学生说不出是因为没贴邮票,教师加以引导。

2、教师继续刚才的故事:咱们书中有各种各样的邮票,小朋友帮老师选一张好吗?

二、教学新课。

(一)数邮票。

1.教师出示邮票图片,学生帮老师选一张自己认为漂亮的邮票。

2.这么多漂亮的邮票,有多少张呢?咱们来猜一猜。

(学生说一说自己的想法,猜猜有多少张)

1.师:你们想不想知道到底有多少张呢?

(学生用自己的方法来数一数)

2.小组交流数的结果。教师引导学生明白这些邮票的摆放是很有规律的,可以一排一排的数,即:10张、20张、30张、100张。

(二)、比赛的形式数珠子。

师:小朋友们,咱们来比赛,看谁的眼睛和脑子最快。好不好?

1.教师出示3组珠子的实物图片,让学生用自己的方法数。

2.评出数的快并且对的,评出前三名。

3.全班交流,让前三名同学先说出自己数的方法,再全班交流自己的数法。

(三)、数花生。

1.教师提出题目要求。

2.小组之内完成,并交流自己数的方法。

三、练一练。

1.出示图片,学生数。教师观察学生数数的方法,可以适当给予指导。

2.先让学生估计一下,再实际数一数。集体订正。

jK251.com其他人还在看

小学数学方程教案(通用8篇)


教师愿意成为学生进步的阶梯。为了更好的教学质量准备一份教案是重中之重。教案有利于教学水平的提高,有助于教研活动的开展,我们要从哪些地方完善自己的教案呢?教师范文大全特别编辑了“小学数学方程教案”,建议你收藏并分享给其他需要的朋友!

小学数学方程教案 篇1

教学目标:使学生会列方程解答文字题。

使学生初步感受用方程解题的优越性。

重点难点:使学生掌握列方程解文字题的的一般方法。

教学过程:

一、准备引入。

用含有字母的式子表示下面的数量关系。

1、x的3倍加1.6的和。

2、12减x的6倍的差。

二、新课教学。

1、出示例7列出方程,并求出方程的解。

12减一个数的6倍,差是5.4,求这个数。

2、分析讲解:

(1)先设未知数,一般用x表示;

(2)再根据题中表述的相等关系列出方程;

(3)求方程的解;

(4)检验方程。

解:设这个数是x。

12-6x=5.4

6x=12-5.4

6x=6.6

x=1.1

3、做试一试。要一个学生到黑板上去做,其余的做在纸上。

一个数的5倍减14与3的积,差是23。

解:设一个数为x。

5x-143=23

5x-42=23

5x=23+42

5x=65

x=655

X=13

三、巩固练习。

见书本练一练。

四、总结。

五、布置作业

作业本p:60第(6)。

小学数学方程教案 篇2

教学目标

1.使学生初步理解方程方程的解和解方程的含义.

2.初步掌握解简易方程的方法并会检验.

教学重点

使学生初步掌握解方程的方法和书写格式.

教学难点

帮助学生建立方程的概念,并会应用.

教学设计

一、复习准备

(一)口算下面各题.

30+()=50()2=10

(二)列式.

1.一支钢笔元,2支钢笔多少元?

2.与4的和.

二、新授教学

(一)方程的意义

1.介绍天平

这是一架天平、可以用来称物品的重量.当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等.

2.引出方程

(1)出示图片:天平1

教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?

(2)出示图片:天平2

教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?

教师板书:20+?=100

教师说明:这个未知数?,如果用来表示就可以写成20+=100.

(3)出示图片:篮球

教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?

教师板书:

3.方程的意义.

教师提问:观察上面三个等式回答问题.这三个等式有什么相同点和不同点?

相同点:都是相等的式子.

不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数.

教师板书:象这种含有未知数的等式,叫方程.

教师强调:含有未知数、等式

4.思考:方程和等式之间到底是什么关系呢?

(1)出示图片:等式与方程

(2)小结:所有的方程都是等式,但是等式不一定都是方程.

(二)教学例1

1.方程的解

教师提问:在中,等于多少时方程左边和右边相等?

在中,等于多少时方程的左边和右边相等?

教师说明:使方程左右两边相等的未知数的值,叫做方程的解.

如:是方程的解

是方程的解

2.解方程

教师板书:求方程的解的过程叫做解方程.

3.教学例1

例1.解方程-8=16

(1)教师提问:解方程先写什么?根据什么计算?

(2)教师板书:

解:根据被减数等于减数加差

(3)怎样检查解方程是否正确?

检验:把代入原方程,

左边,右边

左边=右边

所以是原方程的解.

4.讨论:方程的解和解方程有什么区别?

三、课堂小结

今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?

四、巩固练习

(一)填空

1.含有未知数的()叫做方程.

2.使方程左右两边相等的(),叫做方程的解.

3.求方程的解的()叫解方程.

4.下面的式了中是等式的有();

是方程的有().

(二)判断,对的在括号里打,错的打.

1.等式都是方程.()

2.方程都是等式.()

3.是方程的解.()

4.也是方程.()

(三)选择正确答案填在括号内.

1.的解是()

①②

2.的解是()

①②

3.这个式子是()

①是方程②是等式③既是方程又是等式

4.是方程()的解

①②

五、课后作业

(一)解下列方程.(第一行两小题要写出检验过程.)

(二)用方程表示下面的等量关系,并求出方程的解.

1.加上35等于91.

2.的3倍等于57.

3.减3的差是6.

4.7.8除以等于1.3.

六、板书设计

解简易方程

含有未知数的等式叫做方程.使方程左右两边相等的未知数的值,叫做方程的解.

求方程的解的过程叫做解方程.

例1解方程

解:根据被减数等于减数加差

检验:把代入原方程,

左边,

右边,

所以是原方程的解.

教案点评:

该教学设计既重视过程,又重视结论;既重视知识的教学,又重视能力的培养。教师采取边讲边练、讲练结合的形式,为学生提供了更多的参与学习的机会。

小学数学方程教案 篇3

教学内容:教科书第109页的例2、例3,完成第109页下面的做一做中的题目和练习二十七的第1~4题。

教学目的:使学生理解和初步学会axb=c这一类简易方程的解法,认识解方程的意义和特点。

教学重点:会axb=c这一类简易方程的解法,认识解方程的意义和特点。

教学难点:看图列方程,解答多步方程。

教具准备:电教平台。

教学过程:

一、导入

1、出示三个小动物,让学生围绕三个小动物提提出问题进行学习。

二、新课

1.教学例2。

出示小老鼠的问题:

出示例2。先让学生自己读题,理解题意。

教师:这道题的第一个要求是看图列方程。我们来共同研究一下,怎样根据图意列出方程。我们学过方程的含义,谁能说说什么是方程呢?

学生:含有未知数的等式叫做方程。

教师:那么,要列方程就是要列出什么样的式子呢?

学生:列出含有未知数的等式。

教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。)3盒彩色笔有多少支?(3x支。)另外还有多少支?(4支。)一共有多少支彩色笔?(40支。)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?

学生:3x+4=40。

教师:很好!谁能再说说这个方程表示的数量关系?

学生:每盒彩色笔有x支,3盒彩色笔加上另外的4支,一共是40支。

教师:对!我们现在来讨论一下如何解这个方程。如果方程是x+4=40,可以怎么想?根据什么解?

学生:可以把原方程看作是加数+加数=和的运算,因此,根据加数=和-另一个加数来解。

这样也可以根据加数=和-另一个加数来解。得出3x=40-4,再得出3x=36。

教师在黑板上板书出解此方程的前两步,下面的解法让学生自己做在练习本上。做完以后,集体订正。得出方程的解以后,要求学生在算草纸上进行检验。请一位学生口述检验过程,集体订正。

教师小结例2的解法:解答例2,先要根据图里的数量关系列出方程,即列出含有未知数x的等式;然后解这个方程。解方程时,关键是要先把3x看作是一个数,根据加数=和-另一个加数求出3x等于多少,再求x等于多少就得出方程的解是多少。

2.教学例3。

小猫提出的问题:

教师出示:解方程18-2x=5。然后让学生自己在练习本上解。做完以后,教师指名让学生回答问题。

教师:这个方程你是怎么解的?先怎样做,再怎样做,根据是什么?(先把2x看作一个数,再根据减数=被减数-差得出2x=18-5,2x=13,x=6.5。)

教师根据学生的发言,把解方程的过程出示。接着,教师出示例3:解方程63-2x=5。

教师:例3的方程与我们刚才解的方程,有什么相同点,有什么不同点?

学生:相同点是:等号右边都是5,等号左边都要减去2x;不同点是:18-2x=5的等号左边只有一步运算,而63-2x=5的等号左边有两步运算。

教师:63-2x=5,等号左边的两步运算,第一步是算63,就等于18。这样方程63-2x=5就变成了18-2x=5。所以,解方程63-2x=5,要按照运算顺序,先算出63的值。那么,下一步该怎样做呢?刚才我们已经做过,自己把方程63-2x=5解出来。

让学生在练习本上解

小学数学方程教案 篇4

《两位数加两位数练习课》:

教学内容:

课本P13——-P15练习二

教学目标:

1、巩固两位数与两位数的加法运算,加深加法意义的理解,为退位减法的学习做准备。

2、让学生有机会在不断探索和创造的气氛中培养解决问题的能力,激发学习数学的兴趣。

3、引导学生在辨识的练习中体验数学学习的趣味性、挑战性,使不同的学生在数学学习的能力上得到不同的发展。

教学重点:

1、通过练习,使学生能比较熟练的进行两位数与两位数的加法运算,提高学生的运算技能。

2、培养学生运用所学知识解决实际问题的能力。

教学难点:

通过练习,使学生比较熟练而准确的进行两位数与两位数的加法运算。

教学准备:

实物投影、卡片

教学过程:

一、创设情景,引入新课

1、学习了关于两位数与两位数的加法运算。你们有哪些收获呢?指名汇报。

2、总结得真不错。今天这节课我们继续来研究,通过这节课的学习相信大家会有更大的收获。

〔设计意图〕:使学生明确学习的目标。

二、合作探索,巩固知识。

1、完成第14页练习二第5题。教师巡视、指导。做完以后请小朋友在小组内说一说是怎样计算的。

2、名汇报、并说明计算方法。计算两位数与两位数的加法时,要注意什么问题?指名回答。

3、完成第14页练习二第6题。这些计算对吗?和小组的同学说一说,把错误的改正过来。指名汇报,并说出错误应该如何改正。

4、完成第15页练习二第9题。教师巡视。指名汇报,并说明解题思路。

5、完成第14页练习二第7题。仔细读题,理解题意后完成填表。指名汇报,并说说是怎样计算的。观察表格,你了解到了哪些信息?说给你的同桌听一听。指名汇报。学生汇报,并说明解题思路。

6、完成第15页练习二第8题。有四只小白兔一起上山采蘑菇,现在它们正在为谁采的蘑菇最多而吵闹,你能帮帮它们吗?

7、怎样做才能解决它们的问题?指名汇报。

8、完成第15页练习二第10题。请在小组内讨论、交流完成。教师巡视。指名汇报。

〔设计意图〕:加深理解并使不同的学生得到不同的发展。

三、课堂总结:通过这节课的练习,你有什么新的收获?

学生从知识、方法上进行总结。

四、随堂练习

小学数学方程教案 篇5

教学目标

1.使学生在具体的情境中,理解方程的含义,初步认识等式与方程的关系。

2.使学生在观察、描述、分类、抽象、概括的过程中,经历将现实问题抽象成式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。

3.使学生在积极参与数学活动的过程中,感受探索的乐趣,获得成功的体验,增强学好数学的信心。

教学过程

一、认识相等关系,初步理解等式

1.出示例1天平图(两边没有砝码)。

提问:认识天平吗?天平是用来做什么的?

2.在天平的两边加上砝码。

提问:你看懂了什么?

学生可能想到:一边托盘内放了两个重50克砝码,一边放了一个重100克的砝码,两边一样重。

追问:不看两边托盘内放的东西,你知道两边一样重吗?能用语言描述两边物体的质量关系吗?

学生回答后,提问:怎样用数学式子表示两边物体的质量关系?(板书:50+50=100)

追问:为什么用等号连接?

指出:像这样用等号连接的式子,就是等式,表示相等的关系。

二、认识方程

1.出示例2天平图中的指针部分局部图(第一幅图)。

提问:看到这时的指针位置,你有什么想法?如果用式子来表示,还会选用等号写等式吗?为什么?

