导航栏

×
范文大全 > 初中教案

图形变换相关教学方案

随着初中教师工作的不断熟练,我们需要撰写教案,教案可以围绕我们学校的各方面来写,做好教案对我们未来发展有着很重要的意义,有没有可以参考的初中教案呢?下面是小编为您精心收集整理,为您带来的《图形变换相关教学方案》,仅供参考,希望对您有帮助。

教学目标:

1.使学生会辨认直角、锐角和钝角,能用更准确的、更具体的数学化语言描述生活中的角。

2.培养学生的口头表达能力和动手操作的能力。

3.培养学生善于观察、从生活中发现数学的良好习惯。

教学方法:以智慧爷爷送礼物的方式激发学生的兴趣,通过分一分、比一比的方法认识锐角和钝角以及他们的判断方法,然后通过做角、找角、分角、画角、拼角等多种形式来进一步巩固学生对角的认识。

教学具准备:每组一盒画有大小不同的角的卡片、三角板、尺子、多媒体课件等

教学过程:

一、激趣引入

同学们,智慧爷爷托老师带给大家一件礼物,想知道是什么吗?现在就在你们桌上的盒子里,赶快打开来看一看。不过在看之前智慧爷爷还有个小小的要求,就是看过之后各组要把盒子里的东西按一定的标准分一分,行吗?好,开始行动。

1.各小组倒出来后发现是相同的卡片上画着大小不同的角,然后以组试分。

2.小组派代表汇报分的结果。(一般会分成两类:直角和其他的角)

3.这些是直角,那么,那些是什么角,又有什么特点呢?这节课我们就一起走进角的皇宫,来研究有关角的问题。

二、认识锐角和钝角

1.引导学生用刚才分出的第二类角与直角比较,看哪些大一些,哪些小一点?

2.小组合作比较大小,然后交流比较方法和结果。

3.根据比较结果再次对盒子中的角进行分类,并且展示分的结果。

4.教师根据学生的分类结果给出各种角的名称(即锐角与钝角)以及判断标准。

5.鼓励学生说说教室里或生活中哪里还有锐角或钝角。

三、组织活动,巩固认角

1.做角:鼓励学生采用多种活动方式做出不同的角巩固对三种角的认识。(如:采用折角、拼角或做活动角的方式进行练习。)

2.找角:引导学生从实物中找出角并分类放入相应的房子里。

师:直角、锐角、钝角都玩累想回家了,可找不到路,于是便找了一些地方藏起来休息,同学们,你愿意帮他们吗?

(多媒体课件出示事物图p391题图以及标有三种角的三所房子。引导学生从实物中找出角,然后利用动态效果从实物中抽取出学生说的角,分类把角送回家。)

四、画角

1.大家真是爱帮助人的好孩子,这些角为了感谢大家想为自己画一些像送给大家,你最希望得到什么样的画像呢?能试着把你希望得到的画像画出来吗?

2.学生独立尝试画出自己喜欢的角,并用三角板上的直角来判断是哪一类角。

3.展示自己画的角并交流画角的方法。(教师对学生想出的多种合理方法要予以肯定和鼓励。)

五、拓展活动

同学们在研究角的过程中,三角板帮了我们的大忙,为了感谢三角板,我们来一起陪它做个游戏,轻松一下,好吗?

1.引导学生用三角板做拼摆图形的游戏。

2.各组交流拼出的是什么图形,在此图形中有几个角,分别是什么角,是由三角板上的哪些角组成?

六、总结。

jk251.cOm扩展阅读

时对称图形相关教学方案


教学内容:课本p68例2及练习十五中相应的练习。

教学目标:

1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。

2、学生理解对称轴的含义,能画出轴对称图形的对称轴

3、学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。

教学重点:认识轴对称图形的基本特征,能画出轴对称图形的对称轴。

教学难点:能画出轴对称图形的对称轴

教学准备:图片、纸和剪刀等。

教学过程:

一、欣赏图片,建立表象

1、师生谈话:在我们的生活中有着许多美丽的图案,让我们一起去欣赏这些美丽的图案吧。

2、出示一些美丽的对称图形

学生欣赏各种对称图形。

[设计意图]:帮助学生建立丰富的关于对称的表象,便于形成概念。

二、小组合作,探究对称

1、引导观察图形

刚才小朋友看到的这些图形在日常生活中还有很多很多,那么这些图形中你发现都有什么特征呢?把你的发现在小组内说一说。

学生交流。

2、组织学生进行交流汇报。

谁愿意来把你们组的发现说给大家听听。(学生在汇报的时候教师尽量鼓励学生用自己的语言来表达,对学生的一些不准确的表达无须过分强求,不必刻意纠正。)

3、教学“对称”

小朋友刚才观察得非常仔细,发现了这些各式各样的图形都有一个共同的特征,就是他们的左右两边都是完全一样的。这种现象在数学上称为——对称,这些图形就是对称图形。教师揭示课题。

4、组织活动——剪一剪

前面我们已经认识了对称图形,老师这里给每个小组都准备一些纸张,大家能够用剪刀试着剪出一个对称图形吗?

在剪之前先想一想怎样剪才能剪出对称的图形,然后动手试一试。

学生小组合作,完成剪一剪

5、组织学生将自己小组剪出的对称图形进行展示并汇报各自的剪法。

6、引导学生明确剪对称图形的方法。

要剪出一个对称图形,可以先把纸张进行对折然后再剪,最后沿对折的地方打开,这就形成了一个对称图形。

7、引导学生认识对称图形的对称轴。请学生用铅笔画出你们剪出的对称图形的对称轴。

学生认识对称轴,画出对称轴。

8、找一找生活中的对称轴。

学生找、说生活中的对称现象。

[设计意图]:学生从大量的对称图形中寻找其共同点,以把握对称的本质特点。并通过动手实践操作进一步加深对对称图形的特征的理解和把握。拓展对称图形的认识,体会数学与生活的密切联系。

三、拓展延伸,巩固深化

1、指导学生完成课本p68的做一做。

2、拓展性学习。(补充练习)

四、课堂总结。

五、随堂练习。

八年级上画轴对称图形教案相关教学方案


画轴对称图形教案(人教版)

