导航栏

×
范文大全 > 教案

《积的近似数》教案范文

时间:2023-04-10

[推荐]《积的近似数》教案范文集锦11篇。

教案课件是我们老师的部分工作,因此就需要我们老师写好属于自己教学课件。只要老师教案课件写得好,相信课堂教学情况也不差。好的教案课件需要注意哪些方面呢?为此,小编特意呈上“[推荐]《积的近似数》教案范文集锦11篇”,欢迎收藏本网站,继续关注我们的更新!

《积的近似数》教案范文 篇1

一、教学目标

(一)知识与技能

1、认识“四舍五入”法是截取积的近似数的一般方法。

2、掌握求小数乘法的积的近似数的方法。

(二)过程与方法

经历求小数乘法的积的近似数的过程,体验迁移的学习方法,培养学生应用数学知识解决实际问题的能力。

(三)情感态度与价值观

在学习活动中,激发学生的学习兴趣,感受知识源于生活。

二、教学重点

会用“四舍五入”法截取积是小数的近似数。

三、教学难点

能根据生活实际灵活截取积是小数的近似数。

四、新授

(一)导入(复习导入)

师:在开始新课程之前,我们先回顾一下之前小数乘法学习了哪些内容?

生:小数成整数和小数成小数。

师:今天学习积的近似数。一说到求近似乎,想一想,我们四年级学过求什么数的近似数?

生:求小数的近似数。

师:还都记得怎么做吗?

生:记得(忘了)。

师:让我们先来热热身,看看谁掌握的最为牢固。

(PPT展示题目)

求下列小数的近似数,并说出你的思考过程。

5.3456.2680.402

要求:

1、(精确到十分位)

2、省略百分位后面的尾数。

通过做题,总结规律:

1、先确定保留的数位,在要保留的数位下划条横线;

2、将下一位上的数同“5”作比较,如果小于5,则舍掉;如果大于5或者等于5,则向前进1。(四舍五入法)

3、取近似数时,若末尾的“0”起到占位的作用,则不能去掉

(二)情景导入

例:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少亿个嗅觉细胞?(得数保留一位小数)

找同学读题两遍,让同学自己提取信息、列式,让同学到黑板上做题板书,并说出思考过程。

0.049×45=2.205≈2.2(亿个)竖式略

答:

此处强调两点,一个单位,一个答句不能丢。

(三)、经典练习

0.95×0.95(得数保留一位小数)

0.95×0.95=0.9025≈0.9(竖式略)

想一想,若此题改为保留两位小数,怎么做?(做在练习本上)

0.95×0.95=0.9025≈0.90(取近似数)

(四)、做一做(书上)P11现学现练,加深印象。

1、计算下面各题

0.8×0.9=0.72≈0.7(得数保留一位小数)

1.7×0.45=0.765≈0.77(得数保留两位小数)

2、一种大米的价格是每千克3.85元,买2.5Kg应付多少钱?(联系实际生活,保留适当的小数位数)

延伸:实际生活中,常用的纸币面值为元、角,所以保留一位小数即可!

五、小结

1、学生自己谈收获。

2、老师总结课程重点。

《积的近似数》教案范文 篇2

一、创设情景引入

出示投影:78页彩图,学生组内合作讨论、交流解决问题.

二、新课:

(一)通过学生的活动,加深对近似数的理解,并讲解例题1、2

(二)练习:

1、判断下列各数,哪些是准确数,哪些是近似数

(1)某歌星在体育馆举办音乐会,大约有一万二千人参加;()

(2)检查一双没洗过的手,发现带有各种细菌80000万个;()

(3)张明家里养了5只鸡;()

(4)1990年人口普查,我国的人口总数为11.6亿;()

(5)小王身高为1.53米;(6)月球与地球相距约为38万千米;()

(7)圆周率π取3.14156.()

2.小明量得一条线长为3.652米,按下列要求取这个数的近似数:

(1)四舍五入到十分位___________;(2)四舍五入到百分位_________;

(3)四舍五入到个位____________.

一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.

在上题中,小明得到的近似数分别精确到那一位.

3、下面由四舍五入得到的近似数各精确到那一位

0.320__________;123.3__________;5.60____________;204__________;

5.93万____________;1.6×104_____________.

4.小亮量得某人三级跳的距离是12.9546米,按下列要求取这个数的近似数:

(1)精确到0.1____________;(2)精确到0.01_________;(3)精确到0.001_______.

5.把数73600精确到千位得到的近似数是_______________

精确到万位得到的近似数是_________________

6.近似数3.70所表示的精确值a的范围是()

(A)3.695≤a<3.705(B)3.6≤a<3.80

(C)3.695<a≤3.705(D)3.700<a≤3.705

7.下列数中,不能由四舍五入得到近似数38.5的数是()

(A)38.53(B)38.56001(C)38.549(D)38.5099

分析近似数8与8.0的差别

(三)讲解精确度、有效数字的概念:

对于一个近似数从____边第____个不是____的数字起,到________的数位止,所有的数字都叫做这个数的有效数字.

