导航栏

×
范文大全 > 初中教案

二次根式的化简

时间:2022-02-01 二次根式的化简 二次根式

(第1课时)

一、教学目标

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

二、教学设计

对比、归纳、总结

三、重点和难点

1.重点:理解并掌握二次根式的性质

2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习对比,归纳整理,应用提高,以学生活动为主

七、教学步骤

(一)教学过程

【复习引入】

1.求值、、、…

求值、、、…

结论:当时,;

当时,.

2.求值、…

结论:当时,式子有意义,,对于,不能为负数.

3.求值、…

结论:当时,.

问:若根号内这个式子中的底数,根式还有意义吗?其值等于什么?

例如,,其中-2与2互为相反数;,其中-3与3互为相反数;,其中与互为相反数.

【讲解新课】

提出问题:等于什么?引导学生讨论、猜测、联想,得到结论:

教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若时,能否等于,以增强学生的辨别能力,加强学生对公式的理解和记忆.

例1化简:

(1);(2).

解:(略).

注:可看作,把先写为;

可看作,把先写为.

例2化简:.

分析:底数是非负数还是负数将直接影响结果,这时要注意条件,由条件,可得.

∴.

解:(略).

例3化简下列各式:

(1)();(2)();

(3)();(4)().

解:(1)∵

∴.

(2)∵

∴,即.

(3)∵

∴,即.

(4)∵,

∵,即.

∴.

注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.

在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.

(二)随堂练习

1.求值:

(1);(2);(3)();

(4);(5).

解:(1).

(2).

(3).

(4).

(5).

注:,学生易与相混淆.

2.化简:

(1);(2);(3);

(4)();(5)().

解:(1).

(2).

(3).

(4).

(5).

(三)总结、扩展

对公式,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.

(四)布置作业

教材P213中1(2)、(3);2(1)、(2).

(五)板书设计

标题

1.复习题4.练习题

2.公式

3.例题

jk251.cOm扩展阅读

经典初中教案二次根式的化简


教学建议

知识结构

.

重难点分析

本节的重点是的化简.本章自始至终围绕着与计算进行,而的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

本节的难点是正确理解与应用公式

.

这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

教法建议

1.性质的引入方法很多,以下2种比较常用:

(1)设计问题引导启发:由设计的问题

1)、、各等于什么?

2)、、各等于什么?

启发、引导学生猜想出

(2)从算术平方根的意义引入.

2.性质的巩固有两个方面需要注意:

(1)注意与性质进行对比,可出几道类型不同的题进行比较;

(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

(第1课时)

一、教学目标

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

二、教学设计

对比、归纳、总结

三、重点和难点

1.重点:理解并掌握二次根式的性质

2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习对比,归纳整理,应用提高,以学生活动为主

七、教学过程

一、导入新课

我们知道,式子()表示非负数的算术平方根.

问:式子的意义是什么?被开方数中的表示的是什么数?

答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

二、新课

计算下列各题,并回答以下问题:

(1);(2);(3);

(4);(5);(6)

(7);(8)

1.各小题中被开方数的幂的底数都是什么数?

2.各小题的结果和相应的被开方数的幂的底数有什么关系?

3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

答:

(1);(2);(3);

(4);(5);(6)

(7);(8).

1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.

2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.

3.用字母表示(1),(2),(3),(8)各题中被开方数的幂的底数,有

(),

用字母表示(4),(5),(6),(7)各题中被开方数的幂的底数,有

().

一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.

问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)

答:

请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?

答:

填空:

1.当_________时,;

2.当时,,当时,;

3.若,则________;

4.当时,.

答:

1.当时,;

2.当时,,

当时,;

3.若,则;

4.当时,.

例1化简().

分析:可以利用积的算术平方根的性质及二次根式的性质化简.

解,因为,所以,所以

指出:在化简和运算过程中,把先写成,再根据已知条件中的取值范围,确定其结果.

例2化简().

分析:根据二次根式的性质,当时,.

解.

例3化简:(1)();(2)().

分析:根据二次根式的性质,当时,.

解(1).

(2).

注意:(1)题中的被开方数,因为,所以.

(2)题中的被开方数,因为,所以.

这里的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.

例4化简.

分析:根据二次根式的性质,有

所以要比较与3及1与的大小以确定及的符号,然后再进行化简.

解因为,,所以

,.

所以

三、课堂练习

1.求下列各式的值:

(1);(2).

2.化简:

(1);(2);

(3)();(4)().

3.化简:

(1);(2);

(3);(4);

(5);(6)().

答案:

1.(1)0.1;(2).

2.(1);(2);(3);(4).

3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.

四、小结

1.二次根式的意义是,所以,因此,其中可以取任意实数.

2.化简形如的二次根式,首先可把写成的形式,再根据已知条件中字母的取值范围,确定其结果.

3.在化简中,注意运用题设中的隐含条件,如二次根式有意义的条件是被开方,这是隐含条件.

五、作业

1.化简:

(1);(2);

(3)();(4)();

(5);(6)(,);

(7)().

2.化简:

(1);

(2)();

(3)(,).