教学目标:1.初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。2.通过观察思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。3.引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。教学重点:(1)认识轴对称图形的特点,建立轴对称图形的概念;(2)准确判断生活中哪些物体是轴对称图形。教学难点:本节课教学的难点是找轴对称图形的对称轴。教学过程:(一)创设情境内,感知对称通过实物展示,感知对称,欣赏对称美,激发求知欲,引入新课程。师:同学观察下面的图形,你可以感知到这些图形的哪方面的美感呢?(图1)生:这些图形都是对称的师:下面让我们再做个实验,请看图2,先猜测一下它可能是什么图形的一部份。(图2)生:蝴蝶的一半。师:是吗?下面让我们来验证一下我们的猜测是否正确,好吗?请同学们拿出镜子,先把镜子竖直放好,然后把图2靠紧并垂直于镜子放好,观察一下右图与镜子里的像刚好合成什么图形?(如图3)(同学们个个感到很好奇,纷纷在试一试,然后不约而同,异口同声的说“哇,真的是一只蝴蝶,太神奇了,太漂亮了”。)师:那么图2为什么与镜子里的像刚好能组成蝴蝶呢?请同学们仔细观察并思考,它们有什么共同点?有什么不同点?生:它们的形状相同,但图形2与镜子里的像刚好左右相反。生:我认为它们的大小一样生:我认为它们的面积也是一样的。生:我认为如果把它们叠在一起会重合。师:下面我们反过来思考,如果把图3中的蝴蝶怎么样折叠就能得到图2中的半只蝴蝶?生:只要沿着中间折叠就可以了。师:请同学们继续看下列几幅生活中可见的图形,如果把它们分别折一折,是否也有同样的特点?(学生开始动手试一试,边折边看边议论)(反思:创设问题情境主要在于下面几点:①采取从学生最感兴趣的“照镜子”等实际问题情境入手方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。②通过“照镜子”创造问题情境,学生获得的答案将是丰富的,在最后交流归纳时,他们感受到自己在活动中“研究”的成果,对最终形成的规范、正确的结论是有作用的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养,学生勤于动手,乐于探究,发展学生实践应用能力和创新能力精神成为可行。)(二)动手操作,理解新知师:图形通过对折,如果两侧图形的形状、大小完全一样,我们根据它的特点,能给它一个名字吗?生:轴对称图形。师:大家看看,如果把图形展示开我们可以清晰的看到一道折痕(师边演示边说),这条折痕所在的直线叫什么呢?若不知道,可以从书本寻找答案。生:对称轴。(齐声回答)师:非常好!师:(总结给出轴对称的概念)如果一个图形沿着一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线就是它的对称轴.师:下面请同学们在上述几幅图形中画出它们的对称轴。(需强调注意对称轴是一条直线,对称轴是否只有一条。)(反思:采用看一看、折一折、想一想、分一分、说一说等亲身体验活动组织教学,帮助学生在自主探究、合作交往的过程中真正理解和掌握基本概念。)(三)、深化概念,初步应用师:瞧,大家可能没想到吧,通过折一折,其实我们可以发现,数学问题其实就在我们身边。那么如何来判断一个图形是不是轴对称图形呢?生:对折以后看两侧能否完全重合。师:这位同学说的非常好!下面请同学们判断一下平行四边形是不是轴对称图形?生:是,不是……(有学生认为平行四边形是轴对称图形,有学生认为不是,学生争执不下)师:平行四边形到底是不是轴对称图形,请双方就这一话题展开争论。生:请问,你说平行四边形是轴对称图形的理由是什么呢?生:我认为如果把平行四边形沿着高剪下来,就可以拼成一个长方形,长方形是轴对称图形,那平行四边形就是。生:判断平行四边形的依据是什么?平行四边形对折以后如果不能重合,就不是轴对称图形。生:你说的方法是推导面积公式的方法,而不是判断轴对称图形的方法。生:你说不是的理由是什么呢?生:我是通过对折以后知道的,把平行四边形对折后,两侧的图形不能完全重合,说明它不是轴对称图形。(学生争论非常激烈)师:到底谁有道理呢?