如:1、0.03296精确到万分位是_______,有____个有效数字,它们是_________________

2、数0.8050精确到_______位,有_____个有效数字,是_______________

3、数4.8×105精确到_______位,有_____个有效数字,是_______________

4、数5.31万精确到_______位,有_____个有效数字,是_______________

四、讲解例题,解后反思,加深对相关知识的理解.

练习:一箱雪梨的质量为20.95㎏,按下面的要求分别取值:

(1)精确到10㎏是______㎏,有______个有效数字,它们是________

(2)精确到1㎏是______㎏,有______个有效数字,它们是________

(3)精确到0.1㎏是______㎏,有______个有效数字,它们是______

五、小结:

什么是有效数字?按精确到哪一位,求近似值时要注意什么?

六、作业:

P83习题1、2

《积的近似数》教案范文 篇3

【同步教育信息】

一.本周教学内容:

1、除数是小数的小数除法

2、求商的近似值

二.教学重点和难点:

1、除数是小数的小数除法

教学重点:理解小数除法的算理及转化的数学思想。

教学难点:建立转化的数学思想。

2、求商的近似值

教学重点:求商的近似值的基本方法。

教学难点:灵活求商的近似值。

三.知识简要介绍:

除数是小数的小数除法解决问题的关键是要把除数是小数的小数除法转化成我们以前学习过的除数是整数的小数除法进行计算,转化后的计算方法同我们前面学习的计算方法是相同的。

求商的近似值就是根据实际的需要,用四舍五入的办法保留一定的小数位数。

[知识教学]

一、除数是小数的小数除法

(一)学习计算的方法:

例1:新学期小刚买了几支铅笔,每枝铅笔0.5元,共花去4.5元,小刚买了几支同样的铅笔?

4.50.5=9(支)

计算的方法:

我们以前研究过除数是整数的小数除法,只要把除数转化成整数我们就会进行计算了。把0.5转化成整数5,扩大了10倍,根据商不变的性质,要想商不变,被除数4.5也要扩大10倍成为45,只要计算出455的商,这个商也就是4.50.5的商。

例2:0.8640.36=2.4

提示:在计算除数是小数的除法时,需要以谁为标准进行转化?(除数)

小结:计算除数是小数的除法时,我们应该怎么做?

例3:0.30.25=1.2

提示:

当被除数根据除数的变化移动小数点进行倍数扩大的时候,会出现位数不够的现象,需要在被除数的末尾用0来补足。

小数除法计算的步骤:

1、看清楚除数有几位。

2、把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数。当被除数的位数不足时,用0补足。

3、按照除数是整数的小数除法的方法计算。

(二)研究被除数与除数之间大小变化的规律。

(1)81.99=(2)2725=

81.90.9=270.25=

解答:81.99=9.12725=1.08

81.90.9=91270.25=108

结论:

当被除数大于0,除数大于1的时候,商比被除数小。

当被除数大于0,除数小于1的时候,商比被除数大。

二、求商的近似值

1、准备题目:

保留整数保留一位小数保留两位小数保留三位小数

0.9547

10.2995

怎样取一个数的近似值?

方法:根据要求看它的下一位进行四舍五入。

2、解决问题。

一盒笔有12支,售价62.55元,平均每支笔多少元?

62.55125.21(元)

思考:求商的近似值和求积的近似值的方法有什么相同点和不同点。

4.972.311.43(保留两位小数)

3、商5试除法。

方法:商和被保留的位数同样多的时候,试商5可以知道,是四舍还是五入了。

4、去尾法和进一法

例1:学校为同学们做校服,每套校服用布2.6米,150米可以做多少套校服?

1502.65(套)

答:150米可以做5套校服。

分析:本来按照四舍五入的方法,十分位的数是7应该向前一位进1,答案是可以做6套衣服。但是与实际的生活相联系,少一点布也做不成一套衣服,所以答案就是5套,也只能是5套。

例2:每个油桶最多装油2.5千克,要装油36千克,至少需要这种油桶多少个?

362.515(个)

分析:这道题目计算的是需要多少个油桶,因为油桶的个数必须是整的个数,所以要根据十分位上的数字进行保留,十分位上的数字是4,按照四舍五入的原则,应该舍去,但再与实际相联系,即使是再少的油也需要装在一个油桶中,所以反而要进一。

《积的近似数》教案范文 篇4

设计说明

学生在之前学习过求整数的近似数,已经掌握了基本的学习经验。因此,在本节课的教学设计上注重体现以下几点:

1.创设生活情境,感受数学与实际生活的联系。

《数学课程标准》中指出:数学源于生活又服务于生活。据此,在教学时,结合教材例1创设的豆豆测身高的情境引入新课,使学生体会到小数在生活中的广泛应用。这样就把求一个小数的近似数的知识还原于生活,应用于生活,让学生感受到数学与实际生活的紧密联系。

2.注重类推,让学生经历知识迁移的过程。

求小数的近似数的方法与求整数的近似数的方法相同,学生对用“四舍五入”法求近似数有了一定的.理解和掌握。在此基础上,让学生把学过的求整数的近似数的方法迁移类推到求小数的近似数上去,实现知识的良好迁移,使学生掌握迁移、类推的学习方法。

3.注重引导,让学生在探究中学习。

在教学求小数近似数的过程中,我充分放手,先引导学生在小组合作学习、讨论交流的基础上理解保留几位小数的意义,再引导学生探究如何求一个小数的近似数,最后引导学生总结归纳出求小数近似数的方法。

课前准备

教师准备 多媒体课件 卡片

教学过程

⊙复习导入

1.复习旧知。

(1)把下面各数省略“万”位后面的尾数,求出它们的近似数。(课件出示)

986534 58741 31200

50047 398010 14870

(2)下面的□里可以填哪些数字?