2.出示完整的天平图。

提问:你能用语言描述两边物体的质量关系吗?怎样用式子表示?(板书:x+50>100)

追问:x表示什么?

3.依次出示例2第二、三幅天平图。

要求:先用语言描述天平两边物体的质量关系,然后用式子表示。

学生口述,教师板书:x+50=150,x+50<200。

4.出示:2x=200。

提问:根据这个式子,想一想天平两边的物体是怎样的?你能描述出来吗?

在学生描述的基础上,出示教材第1页例2的第四幅天平图。

5.将式子分类,认识方程。

引导:我们来看刚才根据天平图所写的几个式子。在黑板上集中呈现5个式子的卡片:

50+50=100x+50>100x+50=150

x+50<2002x=200

谈话:你能把这些式子按照一定的标准进行分类吗?请大家独立思考,再在小组里先说一说。

学生的分类可能出现下面两种情况:

①将式子按照不同的连接方式(大于号、小于号或等号)分成三类。

引导:按照你的理解,你能找出哪些是等式吗?

学生口答,教师请学生根据他们的发言在黑板上移动式子卡片,将式子分类。

指出:根据大家的意见,我们可以把这些式子分成三类,也可以把这些式子分成两类,一类是用等号连接的式子,都是等式;还有一类是用大于号、小于号连接的,都不是等式。

教师对黑板上的卡片位置作如下调整:

50+50=100x+50>100

x+50=150x+50<200

2x=200

②将式子按照是否含有字母x分成两类。

指出:这里用字母x表示未知数。

让学生在黑板上把另一套式子卡片分类排列,并指导学生按下面的方式排列:

50+50=100是否含有未知数

x+50=150

x+50>100

x+50<200

2x=200

在学生交流了两种分类方法之后,教师引导学生对照黑板上所分类的式子卡片思考:你能把两种分类方法综合起来对这些式子进行分类吗?

学生对黑板上的式子进行调整。教师在学生分类的基础上,标注类别序号。

谈话:同学们通过思考、交流,把这些式子分成了四类。请观察这几类式子,说一说每组式子有什么特征?

学生描述后,教师指出:正如你们所描述的,像第③类式子这样,含有未知数的等式是方程。

6.完成练一练第1题。

依次出示前三道式子:6+x=16;36-7=29;60+23>70,学生逐一做出是否是方程的判断,并说明理由。(在学生对60+23>70做出判断后,教师将这道式子板书在算式卡片的第②类中)

出示第1题的其他式子,学生判断哪些是方程。接着,让学生判断哪些是等式。结合学生的判断,教师指出:方程中的未知数,既可以用x表示,也可以用y表示,还可以用其他字母表示。

反思:根据刚才的练习,你发现等式与方程有什么关系?学生在小组里交流。

在学生交流的基础上,用课件结合练一练第1题进行动态演示:先是将所有的等式画上集合圈,再闪烁显示其中的方程式,将方程式画上集合圈,集合圈中的等式渐渐淡化直至消失,出现文字等式与方程,如右图:

教师引导学生再结合黑板上对式子进行的分类,理解:方程是一类特殊的等式;等式中,一部分是方程。

7.完成练一练第2题。

学生写一些方程,再在小组里交流。

三、进一步理解方程的含义,体会方程思想

1.教学试一试。

出示试一试(图略)。

学生先用语言表述图中告诉了我们什么,数量之间有怎样的相等关系,再列方程。

2.完成练一练第3题。

学生先用语言描述图中的等量关系,再列方程。

四、课堂总结(略)

五、课堂作业

练习一第1~3题。

说明

方程是刻画现实世界数量关系的数学模型。本课教学设计,基于对教材编写意图的理解,强调从数学建模的角度开展方程的教学。以天平为形象支撑,结合具体的问题情境,用式子表示天平两边物体的质量关系,让学生通过观察、分析、写出式子,再通过分类,比较式子的异同,在讨论和交流活动中,由具体到抽象,逐步感受,理解方程的含义。概念的构建过程,并不是由教师机械地传授甚至告诉学生,而是用数学符号提炼现实生活中特定关系的过程。

由于认识水平的局限性,小学生往往把运算中的等号看作是做什么的标志。如在算式3+2的后面写上等号,往往被理解是执行加法运算的标志。他们通常把等号解释为答案是。而实际上,应把等号看作是相等和平衡的符号,这个符号表示一种关系,即等号两边的数量是相等的,也就是在3+2与5之间建立了相等的关系。本课设计,首先着力帮助学生构建对相等关系和等式的理解,而不是蜻蜓点水般一带而过,从而为后续认识方程,体会列方程是表示现实情境中的等量关系,方程是刻画现实世界的模型,建立良好的基础。

方程,对小学生来说,不仅是形式上的认识,也是感受在解决实际问题过程中建立模型的过程。全课教学过程,教师在出示图的基础上,都是引导学生先用语言描述,即把日常语言抽象成数学语言,进而转换成符号语言。如试一试第二幅图,学生很容易列出形如20-12=x的式子,这样的式子反映的是学生仍然停留于算术思路。让学生先用语言描述图意,从直观的图中抽象出文字语言表述的数量间的相等关系,然后让学生进一步用数学式子表示。在多次经历这样的活动过程中,学生感受到方程与实际问题的联系,领会数学建模的思想和基本过程,顺利实现从算术思维向代数思维的过渡。

小学数学方程教案 篇6

教学目标:

(1)使学生理解方程概念,感受方程思想。

(2)经历从生活情景到方程模型的建构过程。

(3)培养学生观察、描述、分类、抽象、概括、应用等能力。

教学过程:

一、创设情景,抽象数学模式。

1.出示实物天平。

(实物天平比较小,用屏幕上的天平来模拟实验。)

2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢(说明两边的重量可能有三种不同的关系。)

用式子描述重量之间的相等关系。

3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?

用式子表示两队比分的关系。

红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了分,请你猜一猜,两队的情况会怎样呢?

用式子来表示比分的三种关系。

4.创设四个情景。

(1)每个情景中数量之间有什么关系?

(2)你能用关系式清晰地来描述吗?

二、引导分类,概括方程概念。

刚才我们对情景的描述得到了很多式子。

200+200=400182318+2318+2318+=23

280100120425+=7022y+720=1050

1.学生尝试第一次分类。

可能有几种不同的分法。

(1)看是否是等式。

(2)看是否含有未知数。

2.学生尝试第二次分类。

得到四组不同的式子。

3.描述每一组的特征。

4.引导概括方程概念。

含有未知数的等式叫方程。

三、抓等量关系,体会方程本质。

1.演示动态平衡。有等量关系,能用方程表示

2.出示情景(没有等量关系,不能用方程表示。)

出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)

3.通过今天这节课,你学到了什么呢?

四、联系实际,应用与拓展。

1.周老师从无锡到徐州来上课。

(1)线段图。

(2)我乘火车从无锡站开出,每小时行千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。

(3)到了徐州站,我买了3枝圆珠笔,每枝元,付出20元,找回2元。

2.情景图。

本届奥运会上,中国台北队获得了枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:中国台北队金牌数的16倍正好等于中国队的金牌数。女孩说:日本队的金牌数等于中国台北队的8倍。

3.开放题。

小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多(用方程表示)

小学数学方程教案 篇7

教学内容:教科书第13~14页,练习与应用第5~7题,探索与实践第8~9题及评价与反思。教学目标:1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。2、通过小组合作,进一步培养学生探索的意识,发展思维能力。3、通过评价与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。教学过程:一、练习与应用1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)二、探索与实践1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨三、评价与反思在小组中说说自己对每次评价指标的理解。自我反思与评价。说说自己的优点与不足。四、阅读你知道吗可以再查找资料,详细了解。五、课堂总结这节课我们复习了哪些内容?你有了哪些收获?

小学数学方程教案 篇8

教学内容:教材第7374页用字母表示数、解简易方程和练一练,练习十四第15题。

教学要求:

1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。

2、使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。

教学过程:

一、揭示课题

我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。

二、复习用字母表示数

1、用含有字母的式子表示:

(1)求路程的数量关系。

(2)乘法交换律。

(3)长方形的面积计算公式。

让学生写出字母式子,同时指名一人板演。指名学生说说每个式子表示的意思。提问:用字母表示数有什么作用用字母表示乘法式子时要怎样写

2、做练一练第1题。

让学生做在课本上。指名口答结果,老师板书,结合提问怎样求式子的值的。

3、做练习十四第1题。

指名学生口答。选择两道说说是怎样想的。

【教案模板】幼儿小班游戏活动教案其四


作为教师,你一定写过教案吧,教案也是老师教学活动的依据,一份优质的教学方案往往来自教师长时间的经验累积,对于教案的撰写你是否毫无头绪呢?可以看看本站收集的《【教案模板】幼儿小班游戏活动教案其四》,希望能够为您提供参考。

游戏目的:

通过让幼儿扮演时针来掌握句子"It's××",使他们掌握英文数字1—12。

材料准备:

数字卡片1—12,时针一个。

游戏过程:

请12名幼儿分演12个钟点,围站成一圈。请一名幼儿扮演时针。游戏开始,教师说"钟表、钟表几点了?"幼儿说:"1点"或"2点","时针"要用英语讲"It's One……"并伸直左臂顺时针方向开始原地转,转到1时停止,手指尖指向1点,扮演钟点的幼儿举起卡片one,此后游戏继续进行。要求扮演时针的幼儿要手口一致。

看谁算得快游戏种类:计算游戏。

游戏目的:

训练幼儿的快速反应能力,复习巩固一些英语单词(如1—12,加,减)(Plus、minus)。

准备:

写有加减法计算题的数字卡片若干。

游戏过程:

教师手拿数字卡片用英语出题,让幼儿观察后马上回答得数,然后,用英语把整个算式叙述一遍。为了增加游戏的难度,可以把幼儿分成两组以竞赛的形式进行游戏,最后看哪组取胜。

教学反思:

从活动中可以看出,孩子们的情绪非常好,积极参与活动,尤其是游戏《老狼老狼几点了》,让孩子们14人一组,自己想办法站成时钟的样子,孩子们非常喜欢,有效地培养了孩子们的合作与管理能力,同时更好地激发了幼儿学习看时钟及关注时间的兴趣。

小学方程教案


不为明天做好准备的人是没有未来的,作为人民教师,我们会认真负责对每一堂课做好准备,大部分老师为了让学生学的更好都会事先准备好教案,有了教案上课才能够为同学讲更多的,更全面的知识。我们要如何写好一份值得称赞的幼儿园教案呢?下面是小编精心收集整理,为你带来的小学方程教案,欢迎你参考,希望对你有所助益!

小学方程教案 篇1

有些数量关系比较复杂的应用题,用算术方法求解比较困难。此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。

例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。问:胶鞋有多少双?

分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。

设胶鞋有x双,则布鞋有(46-x)双。胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。

解:设有胶鞋x双,则有布鞋(46-x)双。

7.5x-5.9(46-x)=10,

7.5x-271.4+5.9x=10,

13.4x=281.4,

x=21。

答:胶鞋有21双。

分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以

答:袋中共有74个球。

在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。

例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?[

分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

80x-40=(30x+40)×2,

80x-40=60x+80,

20x=120,

x=6(座)。

分析与解二:用间接设元法。设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

(x-40)×80=(2x+40)×30,

80x-3200=60x+1200,

20x=4400,

x=220(米3)。

由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。

同理,也可设有红砖x米3。留给同学们做练习。

例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生?

分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程

x-10=[(x-10)×2-9]×5,

x-10=(2x-29)×5,

x-10=10x-145,

9x=135,

x=15(个)。

例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:

还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。问:共有多少人参加测验?

分析与解:设有x人参加测验。由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。投中的总球数,既等于进球数不到3个的人的进球数加上至少投进3个球的人的进球数,

0×7+1×5+2×4+6×(x-7-5-4)

= 5+8+6×(x-16)

= 6x-83,

也等于进球数不到8个的人的进球数加上至少投进8个球的人的进球数,[ 3×(x-3-4-1)+8×3+9×4+10×1,

= 3×(x-8)+24+36+10

= 3x+46。

由此可得方程

6x-83=3x+46,

3x=129,

x=43(人)。

例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。如果一个人带150千克的行李,除免费部分外,应另付行李费8元。求每人可免费携带的行李重量。

分析与解:设每人可免费携带x千克行李。一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。根据超重行李每千克应付的钱数,可列方程

4÷(150-3x)=8÷(150-x),

4×(150-x)=8×(150-3x),

600-4x=1200-24x,

20x=600,

x=30(千克)。

练习23

还剩60元。问:甲、乙二人各有存款多少元?