请大家剪一个一般的平行四边形,并动手折一折,然后再下结论,好吗?生:(边折边说)不是,不是。师:再换个方向折一折。生:不是,肯定不是,怎么样也不能使两侧的图形完全重合。(反思:这一段教学非常精彩,教师苦心经营的争论场面给大家留下了难忘的印象。一方面是教师教学民主的充分体现,另一方面是学生用科学精神对数学知识的执着追求。这一重点使课堂掀起了高潮,给人以美的享受。这说明:课堂提问不仅仅由教师主导,也可以由学生主导,不仅可以让教师向学生提问,也可以让学生向学生提问,这样,学生的主体性、创造性得到了充分的发挥,能力得到了提高。这个环节中,几位学生主动起来争论,大胆质疑,主动参与学习,最后结论越辩越明。除此之外,学生在解决问题的活动中,感受到了有时“问题”就在我们身边。而学生一旦沟通了数学与现实生活的联系,明白了生活中处处有数学,理解了我们所学习的是“有价值的数学”的道理,便能以更主动、积极的态度投入到从生活中的各种不同的角度去发现问题,运用不同的方法去分析、解决问题的活动中去。)师:大家知道平行四边形不是轴对称图形。想一想,我们所熟悉的平面图形中还有哪些是轴对称图形?各有几条对称轴?请同学们拿出课前准备好的平面图形,折一折,先判断是不是轴对称图形,如果是,画出所有的对称轴。学生分4人一小组,折剪并讨论,得出结论后,再进行交流。(反思:小组合作是数学学习的一种重要形式,关键是要处理好“引”和“放”这两点。这个环节中,我采用了分组的形式合作学习,让他们自己分配,各自独立思考一部份,然后在小组中各自发表自己的观点,集中集体的智慧,这时思考不全的学生就可以在小组中讨论后得到结果,这样效率就高了,活动中学生讨论的非常激烈。这个环节中渗透了合作的精神,同时让学生感受到了集体的力量之大。)师:我们可以发现,在日常生活中,还可以见到许多轴对称图形的物体,它的存在,使我们周围的环境变得更美。课后请同学们收集一下你所见过的轴对称图形的标志,,看谁收集的最多。(四)巩固练习,运用新知师:从上面寻找轴对称图形过程中,我们可以发现,生活中轴对称图形其实很多,那么我们能否把所学到的知识运用起来,创造出一些美的作品?如下图,以直线为对称轴,你能把这幅图的另一半画出来吗?看一下刚好组成什么图形?师:下面我们再来一场比赛,你们在最短的时间里把把下面的图形另一部分画出来,看谁画得最快?(学生动手操作,个个兴趣盎然)师:(采访画得最快的同学)请问x同学,你是怎么画出来的?你怎么想到这样画的?生:这是一幅轴对称图形,我将它对折,只要剪原来的一半就行了,所以很快。师:真聪明!请同学们给他鼓掌。(教室里响起阵阵掌声)刚才我们是比快,下面是自由发挥,动脑思考我们学过的图形哪些是轴对称图形,看谁能到;黑板上画得的最多最快?生1:例如,等腰三角形是轴对称图形,它的底边的垂直平分线是它的对称轴.其它如,等边三角形、矩形、圆、菱形、等腰梯形等都是轴对称图形.如图1.图2生2:图2(五)下面请同学们说一说,你学了这节课后有什么体会和感受?生:轴对称图形真美。生:我们的生活离不开轴对称图形。生:古代人真聪明,他们用勤劳的双手和智慧创造出世界闻名的轴对称图形,我们应向他们学习,创造出比他们更好的轴对称图形。生:学了这节课后,我才明白右图水面中的像为什么与实物一模一样的道理。生:学了这节课后,我还发现我们学习中有些字母、汉字、数字也是轴对称图形。师:是吗?能举几个例子给同学们看看吗?生:h,i,m,o,晶,品,88……师:看来同学们已经将我们的数学知识和我们的生活实际联系起来了,希望同学们能继续做个生活的有心人去发现我们生活中的数学,数学中的生活。作业:1.判断下面图形哪些是轴对称图形?2.下面哪些图形是轴对称图形?画出轴对称图形的对称轴。3.填空:(1)轴对称图形沿对称轴对折()。a.能完全重合b.不能完全重合(2)平行四边形()是轴对称图形。a.一定b.不一定c.一定不(3)数字0.3、8都()轴对称图形。a.是b.不是(4)圆有()条对称轴。a.2条b.4条c.无数条(5)正方形有()条对称轴。a.1条b.2条c.4条(6)长方形有()条对称轴。a.1条b.2条c.4条(7)等腰三角形有()条对称轴。a.1条b.2条c.3条(8)等边三角形有()条对称轴。a.1条b.2条c.3条(9)三角形有()条对称轴。a.1条b.2条c.不一定,根据三角形类别定(10)等腰梯形有()条对称轴。a.1条b.2条c.4条