32□645≈32万 47□905≈47万

学生填完后,引导学生说一说是怎么想的。

2.导入新课。

师:我们学过求一个整数的近似数。在实际应用小数时,往往没有必要说出它的准确数,只要说出它的近似数就可以了。那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题)

设计意图:借助复习求整数的近似数引入新的学习内容,使学生能更好地理解求一个小数的近似数的方法,由旧知迁移到新知,既激发了学生的求知欲,又为新知的探究做好铺垫。

⊙探究新知

1.课件出示教材例1情境图。

从图中你获得了哪些数学信息?

(豆豆的身高是0.984 m)

2.探究求近似数的方法。

(1)豆豆的身高是0.984 m。说明已经精确到了毫米,平常不需要说得这么精确,那我们一般怎么描述豆豆的身高呢?(出示课堂活动卡,组织学生讨论交流,然后指名汇报。学生的回答可能有两种情况:①豆豆的身高约是0.98 m;②豆豆的身高约是1 m)

(2)你是怎样得出豆豆身高的近似数的?

生1:我用“四舍五入”法把0.984保留两位小数。因为在生活中,表示身高的米数通常是两位小数,也就是精确到厘米。把0.984保留两位小数就要看千分位上的数,千分位上的数不满5,舍去,求得近似数是0.98。

生2:我用“四舍五入”法把0.984保留整数。保留整数就要看十分位上的数,十分位上的数是9,满5,向前一位进1,求得近似数是1。

教师小结:求一个小数的近似数与求一个整数的近似数相同,也是根据“四舍五入”法保留一定的位数。

教师板书: 0.984≈0.98

小于5,舍去

(3)如果要保留一位小数,应该怎么做呢?(组织学生小组内讨论、交流,然后汇报:0.984保留一位小数就要看百分位上的数,百分位上的数是8,满5,向十分位进1。十分位上本来是9,进1后满10,向个位进1,求得近似数是1.0)

教师板书:0.984≈1.0

大于5,向前一位进1

《积的近似数》教案范文 篇5

教学目标

(一)能正确地比较亿以内数的大小。

(二)能把整万的数改写成用万作单位的数。

(三)能正确地写出省略万后面尾数的近似数。

(四)培养学生比较、分析的思维能力,养成良好的学习习惯。

教学重点和难点

重点:亿以内的数位顺序。

难点:数位与位数的区别,省略万后面的尾数求近似数的方法。

教具和学具

投影片。

教学过程设计

(一)复习准备

在下面○里填上>、<或=,再说一说你是怎样比较的?

999○1010 601○564 687○678

提问:

1.第一组两个数你是怎样比较的?

(三位数与四位数比,四位数一定比三位数大,因为三位数比一千小,四位数大于或等于一千。)

2.第二、三组数都是三位数,你是怎样比较的?

(两个三位数比较,百位上数大的那个数就大;百位上相同,十位上大的那个数就大。)

(二)学习新课

教师谈话:我们已经学过万以内数的比较大小,今天我们要学习的第一个内容,是亿以内数的比较大小。(板书课题:比较数的大小)

1.出示例5。

比较下面每组中两个数的大小:

(1)99864和101010。

提问:

①两个数各是几位数?

②五位数最高位是什么位?六位数最高位是什么位?

9万多与10万多来比较,谁大谁小?

(10万多比9万多大。)

所以99864<101010。(板书)

由此来看,五位数与六位数比较,谁比谁大?

(六位数比五位数大。)

③同学们推想一下,七位数与六位数比较呢?八位数与七位数比较呢?那么如果两个数的位数不同,怎样比较大小呢?

(如果两个数的位数不同,位数多的那个数大,七位数比六位数大,八位数比七位数大。)

出示第二组数:(2)356000和360000。

提问:

①这两个数各是几位数?

②这两个数都是六位数,位数相同的两个数怎样比较大小呢?先比较哪位上的数?

③两个数左起第一位十万位上都是3,怎么比较?

(两个数左起第一位十万位上都是3,看左起第二位,第一个数左起第二位万位上的5比第二个数万位上的 6小,所以356000<360000。)

教师把第一个数356000的万位改成6,即366000和360000。

④两个数左起第一位十万位上都是3,万位上都是6,怎么比较呢?

(两个数左起第一位十万位上都是3,第二位万位上都是6,就要看第三位。第一个数第三位千位上是6,第二个数千位上是0,所以366000>360000。)

启发学生逐步总结出完整的比较数的大小的方法。

提问:

①比较两个数的大小有几种情况?位数不同怎么比?

②如果位数相同怎么比?先要从哪一位比?如果左起第一位上的数相同,怎么比呢?