有多少溶液?

3.大、小两个水池都未注满水。若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。已知大池容积是小池的1.5倍,问:两池中共有多少吨水?

4.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。问:男孩、女孩各有多少人?

5.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍。问:教室里原有多少个学生?

含金多少克?

7.一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9∶7;过了一会跑走的公羊又回到了羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7∶5。这群羊原来有多少只?

小学方程教案 篇2

一、教材分析:

教学目的有以下三点:

1、使学生掌握列方程解两步应用题的方法。

2、总结列方程解应用题的一般步骤。

3、培养学生分析数量关系的能力,提高学生在列方程解应用题时分析等理关系的能力。

教学重点:

分析应用题里的等量关系,会列方程解应用题。教学难点:分析应用题里的等量关系。教具准备:小黑板、写好题目的纸条等。

这节课在学生已有的解方程、分析应用题数量关系等知识的基础上进行教学,使学生掌握列方程解应用题的方法,为以后学习更深入的知识打下基础,同时培养学生积极思考问题,热爱自然科学的品质。

二、教学教法:

针对本课的知识特点,采用了下面几种方法进行教学:讲授法、对比法、分组讨论法。在准备阶段,让学生独立完成习题,学生根据以前的知识可以用算术方法和列方程的方法来解答此题,从而为今天学习较复杂的列方程解应用题打下基础。在新课阶段,应用讲授法和对比法,让学生观察、比较例1和准备题的内在联系,找出数量间的相等关系,列出等量关系式,再根据等量关系式列出方程,从而掌握本课的知识重点,同时也能理解掌握本课的难点。在小结阶段,采用分组讨论法,让学生通过分组讨论得出列方程解应用题的一般步骤,完成这一课的教学任务。在练习阶段,教师灵活采用各种教学方法和手段进行巩固练习。

三、教学步骤。

在教学步骤上,我是这样进行教学的:

一、准备。

教师出示复习题,学生读题后说:“请同学们用两种方法解答这道题。”

商店原来有一些饺子粉,卖出35千克以后,还剩40千克。这个商店原来有多少千克饺子粉?

解法一:35+40=75(千克)

解法二:设原来有X千克,

X-35=40

X=40+35

X=75

答:原来有75千克饺子粉。

二、新课。

教师出示例1,请学生思考:这道题和上道题有什么相同点和不同点?

商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克。这个商店原来有多少千克饺子粉?

想:原有的重量-每袋的重量X卖出的袋数=剩下的重量

X千克 5千克 7袋 40千克

解:设原有X千克。

X-5X7=40

X-35=40

X=40+35

X=75

答:原来有75千克饺子粉。

教师:“用方程解答应用题也要检查答案对不对。检验时,要先检查方程是不是符合题意,然后再把解得的X的值代入原方程,看解得对不对。请你用上面的方法检验例1的答案对不对。”

教师出示例2:

小青买4节五号电池,付出8.5元,找回了0.1元。每节五号电池的价钱是多少元?

想:付出的钱数-4节电池的钱数=找回的钱数

8.5元 4X 0.1

解:设每节五号电池的价钱是X元。

8.5-4X=0.1

4X=8.5-0.1

4X=8.4

X=8.4

X=2.1

答:每节五号电池的价钱是2.1元。

想一想:这道题还可以怎样想?列出方程来。

教师:从上面的例题可以看出,列方程解应用题的特点是,用字母表示未知数,根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程),再解答出来。

三、小结。

教师:大家分组来总结列出方程解应用题的一般步骤。

1、弄清题意,找出未知数,并用X表示;

2、找出应用题中数量之间的相等关系,列方程;

3、解方程;

4、检验,再写出答案。

把例1中的前两个条件改写成“商店原来有15袋饺子粉,卖出35千克以后”,问题改成“每袋饺子粉重多少千克”,该怎样解?

四、练习。

1、下面两题,先找数量间的相等关系,再把每个方程补充完整。

(1)小明买4支铅笔,每支X元,付给营业员3.5元,找回0.1元。

小学方程教案 篇3

1.教学例2。

出示小老鼠的问题:

出示例2。先让学生自己读题,理解题意。

教师:这道题的第一个要求是“看图列方程”。我们来共同研究一下,怎样根据图意列出方程。我们学过方程的含义,谁能说说什么是方程呢?

学生:含有未知数的等式叫做方程。

教师:那么,要列方程就是要列出什么样的式子呢?

学生:列出含有未知数的等式。

教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。)3盒彩色笔有多少支?(3x支。)另外还有多少支?(4支。)一共有多少支彩色笔?(40支。)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?

学生:3x+4 = 40。

教师:很好!谁能再说说这个方程表示的数量关系?

学生:每盒彩色笔有x支,3盒彩色笔加上另外的4支,一共是40支。

教师:对!我们现在来讨论一下如何解这个方程。如果方程是x+4 = 40,可以怎么想?根据什么解?

学生:可以把原方程看作是“加数+加数 = 和”的运算,因此,根据“加数 = 和-另一个加数”来解。

这样也可以根据“加数 = 和-另一个加数”来解。得出3x = 40-4,再得出3x = 36。

教师在黑板上板书出解此方程的前两步,下面的解法让学生自己做在练习本上。做完以后,集体订正。得出方程的解以后,要求学生在算草纸上进行检验。请一位学生口述检验过程,集体订正。

教师小结例2的解法:解答例2,先要根据图里的数量关系列出方程,即列出含有未知数x的等式;然后解这个方程。解方程时,关键是要先把3x看作是一个数,根据“加数 = 和-另一个加数”求出3x等于多少,再求x等于多少就得出方程的解是多少。

2.教学例3。

小猫提出的问题:

教师出示:解方程18-2x = 5。然后让学生自己在练习本上解。做完以后,教师指名让学生回答问题。

教师:这个方程你是怎么解的?先怎样做,再怎样做,根据是什么?(先把2x看作一个数,再根据“减数 = 被减数-差”得出2x = 18-5,2x = 13,x = 6.5。)

教师根据学生的发言,把解方程的过程出示。接着,教师出示例3:解方程6×3-2x = 5。

教师:例3的方程与我们刚才解的方程,有什么相同点,有什么不同点?

学生:相同点是:等号右边都是5,等号左边都要减去2x;不同点是:18-2x = 5的等号左边只有一步运算,而6×3-2x = 5的等号左边有两步运算。

教师:6×3-2x = 5,等号左边的两步运算,第一步是算6×3,就等于18。这样方程6×3-2x = 5就变成了18-2x = 5。所以,解方程6×3-2x = 5,要按照运算顺序,先算出6×3的值。那么,下一步该怎样做呢?刚才我们已经做过,自己把方程6×3-2x = 5解出来。

让学生在练习本上解例3,同时请一位同学在黑板上解题。做完以后,集体订正。

教师小结例3的解法:解答例3,要先按照四则运算的顺序,把方程中包含的计算算出,再把2x看作一个数,根据四则运算各部分间的关系来求解。

3.课堂练习。

做教科书第109页下面“做一做”中的题目。

先让学生独立做在课堂练习本上,教师行间巡视,检查学生解方程的过程是否正确,发现错误及时纠正。做完以后,指名让学生说一说解方程的根据和过程。

小学方程教案 篇4

《两位数加两位数练习课》:

教学内容:

课本P13——-P15练习二

教学目标:

1、巩固两位数与两位数的加法运算,加深加法意义的理解,为退位减法的学习做准备。

2、让学生有机会在不断探索和创造的气氛中培养解决问题的能力,激发学习数学的兴趣。

3、引导学生在辨识的练习中体验数学学习的趣味性、挑战性,使不同的学生在数学学习的能力上得到不同的发展。

教学重点:

1、通过练习,使学生能比较熟练的进行两位数与两位数的加法运算,提高学生的运算技能。

2、培养学生运用所学知识解决实际问题的能力。

教学难点:

通过练习,使学生比较熟练而准确的进行两位数与两位数的加法运算。

教学准备:

实物投影、卡片

教学过程:

一、创设情景,引入新课

1、学习了关于两位数与两位数的加法运算。你们有哪些收获呢?指名汇报。

2、总结得真不错。今天这节课我们继续来研究,通过这节课的学习相信大家会有更大的收获。

〔设计意图〕:使学生明确学习的目标。

二、合作探索,巩固知识。

1、完成第14页练习二第5题。教师巡视、指导。做完以后请小朋友在小组内说一说是怎样计算的。

2、名汇报、并说明计算方法。计算两位数与两位数的加法时,要注意什么问题?指名回答。

3、完成第14页练习二第6题。这些计算对吗?和小组的同学说一说,把错误的改正过来。指名汇报,并说出错误应该如何改正。

4、完成第15页练习二第9题。教师巡视。指名汇报,并说明解题思路。

5、完成第14页练习二第7题。仔细读题,理解题意后完成填表。指名汇报,并说说是怎样计算的。观察表格,你了解到了哪些信息?说给你的同桌听一听。指名汇报。学生汇报,并说明解题思路。

6、完成第15页练习二第8题。有四只小白兔一起上山采蘑菇,现在它们正在为谁采的蘑菇最多而吵闹,你能帮帮它们吗?

7、怎样做才能解决它们的问题?指名汇报。

8、完成第15页练习二第10题。请在小组内讨论、交流完成。教师巡视。指名汇报。

〔设计意图〕:加深理解并使不同的学生得到不同的发展。

三、课堂总结:通过这节课的练习,你有什么新的收获?

学生从知识、方法上进行总结。

四、随堂练习

小学方程教案 篇5

教学目标

1.结合具体情境,会用字母表示数和数量关系,能用字母表示运算律和有关图形的计算公式。

2.经历探索用字母表示数的过程,体会用字母表示数的必要性,发展抽象概括能力,渗透函数思想。

教学重难点

重点:会用含有字母的式子表示数量、数量关系、计算公式等,理解含有字母的式子所表示的意思。

难点:理解含有字母的式子既表示结果也表示关系。

教学过程

课前听歌:英文字母歌

(一)导入

师:大家都说咱们班的同学见多识广,表达能力特强,倾听习惯也非常好,老师特意带了几张图片来考考大家。你能看懂吗?(边播边说)

老师带来的这几张图都有字母,生活中,它们都表示了特定的含义,在这里用字母你觉得有什么好处?(方便、简洁)

师:在生活中你见过这样的字母吗?(广告上的字母、衣服商标、零食袋的名称、车牌开头字母……)看来咱们班的同学真的是见多识广。

[设计意图:不管是在生活中,还是在数学学习中,学生对字母已不陌生。通过课前对相关信息的收集、交流,了解学生已有的学习经验,确定和把握新知的教学起点。引导学生将所学知识应用于生活中,体会数学与生活的联系,并通过举例促进学生的数学理解。]

看,老师还给大家带来了一个盒子,里面是什么呢?想知道吗?(给学生看看)

(二)学习“字母表示数”

1.单个字母表示数。

师:猜猜里面有多少钱?(生猜)

有这么多种可能,看来这个数是不确定的,未知的。

师:谁能用一种简便的方法把同学们说的数都表示出来呢?

可能性1:……

你是指说不完的数吧?这也是一种表示的方法。还有吗?

可能性2:a元或其他字母表示。

为什么用a元表示呢?

可能性3:没有字母出现。

其实在我们数学上用一个简单的字母就可以把所有的可能都表示出来。

引导小结:像表示这种不确定的数时,我们就可以用字母来表示,这就是我们今天学习的“字母表示数”。读题。

[设计意图:激发学生兴趣,让学生在猜的过程中,体会这个盒子的钱是不确定的,未知的,引导学生在说不完的情况下或者未知的情况下用字母表示数。]

2.过渡。

刚才我们是用哪个字母来表示盒子里的钱的?(板书:a)

3.含有字母的减法式子表示数。

问其中一个学生:现在请你在里面取出一张钱,举起来给大家看看。

[设计意图:让学生充分参与到课堂中来,通过取钱激发学生的兴趣,积极思考后面提出的问题。]

(1)问旁边另一学生:现在盒子里还有多少钱呢?

可能性1:b元。

现在是b元了,比刚才多了还是少了?跟刚才的a有关系吗?那你能用a来说一说吗?

可能性2:(a-10)元板书:a-10

引导小结:原来不仅可以用一个字母表示数,还可以用含有字母的式子表示数。你们真是太厉害了。

“a-10”表示什么意思?说的真好,谁能再来说一遍。

引导:a-10有两种含义,既表示现在盒子里的钱数,又表示比刚才盒子里的钱少了10元。

(2)又问刚才的学生:好,请您把钱先放回来,谢谢!