答案:

1.(1)-30;(2);(3);

(4);(5);(6);(7).

2.(1)2;(2)0;(3).

二次根式的化简相关教学方案


教学建议

知识结构

.

重难点分析

本节的重点是的化简.本章自始至终围绕着与计算进行,而的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

本节的难点是正确理解与应用公式

.

这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

教法建议

1.性质的引入方法很多,以下2种比较常用:

(1)设计问题引导启发:由设计的问题

1)、、各等于什么?

2)、、各等于什么?

启发、引导学生猜想出

(2)从算术平方根的意义引入.

2.性质的巩固有两个方面需要注意:

(1)注意与性质进行对比,可出几道类型不同的题进行比较;

(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

(第1课时)

一、教学目标

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

二、教学设计

对比、归纳、总结

三、重点和难点

1.重点:理解并掌握二次根式的性质

2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习对比,归纳整理,应用提高,以学生活动为主

七、教学过程

一、导入新课

我们知道,式子()表示非负数的算术平方根.

问:式子的意义是什么?被开方数中的表示的是什么数?

答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

二、新课

计算下列各题,并回答以下问题:

(1);(2);(3);

(4);(5);(6)

(7);(8)

1.各小题中被开方数的幂的底数都是什么数?

2.各小题的结果和相应的被开方数的幂的底数有什么关系?

3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

答:

(1);(2);(3);

(4);(5);(6)

(7);(8).

1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.

2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.

3.用字母表示(1),(2),(3),(8)各题中被开方数的幂的底数,有

(),

用字母表示(4),(5),(6),(7)各题中被开方数的幂的底数,有

().

一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.

问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)

答:

请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?

答:

填空:

1.当_________时,;

2.当时,,当时,;

3.若,则________;

4.当时,.

答:

1.当时,;

2.当时,,

当时,;

3.若,则;

4.当时,.

例1化简().

分析:可以利用积的算术平方根的性质及二次根式的性质化简.

解,因为,所以,所以

指出:在化简和运算过程中,把先写成,再根据已知条件中的取值范围,确定其结果.

例2化简().

分析:根据二次根式的性质,当时,.

解.

例3化简:(1)();(2)().

分析:根据二次根式的性质,当时,.

解(1).

(2).

注意:(1)题中的被开方数,因为,所以.

(2)题中的被开方数,因为,所以.

这里的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.

例4化简.

分析:根据二次根式的性质,有

所以要比较与3及1与的大小以确定及的符号,然后再进行化简.

解因为,,所以

,.

所以

三、课堂练习

1.求下列各式的值:

(1);(2).

2.化简:

(1);(2);

(3)();(4)().

3.化简:

(1);(2);

(3);(4);

(5);(6)().

答案:

1.(1)0.1;(2).

2.(1);(2);(3);(4).

3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.

四、小结

1.二次根式的意义是,所以,因此,其中可以取任意实数.

2.化简形如的二次根式,首先可把写成的形式,再根据已知条件中字母的取值范围,确定其结果.

3.在化简中,注意运用题设中的隐含条件,如二次根式有意义的条件是被开方,这是隐含条件.

五、作业

1.化简:

(1);(2);

(3)();(4)();

(5);(6)(,);

(7)().

2.化简:

(1);

(2)();

(3)(,).

答案:

1.(1)-30;(2);(3);

(4);(5);(6);(7).

2.(1)2;(2)0;(3).

数学教案-二次根式的化简


教学建议

知识结构

重难点分析

本节的重点是的化简.本章自始至终围绕着二次根式的化简与计算进行,而的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

本节的难点是正确理解与应用公式

.

这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

教法建议

1.性质的引入方法很多,以下2种比较常用:

(1)设计问题引导启发:由设计的问题

1)、、各等于什么?

2)、、各等于什么?

启发、引导学生猜想出

(2)从算术平方根的意义引入.

2.性质的巩固有两个方面需要注意:

(1)注意与性质进行对比,可出几道类型不同的题进行比较;

(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

(第1课时)

一、教学目标

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

二、教学设计

对比、归纳、总结

三、重点和难点

1.重点:理解并掌握二次根式的性质

2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习对比,归纳整理,应用提高,以学生活动为主

七、教学过程

一、导入新课

我们知道,式子()表示非负数的算术平方根.

问:式子的意义是什么?被开方数中的表示的是什么数?

答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

二、新课

计算下列各题,并回答以下问题:

(1);(2);(3);

(4);(5);(6)

(7);(8)

1.各小题中被开方数的幂的底数都是什么数?

2.各小题的结果和相应的被开方数的幂的底数有什么关系?

3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

答:

(1);(2);(3);

(4);(5);(6)

(7);(8).

1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.

2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.

3.用字母表示(1),(2),(3),(8)各题中被开方数的幂的底数,有

(),

用字母表示(4),(5),(6),(7)各题中被开方数的幂的底数,有

().

一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.

问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)

答:

请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?

答:

填空:

1.当_________时,;

2.当时,,当时,;

3.若,则________;

4.当时,.