指导学生阅读课本中关于比较两数大小方法的结语,并提问学生结语的最后为什么有省略号“……”,表示什么意思?举例说明。

教师说明:“位数”是指一个数用几个数字写出来的(最左端的数字不能是0),有几个数字就是几位数。如99864是五位数,101010是六位数。“左起第一位”是数位,数位是指一个数中的数字所占的位置。如 99864左起第一位是“9”,“9”是在万位上,101010左起第一位是“1”,“1”在十万位上。“数位”与“位数”是不一样的。

练一练

(1)比较每组中两个数的大小,说说是怎么比的?

70080○70101 98965○100000

(2)按照从小到大的顺序排列下面各数。

40400 400400 44000 50004

指导学生做第(2)题时,先比较位数的多少,再把位数相同的几个数进行比较,也可以把这四个数排成一竖行,相同数位对齐。如:

可以看出:400400最大,40400最小。再把它们从小到大编成序号,按序号进行排列:40400<4400<50004<400400就不容易错。

2.教学把整万的数改写成用“万”作单位的数。

出示50000,让学生读数。

教师指出:这是一个整万的数。像这样整万的数,写成用“万”作单位的数比较简便。

提问:万位在右起第几位?整万的数万位后面有几个0?

把整万的数改写成用“万”作单位的数,只要把后面的四个0去掉,加上一个万字就行了。例如 50000写成 5万,或 50000=5万。又如 1800000写成 180万,或 1800000=180万。

练一练

把下面的数改写成用“万”作单位的数。

(1)250000

(2)3200000

(3)1994年我国共生产自行车40450000辆。

其中第(3)题强调单位名称,即4045万辆。

3.教学求近似数。

教师谈话:我们学过用四舍五入法求一个数的近似数,请同学们把下面各数千后面的尾数省略,求出它的近似数。

4926 9375

提问:省略千后面的尾数,根据哪一位上的数进行四舍五入?(根据百位上的数进行四舍五入。)

教师叙述:比万大的数,我们也可以用同样的方法来求它的近似数,这就是我们今天要学习的第二个内容。(板书课题:求近似数)

出示例6:把下面各数万位后面的尾数省略,求出它们的近似数。

(1)84380 (2)726310

出示第(1)题。提问:

(1)省略千后面的尾数时,是根据百位上的数进行四舍五入的,省略万后面的数,要根据哪一位上的数进行四舍五入?

根据学生的回答,教师强调,只要根据尾数的最高位,不要管尾数的后几位是多少。教师把千位上的4用方框框起来,即8(4)380。

(2)千位上的数不满5,怎么办?

根据学生的回答,把万后面的尾数舍去。教师板书:8(4)380≈8万。

(3)为什么中间用约等于符号连接起来,而不用等号?为什么整万的数用万作单位可以用等号连接起来?

出示第(2)题。

由学生说一说,根据哪一位上的数进行四舍五入?千位上的数比5大,该怎么办?教师板书:72(6)310≈73万。

练一练

把下面各数万位后面的尾数省略,求出近似数。

(1)63599 (2)709327

(3)1994年我国大学毕业生有637000人。

其中第(3)题要强调写单位名称,即637000≈64万人。

(三)巩固反馈

1.总结性提问:

(1)今天我们学习了哪些内容?

(2)怎样比较两个整数的大小?

(3)怎样把整万的数改写成以万作单位的数?

(4)怎样省略万后面的尾数,求出它的近似数?

2.发展性练习。

指导学生做练习三的第5题。

第(1)题指导性提问:

(1)49999前面一个数是多少?把它写出来。

(2)49999后面一个数是多少?把它写出来。

第(2)题指导性提问:

(1)最小的一位数是几?最大的一位数是几?

(2)最小的两位数是几?最大的两位数是几?

(3)最小的三位数是几?最大的三位数是几?

请独立填写练习三第5题第(2)题。

3.思考性练习。

下面的□里可以填哪些数字?

19□785≈20万 60□907≈60万

9□8765≈1000000 9□4765≈900000

先出示第一横排两道题,相邻两位同学讨论怎样填,然后全班交流。同学们可能填不全,最后由老师小结:第一道题,19万多的近似数是20万,说明千位上的数是5或比5大的数,方框里可填9,8,7,6,5;第二道题,60万多的数的近似数是60万,说明千位上的数是比5小的数,方框里可填0,1,2,3,4。第二横排则由学生独立来填。

4.课后练习:

练习三第1,3,4题。

课堂教学设计说明

本节课是在学生基本上掌握了亿以内数的读写方法以后,学习比较两个数的大小,把整万的数改写成以万作单位的数,用四舍五入法求近似数。虽然内容不十分集中,但与过去学过的旧知识联系紧密。因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新方法。

本节课分三个层次,分两段提出课题。

第一层次是比较两个数的大小。由复习万以内数比较大小,引伸到比较亿以内两个整数的大小。分成位数不同和位数相同的两种情况,引导学生总结出比较两个整数大小的方法。

第二个层次是学习把整万的数改写成以万作单位的数。

第三个层次是学习求近似数,由复习省略千后面的尾数求出近似数,类推到省略万后面的尾数,求出近似数,归纳为根据尾数的最高位,进行四舍五入。这样引导,有利于培养学生的归纳推理能力。