现在盒子里有多少钱?(还是a元。)

[设计意图:感受从盒子里取放相同的钱数,盒子里的钱数不变,仍是a元。]

(3)再请一生从盒子里拿钱:谁也想来取试试看。

生拿了后举起来给大家看。

再问:现在这盒子里还有多少钱?(板书:a-5)

你们都是这样想的吗?你能来说说意思吗?

好,谢谢你的配合,请把钱放回去。现在盒子里还是a元。

哦,你也想来,你也来一次。(生举起后说说式子。)

[设计意图:学生在盒子里取钱,充分调动了学生学习的积极性,让学生更加参与其中。深刻理解含有字母的式子不仅可以表示数,还可以表示一定的数量关系。]

4.含有字母的加法式子表示数。

咱们班的同学真的是太机智了,刚才咱们是往盒子里取钱,如果往里面放入10元钱,现在是几元了呢?

a+10,对吗?表示什么意思?

板书a+5,生说意思。

[设计意图:让学生有一个逆向的思维,从刚刚往盒子里取钱,再放回,再往盒子里放钱,体会用字母式可以有加减法的运算。引导学生结合例子说说字母式的两层含义。]

5.含有字母的乘法式子表示数。

(1)如果老师有6个这样的盒子,里面存的钱都是a元,现在一共有多少钱?你能用式子表示出来吗?把它写下来。(a×6)也可以是?(6×a)表示什么意思?(引导说两层含义:既表示6盒钱的元数,又表示现在的钱是刚才1盒钱的6倍。)

板书:a×6、6×a

在数学上写字母乘法式子的时候,还有着更简便的方法,我们来看看智慧老人是怎么说的吧,再在草稿纸上写一写。

[设计意图:让学生知道字母是不仅有加减法,而且还有含有乘号的字母式子。结合题意,列出字母式,引导说出两层含义。设置悬念,智慧老人还有更简便的字母乘法式缩写方法,感受字母简洁美埋下伏笔,而后让学生自学乘法字母式子简写知识窗,显得更加主动,更加亲切。]

(2)老师又有个疑问了:6a还可不可以表示其他地方的数呢?

比如:出示幻灯片,一支铅笔a元,6支铅笔就是6a元。

一个苹果重a千克,6个苹果就重6a千克。

……谁能来说说,咱们班的同学都是爱思考的孩子。

[设计意图:在让学生进一步体会含有字母的算式可以表示数量关系与结果的过程中,6a可以表示很多地方的数,通过给学生举例子,学生自己主动积极地去思考,串编出很多例子来理解。]

(3)减法、乘法都有了,还有其他的式子可以写吗?

两种过渡:

可能性1:还有加法。(怎么加?表示什么?)

可能性2:还有除法。(除法也可以吗?)

6.含有字母的除法式子表示数。

老师告诉你,这盒子里的钱刚好够买6个这样的盒子,你知道每个盒子多少钱吗?

板书:a6你还能想到其他式子吗?

[设计意图:根据前面乘法字母式子的铺垫,引导学生理解含有字母的除法式子的含义,增加了数学活动的趣味性。]

7.延伸。

老师写了满满一黑板的“a”,看来对a特别有好感啊,其实我们还可以用其他字母来表示,比如:(由生答)b,如果原来的钱数是b元,那么这里就是b-5,b+10,6b,b6……

[设计意图:让学生深刻感受不仅字母a可以表示未知数,其他字母也可以表示数。比如:x、b、c等。]

(三)练习

1.看来,字母式的能量可真大呀!让我们拿出作业纸也来写一写吧!

(1)你能用含有字母的式子表示吗?

①公共汽车上原有35人,到站后下车a人,上车b人,现在车上有()人。

②一个正方形的边长是x米,这个正方形的周长是()米。

③一本练习本的价格是a元,买b本应付()元。

④有一段m米长的绳,平均截成5段,每段长()米。

学生反馈。

[设计意图:建立在用字母表示数、数量关系和已有知识的基础上,让学生在作业上独立完成练习题。又因为学生是初步接触用字母表示数,所以必须让学生说出自己内心理解的字母式子含义,留给学生一个自主思考的余地。]

(2)妈妈比我大26岁,如果用n表示淘气的年龄,淘气妈妈的年龄怎么表示呢?(同桌之间列表格试试吧)

想想这里的n可以取哪些数?(生答)1000岁行吗?

看来,在有些题目中,比如字母表示年龄的时候,是有取值范围的。

[设计意图:借助母子年龄关系的情境,引导学生尝试用字母表示一个数量比另一个数量多几的数量关系(两个数量的差是一个常数),进一步体会用字母表示数简洁明了的特点,扩展了学生的思路,也让学生体会到变化的数具有一定的范围,要根据实际进行判断。]

2.研究了这么久,同学们都有些累了吧。让我们一起来唱一首儿歌放松一下。

?数青蛙》儿歌。

(1)能继续编下去吗?那如果是a只青蛙呢?把你的想法写下来。

(2)反馈学生作业,交流,比较哪种方法更确切?更简洁?

可能性1:a、b、c、d

质疑:abcd分别表示什么呢?

可能性2:a、a、2a、4a

你为什么这样写?原来青蛙的嘴、眼睛、腿和青蛙只数都有一定的关系的。

你们觉得哪一种更确切?

[设计意图:让学生将看似简单的儿歌一直说下去,学生不仅会产生浓厚的兴趣,还会产生对用字母表示数的需要,体会到用字母表示数的必要性。在上一个问题的基础上,进一步引导学生研究更为复杂的儿歌如何用字母表示。学生经历了这个探索过程,将再次体会到用字母表示数的必要性。自主建构模型——含有字母的式子不但能表示结果还能体现数量之间的关系。]

(四)课堂总结

1.今天这节课,你有什么收获吗?

2.你觉得字母表示数有什么优越性吗?

3.看来,字母在数学中随处可见,还有更多的用处等待你们的发现。这节课就上到这!

七、板书设计

字母表示数

不确定含有字母的式子既可以表示数,a

(未知)也可以表示数量关系。a-10

数量关系a+10

a×6=6×a=6·a=6a

a÷6

教学反思

在学生归纳总结出“生活化语言”的结论时,学生对字母表示数的本质特征及其用法有了直接的体验以后,及时引导学生进行反思和总结,把解决问题过程中获得的经验和体验提炼上升为数学知识。从语言角度出发就是寻求“生活语言”与“数学语言”相互磨合,在语言描述交流中创造形式化,是学生主动参与后得出的,学生主体性和创造性得到发挥,有利于激发学生学习数学的兴趣,有利于学生充分认识数学知识与现实生活的联系。另一方面,又应防止以“生活化”完全取代数学教学所应具有的“数学味”。如果不加引导地放手让学生一味用自己的语言去表达数学概念与数学知识,让学生的数学学习只停留在“生活化”的低层次水平而不上升为形式化,学生的思维能力就很难得以提高,数学学科的教育功能也就不能得以全面发挥。

1.充分利用教材提供情境,让学生在真实的情境中学习数学。

用字母表示数,看似浅显、平淡,但它是由具体的数过渡到用字母表示数,是学生学习数学的一个转折点,也是认识过程上的一次飞跃,对小学生来说是比较抽象、比较难以理解的。如果脱离学生的生活实际进行学习,就会给学生的思维带来很大困难。

2.引导学生经历由具体到抽象(即符号化)的过程,培养学生观察、比较和抽象概括的能力。

教学中,先让学生根据信息提出问题,初步感受这样的问题无穷多,再让学生在列算式解答问题过程中,充分感受到这样的算式写不完,产生探究、创造的欲望,从而逐步抽象出含有字母的式子。这个过程给学生留有足够的思维空间,使学生真正充分经历了知识的发生、形成、发展和应用的全过程(即符号化的全过程),学生自己归纳、概括知识,加深了对字母表示数的意义和方法的理解。

3.巧妙设计练习,扎实训练“双基”。

新一轮课程改革,并不意味对传统的全盘否定,而是要进行合理的扬与弃。本节课就很好地继承和发扬了我们教学中传统的做法,即“双基实,变式精”,充分做到了“分层练习有保证、变式练习有体现”。在练习与应用中,教师精心设计了一系列有层次、有坡度、有新意的习题,并且都是以生活为素材,源于生活、高于生活(提炼过的)、服务于生活,使学生在解决一个个现实问题的同时,“双基”得到了进一步的夯实与提高,也为后续学习打下了坚实的基础。

4.有机渗透数学思想和方法,体现数学味的课堂。

教学中力求让课堂充满数学的思考。本节课,在学生参与创造、运用新知的同时,极好地渗透了符号化、函数、辩证等数学思想,学生在探究过程中,收获的不仅仅是知识技能,更重要的是数学思想和方法。

5.以学生为主体,提升学生学习的兴趣,让学生体验数学美,增强学生的数学情感。

学生学习数学的过程既是一个生动活泼的、主动的和富有个性的过程,也是一个经验共享、相互启智的过程。本节课教师放手让学生在自主探究的同时,为学生创设了多次合作、讨论和交流的机会,学生的思维在讨论中进行碰撞和整合,在整合的过程中使思维变得更加缜密与深刻,学生在自主探索、合作交流中获得成功的体验,培养了学生的团结协作精神,在学习过程中学生体验到数学的简洁美,增强学生的数学情感。

关注数学抽象,就是要让学生在“生活”和“数学”交替中体验数学,在现实数学结构重组中理解数学。通过数学抽象活动能把生活常识、活动经验提炼上升为数学知识,将具体数学问题抽象为形式化,从而提升学生数学抽象的水平。

小学方程教案 篇6

解简易方程这部分教材有两种类型方程的解法.教材先出示例5:一个工地用汽车运土,每辆车运X吨。一天上午运了4车,下午运了3车。这一天共运土多少吨?要求3+4=?这在初中代数中,叫做合并同类项,考虑到小学生的知识水平和接受能力,教材没有出现同类项等属语.而是通过实例并借助插图,帮助学生根据运算意义,从直观上理解计算方法.在此基础上,教学例6 、7X+9X=80的解法.这也是本节教材的一个重点内容.在后面学习列方程解应用题时,有些含有两个未知数的题目,需要列出这样的方程.而且这种题型思路统一,解法一致,既可减轻学生的`负担,又可提高学生解答应用题的能力.为今后学习分数应用题及代数方程解应用题打下了牢固的基础。所以我们必须重视这部分内容的教学.结合教学内容,我将教学目标设计为:

智育目标 (1).理解掌握形如a±b=c的方程的算理.(2).会解形如a±b=c的方程.为列方程解应用题作准备.

德育目标 培养学生学习中的团结互助精神。

能力目标 培养学生分析、推理能力和思维的灵活性.

学生的数学学习过程是他们带着原有的知识背景、活动经验和理解走进学习活动,并通过自己的主体活动,包括独立思考、与他人交流和反思等,本课是在学生已有的观察法、比较法的基础上进一步运用尝试教学法、迁移法,去建构对数学的理解,

这就很好地突出了学习者的主体作用,使学生主动参与到整个学习过程中去,把发现知识内在联系的机会与权利还给学生。从而培养和提高学生分析问题的能力及推理能力。

我将教学流程设依次设计为:精心设计 运用迁移、创设情景 激活课堂、重视指导 拓展延伸三步曲。先说第一步

教学伊始,为学生营造一个故事情景:班上准备开一次文艺晚会,派你去买些水果,你会怎样给营业员付钱?片刻沉默后,有的说:我会认认刻度,确定有几斤再付钱。因为方程本来就是等式,这样,让学生在数学中也学会生活。再出示本课准备阶段两种类型的练习题,1、用字母表示乘法分配律,2、一个工地用汽车运土,每辆车运5吨,一天上午运了4车,下午运了3车,这一天共运土多少吨?对例5、例6的学习具有迁移的作用,通过看看、比比、算算,让学生运用已有知识和解题方法可进行自主学习。因为数学本身也是充满观察与猜想的活动。如何围绕重点展开教学,如何突破难点呢?因此教学流程设计的第二步

小学方程教案 篇7

前一阶段的教学,我发现孩子们还是比较喜欢学习数学的,特别对方程都有一种与生俱来的好奇心。他们总觉得天平能启发着他们去解决这么神奇的方程,真是非常有趣,学得效果也不错。今天在整节课的教学中,引入有序,思路清晰,环节紧扣。可是学生学习十分被动,课堂可以说是死气沉沉,真的有点不习惯孩子们这样,据我对学生的理解利用天平这样的事物原型来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,学生应该比较感兴趣的,原因在哪儿呢?课后查找原因:

1、通过与学生的谈话发现学生过于紧张。

2、教师缺乏调节课堂气氛手段。

今后尽量要注重这方面的调节,兴趣是最好的老师,没有兴趣哪来的教学效果。

从学生作业反馈来看,学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。虽然这样教学学生有兴趣,效果比较理想,不仅一节课内完成了预订的教学任务,而且学生作业质量较高,仅二人书写格式有误。但也存在局限性,如a-x=b和a÷x=b,虽然教材没有要求解这类方程,但试卷和相应的练习有出现,因此,有必要特别利用一些时间给学生补充讲解这类方程解法。

小学方程教案 篇8

课前准备

教师准备 PPT课件

教学过程

⊙谈话导入

师:看下面的字母,你知道它们分别是什么意思吗?