数轴相关教学方案


【教学要求】

1.会正确画出数轴.

2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数.

3.会利用数轴比较有理数的大小.

4.初步感受“数形结合”的思想方法.

【教学过程设计建议(第一课时)】

1.情境创设

观察温度计或刻度尺上刻度的排列顺序,直观地将小学里用直线上的点表示数的方法推广到用来表示有理数,正确建立数轴的概念.除温度计和刻度尺外,杆秤、天平等都是较好的数学模型.

2.探索活动

(1)观察温度计或刻度尺上的刻度,根据课本上两个卡通人的提示,引导学生讨论:直线上的点能表示负数(如一10,一15)吗?通过在温度计上找一10℃、一15℃的位置的活动,感受可以用直线上的点表示负数.

(2)依据画数轴的步骤,正确画出数轴.可以在安排2~3名学生“板演”的同时巡视全班,及时给予针对性的操作指导.

数轴的位置通常是水平的,但也可以是任意位置的,要发现并及时展示那些画法正确但放置方向不同、单位长度不同的数轴.要特别注意指导学生正确标注负数.

可以让学生对照“做一做”的几个步骤共同评价“板演”作业,形成对数轴的正确认识.

3.例题教学

例2是让学生学会在数轴上表示有理数,教师还可以再增加一些练习,然后引导学生评价卡通人的结论.需要注意的是,不要提及“数轴上任何一点是否都表示一个有理数”之类的话题,因为虽然任何一个有理数在数轴上都有惟一的点与它对应,但有理数与数轴上的点并不一一对应,而这是学生当前无法认识和回答的.

可以根据学生的实际情况,适当增加在数轴上表示分数的练习.

【教学过程设计建议(第二课时)】

1.探索活动

借助生活经验(温度的高低),引导学生探索:

数轴上的点的位置与它所表示的数的大小有什么关系,得出“在数轴上右边的点所表示的数大于左

边的点所表示的数”.

“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识.

对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:

在数轴上,表示一3的点a在原点左边3个单位长度,表示一2的点b在原点左边2个单位长度,不难看出点a在点b的左边,即得一3

数轴上的点从左到右的顺序,就是它所表示的数从小到大的顺序.这种规定与日常生活结论是一致的.

2.例题教学

例3较简单,直接应用结论的第二部分进行判断;例4给出了利用数轴比较两个负数大小的规范表述.

3.小结

“数形结合”是化抽象为直观、化难为易的一种常用的数学方法.华罗庚先生指出:“数缺形时少直观,形少数时难入微.”小结时,除要讲清数轴本身的意义外,还应通过有理数的大小比较,让学生感受到这一方法带来的便利.

上一篇:2.2数轴学案

下一篇:华师大版七上2.2数轴(含答案)

命题相关教学方案


教学目标

1.使学生了解命题、真命题和假命题等概念.

2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果……,那么……”的形式

重点和难点

分清命题的题设和结论,既是教学的重点又是教学的难点.

教学过程

一、引入

请大家随意说出一些语句,教师把它们写在黑板上.如:

(1)对顶角相等吗?

(2)作一条线段AB=2cm;

(3)我爱初二(1)班;

(4)两直线平行,同位角相等;

(5)相等的两个角,一定是对顶角.

二、新课

问:上述语句中,哪些是判断一件事情的句子?

答:(3)、(4)、(5)是判断一件事情的句子.

教师指出:判断是对事物进行肯定或否定的一种思维形式,判断一件事情的句子,叫做命题.数学课堂里,只研究数学命题,如(4)、(5).

例1请大家说出若干个(数学)命题,再分析一下,每一个命题由几部分组成?

(1)等角的补角相等;

(2)有理数一定是自然数;

(3)内错角相等两直线平行;

(4)如果a是有理数,那么a2>a;

(5)每一个大于4的偶数都可以表示成两个质数之和(即著名的哥德巴赫猜想).

教师启发学生得出:一个命题,由题设和结论两部分组成,都可以写成“如果……,那么……”的形式,也可以简称为“若A则B”.

练习:把上述(1)至(5),都按“如果……,那么……”的形式,表述一遍.

例2在例1的(1)至(5)个命题中,所作的判断是否都正确?怎么检验各个命题的真伪?

(l)“如果两个角是等角的补角,那么这两个角相等.”是正确的命题,已经由补角的定义得到证明.

(2)“如果是有理数,那么它一定是自然数”。是不正确的命题(判断),反例如是有理数但不是自然数。

(3)“如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.”是正确的命题,已证.

(4)“如果a是有理数,那么a2>a.”是不正确的命题,反例如a=1,a2=a.

(5)“如果是一个大于4的偶数,那么它可以表示成两个质数之和.”这个命题,至今没人举出一个反例,说明它不正确;也没有人完全证明它正确.我国著名数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”,即已经证明了“1+2”,离“1+1”这颗数学王冠上的珍珠,只差“一步之遥”.这是目前世界上对这个命题的真伪的判定,所能达到的最好结果.

教师帮助学生归纳:命题既然是一个判断,就有判断是否正确的区别.

真命题---如果题设成立那么结论一定成立,这样的命题叫做真命题.

假命题---如果题设成立,不能保证结论总是成立,也就是说结论不成立,这样的命题叫做假命题.注意:不是命题与假命题的区别!