根据本节课的内容,教学中采用边讲边练的形式,对课本中的练习进行适当地指导。最后的思考性练习对本节课所学的求近似数知识,起到进一步巩固和提高的作用。

板书设计

比较数的大小 求近似数

复习:

999○1010

601○564

687○678

4926≈5千

9375≈9千

例5 比较下面每组中两个数的大小。

99864和101010 356000和360000

99864<101010 356000<360000

50000=5万 1800000=180万

例6 把下面各数万后面的尾数省略,求出它的近似数。

(1)84380 (2)726310

8(4)380≈81万

72(6)310≈73万

《积的近似数》教案范文 篇6

学习目标

1.能根据要求用四舍五入法求一个小数的近似数。

教学重、难点:求一个小数的近似数。

学习过程

一、复习导入:老师:同学们,你们今天下午要去干什么啊?(春游)春天来了,阳光明媚,鸟语花香,这一切都与太阳有这密切的关系。关于太阳,你了解多少呢?1.太阳的直径大约是1389000千米,大约是多少万千米?老师:求一个整数的近似数用的是“四舍五入”法。那怎么求小数的近似数呢?今天我们就一起来探究小数的近似数。板书:小数的近似数

二、学习新知

1、老师邻居家的姑娘活泼可爱,名叫豆豆,你知道豆豆的身高是多少吗?(出示主题图)

预设1:小豆豆身高0.984m。

预设2:小豆豆身高约0.98m。

预设3:小豆豆身高约1m。

2、两位同学所说豆豆的身高,与实际身高为什么不一样呢?

小结:生活中根据需要,经常会用“四舍五入”法求小数的近似数。

3.想一想:0.984保留两位小数、一位小数,它的近似数各是多少?(同桌讨论

(1)首先要理解保留整数、一位小数、两位小数......的含义。还可以怎样表述?

引导学生理解,保留整数就是省略整数后面的尾数;保留一位小数就是省略十分位后面的尾数,或者说精确到十分位;保留两位小数就是精确到百分位,也就是省略百分位后面的尾数。

(2)求一个小数的近似数的方法是什么?

引导学生明确,仍然采用“四舍五入”法,看省略部分的最高位,是5以上的数,省去后在前一位加l,是4以下的数舍去。

在明确上述两点的基础上,让学生自己试算,得出:

0.984≈0.980.984≈1.0

小结:如果保留两位小数,就要把千分位上的数“四舍五入”;

如果保留一位小数,就要把百分位上和后面的数“四舍五入”;

在表示近似数时,小数末尾的0不能去掉。

4.独立完成

0.984≈1(保留整数)

保留整数得到的“1”和保留一位小数得到的“1.0”一样吗?末尾的0能去掉吗?

小结:求近似数时,保留整数,表示精确到个位,就是把十分位上的数“四舍五入”;

保留一位小数,表示精确到十分位,就把百分位上的数“四舍五入”;

保留两位小数,表示精确到百分位,就是把千分位上的数“四舍五入”……

保留哪位,就要把这位后面的数“四舍五入”。

三、巩固练习

1、求下面小数的近似数。

(1)0.256 12.006 1.0987(保留两位小数)

(2)3.72 0.58 9.0548(保留一位小数)

找学生演板,然后再让其他发现错误的同学帮忙修改。

2、求下面各小数的近似数。

(1)3.47 0.239 4.08(精确到十分位)

(2)5.344 6.268 0.402(省略百分位后面的尾数)

3、下面的说法正确吗?正确的画“√ ”,错误的画“ ×”。

(1)3.56精确到十分位是4。()

(2)6.05和6.0599保留一位小数都是6.1。()

(3)近似数是6.32的三位小数不止一个。()

(4)5.29在自然数5和6之间,它约等于5。()

(5)0.596保留两位小数是0.6。()

四、分享收获

学习了本节课,你有哪些收获?

五、布置作业

第54页练习十三,第2题。

《积的近似数》教案范文 篇7

【教学目标】

1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。

2、通过学生自主探索、合作交流,培养学生的探索能力。

【教学重点】

使学生掌握求一个小数的近似数的方法。

【教学难点】

使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。

【教具】

多媒体课件

【教学过程】:

一、课前预习

1、怎样用“四舍五入”法求出一位小数的近似数?

2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?

二、展示交流

(一)创设情境,引入新知

课件出示豆豆,看看小豆豆的身高是多少呢?

今天下午我们就来研究求一个小数的近似数。

(二)求小数的近似数的方法

1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?

2、探究新知

(1)同桌讨论回忆什么是“四舍五入”法?

(2)讨论尝试

①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。

②出示例1,讨论求0。984的近似数

③保留一位小数时,末尾的“0”为什么应该写呢?

(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。

(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数

1、出示教材第74页例2

①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?

②结论:改写成用“亿”或“万”作单位的数。

2、从算理入手,理解改写方法。

①讨论:怎样改写呢?