SOS EMS m2

(SOS:求助信号;EMS:中国邮政快递;m2:平方米)

字母在生活中随处可见,这说明它很重要。今天我们就来进一步巩固用字母表示数及解方程等知识。(板书课题:用字母表示数、解方程)

⊙回顾与整理

1.用字母表示数。

(1)用字母表示数的作用和意义。

用字母可以简明地表示数、数量关系、运算定律和计算公式,为研究和解决问题带来了很多方便。

(2)我们曾经学过哪些用字母表示数的知识?

整理:

①用字母表示数的'简写。

②用字母表示数量关系。

③用字母表示运算定律。

④用字母表示计算公式。

(3)常见的用字母表示的数量关系有哪些?

预设

生1:路程用s表示,速度用v表示,时间用t表示,三者之间的关系如下:

s=vt v= t=

生2:总价用a表示,单价用b表示,数量用c表示,三者之间的关系如下:

a=bc b= c=

(4)常用的运算定律有哪些?

预设

生1:加法交换律:a+b=b+a

生2:加法结合律:(a+b)+c=a+(b+c)

生3:乘法交换律:a×b=b×a

生4:乘法结合律:a×b×c=a×(b×c)

生5:乘法分配律:a×(b+c)=a×b+a×c

(5)常见的用字母表示的计算公式有哪些?

预设

生1:长方形的长用a表示,宽用b表示,周长用C表示,面积用S表示。

C=2(a+b) S=ab

生2:正方形的边长用a表示,周长用C表示,面积用S表示。

C=4a S=a2

生3:平行四边形的底用a表示,高用h表示,面积用S表示。

S=ah

生4:三角形的底用a表示,高用h表示,面积用S表示。

S=

小学方程教案 篇9

绍兴县小学数学第九册备课

编写者单位:  齐贤镇中心小学         编写者姓名:徐亚萍            编号:65--68

教学内容 人教版第九册教材65页内容及练习十二1―4题。

教材分析 由实际问题引入方程,在现实背景下求解方程并检验,担负着教学列方程和教学解方程的双重任务。这样处理有助于学生理解解方程的过程,也有利于加强数学知识与现实世界的联系,有利于培养学生的数学应用意识。

学情分析 本节课是在学生学会用字母表示数,掌握等式的基本性质和解简易方程之后来学习列方程解决一些比较简单的实际问题。

教学目标 1.通过学习初步掌握列方程解决问题的方法及步骤,会解稍复杂的方程。

2.体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。

3.用情境教学,把解决问题融入一种故事情境,通过本节课的学习,激发学生学习兴趣,增强应用价值的意识,受到人文教育。

教学重点 列方程解决问题

教学难点 找等量关系,列出方程的方法及步骤。

教学准备 足球一个

教学过程:教学过程:准备题:

1、口答下列方程的解是多少?

y-20=4      2x=24     a+4=7     15=3x

说说你解方程的思路?

2、说说各题中的等量关系,并列出带有未知数的方程式:

①母鸡有30只,是公鸡的2倍。公鸡有几只?

②甲数是17,是乙数的2倍。乙数是多少?

③ 足球上的白色皮共20块,是黑色皮的2倍。黑色皮有几块?

一、情境激趣,导入新课

1.  出示足球

(1)实物引趣:问:喜欢踢足球的请举手(评价),对这个足球的构成有所了解的请举手(交流评价)。小小足球的完美构成引起了数学家、建筑学家、美学家极大的兴趣,都从中发现了自己研究的价值。今天我们就以一位数学家的眼光来发现这个足球在构成中隐藏着的数学秘密,好不好?请同学们观察主题图,寻找你所需要的信息。

(2)汇报交流:你知道了那些信息?

足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮?”

审题,寻找解决问题的有用信息。

揭示课题:今天我们学习用方程解答这类问题。

教师板书:稍复杂的方程

分析、找出数量之间的相等关系。白色皮 和 黑色皮 有什么关系?

学生小组讨论,汇报结果。

可能出现的等量关系是: 黑色皮的块数2-4=白色皮的块数

黑色皮的块数2-白色皮的块数=4

黑色皮的块数2=白色皮的块数+4

(3)同桌讨论怎样把x表示什么写清楚。

(4)怎样列出方程。

(5)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。

师板书学生的方程并选择2x-4=20讨论它的解法

学生小组讨论解法 汇报交流师板书:

(6)引导学生总结列方程解决问题的步骤:

①弄清题意,找出未知数,用x表示。

②分析、找出数量之间的相等关系,列方程。

③解方程。

④检验,写出答案。

二、学以致用,拓展练习

同学们,运用刚才学到的本领,我们到数学王国里闯一闯,有信心吗?

1.解方程:(1)16+8x=40       (2)2x-7.5=8.5

(3)4x-3×9=29      (4)3x+6=18

2.练习十二5主题图片,提问:猎豹和大象谁跑得快,出示第五题,要求独立完成,同桌检查,交流展示。

3、练习十二7主题图片。提问:(1)能看懂在讲一件什么事情吗?(2)谁来给我们解释一下华氏温度和摄氏温度?独立完成后,全班讲评。

4.练习十二第2题主题图,装网球,从网球的总个数及每5个装一筒,根据这两个数据分析,1428个网球能正好装完吗?如果有剩余会剩下多少个?(说理由)怎样调整总个数就能正好装完?在剩3个的情况下,一共装了多少筒? 独立完成,集体讲评。

三、小结

通过这节课的学习,你有哪些收获和遗憾?

师:我们要用数学的眼睛看生活中的事物,要留心生活中的数学问题,善思善学,学好数学。

板书:                  稍复杂的方程

黑色皮的块数2-4=白色皮的块数    2x-4=20

黑色皮的块数2-白色皮的块数=4    2x-20=4

黑色皮的块数2=白色皮的块数+4    2x=20+4

修   改   意  见

小学方程教案 篇10

师:大家的猜想对不对呢?我们来验证一下。

1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)

2、如果左侧再加上2个x克的砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)

3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)

4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)

5、通过上面的游戏,你发现了什么?

小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。

小学方程教案 篇11

列方程解两步应用题(一)

教学目标:1、初步学会列方程解比较容易的两步计算应用题,知道列方程解应用题的步骤,掌握列方程解应用题的一般方法

2、培养学生的比较能力、分析能力和归纳概括能力

教学重点:掌握列方程解应用题的一般方法

教学难点:找出应用题中的等量关系

教具准备:教学过程:

1.口头解下列方程(小黑板出示)

x-35=40x-57=40

15x-35=4020-4x=10

2.出示复习题

商店原有一些饺子粉,卖出35千克以后,还剩40千克。这个商店原来有饺子粉多少千克?

(1)读题,理解题意。

(2)引导学生用学过的方法解答

(3)要求用两种方法解答。

(4)集体订正:

解法一:35+40=75(千克)

解法二:设原来有x千克饺子粉。

x-35=40

x=40+35

x=75

答:原来有75千克饺子粉。

(5)针对解法二说明:这种方法就是我们今天要学习的列方程解应用题。板书课题:列方程解应用题

二、探究新知

1.教学例1

商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克。这个商店原来有多少千克饺子粉?

(1)读题理解题意。

(2)提问:通过读题你都知道了什么?

(3)引导学生知道:已知条件和所求问题;题中涉及到原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。根据理解题意的过程教师板书:

原有的重量-卖出的重量=剩下的重量

(4)教师启发:等号左边表示什么?等号右边表示什么?(引导学生回答:等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。)

(5)卖出的饺子粉重量直接给了吗?应该怎样表示?(引导学生回答:卖出的饺子粉重量没有直接给,应该用每袋的重量乘以卖出的袋数)把上面的等式改为:

原有的重量-每袋的重量卖出的袋数=剩下的重量

(6)启发学生把已知条件在关系式下面注出来。然后引导学生说出要求的问题用x表示即设未知数,教师说明怎样设未知数。

(7)引导学生根据等量关系式列出方程。

(8)让学生分组解答,集体订正时板书如下:

解:设原来有x千克饺子粉。

x-57=40

x-35=40

x=40+35

x=75

答:原来有75千克饺子粉。

(9)引导学生自己看118页例2上面一段话,提出问题:你能用书上讲的检验方法检验例题1吗?引导学生自己检验。之后请几位学生汇报结果。都认为正确了再板书答语。

小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)

关于小学数学方程教案1500字精选


教师应当在做课前准备时,就以优秀的人民教师的标准来严格要求自己,每个负责的老师都会花很多时间编写教案。写好教案是上好课的基础。那么什么样的教案才能算是优秀的教案呢?或许你需要"关于小学数学方程教案"这样的内容,欢迎大家与身边的朋友分享吧!

关于小学数学方程教案【篇1】

教学目标

1.初步学会列方程解比较容易的两步应用题.

2.知道列方程解应用题的关键是找应用题中相等的数量关系.

教学重点

列方程解应用题的方法步骤.

教学难点

根据题意分析数量间的相等关系.

教学过程

一、复习准备

(一)口算

(二)练习(课件演示:列方程解应用题)

商店原有一些饺子粉,卖出35千克以后,还剩40千克.这个商店原来有饺子粉多少千克?

1.读题,现解题意.

2.学生独立解答.

3.集体订正.

解法一:35+40=75(千克)

解法二:设原来有千克饺子粉.

答:原来有75千克饺子粉.

(三)教师说明:这种方法(解法二)就是我们今天要学习的列方程解应用题.

板书课题:列方程解应用题

二、新授教学

(一)教学例1(继续演示课件:列方程解应用题)

例1.商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克.这个商店原来有多少千克饺子粉?

1.读题,理解题意.

2.教师提问:通过读题你都知道了什么?

教师板书:原有的重量-卖出的重量=剩下的重量

3.教师提问:等号左边表示什么?等号右边表示什么?

卖出的饺子粉重量直接给了吗?应该怎样表示?

教师板书:原有的重量-每袋的重量卖出的袋数=剩下的重量

4.根据等量关系式列出方程并解答.

教师板书:解:设原来有千克饺子粉.

答:原来有75千克饺子粉.

5.小结:列方程解应用题的关键是什么?

(二)教学例2(继续演示课件:列方程解应用题)

例2.小青买4节五号电池,付出8.5元,找回0.1元.每节五号电池的价钱是多少元?

1.读题,理解题意.

2.提问:要解答这道题关键是什么?

3.学生独立解答.

4.学生汇报解答过程.

(三)总结列方程解应用题的一般步骤(继续演示课件:列方程解应用题)

(四)练习

商店原来有15袋饺子粉,卖出35千克以后,还剩40千克,每袋饺子粉重多少千克?

三、课堂小结

今天你学习了哪些知识?列方程解应用题的关键是什么?步骤呢?

四、课堂练习

(一)把每个方程补充完整.

1.小明买4枝铅笔,每枝元,付给营业员3.5元,找回0.3元

__________________________________=0.3

2.建筑工地运来5车水泥,每车吨,用去13吨以后还剩7吨.

__________________________________=7

(二)列方程解答.

服装厂有240米花布.做了一批连衣裙,每件用布2.5米,还剩65米.这批连衣裙有多少件?

五、课后作业

1.图书小组原来有一些故事书,借给3个班,每班18本,还剩35本.原来有故事书多少本?

2.四年级做了3种颜色的花,每种25朵,布置教室用去一些以后还剩28朵.布置教室用去多少朵?

六、板书设计

列方程解应用题

例1.商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克.这个商店原来有多少千克饺子粉?

