导航栏

×
范文大全 > 初中教案

直角三角形全等的判定教学设计

初中教师经常会接触到教案的撰写,通过不断的写教案,我们可以提高自己的语言组织能力,通过教案可以帮助自己分析教学的重点,好的初中教案都有哪些内容?下面是由小编为大家整理的直角三角形全等的判定教学设计,仅供参考,欢迎大家阅读。

〖教学目标〗

◆1、探索两个直角三角形全等的条件.

◆2、掌握两个直角三角形全等的条件(hl).

◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.

〖教学重点与难点〗

◆教学重点:直角三角形全等的判定的方法“hl”.

◆教学难点:直角三角形判定方法的说理过程.

〖教学过程〗

一、创设情境,引入新课:

教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?

二、合作学习:

(1)回顾:判定两个直角三角形全等已经有哪些方法?

(2)有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。

教师归纳出方法后,要学生注意两点:“hl”是仅适用于rt△的特殊方法。

应用“hl”时,虽只有两个条件,但必须先有两个rt△的条件

(3)教师引导、学生练习p47

三、应用新知,巩固概念

例题讲评

例:已知:p是∠aob内一点,pd⊥oa,pe⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。

分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop

小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)

角的内部,到角的两边距离相等的点,在这个角的平分线上。

四、学生练习,巩固提高

练一练:p481.2.p493

五、小结回顾,反思提高

(1)本节内容学的是什么?你认为学习本节内容应注意些什么?

(2)学习本节内容你有哪些体会?

(3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)

(4)你现在知道的有关角平分线的知识有哪些?

六、布置作业:

jK251.COm精选阅读

直角三角形全等的判定的教学方案


教学建议

知识结构

重点与难点分析:

本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)由“先教后学”转向“先学后教

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

教法建议:

由“先教后学”转向“先学后教”

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

教学目标:

1、知识目标:

(1)掌握已知斜边、直角边画直角三角形的画图方法;

(2)掌握斜边、直角边公理;

(3)能够运用HL公理及其他三角形全等的判定方法进行证明和计算.

2、能力目标:

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力.

3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过知识的纵横迁移感受数学的系统特征。

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:灵活应用五种方法(SAS、ASA、AAS、SSS、HL)来判定直角三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?

这个问题让学生思考分析讨论后回答,教师补充完善。

2、公理的获得

让学生概括出HL公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有斜边和一条直角边对应相等的两个直角三角形全等。

应用格式:(略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、判定两个直角三角形全等的方法。

(3)特殊三角形研究思想。

3、公理的应用

(1)讲解例1(投影例1)

例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。

分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。

证明:(略)

(2)讲解例2。学生分析完成,教师注重完成后的点评。)

例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.

求证:BE=CF

分析:BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF

证明:(略)

(3)讲解例3(投影例3)

例3:如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:

(1)BD=DE+CE

(2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;

(3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明

学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。

4、课堂小结:

(1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、HL)在这些方法的条件中都至少包含一条边。

(2)直角三角形判定方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

5、布置作业:

a、书面作业P79#7、9

b、上交作业P80#5、6

板书设计:

探究活动

直角形全等的判定

如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,

若AB=CD求证:BD平分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。

直角三角形全等的判定相关教学方案


教学建议

知识结构

重点与难点分析:

本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)由“先教后学”转向“先学后教

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

教法建议:

由“先教后学”转向“先学后教”

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

教学目标:

1、知识目标:

(1)掌握已知斜边、直角边画直角三角形的画图方法;

(2)掌握斜边、直角边公理;

(3)能够运用HL公理及其他三角形全等的判定方法进行证明和计算.

2、能力目标:

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力.

3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过知识的纵横迁移感受数学的系统特征。

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:灵活应用五种方法(SAS、ASA、AAS、SSS、HL)来判定直角三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?

这个问题让学生思考分析讨论后回答,教师补充完善。

2、公理的获得

让学生概括出HL公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有斜边和一条直角边对应相等的两个直角三角形全等。

应用格式:(略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、判定两个直角三角形全等的方法。

(3)特殊三角形研究思想。

3、公理的应用

(1)讲解例1(投影例1)

例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。

分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。

证明:(略)

(2)讲解例2。学生分析完成,教师注重完成后的点评。)

例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.

求证:BE=CF

分析:BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF

证明:(略)

(3)讲解例3(投影例3)

例3:如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:

(1)BD=DE+CE

(2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;

(3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明

学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。

4、课堂小结:

(1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、HL)在这些方法的条件中都至少包含一条边。

(2)直角三角形判定方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

5、布置作业:

a、书面作业P79#7、9

b、上交作业P80#5、6

板书设计:

探究活动

直角形全等的判定

如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,

若AB=CD求证:BD平分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。

解直角三角形


教学建议

1.知识结构:

本小节主要学习的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.

2.重点和难点分析:

教学重点和难点:直角三角形的解法.