②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。

三、检测反馈

1、教材第74页上、下的“做一做”。

2、教材第75页练习十二第一、2题。第3、4题

四、板书设计教

求一个数的近似数

四舍五入

保留两位小数0.984≈0.98 142800千米=14.28万千米

保留一位小数0.984≈1.0 778330000千米=7.7833亿千米

≈7.8亿千米

保留整数0.984≈1

注意:在表示近似数时,小数末尾的0不能去掉

教学反思:

现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。

《积的近似数》教案范文 篇8

教学内容:

商的近似值

教学重点:

求商的近似值的方法

教学难点:

求商的近似值除到哪一位及在实际生活中应用。

教学目标:

使学生掌握求商的近似值的方法,并会求商的近似值;

让学生体会到求商的近似值的,要性,能根据生活世界灵活去商的近似值;

培养学生积极创新思维,培养小组作精神,增强数学应用交织及环保意识。

教学过程:

一、导入

出示四副图:反映经济发展带来环境的破坏。

欣赏了这四副图,你要发表感想吗?

师小结:是啊,我的环境污染太严重了,国庆期间,老师特地去了套环抱局,了解到,就这么一节7号电池大约可以污染300吨水。相当于我们这个多媒体教师那么大的一个池塘的水。

二、新援

列1我们的太糊有水45.7亿吨,如果湖州梯田所生产的废电池全部投入水中会污染0.7亿吨谁,照这样计算,多少天就会让建我们失去美丽的太糊?、

(1)自己算一算,指名扳滨。

(2)计算的时候,一切顺利吗?那怎么办呀?JK251.cOm

(3)我们来看xxx是怎么想的,你能告诉大家吗?

(4)奥,除不尽了,在世界生活中,我们不需要太多的小数位数,这是我们就可以取商的近似值。(板书)

(5)那么听了他的想法,结合他的竖式,你有什么好的建议要送给他呢?

保留整数,只要除到十分位。(板书)

(6)如果不注意环抱的话,大约只要70天我们就会失去我们美丽的太户,废电池的危害可大了,那么大家更交做一个环保小卫士,一起去收集废电池吗?那么,谁来组织这个活动呢?好,其他同学七人一组,迭好你们的组长。

好了,我们来看:、

列2:假如我们智力15.2平方米的城镇土地上一共有废电池188千克,那么平均每平方千米土地上有多少千克呢?(得数保留1位小数)

(1)看了题目,怎么列式?188梅15.2

(2)大家来算一算,指名扳演,、

(3)你算的这么快,有什么秘密吗?

保留一位小数,只要除到百分位

小结:我们刚才都对商取了近似值,你是怎么求商的近似值的呢?指名说说,说给同桌听听,出了:小数除法,需要取商的近似值时,一般先除到比需要保留的小数位数多一位,再按照四舍五入法取商的近似值。

三、练习

大家都会求商的近似值了,现在来算算你的任务是多少?

出示:镇政府要把收集188千克废电池这个环保任务我们班57位同学,你一个人要收集多少千克,才能完成任务?(得数保留2位小数)

2、我们班57位同学一起保护了15.2平方千米的土地,平均每人保护了多少土地呢?(得数保留3位小数)

(1)看完了题目,你发现题目中有什么要求?你有什么话要提两道吗?

保留2位小数,除到十分位,保留三位小数,除到万分位。

(2)那么怎么样列式呀?

1885715.257

(3)自己算一算,指名扳滨

四、发展练习:

我们学校才0.02平方千米,你一个人就相当于保护了4个字扳,真了不起!

但是,在活动过程中有一个组发生了争执,如果这样的事发生在你身上,你会怎么做?大家口渴了吧,要去买矿泉水喝,小店里只大瓶的矿泉水。

出示:大瓶矿泉水标价4.7元,而我们只有组长身上的13.5元,有人说:买2瓶吧!有人说:买3瓶吧!你说呢?

1自己算一算,指名扳滨

2马上组长召集开个会,商堂以下,某某组,你可以出来,去看看多个组的会议情况。

3先来听听大家的,指名说,有不同意吗?那你能用你的道理说服对方采约你的意见吗?真行,理由充分不要听他的!

4再来看黑板上,有没有地方要提的他的?(除到哪一位)只要除带个位,人付的,我们得把钱还给他。

出示:我们7人小组,平均每人要给组长多少钱呢?

(1)先来看看你们组付了多少钱

2瓶3瓶

24.7=9.4(元)13.5元

(2)算一下你们组的。(指名扳滨)

(3)检查反误:xx组长,你觉得满意吗?

5、:xx组长,你觉得今天的活动,大家完成得怎么样?

大家都干得很出色,我想是有了我们这么多能干的环保小位士,才被评上了全国文明城镇,那么通过今天的活动,你得到了什么呢?

六作业练习:

书上P421、2、3中的分别选一题想做的。

板书设计:

商的近似值

48.70.7=70天保留整数,除到十分位保留一位小数,除到百分位

《积的近似数》教案范文 篇9

一、说教材

(一)教材分析:

《求一个小数的近似数》是人教版教材四年级下册第四单元的内容,本节课是学生在学习了小数的意义和求一个整数的近似数的基础上进行教学的`。这部分内容既是前面知识的延伸,又是和学生生活密切联系的一个内容,是教学中的一个重点。之前学生只认识简单的小数,通过学习《求一个小数的近似数》以后,学生知道了有些小数是精确数有些小数是近似数,并能跟据具体情况求出一个小数的近似数。本节课教学的重点是理解并掌握求一个小数的近似数的方法,了解求近似数时,精确度的意义。