怎样判断一个命题的真假?检验真理的唯一标准是实践.数学中,判断一个命题是真命题,要经过证明(或以公理形式,即由实践证明的形式出现);判断一个命题是假命题,只需举出一个反例即可.

例3试将下列各个命题的题设和结论相互颠倒或变为否定式,得到新的命题,并判断这些命题的真假.

(1)对顶角相等;

(2)两直线平行,同位角相等;

(3)若a=0,则ab=0;

(4)两条直线不平行,则一定相交;

(5)凡相等的角都是直角.

解:

(l)对顶角相等(真);

相等的角是对顶角(假);

不是对顶角不相等(假);

不相等的角不是对顶角(真).

(2)两直线平行,同位角相等(真);

同位角相等,两直线平行(真);

两直线不平行,同位角不相等(真);

同位角不相等,两直线不平行(真).

(3)若a=0,则ab=0(真);

若ab=0,则a=0(假);

若a≠0,则ab≠0(假);

若ab≠0,则a≠0(真).

(4)两条直线不平行,则一定相交(假);

两条直线相交,则一定不平行(真);

两条直线平行,则一定不相交(真);

两条直线不相交,则一定平行(假).

(注)本小题如果添上“在同一平面内”的大前提条件,那么假命题将变为真命题.

(5)凡相等的角都是直角(假);

凡直角都相等(真);

凡不相等的角不都是直角(真);

凡不都是直角的角不相等(假).

说明:本例,尤其是第(5)小题,视学生接受情况,教师灵活掌握.讲还是不讲,讲到什么程度,介不介绍四种命题(原、逆、否、逆否),都有较大的伸缩性.

小结:

命题---判断一件事情的句子;

命题的结构---;如果(题设)……,那么(结论)……;

命题的真假---正确或错误的判断;

四种命题---原、逆、否、逆否.

(用投影片显示或挂小黑板)

三、作业

1.在下列语句中,指出哪些是命题,哪些不是命题.如果是命题,指出命题的真假,并仿照例3说出一些新的命题来.

(l)如果AB⊥CD于O,那么∠AOC=90°;

(2)取线段AB的中点C;

(3)两条直线相交,有且只有一个交点;

(4)一个平角的度数是180°;

(5)若a=b,则a2=b2;

(6)如果一个数的末位数字是0,那么它一定能够被5整除;

(7)同角的余角相等;

(8)周角的一半等于直角.

2.选作题

判断命题“如果n是自然数,那么n2+n+17是质数”的真假.

