导航栏

×
范文大全 > 初中教案

一次函数的教学方案

时间:2022-01-23 一次函数 第六册一次函数

〖教学目标〗◆1、理解正比例函数、一次函数的概念。◆2、会根据数量关系,求正比例函数、一次函数的解析式。◆3、会求一次函数的值。〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。定义:一般地,函数叫做一次函数。当时,一次函数就成为叫做正比例函数,常数叫做比例系数。强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。(2)正方形周长与面积之间的关系。(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。本钱与所存月数之间的关系。此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。得,是的一次函数,也是正比例函数。(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。练习:1.已知若是的正比例函数,求的值。2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。(2)求当时,的值。例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10%(1)设全月应纳税所得额为元,且。应纳个人所得税为元,求关于的函数解析式和自变量的取值范围。(2)小明妈妈的工资为每月2600元,小聪妈妈的工资为每月2800元。问她俩每月应纳个人所得税多少元?提示:此题较为复杂,而有关个人所得税的计算方法和一些专有名词学生可能很生疏。所以讲解时,首先要帮助学生理解问题,对个人所得税,应纳税所得额这些名词的含义要予以说明。尤其是根据累进税率计算个人所得税的方法,要举例说明。例如,某人某月工资收入为2400元,则应纳税所得额为,应纳个人所得税为。讲解第(2)题时,要提醒学生注意函数解析式中自变量的意义,表示的是工资中应纳税的部分,所以不能把题设中的工资额直接代入函数解析式计算个人所得税。解:(1)所求的函数解析式为,自变量的取值范围为。(2)小明妈妈的全月应纳税所得额为将代入函数解析式,得小聪妈妈的全月应纳税所得额为将代入函数解析式,得答:小明妈妈每月应纳个人所得税155元,小聪妈妈每月应纳个人所得税175元。练习:教科书,1,2。作业:教科书a组,b组;作业本(2)。

jk251.coM小编推荐

一次函数


教学目标:

1、知道与正比例函数的意义.

2、能写出实际问题中正比例关系与关系的解析式.

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.

教学重点:对于与正比例函数概念的理解.

教学难点:根据具体条件求与正比例函数的解析式.

教学方法:结构教学法、以学生“再创造”为主的教学方法

教学过程:

1、复习旧课

前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)

2、引入新课

就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)

这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成

()

的形式.

一般地,如果

(是常数,)(括号内用红字强调)

那么y叫做x的.

特别地,当b=0时,就成为

(是常数,)

3、例题讲解

例1、某油管因地震破裂,导致每分钟漏出原油30公升

(1)如果x分钟共漏出y公升,写出y与x之间的函数关系式

(2)破裂3.5小時后,共漏出原油多少公升

分析:y与x成正比例

解:(1)

(2)(升)

第12页

一次函数的图象相关教学方案


〖教学目标〗◆1、使学生掌握一次函数的性质.◆2、通过画一次函数,探究一次函数的性质,体验学习的乐趣.◆3、培养学生的观察、比较、归纳能力.〖教学重点与难点〗◆教学重点:一次函数的性质.◆教学难点:例2的问题情境及函数的图象和性质等多方面知识的应用.〖设计理念〗◆从画一次函数图象着手,理解一次函数的性质:函数y=kx+b(k≠0),当k>0时,函数值随自变量的增加而增大;当k0时,函数值随自变量的增加而增大;当k

一次函数的图象性质的教学方案


教学目标:

1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。

2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。

3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。

教学重点:

1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。

2、通过函数的性质及定义域范围求函数的最值。

教学难点:

从实际问题中抽象概括出运动变化的规律,建立函数关系式

教学方法:讨论式教学法

教学过程:

例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?

(1)几分钟让学生认真读题,理解题意

(2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。

解法(一)列表分析:

设从A校调到C校x台,则调到D校(12―x)台,B校调到C校是(10―x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。

根据题意:

y=40x+80(12-x)+30(10-x)+50(x-4)

y=40x+960-80x+300-30x+50x-200

=-20x+1060(4≤x≤10,且x是正整数)

y=-20x+1060是减函数。

∴当x=10时,y有最小值ymin=860

∴调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。

解法(二)列表分析

设从A校调到D校有x台,则调到C校(12―x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8―x)台,总运费为y。

y=40(12–x)+80x+30(x–2)+50(8-x)

=480–40x+80x+30x–60+400–50x

=20x+820(2≤x≤8,且x是正整数)

y=20x+820是增函数

∴x=2时,y有最小值ymin=860

调配方案同解法(一)

解法(三)列表分析:

解略

解法(四)列表分析:

解略

第12页

一次函数教案模板


一、目的要求

1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析

1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

三、教学过程

复习提问:

1、什么是函数?

2、函数有哪几种表示方法?

3、举出几个函数的例子。

新课讲解:

可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的层层设问,最后给出一次函数的定义。

一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

对这个定义,要注意:

(1)x是变量,k,b是常数;

(2)k≠0(当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

写成式子是(一定)需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。课堂练习:教科书13、4节练习第1题.一、目的要求1、使学生初步理解一次函数与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。三、教学过程复习提问:1、什么是函数?2、函数有哪几种表示方法?3、举出几个函数的例子。新课讲解:可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)由以上的层层设问,最后给出一次函数的定义。一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。对这个定义,要注意:(1)x是变量,k,b是常数;(2)k≠0(当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。写成式子是(一定)需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。课堂练习:教科书13、4节练习第1题.

经典初中教案一次函数


教学目标:

1、知道与正比例函数的意义.

2、能写出实际问题中正比例关系与关系的解析式.

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.

教学重点:对于与正比例函数概念的理解.

教学难点:根据具体条件求与正比例函数的解析式.

教学方法:结构教学法、以学生“再创造”为主的教学方法

教学过程:

1、复习旧课

前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)

2、引入新课

就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)

这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成

()

的形式.

一般地,如果

(是常数,)(括号内用红字强调)

那么y叫做x的.

特别地,当b=0时,就成为

(是常数,)

3、例题讲解

例1、某油管因地震破裂,导致每分钟漏出原油30公升

(1)如果x分钟共漏出y公升,写出y与x之间的函数关系式

(2)破裂3.5小時后,共漏出原油多少公升

分析:y与x成正比例

解:(1)

(2)(升)

例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)

(1)列出小丸子的银行存款(不计利息)y与月数x的函数关系式;

(2)多长时间以后,小丸子的银行存款才能买随身听?

分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱

解:(1)

(2)1680=500+90x解得x=13.…

所以还需要14个月,小丸子才能买随身听

例3、已知函数是正比例函数,求的值

分析:本题考察的是正比例函数的概念

解:

说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上

4、小结

由学生对本节课知识进行总结,教师板书即可.

5、布置作业

书面作业:1、书后习题2、自己写出一个实际中的的例子并进行讨论

探究活动

某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息.小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和.(剩余欠款年利率为0.4%)

(1)若第x(年小明家交付房款y元,求y与x的函数关系式;

(2)求第三、第十年的应付房款值.

参考答案:

(1);(2)5340元、5200元.

本文网址://m.jk251.com/jiaoan/6809.html

相关文章
最新更新

热门标签