答:

1.当时,;

2.当时,,

当时,;

3.若,则;

4.当时,.

例1化简().

分析:可以利用积的算术平方根的性质及二次根式的性质化简.

解,因为,所以,所以

指出:在化简和运算过程中,把先写成,再根据已知条件中的取值范围,确定其结果.

例2化简().

分析:根据二次根式的性质,当时,.

解.

例3化简:(1)();(2)().

分析:根据二次根式的性质,当时,.

解(1).

(2).

注意:(1)题中的被开方数,因为,所以.

(2)题中的被开方数,因为,所以.

这里的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.

例4化简.

分析:根据二次根式的性质,有

所以要比较与3及1与的大小以确定及的符号,然后再进行化简.

解因为,,所以

,.

所以

三、课堂练习

1.求下列各式的值:

(1);(2).

2.化简:

(1);(2);

(3)();(4)().

3.化简:

(1);(2);

(3);(4);

(5);(6)().

答案:

1.(1)0.1;(2).

2.(1);(2);(3);(4).

3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.

四、小结

1.二次根式的意义是,所以,因此,其中可以取任意实数.

2.化简形如的二次根式,首先可把写成的形式,再根据已知条件中字母的取值范围,确定其结果.

3.在化简中,注意运用题设中的隐含条件,如二次根式有意义的条件是被开方,这是隐含条件.

五、作业

1.化简:

(1);(2);

(3)();(4)();

(5);(6)(,);

(7)().

2.化简:

(1);

(2)();

(3)(,).

答案:

1.(1)-30;(2);(3);

(4);(5);(6);(7).

2.(1)2;(2)0;(3).

数学教案-二次根式的化简教案模板


一、教学目标

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

二、教学设计

对比、归纳、总结

三、重点和难点

1.重点:理解并掌握二次根式的性质

2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习对比,归纳整理,应用提高,以学生活动为主

七、教学步骤

(一)教学过程

【复习引入】

1.求值、、、…

求值、、、…

结论:当时,;

当时,.

2.求值、…

结论:当时,式子有意义,,对于,不能为负数.

3.求值、…

结论:当时,.

问:若根号内这个式子中的底数,根式还有意义吗?其值等于什么?

例如,,其中-2与2互为相反数;,其中-3与3互为相反数;,其中与互为相反数.

【讲解新课】

提出问题:等于什么?引导学生讨论、猜测、联想,得到结论:

教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若时,能否等于,以增强学生的辨别能力,加强学生对公式的理解和记忆.

例1化简:

(1);(2).

解:(略).

注:可看作,把先写为;

可看作,把先写为.

例2化简:.

分析:底数是非负数还是负数将直接影响结果,这时要注意条件,由条件,可得.

∴.

解:(略).

例3化简下列各式:

(1)();(2)();

(3)();(4)().

解:(1)∵

∴.

(2)∵

∴,即.

(3)∵

∴,即.

(4)∵,

∵,即.

∴.

注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.

在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.

(二)随堂练习

1.求值:

(1);(2);(3)();

(4);(5).

解:(1).

(2).

(3).

(4).

(5).

注:,学生易与相混淆.

2.化简:

(1);(2);(3);

(4)();(5)().

解:(1).

(2).

(3).

(4).

(5).

(三)总结、扩展

对公式,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.

(四)布置作业

教材P213中1(2)、(3);2(1)、(2).

(五)板书设计

标题

1.复习题4.练习题

2.公式

3.例题

二次根式


一、教学过程

(一)复习提问

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所满足的条件:

(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

(二)二次根式的简单性质

上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

请分析:引导学生答如时才成立。

时才成立,即a取任意实数时都成立。

我们知道

如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

例1计算:

分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

例2把下列非负数写成一个数的平方的形式:

(1)5;(2)11;(3)1.6;(4)0.35.

例3把下列各式写成平方差的形式,再分解因式:

(1)4x2-1;(2)a4-9;

(3)3a2-10;(4)a4-6a2+9.

解:(1)4x2-1

=(2x)2-12

=(2x+1)(2x-1).

(2)a4-9

=(a2)2-32

=(a2+3)(a2-3)

(3)3a2-10

(4)a4-6a2+32

=(a2)2-6a2+32

=(a2-3)2

(三)小结

1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

2.关于公式的应用。

(1)经常用于乘法的运算中.

(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

(四)练习和作业

练习:

1.填空

注意第(4)题需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

2.实数a、b在数轴上对应点的位置如下图所示:

分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

3.计算

二、作业

教材P.172习题11.1;A组2、3;B组2.

补充作业:

下列各式中的字母满足什么条件时,才能使该式成为二次根式?

分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

(1)由-|a-2b|≥0,得a-2b≤0,

但根据绝对值的性质,有|a-2b|≥0,

∴|a-2b|=0,即a-2b=0,得a=2b.

(2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

∴(m2+1)(m-n)≤0,又m2+1>0,

∴m-n≤0,即m≤n.

说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

三、板书设计

本文网址://m.jk251.com/jiaoan/8372.html

相关文章
最新更新

热门标签