统相关教学方案


统计图的选择教学目标:1、通过比较三种统计图,理解三种统计图的特点,并能根据不同问题选择适当的统计图描述数据。2、进一步发展学生的数感和统计观念。重点和难点:重点:通过比较三种统计图,理解三种统计图各自的特点,并能根据不同问题选择适当统计图描述数据。难点:条形统计图与折线统计图的联系与区别。教学方法:观察法、讨论法相结合。能力培养:能根据不同问题选择适当统计图描述、整理数据,制作统计图要因题而定。培养学生合作探究的能力。情感态度与价值观:在教学中渗透保护环境的观念,培养学生热爱自然,爱护动物的意识。课前准备:多媒体课件、小黑板、白纸、彩笔(学生自备)教材分析和教学设计:本节课是在学完扇形统计图之后,通过对例题中报纸上数据的分析,使学生理解三种统计图的不同特点,并能根据具体问题选择适当的统计图描述数据。针对这节课的教学重点和难点,作了如下的教学设计:1、创设情景2、探索知识3、难点突破4、巩固练习5、探究升级学生在比较折线统计图和条形统计图时有一定困难,因此在教学中利用课件安排了对比很明显的两组数据来帮助学生理解它们的联系和区别。让学生从实际中来体会。最后在探究升级部分使学生明确,在很多情况下,三种统计图可以互相转化,它们在表示数据时的侧重点不同。但在特殊的情况下,只能选择一种统计图来呈现结果。教学中以自制的配套课件辅助。学法指导:在整个教学过程中,注重学生观察能力、分析能力、自学能力、相互合作能力的培养,改过去被动的接受为主动的探究,通过自己的观察、分析、讨论来理解知识,并在此过程中体会出数学的学习方法,以利于今后的学习。新课教学过程(教学程序及内容)学生活动设计一、创设情境:(教师活动):引入可由前面刚学过的折线图、条形图引入,在具体表示数据时,究竟选择哪种统计图合适呢?从而引入本节内容:统计图的选择。(出示幻灯片1)让学生观察反映世界人口情况的数据,尽可能多的获取信息。问:同学们从中了解到了什情况?(出示幻灯片2)小明根据上面的数据制成了上面三幅统计图。问:1、三幅统计图分别是什麽统计图?2、你喜欢哪幅统计图,说出你的理由?二、探索知识:在学生初步感受了三种统计图后,逐渐引导学生观察、讨论三种统计图的特点。启发学生围绕以下问题展开讨论。1、你们知道三幅统计图分别表示了什麽内容吗?2、从哪幅统计图可看出世界人口的变化情况?3、2050年非洲人口大约将达到多少亿呢?你从哪幅统计图中得到这个数据的?4、哪个洲的人口较多?你从哪幅统计图中得到此结论?怎麽得到的?5、同学们比较三种统计图的特点,你们发现了什麽?(出示幻灯片3)三种统计图的特点:条形统计图能清楚地表示出各个项目的具体数据。扇形统计图能清楚地表示出各部分在总体中所占的百分比。折线统计图能清楚的反映同一事物的变化情况。三、难点突破:(出示幻灯片4)班上某位学生在前5单元的数学测验成绩的统计表。让学生根据三种统计图的特点选择适当的统计图来表示这些数据。让学生说出理由。学生会选择条形统计图或折线统计图,自然引出了二者的比较。(出示幻灯片5)通过具体的例子让学生充分体会条形统计图和折线统计图的区别与联系。学生讨论围绕以下问题展开:(1)、哪个车间的产值高?两个车间的总产值哪个季度高?(2)、哪个车间的产值增长快?第三季度哪个车间的产值是下降的?(3)、以上结论你是分别从哪张统计图得到的?那这组数据选择什麽统计图好呢?对比了条形统计图和折线统计图的特点可以得出:该同学的成绩用折线统计图较好。让学生说出理由。建议学生制作一幅自己学习成绩统计图,来督促自己努力学习。四、巩固练习:(出示幻灯片6)让学生根据总结出的每种统计图的特点来选择适当的统计图,教师适时引导,让学生充分表达自己的理由。在教学中渗透爱护环境的观念,培养学生热爱自然,爱护动物的意识。1、几种濒危动物数量;2、家庭主要支出情况调查数据五、探究升级:让学生轻松一下,想像这样一幅画面,在夏天晴朗的夜晚,天上的星星一闪一闪,偶尔还会有流星划过寂静的夜空。一幅多麽美丽的画面呀!今天老师就给同学们带来了一组有关星星的数据(出示幻灯片7)。九大行星拥有的卫星数。让学生结合数据来谈谈感受,选择适当的统计图表示这些数据。同桌两人互相交流,尽可能多的获取信息和数据。观察统计图,思考统计图的含义。谈谈自己的理解。(1)、让学生独立观察,思考,用自己的语言描述这三种统计图的各自特点;(2)、组织学生充分交流;(3)、在学生充分交流后,教师明晰三种统计图的特点。学生相互讨论,交流,答案只要合理就给予肯定。给学生充分的时间,让学生通过观察和讨论,得出条形统计图与折线统计图的联系与区别:两种统计图都能表示出数据的大小。但条形统计图的柱形高低可以更直观的表示出数据的大小关系。折线统计图能体现出同一事物数据的变化情况。经过讨论得出问题的答案:1、条形统计图较好。2、扇形统计图较好。并阐述理由。独立思考做出选择。画草图分析,得出结论。小结:学生小结,老师对学生的努力探究,积极合作解决问题的态度给予肯定。作业:出示幻灯片7板书设计:

条形统计图数据大小折线统计图数据变化扇形统计图各部分占总体的百分比

本文网址:http://m.jk251.com/jiaoan/6801.html

相关文章
最新更新

热门标签