“数学教学要紧密联系学生生活实际,从学生已有知识经验出发”这是《新课程标准》对我们提出的明确要求,因而情景创设和复习铺垫,既要激发学生学习的积极性,又要达到简化知识点的目的。求一个小数的近似数,是在学习了求整数近似数的基础上进行教学的,学生已有一定的知识基础,同时又是在前几节课学习小数性质的基础上学习的。教材值得注意的地方是:保留几位小数就是精确到相应的位置。求小数的近似数时,小数末尾的0不能去掉。

(二)学生分析:

本节课的授课对象是小学四年级学生,这个年龄段的学生具有强烈的好奇心,求知欲,又已经初步具备了一定的数学思想,掌握了一定的猜想、推理、自主探究的能力,能够利用知识的迁移解决新问题。在辩证的接受别人意见的基础上又能展现自己的独到见解。因此本节课主要发挥学生的主体作用,采用自主合作交流的方式进行学习。

(三)教学目标定位

新课程标准中要求,对这部分知识的教学,要紧密联系学生的生活实际,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情景。因此把教学目标确定如下:

知识与技能目标:

1、理解和掌握用“四舍五入”法求一个小数的近似数的方法。

2、理解求近似数时,精确度的意义。

方法与过程目标:经历求小数的近似数的过程,体验利用旧知识迁移学习的方法。

情感态度目标:感受数学知识与日常生活的密切联系,激发学生学习数学的兴趣,培养数感和数学意识。

在确定教学重点和教学难点时,考虑到学生以前学过,求整数的近似数的方法,即:“四舍五入”法。对于学生来说不是很难,但“四舍五入”法也是求小数近似数的方法,所以教学重点定为:掌握用“四舍五入”法求一个小数近似数的方法。把教学难点确定为:理解保留的小数位数不同,求得的近似数的精确程度也不一样。原因是这一知识点学生生活经验少,且比较抽象不易理解。

二、说教法、学法

(一)说教法

本节课采用的最主要的教学方法是尝试法和讲授法。使用抛出问题

《积的近似数》教案范文 篇10

教学目标

1、使学生会根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似值。

2、培养学生根据具体情况解决实际问题的能力。

教学重点

用“四舍五人法”截取积是小数的近似值的一般方法。

教学难点

根据题目要求与实际需要,用“四舍五入法”截取积是小数的近似值。

教学工具

多媒体课件

教学过程

一、激发兴趣

1、口算

1.2×0.3、0.7×0.5、0.21×0.8、1.8×0.5

1-0.82、.3+0.74、1.25×8、0.25×0.4

2、用“四舍五入法”求出每个小数的近似数。(投影出示)

2.095、4.307、1.8642

思考并回答:(根据学生的回答填空)

(1)怎样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?

(2)按要求,它们的近似值各应是多少?

3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

二、尝试

谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:

1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?

2、读题,找出已知所求。

3、列式,板书:0.049×45。

4、独立计算出结果,指名板演并集体订正,说一说是怎样算的。

5、引导学生观察、思考:

(1)积的小数位数这么多。可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。

(2)保留一位小数,看哪一位?根据什么保留?

(3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。

6、专项练习(根据下面算式填空)

3.4×0.91=3.094积保留一位小数是(),保留两位小数是()。

7、计算下面各题。

0.8×0.9(得数保留一位小数)1.7×0.45(得数保留两位小数)

三、运用

一千克白菜的价钱是6.78元,妈妈买了0.8千克,应付多少题?(虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。)

课后小结

谁来小结一下今天所学的内容?

课后习题

1、根据下面算式填空。

3.4×0.91=3.094

积保留一位小数是( )积保留两位小数是( )

2、两个因数的积保留两位小数的近似数是3.58,准确值(三位数)可能是下面哪个数?

3.059 3.578 3.574 3.583 3.585

3、两个因数的积保留整数的近似数是14,精确值可能是哪些数?个位上的数是4,十分位的数是4、3、2、1、0;个位上的数是3,十分位上的数是5、6、7、8、9。

板书

积的近似数

2.45×2.5≈6.13(元)

竖式

答:

《积的近似数》教案范文 篇11

教材分析

“准确数和近似数”是义务教育课程标准实验教科书,浙教版七年册第二章的内容。教材通过一则科技报道引入准确数和近似数的概念,在学生已有的运算能力的基础上,给出近似数的精确度的两种表示方式,及近似值的取法。准确数和近似数是运用有理数进行实际计算所必需的,本节课也培养了学生用所学的数学知识解决,生活中的数学问题的能力,让学生体验到生活中无处不存在准确数和近似数。

学生分析

学生往往存在着一些生活经验,这些生活经验是学生学习的基础,但其中也有一些是错误的,必须让学生在正确区分准确数和近似数的基础上,明确近似数的角度有两种表示方式以及学会近似值的取法。教学中要及时了解学生的认知程度,以便调整教学。

教学目标

通过实例经历近似数和准确数概念的产生过程。

了解近似数的精确度的两种表示方式。

能说出由四舍五入得到的有理数的精确位数和有效数字。

会根据预定精确度取近似值。

教学重点

近似数的两种表示方式及近似值的取法

教学难点

近似数所表示范围及有效数字如何表示近似数的精确度

教辅工具

投影仪、卷尺、“神舟五号飞船”图片、投影片6张

教学设计思路

本节课首先从学生熟悉的生活情境出发引入数学概念。通过近似数在生活中的应用,激发学生主动学习的欲望,然后通过老师讲解、学生练习,使学生学会近似数的两种表示方式及近似值的取法,最后再配以练习巩固,让学生很自然地接受这一部分知识。

教学流程

一、实践操作,引入课题

问:我想知道我们教室里有多少张课桌?黑板长为多少?