原有的重量-每袋的重量卖出的袋数=剩下的重量

千克5千克7袋40千克

解:设原有千克饺子粉.

关于小学数学方程教案【篇2】

教学目的:通过复习使学生能教熟练地用字母代表未知数,列出符合题中条件的等式;列方程解应用题。从而培养学生抽象思维的能力和分析问题、解决问题的能力。

教学重点:列方程解应用题的方法。

教学过程:

一、列方程解应用题的特点:

1、列方程解应用题的特点是什么?

2、找出等量关系:

列方程解应用题时,根据什么来列方程?(根据数量间的相等关系列方程)

根据下面的条件,找出数量间相等的关系:

(1)篮球比足球多5个

(2)男生人数是女生人数的2倍

(3)梨树比苹果树的3倍少15棵

(4)做8件大人衣服和10件儿童衣服共用布31.2米

(5)两根一样长的铁丝,一根围成长方形,一根围成正方形。

小结:找等量关系,可以依据常见的数量关系,也可以依据线段图和计算公式,要认真审题,找出关键句。

二、教学例3

1、让学生独立解答例3的三道题目

2、讨论:(1)这三道应用题之间有什么联系和区别?

(2)列方程解应用题的步骤是什么?

①审题;(弄清题意)

②设未知数;

③找出等量关系、列方程;

④解方程;

⑤检验、写答案;

(3)用方程解和用算术方法解,有什么不同?

方程解:A、用字母代表未知数参加列式与运算;

B、列出符合题中条件的等式;

算术解:A、算式中应全是已知数;

B、算式必须表示所求的未知数;

3、练习:

①114页做一做;

②练习二十四的第1、2题。

三、巩固练习:(补充练习)

1、①男生50人,女生比男生的2被多10人,女生多少人?

②男生50人,比女生2被多10人,女生多少人?

③全班50人,男生比女生的2倍多10人,男、女生各多少人?

2、①果园里的桃树和杏树共360棵,杏树的棵数是桃树的4/5。桃树和杏树各有多少棵?

②果园里的桃树和杏树共360棵,杏树的棵数比桃树少50棵。桃树和杏树各有多少棵?

四、作业:联系二十四3、4、5、6题

关于小学数学方程教案【篇3】

一、导入

1.说说数量之间的关系(教师逐条出示)。

(1)合唱队比舞蹈队多15人。

(2)合唱队的人数是舞蹈队的3倍。

(3)合唱队的人数比舞蹈队的3倍多15数人。

2.教师在上面第(3)条的基础上再出示:

(1)少年宫合唱队有84人。

(2)少年宫舞蹈队有23人。

提问:你能从三个条件中选择两个,提出问题,编成应用题吗?

教师根据学生的回答出示:

(1)少年宫舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人。合唱队有多少人?

(2)少年宫合唱队有84人.合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人(即例4)

二、探究

1.学生独立解答第(1)题。

学生汇报解法.并说一说是怎样想的。

2.学生尝试解答第(2)题。教师巡视,了解情况。学生出现的解法可能有:

①(84-15)3②843-15

③解:设舞蹈队有X人。3X+15=84

④解:设舞蹈队有X人。84-3X=15

⑤解:设舞蹈队有X人。3X=84-15

⑥解:设舞蹈队有X人。(84-15)X=3

3.教师组织学生汇报各自的解法。

学生介绍算术方法(84-15)3与843-15

之后,教师组织学生辩论:这两种解法哪一种是正确的?并引导学生画线段图理解数量之间的关系。

学生介绍方程解法时,教师要求学生说出是根据数量间怎样的相等关系来列方程的。

4.小组讨论。

(1)你认为第(2)题是算术方法解还是列方程解好?为什么?列方程解这道题,你喜欢列哪个方程?为什么?

(2)第(1)题和第(2)题,它们有什么联系吗?

(3)你认为这一类应用题在什么情况下用算术方法解比较方便?在什么情况下列方程解比较容易一些?

5.揭示课题。

6.把第(2)题的第二个条件改成合唱队的人数比舞蹈队的3倍少15人,应该怎样列方程?

三、练习

说一说你准备选择用算术方法解还是列方程解,口答算式或方程。

3.同学们到菜园参加劳动。摘黄瓜37筐,摘黄瓜的筐数比西红柿的3倍少5筐,西红柿多少筐?

4.同学们到菜园参加劳动。摘西红柿14筐,摘黄瓜的筐数比西红柿的3倍少5筐。摘黄瓜多少筐?

四、总结说一说你这一节课的学习收获。

五、作业练习三十第1、2题。

关于小学数学方程教案【篇4】

教学目的:

1、使学生学会用方程解答已知比一个数的几倍多(少)几是多少,求这个数的应用题。

2、使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。

3、通过解决问题激发学生热爱新校的情感。

教学重点:

分析题中数量间的相等关系,并列方程,提高用方程解应用题的能力。

教学难点:

根据不同的数量间的相等关系,列出多种不同的方程,体会列方程解应用题的优越性。

教学准备:课前调查老校与新校各方面的变化的数据;多媒体课件。

教学过程:

一、课前谈话激发兴趣

师:同学们,这个学期我们搬进了新的学校,你的心情怎样?

通过调查你发现新校与老校相比有什么不同?(学生自由说)

(评析:学生刚刚搬进漂亮的新校,充满了好奇,让他们课前调查,他们当然是乐开花,调查中,学生进一步地认识、了解了自己的新学校,而且用他们调查的数据作为下面的学习的材料,使学生感受到我们生活的每一个角落都有数学,我们学的是有用的数学。)

二、展示信息提出问题

师:的确,就象同学们所说的,新校与老校相比发生了非常大的变化。

关于小学数学方程教案【篇5】

教学目的:

1、使学生学会用方程解答已知比一个数的几倍多(少)几是多少,求这个数的应用题。

2、使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。

3、通过解决问题激发学生热爱新校的情感。

教学重点:

分析题中数量间的相等关系,并列方程,提高用方程解应用题的能力。

教学难点:

根据不同的数量间的相等关系,列出多种不同的方程,体会列方程解应用题的优越性。

教学准备:课前调查老校与新校各方面的变化的数据;多媒体课件。

教学过程:

一、课前谈话激发兴趣

师:同学们,这个学期我们搬进了新的学校,你的心情怎样?

通过调查你发现新校与老校相比有什么不同?(学生自由说)

(评析:学生刚刚搬进漂亮的新校,充满了好奇,让他们课前调查,他们当然是乐开花,调查中,学生进一步地认识、了解了自己的新学校,而且用他们调查的数据作为下面的学习的材料,使学生感受到我们生活的每一个角落都有数学,我们学的是有用的数学。)

二、展示信息提出问题

师:的确,就象同学们所说的,新校与老校相比发生了非常大的变化。

根据学生的交流选择信息出示下表:

信息1

信息2

问题

老校有电脑40台

新校的电脑比老校的6倍多35台

新校有1550人在校就餐

比老校的3倍多200人

新校有图书49500册

比老校的4倍多1500册

新校的人均绿化面积是13.5平方米

比老校的4倍少2.5平方米

师:你能根据上面的信息,提出数学问题吗?

根据学生的回答逐步出示问题。

(1)新校有多少台电脑?

(2)老校有多少人在校就餐?

(3)老校的人均绿化面积多少平方米?

(4)老校有多少万册?

师:刚才同学们给每一组信息提出了一个问题,组成了四道应用题。

第一个应用题应该怎样解答?(学生口答)

(评析:突破传统的应用题的呈现方式,通过选择学生调查的信息,请学生提出问题的方式使复习题、例题和练习题整体呈现,促使学习内容在动态中生成,激活了学生的认知需求与思维热情,使其积极主动地参与到下面的学习活动中。)

三、体验交流探索新知

1、师:下面我们看第二个题目,谁来把这个题目读一读。这道题目老师想请同学们在试着做做看。(只需列出式子)

汇报交流。

估计学生有以下几种方法(根据学生的回答板书):

3X=1550-2003X+200=1550(1550-200)3

1550-3x=200(1550+200)3

(1)先让学生说说左面三种方法分别是怎样想的?

师:其实这三种方法之间也有一定的联系。有什么联系?(同桌讨论)

(2)再让学生讨论右面两种方法,根据这两个算式的计算结果,学生很容易发现其中一种肯定是错误的。

让学生充分地发表自己的意见,并随机出示线段图帮助学生进一步地理解。

师:请同学们任意选择一种方法把它计算出来。指名板书。

2、师:解答好了,接下去还要做什么?(学生检验并交流)

3、比较

(1)比较第2题的算术解和方程解。

师:这道题用算术方法和方程都可以解。谁来说说你喜欢用哪一种方法?为什么?

(2)比较第2题和第1题。

师:第1题为什么用算术方法解?(学生充分交流)

师小结:通常我们用方程来解象第2题这样的应用题。

揭示课题:列方程解应用题。

4、练习

(1)学生列方程解第3题。

学生练习,指名板演。

师:谁来评一评他做得怎么样?

(2)学生列方程解第4题

师:谁来说说第4题和第2、第3题有什么不同?

(评析:力求让学生去发现和概括出规律性的知识,无论在体会列方程解应用题的优越性,还是在多种方法的择优上,等等,都尽量让学生充分地体验,使学生在分析、对比中,探索规律,不仅拓宽了学生的思维空间,更体现了学生的数学学习活动是一个生动活泼、主动的和富有个性的过程。)

四、畅谈感受深化体验

师:通过同学们的计算,我们又获得了一些有关老校与新校的信息,请同学们再把我们新校与老校的有关数据比较一下,你有什么感受?或者想说些什么?

8、通过刚才的练习,你觉得解答我们今天学习的这类应用题的关键是什么?

(评析:通过总结,学生进一步明确了找关键句中的等量关系是解题的关键;通过比较,学生进一步地感受到新校和老校相比发生了巨大的变化,激发了学生发自内心的爱校之情,激励学生珍惜优越的学习环境,努力学习。)

五、分层练习讲究实效

过渡:老师这里有这样的一些关键句,请你根据这些句子说出等量关系式。

1、找等量关系(课件出示)

(1)今年养兔的只数比去年的3倍少8只

(2)红毛衣的件数比蓝毛衣的2倍还多13件

(3)买3个篮球比4个排球多用去5元

(4)比小孩服装的5倍少3套是大人服装。

2、任意地选择两个条件,提出一个问题,组成一道应用题,然后把它解答出来,看谁做得又快又多。

3、游戏(机动)

师:指名问学生几岁?同学的年龄是我女儿的3倍少1岁,猜猜我的女儿几岁?

请同桌两人做这个游戏,利用你爸爸、妈妈或其他人的年龄编题,让你的同桌猜一猜。

(评析:采用分层练习,力求在练习过程中,既巩固新知,又发展学生的数学思维,使学生在发散性、多维度的思维活动中提高解决实际问题的能力,培养学生的创新意识。)

关于小学数学方程教案【篇6】

教学目标:使学生会列方程解答和倍问题与差倍问题的应用题,提高学生分析问题和解决问题的能力。

使学生掌握检验方法,养成自觉检查、验算的良好习惯。

重点难点:会列方程解答和倍问题与差倍问题的应用题

有两个未知数,如何设未知数

教学过程:

一、复习准备

1、化简下列各式

6X+3X0.8X-0.7X4X+X-2

16X-15X3X-X+8X0.9X+0.1X

2、出示:果园里有梨树40棵,桃树的棵数是梨树棵数的3倍。要求学生:

(1)分组讨论把已知信息表示在线段图上

(2)根据已知信息,通过计算,你能获得哪些信息?

(3)计算出你想知道的信息,然后表述自己的思考过程

二、学习新课

1、出示例7:果园里有桃树和梨树共160棵,桃树的棵数是梨树的3倍。两种树各有多少棵?

(1)让学生根据已知条件画出线段图

(2)和准备题的线段图比较,有何异同?

(3)和前面所学的列方程解应用题相比,有什么特别的地方?

老师们最喜爱的八佰教育网

(4)要求的两个问题怎样设未知数?

(5)题中蕴含的相等关系是什么?

2、尝试练习,指名板演。

3、检验

(1)讨论检验方法:40+120=160

12040=3

(2)还可以怎样检验?

4、完成试一试

三、巩固练习:练一练15

四、总结并布置作业

关于小学数学方程教案【篇7】

教学目标

1.使学生初步理解方程方程的解和解方程的含义.

2.初步掌握解简易方程的方法并会检验.

教学重点

使学生初步掌握解方程的方法和书写格式.

教学难点

帮助学生建立方程的概念,并会应用.

教学设计

一、复习准备

(一)口算下面各题.

30+()=50()2=10

(二)列式.

1.一支钢笔元,2支钢笔多少元?

2.与4的和.

二、新授教学

(一)方程的意义

1.介绍天平

这是一架天平、可以用来称物品的重量.当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等.

2.引出方程

(1)出示图片:天平1

教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?

(2)出示图片:天平2

教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?

教师板书:20+?=100

教师说明:这个未知数?,如果用来表示就可以写成20+=100.

(3)出示图片:篮球

教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?

教师板书:

3.方程的意义.

教师提问:观察上面三个等式回答问题.这三个等式有什么相同点和不同点?

相同点:都是相等的式子.

不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数.

教师板书:象这种含有未知数的等式,叫方程.

教师强调:含有未知数、等式

4.思考:方程和等式之间到底是什么关系呢?

(1)出示图片:等式与方程

(2)小结:所有的方程都是等式,但是等式不一定都是方程.

(二)教学例1

1.方程的解

教师提问:在中,等于多少时方程左边和右边相等?

在中,等于多少时方程的左边和右边相等?

教师说明:使方程左右两边相等的未知数的值,叫做方程的解.

如:是方程的解

是方程的解

2.解方程

教师板书:求方程的解的过程叫做解方程.

3.教学例1

例1.解方程-8=16

(1)教师提问:解方程先写什么?根据什么计算?

(2)教师板书:

解:根据被减数等于减数加差

(3)怎样检查解方程是否正确?

检验:把代入原方程,

左边,右边

左边=右边

所以是原方程的解.

4.讨论:方程的解和解方程有什么区别?

三、课堂小结

今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?

四、巩固练习

(一)填空

1.含有未知数的()叫做方程.

2.使方程左右两边相等的(),叫做方程的解.

3.求方程的解的()叫解方程.

4.下面的式了中是等式的有();

是方程的有().

(二)判断,对的在括号里打,错的打.

1.等式都是方程.()

2.方程都是等式.()

3.是方程的解.()

4.也是方程.()

(三)选择正确答案填在括号内.

1.的解是()

①②

2.的解是()

①②

3.这个式子是()

①是方程②是等式③既是方程又是等式

4.是方程()的解

①②

五、课后作业

(一)解下列方程.(第一行两小题要写出检验过程.)

(二)用方程表示下面的等量关系,并求出方程的解.

1.加上35等于91.

2.的3倍等于57.

3.减3的差是6.

4.7.8除以等于1.3.

六、板书设计

解简易方程

含有未知数的等式叫做方程.使方程左右两边相等的未知数的值,叫做方程的解.

求方程的解的过程叫做解方程.

例1解方程

解:根据被减数等于减数加差

检验:把代入原方程,

左边,

右边,

所以是原方程的解.

教案点评:

该教学设计既重视过程,又重视结论;既重视知识的教学,又重视能力的培养。教师采取边讲边练、讲练结合的形式,为学生提供了更多的参与学习的机会。

关于小学数学方程教案【篇8】

四年级(下册)用字母表示数教学含有字母的式子,学生初步学会了写式子的方法。五年级(下册)方程教学了方程的意义、用等式的性质解一步计算的方程,学生能够列方程解答简单的实际问题。本单元继续教学方程,要解类似于axb=c、axbx=c的方程,并用于解决稍复杂的实际问题。教学内容的编排有以下特点。

第一,把解方程和列方程解决实际问题的教学融为一体,同步进行,这是和以前教材的不同编排。在例1里,解2x-22=64这个方程是新知识,用它解答实际问题也是新知识。在例2里,解方程x+3x=290是新授内容,解决的实际问题也是新授内容。这两道例题,既教学解方程的思路与方法,又教学列方程的相等关系和技巧。这样编排,能较好地体现数学内容和现实生活的联系。一方面分析实际问题里的数量关系,抽象成方程,形成知识与技能的教学内容;另一方面,利用方程解决实际问题,使知识技能的教学具有现实意义,成为数学思考、解决问题、情感态度有效发展的载体。

第二,突出思想方法,通过举一反三培养能力。全单元编排的两道例题、两个练习,涵盖了很宽的知识面。先看解方程。例1教学ax-b=c这样的方程,练习一里还要解ax+b=c、a+bx=c这些形式的方程。从例题到习题,虽然方程的结构变了,但应用等式的性质解方程是不变的。也就是说,解方程的策略是一致的,知识与方法的具体应用是灵活的。再看列方程。例1把一个数比另一个数的2倍少22作为相等关系,练一练和练习一里陆续出现一个数比另一个数的几倍多几、三角形的面积计算公式以及其他的相等关系。实际问题变了,寻找相等关系是解题的关键步骤始终不变。在例2和练习二里也有类似的安排。无论教学解方程还是列方程,例题讲的是思想方法,以不变的思想方法应对多变的实际情况,有利于形成解决问题的策略,培养创新精神和实践能力。

全单元内容分成三部分,例1和练习一教学一般的分两步解的方程;例2和练习二教学特殊的需两步解的方程;整理与练习回忆、整理、应用全单元的教学内容,反思、评价教学过程和效果。

一、解稍复杂方程的策略转化成简单的方程。

两道例题里的方程都要分两步解,通过第一步运算,把稍复杂的方程转化成五年级(下册)里教学的简单方程,使新知识植根于已有经验和能力的基础上。化复杂为简单、变未知为已知是人们解决新颖问题的常用策略。这两道例题突出转化的过程,不仅使学生掌握解稍复杂的方程的方法,还让他们充分体验转化思想,发展解决问题的策略。

1.从各个方程的特点出发,使用不同的转化方法。

解形如axb=c的方程,一般根据等式两边同时加上或减去同一个数,结果仍然是等式的性质化简。例1在列出方程2x-22=64以后,教材里写出了解这个方程的第一步:2x-22+22=64+22。教学要让学生理解为什么等号的两边都加上22,体会这样做是应用了等式的性质,感受这样做的目的是把稍复杂的方程化简。过去教材里强调把ax看成一个数,是为了应用加、减法中各部分的关系解方程,新教材应用等式的性质解方程,突出转化的思想和方法。

解形如axbx=c的方程,一般应用运算律或相应的知识化简。axbx可以改写成

(ab)x,这已经在四年级(下册)用字母表示数时掌握了,现在只要计算ab,就能实现化简原方程的目的。教学时仍然要让学生理解为什么可以这样改写,以及这样改写的目的。

2.转化后的简单方程,教法不同。

例1让学生算出2x=,并求出x的值。这是因为学生具有解2x=86这个方程的能力。教学这样安排,是把转化思想和方法放在突出位置上,促进新旧知识的衔接,有效地使用教学资源。把求得的x的值代入原方程进行检验,在五年级(下册)已经教学。例1提出检验的要求,不仅是培养良好的习惯,还要通过结果是正确的,确认解稍复杂方程的策略和方法是正确的。

例2把原方程化简成4x=290,没有让学生接着解。教材写出x=72.5并继续算出3x=217.5,是因为72.5米和217.5米是实际问题的两个答案。学生以往解答的问题,一般只有一个问题,这道例题有两个问题,需要完整呈现解题过程,在步骤、书写格式上作出示范,便于学生掌握。另外,检验的思路也有拓展。由于题目的特点,不能局限于对解方程的检验,还要联系实际问题里的数量关系,检验算得的陆地面积和水面面积是不是一共290公顷,水面面积是不是陆地面积的3倍。教学时要注意到这一点,既保障解方程是正确的,更保障列出的方程符合实际问题里的数量关系。

3.加强解方程的练习。

前面曾经说到,例1和例2都有列方程和解方程两个教学内容,列出的方程必须正确地解,才可能得到正确的答案。因此,两个练习的第1题都安排了解方程。练习一在例1解方程的基础上向两个方向扩展,一是引出了a+bx=c、ax-b=c等结构与例题不完全相同的方程,二是把小数及运算纳入了方程。只要体会了例题里解方程的转化思想和转化方法,会进行小数四则计算,就能够适应这两个方面的扩展。要注意的是,小学阶段不要求解形如a-bx=c的方程。因为解这个方程,如果等式的两边都减a,就会出现-bx=c-a,不但等号左边是负数,而且右边c比a小;如果等式的两边都加bx,就出现a=c+bx,这些都是现在难以解决的问题。练习二在例2解方程的基础上带出形如ax-bx=c的方程,解方程涉及的除法计算都控制在三位数除以两位数以及相应的小数除法范围内,学生一般不会有困难。

还有一点要提及,整理与练习中安排小组讨论像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解,表明教材十分重视引导学生组建认知结构。如果既从两个方程的特点回顾解法的不同,又从策略角度进行整理,对学生是有好处的。练习中出现的方程15x2=60,是为应用三角形面积公式解决实际问题服务的。

二、列方程解决实际问题的关键找出相等关系。

列方程解决实际问题要找到相等关系,方程是依据相等关系列的。其实,某个实际问题为什么选择列方程的方法解答,或者为什么选择列算式的方法解答,经常是由相等关系决定的。所以,两道例题的教学,都是先找出相等关系。

相等关系是一种数学模型,它把数量关系表达成等式。列算式解决实际问题要分析数量关系,这时的分析着眼于挖掘已知条件之间的联系,沟通已知与未知的联系,通常把条件作为一个方面,问题作为另一个方面,因而用已知数量组成的算式求得问题的答案。实际问题里的相等关系也是数量间的关系,它的最大特点是将已知与未知有机联系起来,通过已知数量和未知数量共同组成的等式,反映实际问题里最主要的数量关系。学生在五年级(下册)初步感受了相等关系,能找出简单问题的相等关系。本册教学寻找较复杂问题的相等关系,就应充分利用学生已有的知识经验。

1.灵活开展思维活动,找出相等关系。

较复杂的问题之所以复杂,在于它的数量关系错综复杂。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍数关系,也有相差关系,是两种关系的复合。例2里已知颐和园水面面积与陆地面积一共290公顷,还已知水面面积大约是陆地面积的3倍,这是两个并列的条件。因此,寻找复杂问题的相等关系,要梳理数量关系,分清主次和先后。

寻找相等关系没有固定的模式照搬、照套,教材从实际问题的结构特点和学生的思维发展水平出发,灵活设计寻找相等关系的教学方法。学生在二年级(下册)已经能解决类似红花有10朵,求红花朵数的2倍少4朵是几朵的问题,对几倍少几这样的数量关系已有初步的理解。因此,例1要求学生找出大雁塔与小雁塔高度之间的相等关系,让他们利用已有的倍数概念和相差概念,通过推理,把比小雁塔的2倍少22米改写成数学式子小雁塔高度2-22,从而得到相等关系。例1为什么提出还可以怎样列方程,这是由于同一个几倍少几的关系,可以写出不同的相等关系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。要注意的是,这里不是要求学生一题多解。要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同;还要引导学生体会例题里呈现的等量关系,得出答案时的思考比较顺,从而自觉应用这样的等量关系。对于学生中未出现的相等关系,不必提及,以免搞乱思路。

怎样合理利用例2里的两个并列的已知条件?教材选择了线段图。先在表示水面面积的线段上填3x,再在线段图的右边括号里填290,在图上感受水面面积和陆地面积之间的倍数关系和相并关系。然后通过填空写出等量关系,体会水面面积和陆地面积一共290公顷是这个实际问题里的等量关系。

2.加强写式练习,进一步把握数量关系,为列方程打基础。

含有字母的式子是方程的重要组成部分,根据数量关系列方程时,都要写出含有字母的式子。是否具有用字母表示数的意识,能否顺利写出含有字母的式子,对列方程解答实际问题是至关重要的。因此,教材加强写式的练习。

练习一第2题写出表示梨树棵数的式子3x+15,表示鳊鱼尾数的式子4x-80,都是解答几倍多几、几倍少几实际问题所需要的基本技能。安排写式练习,使学生进一步理解数量关系,养成顺着梨树比桃树的3倍多15棵、鳊鱼比鲫鱼的4倍少80尾这些数量关系的表述进行思考,并转化成数学式子的习惯,从而选择最适当的相等关系解决实际问题。所以,这道练习题既是写式训练,也是思路引导。

练习二第2题是和倍、差倍问题的专项训练。根据黄花x朵和红花朵数是黄花的3倍,先写出红花有3x朵,用含有字母的式子表示红花的朵数,再用x+3x(或4x)表示两种花一共的朵数,用3x-x(或2x)表示红花比黄花多的朵数,发展联想能力。联想到的式子,正是方程里等号左边的部分,这道题也在写式训练的同时,进行思路引导。

3.列方程解答新颖的问题,拓展等量关系。

本单元安排两节练习课,分别教学练习一第6~13题、练习二第6~11题。着重解答一些与例题不同的实际问题,找到这些问题的等量关系是教学重点,也是难点,对发展数学思考非常有益。

练习一第7题起拓展等量关系的作用。第(1)小题画出了三角形,学生看到图上的高和底,就能想到三角形的面积计算公式,于是把底高2=三角形的面积作为解题时的等量关系。第(2)小题利用熟悉的括线表示19.8元的意思,形象显示了3枝铅笔的钱+1个文具盒的钱=一共的钱是问题里的等量关系。教材的意图是通过这些题打开思路,让学生体会不同的问题里有不同的等量关系,两个部分数之和往往是可利用的等量关系。这就为继续解答第8、9、12题作了有益的铺垫。至于第13题,把两种温度的换算公式作为等量关系。公式在题中已经揭示,只要在它上面体会已知华氏温度求摄氏温度,列方程解答比较好。反之,已知摄氏温度求华氏温度,依据公式能直接列出算式。

例2和练一练分别是典型的和倍、差倍问题,已知的总数或相差数是等量关系的生长点。练习二第7~11题的题材和例题不同,且各有特点。但是,等量关系的载体仍然是已知的总数与相差数。第7题用线段图配合展示题意,便于学生发现小丽走的米数+小明走的米数=两地相距的米数这一等量关系,并把这个经验迁移到解答后面的习题中去。

关于小学数学方程教案【篇9】

教学目标

1.使学生知道一道应用题可以用方程和算术两种方法解答.