20xx年我国人口总数为多少?你们能帮老师解答吗?

(学生分小组进行合作操作、讨论)

[设计说明:通过学生亲自操作,引起学生的兴趣]

问:上面所出现的数据中,哪些跟实际完全符合,哪些跟实际是接近的?

(学生回答)

板书:像这样与实际完全符合的数称为准确数

像这样与实际接近的数称为近似数

通过测量或估计得到的都是近似数

板书课题:准确数和近似数

[设计说明:通过实例使学生充分体验准确数和近似数的概念的产生是由于人们生活和生产实践的需要]

二、导入新知

师:21世纪进入太空是很多人的梦想,同学们有想过吗?

(学生开心的各抒己见)

展示:“神舟五号飞船”图片

投影片A:“神舟五号飞船总长9.2米,总质量为7790千克,装有52台发动机,在太空中,该飞船大约每90分绕地球一圈,其间要经受180℃的温差考验。

[设计说明:跟时尚接轨活跃课堂气氛,加深对概念的理解]

问:上面叙术中的各数,哪些是准确数?哪些是近似数?并说明你的理由。

(只要学生根据准确数和近似数的概念和自身的经验说出理由,均可以认为正确)

投影片B:(快速口答)下列叙述中的各数,哪些是准确数?哪些是近似数?

(1)月球与地球之间的平均距离大约是38万公里

(2)某本书的定价是4.50元

(3)小明身高为1.57米

(4)美国一家猫粮制作公司称:“在美国共有8500万只猫,22%的猫主人都选择猫爱看的频道”。

[设计说明:通过练习,加以巩固]

师:生活中用到近似数的情况很多,有时是因为客观条件无法或难以得到精确数据,如:“20xx年我国人口总数约为12.9533亿”,有时是实际问题无需得到精确数据,如“校长在会上说,这次学校包场看电影,买票大约需2500元”

三、展开过程,师生互动

对近似数,我们常需知道它的精确度,一个近似数的精确度通常有两种表示方式:

板书:1、一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位

如:身高1.57米是千分位数字四舍五入到百分位的结果,它精确到百分位(或精确到0.01)

近似数38万是千位数字四舍五入到万位的结果,它精确到万位

问:身高1.57米表示小明实际身高在什么范围内呢?

(学生思考、讨论,教师给予指导)

近似数38万表示的范围为 ?

(学生举手回答,教师鼓励,每位同学都发表自己的见解,最后指出正确答案)

投影片C:例1、下列由四舍五入法得到的近似数各精确到哪一位?

(1)11亿 (2)36.8 (3)1.2万 (4)1.20万

(学生起立回答,教师和其余学生一起进行评判)

[设计说明:让学生学会辨认一个由四舍五入得到的近似数的精确位数]

注:①以百、千、万、十万、百万等做单位的近似数的精确位数

②小数点后面的零

板书:2、用有效数字的个数来表述一个近似数的精确度,由四舍五入得到的近似数从左边第一个不是零的数字起,到末位数字为止的所有数字,都叫做这个数的有效数字。

如:1.57有 3个有效数字:1、5、7

38万 有2个有效数字:3、8

0.03070 有4个有效数字:3、0、7、0

注:近似数中越在左边的数字就越重要,有效数字越多,精确度越大

投影片D:例2、(口答)例1中各数有几个有效数字?分别是什么?

(1)11亿 (2)36.8 (3)1.2万 (4)1.20万

[设计说明:让学生学会辨认一个由四舍五入得到的近似数的有效数字及个数]

四、知识应用

投影片E:例3、用四舍五入法,按括号内的要求对下列各数取近似值

(1)0.33448(精确到千分位)

(2)64.8(精确到个位)

(3)1.5952(精确到0.01)

(4)0.05069(保留2个有效数字)

(5)84960(保留3个有效数字)

(学生练习上独立完成,教师巡视进行辅导对于(5)教师不急于指出,先让学生思考,发现问题提出来,如没有学生提出,教师可直接指出)

[设计说明:让学生学会如何根据预定精确度取近似值]

注:按预定要求取近似值时,不要遗漏小数点后面的零,对较大数取近似值最好用科学记数法表示

投影片F:例4、(1)计算:-22×11÷7(结果保留4个有效数字)

(2)一根木棒长4.4米,均匀截成6段,每段长多少米?(精确到0.01米)

[设计说明:这里安排练习,使学生体会到数学知识来源于实际,又应用于实际问题中]

五、小结:引导学生进行总结

六、作业:

教材P57课内练习、P58作业题A组、B组、C组

本文网址:http://m.jk251.com/jiaoan/86058.html

相关文章
最新更新

热门标签