2.知道用两种方法解应用题的区别和联系.

3.能够根据题目中数量关系的特点,灵活地选择解题方法.

教学重点

用两种方法解答应用题.

教学难点

正确选择计算方法.

教学过程

一、复习准备

(一)口算

903=240.6=12.63=1.24=

162=320.3=1.284=32.5=

(二)口答

+12=2720-3=11

4-6=1834=6

二、新授教学

(一)教学例7(课件演示:列方程解应用题例7)

例7.张老师到商店里买3副乒乓球拍,付出30元,找回1.8元.每副乒乓球拍的售价是多少元?(用方程解,再用算术方法解)

1.读题,理解题意.

2.学生独立解答.

3.集体订正,教师板书.

用方程解:算术方法解:

解:设每副乒乓球拍的售价是元.(30-1.8)3

30-3=1.8=28.23

3=30-1.8=9.4(元)

3=28.2

=9.4

答:每副乒乓球拍的售价是9.4元.

4.观察思考:用方程解和用算术方法解应用题有什么不同?有什么相同点?

(二)做一做

妈妈买了5千克苹果和8千克梨,一共用了23.04元.每千克苹果1.92元,每千克梨多少元?(先用方程解,再用算术方法解)

1.学生独立解答.

2.思考:两种解法中哪种方法比较简单?

三、课堂总结

本节课你学习了什么知识?解答时要注意什么问题?

四、巩固练习

(一)田勇的集邮册每页贴14张邮票,贴了6页,小波又送给他一些,现在一共有92张邮票.小波送给他多少张邮票?

(二)商店运来一些蓝毛衣和85件红毛衣,红毛衣的件数比蓝毛衣的2倍还多13件.运来的蓝毛衣有多少件?

教师提问:如果题目中不指定方法的话,用哪种方法做比较简单?

(三)选择适当的方法解答下列应用题.

1.每把椅子32元,每张桌子60元,买3张桌子和4把椅子,一共要用多少元?

2.买3张桌子和4把椅子一共用了308元.每把椅子32元,每张桌子多少元?

教师小结:一般来说,顺思考的题目,用算术方法解比较简便;逆思考的题目用方程解

比较简单.

五、课后作业

1.世界上最大的动物是蓝鲸.一只蓝鲸重124吨,比一头大象体重的25倍少1吨.这头大象重几吨?

2.世界上最小的鸟是蜂鸟.一只蜂鸟重2.1克,一只麻雀的体重比蜂鸟的50倍多1克.一只麻雀重多少克?

六、板书设计

列方程解应用题

例7.张教师到商店里买3副乒乓球拍,付出90元,找回1.8元.每副乒乓球拍的售价是多少元?

用方程解:算术方法解:

解:设每副乒乓球拍的售价是元.(30-1.8)3

30-3=1.8=28.23

3=30-1.8=9.4(元)

3=28.2

=9.4

答:每副乒乓球拍的售价是9.4元.

教案点评:

该教学设计从学生已有的知识基础和认知规律出发,在区别对比中,引导学生总结概括,搞清两种解法各自的特点。

例7的教学,使学生体会到方程解法和算术解法各自的特点;学习例7后,通过与做一做进行比较,学生体会方程解法的优越性;最后通过练习,学生进一步体会到列方程解应用题的优越性,提高了学生灵活选择解题方法的能力。

热门教案: 解方程教案模板


教案课件是每个老师工作中上课需要准备的东西,大家都要着手准备教案课件。只有提前做足教案课件设计环节的工作,这样学生才能很好地理解教学中的知识点。好的教案课件是从哪些角度来写的呢?下面是小编帮大家编辑的《热门教案: 解方程教案模板》,希望能为您提供更多的参考。

这节课的内容包括两个方面:一是探索并理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”;二是应用等式的性质解只含有加法和减法运算的简便方程。解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足,因此数学中老师要时刻关注学生的学习状态,引领学生经历将现实、具体的问题加以数学化,引导学生通过操作、观察、分析和比较,由具体到抽象理解等式的性质,并应用等式的性质解方程。在这节课的教学中,让学生理解并掌握等式的性质应是解决一系列问题的关键。

一、让学生在操作中发现

课开始,老师出示天平并在两边各放一个50克的砝码,“你能用式子表示出两边的关系吗?”学生写出 50=50;老师在天平的一边增加一个20克砝码,“这时的关系怎么表示?”学生写出50+20>50,“这时天平的两边不相等,怎样才能让天平两边相等?”学生交流得出在天平的另一边增加同样重量的砝码;“你有什么发现吗?”“自己写几个等式看一看。”通过具体的操作为学生探究问题,寻找结论提供了真实的情境,辅以启发性、引领性的问题,让学生经历了解决问题的过程,并在问题的解决中发现并获得知识。

二、让学生在发现中操作

引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学生解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的性质解方程,教者先利用天平所显示的数量关系,引导学生发现“在方程的两边都减去100,使方程的左边只剩下x”,通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。

小班教案:房子其四


教案课件是老师工作中的一部分,撰写教案课件是每位老师都要做的事。认真做好教案课件的工作计划,这样学生才能更快地理解各知识要点。你是否在寻找合适的教案课件呢?小编特地为您收集整理“小班教案:房子其四”,欢迎大家阅读,希望对大家有所帮助。

设计意图:

春夏季是易发病的季节,孩子十分容易发生感冒,常常会流着两根长长的鼻涕。对此,有的孩子似乎毫不理会,有的用鼻子吸、有的即使知道擦鼻涕,也是随意用衣袖或手巾等乱抹一下,甚至还有的将鼻涕吃进嘴里。针对这种情况,如何因势利导,让幼儿学会使用手帕、纸巾等擦鼻涕,乃至养成相应的卫生习惯是十分必要的。特别是近来,出现“非典”,如何对幼儿进行爱清洁,讲卫生,养成良好卫生习惯,对防范疾病,加强自我保护意识,就显得十分重要。针对小班幼儿的年龄特点,我们开展了一系列爱清洁的活动,如:洗手、擦脸、用餐等。《鼻涕虫》的活动,就是想通过让幼儿在轻松愉快的气氛中尝试、感知,积累一定的知识、经验,从而养成良好的个人卫生习惯。

活动目标:

1、结合故事背景及图画,建构对故事的基本理解。

2、能提出自己对故事人物的看法,在讨论基础上进一步丰富对其特点的认识。

3、尝试擦鼻涕的方法,积累自理生活的经验,并逐步养成良好的卫生习惯。

活动准备:

1、教学大书

2、蜗牛和鼻涕虫的图片

活动重难点:

重点:结合故事背景及图画,建构对故事的基本理解。

难点:能提出自己对故事人物的看法,在讨论基础上进一步丰富对其特点的认识。

活动过程

1、导入活动

(1)出示蜗牛与鼻涕虫的图片,请幼儿仔细观察,比较蜗牛与鼻涕虫的相同与不同。

(2)教师介绍鼻涕虫和蜗牛,小结二者的共同点(又长又软的身体,长长的眼睛等)与不同点(鼻涕虫背上没有壳),由此引出故事《鼻涕虫盖房子》

2、建构故事

遮挡大书文字,参考下表进行有层次的观察与讨论。

(1)封面:观察封面标题,预测故事。提问:这本书的主人公是谁?会讲什么故事?

(2)扉页:向幼儿介绍扉页:通过扉页可以了解到关于大书的哪些信息?

第2—5页:鼻涕虫和蜗牛分别是住在什么地方?鼻涕虫为什么要盖房子?

揭示第5页文字,教师朗读,想象第4页的对话。鼻涕虫和蜗牛说了什么?

第6—9页:房子造好了,鼻涕虫和蜗牛各自是什么心情?知道第9页文字后再进行推测,鼻涕虫为什么要盖房子?蜗牛对它说了什么?

第10—12页:蜗牛看到鼻涕虫的厨房后是什么心情?蜗牛又挑了什么毛病呢?知道第12页的文字后再推测,鼻涕虫为什么要盖卫生间?

第13—15页:鼻涕虫的卫生间造好了吗?蜗牛这回又会怎样挑剔?鼻涕虫接下来又会做什么?

第16页:故事的结局是什么?蜗牛心里会想什么?

3、从头到尾翻看大书,阅读文字给幼儿听,然后请幼儿进行概括总结。

故事讲了谁和谁的事情?鼻涕虫为什么要造房子?它是怎么造的?故事的结局如何?

4、学习擦鼻涕的方法。

数学教案-曲线方程


教学目标

(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.

(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.

(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.

(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.

(5)进一步理解数形结合的思想方法.

教学建议

教材分析

(1)知识结构

曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.

(2)重点、难点分析

①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.

②本节的难点是曲线方程的概念和求曲线方程的方法.

教法建议

(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.

(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.

(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.

(4)从集合与对应的观点可以看得更清楚:

设表示曲线上适合某种条件的点的集合;

表示二元方程的解对应的点的坐标的集合.

可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做.同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得.教学中对课本例2的解法分析很重要.

这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

文字语言中的几何条件数学符号语言中的等式数学符号语言中含动点坐标,的代数方程简化了的的代数方程

由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程.”

(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”.

教学设计示例

课题:求曲线的方程(第一课时)

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

(2)进一步理解曲线的方程和方程的曲线.

(3)初步掌握求曲线方程的方法.

(4)通过本节内容的教学,培养学生分析问题和转化的能力.

教学重点、难点:求曲线的方程.

教学用具:计算机.

教学方法:启发引导法,讨论法.

教学过程:

【引入】

1.提问:什么是曲线的方程和方程的曲线.

学生思考并回答.教师强调.

2.坐标法和解析几何的意义、基本问题.

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程.

(2)通过方程,研究平面曲线的性质.

事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

【问题】

如何根据已知条件,求出曲线的方程.

【实例分析】

例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.

首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

解法一:易求线段的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

证明:(1)曲线上的点的坐标都是这个方程的解.

设是线段的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点的坐标是方程的解.

(2)以这个方程的解为坐标的点都是曲线上的点.

设点的坐标是方程①的任意一解,则

到、的距离分别为

所以,即点在直线上.

综合(1)、(2),①是所求直线的方程.

至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

让我们用这个方法试解如下问题:

例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.

分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

求解过程略.

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

(2)写出适合条件的点的集合

(3)用坐标表示条件,列出方程;

(4)化方程为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点.

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

下面再看一个问题:

例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

由距离公式,点适合的条件可表示为

将①式移项后再两边平方,得

化简得

由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

【练习巩固】

题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.

根据条件,代入坐标可得

化简得

由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

【板书设计】

§7.6求曲线的方程

坐标法:

解析几何:

基本问题:

(1)

(2)

例1:

例2:

求曲线方程的步骤:

例3

练习:

小结:

作业:

本文网址://m.jk251.com/jiaoan/56237.html

相关文章
最新更新

热门标签