本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地的关键.

3.深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.

锐角三角函数的定义:

实际上分别给了三个量的关系:a、b、c是边的长、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.

当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.

如:已知直角三角形ABC中,,求BC边的长.

画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式

由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得

.

即得BC的长为.

又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.

画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是

也就是

这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得

.

由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.

4.直角三角形的解法可以归纳为以下4种,列表如下:

5.注意非直角三角形问题向直角三角形问题的转化

由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过而获得解决.请看下例.

例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)

这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个的问题.

在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:

解:作于D,在Rt中,有

又,在Rt中,有

又,

于是,有

由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如

(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.

(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.

(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.

(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.

6.要善于把某些实际问题转化为问题.

很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为问题.

我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?

据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为

另一条直角边为螺钉推进的距离,所以

设螺纹初始角为,则在Rt中,有

∴.

即,螺纹的初始角约为.

这个例子说明,生产和生活中有很多实际问题都可以抽象为一个问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.

第12页

经典初中教案数学教案-直角三角形全等的判定


教学建议

直角三角形全等的判定

知识结构

重点与难点分析:

本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)由“先教后学”转向“先学后教

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

教法建议:

由“先教后学”转向“先学后教”

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

教学目标:

1、知识目标:

(1)掌握已知斜边、直角边画直角三角形的画图方法;

(2)掌握斜边、直角边公理;

(3)能够运用HL公理及其他三角形全等的判定方法进行证明和计算.

2、能力目标:

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力.

3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过知识的纵横迁移感受数学的系统特征。

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:灵活应用五种方法(SAS、ASA、AAS、SSS、HL)来判定直角三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?

这个问题让学生思考分析讨论后回答,教师补充完善。

2、公理的获得

让学生概括出HL公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有斜边和一条直角边对应相等的两个直角三角形全等。

应用格式:(略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、判定两个直角三角形全等的方法。

(3)特殊三角形研究思想。

3、公理的应用

(1)讲解例1(投影例1)

例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。

分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。

证明:(略)

(2)讲解例2。学生分析完成,教师注重完成后的点评。)

例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.

求证:BE=CF

分析:BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF

证明:(略)

(3)讲解例3(投影例3)

例3:如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:

(1)BD=DE+CE

(2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;

(3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明

学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。

4、课堂小结:

(1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、HL)在这些方法的条件中都至少包含一条边。

(2)直角三角形判定方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

5、布置作业:

a、书面作业P79#7、9

b、上交作业P80#5、6

板书设计:

探究活动

直角形全等的判定

如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,

若AB=CD求证:BD平分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。

解直角三角形教案模板


教学建议

1.知识结构:

本小节主要学习的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.

2.重点和难点分析:

教学重点和难点:直角三角形的解法.

本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地的关键.

3.深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.

锐角三角函数的定义:

实际上分别给了三个量的关系:a、b、c是边的长、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.

当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.

如:已知直角三角形ABC中,,求BC边的长.

画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式

由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得

.

即得BC的长为.

又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.

画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是

也就是

这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得

.

由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.

4.直角三角形的解法可以归纳为以下4种,列表如下:

5.注意非直角三角形问题向直角三角形问题的转化

由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过而获得解决.请看下例.

例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)

这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个的问题.

在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:

解:作于D,在Rt中,有

又,在Rt中,有

又,

于是,有

由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如

(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.

(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.

(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.

(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.

6.要善于把某些实际问题转化为问题.

很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为问题.

我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?

据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为

另一条直角边为螺钉推进的距离,所以

设螺纹初始角为,则在Rt中,有

∴.

即,螺纹的初始角约为.

这个例子说明,生产和生活中有很多实际问题都可以抽象为一个问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.

一、教学目标

1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数;

2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数,逐步培养学生分析问题、解决问题的能力;

3.通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.

二、重点·难点·疑点及解决办法

1.重点:直角三角形的解法。

2.难点:三角函数在中的灵活运用。

3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。

4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。

三、教学步骤

(一)明确目标

1.在三角形中共有几个元素?

2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?

(1)边角之间关系

(2)三边之间关系

(勾股定理)

(3)锐角之间关系。

以上三点正是的依据,通过复习,使学生便于应用。

(二)整体感知

教材在继锐角三角函数后安排,目的是运用锐用三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础。因此在把实际问题转化为数学问题之后,就是运用本课——的知识来解决的。综上所述,一课在本章中是起到承上启下作用的重要一课。

(三)教学过程

1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语既可以使中国学习联盟概了解的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做)。

3.例题

【例1】在中,为直角,所对的边分别为,且,解这个三角形。

的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。

解:(1),

(2),

(3)

完成之后引导学生小结“已知一边一角,如何?”

答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。

【例2】在Rt中,,解这个三角形。

在学生独立完成之后,选出最好方法,教师板书。

解:(1),

查表得;

(2)

(3),

∴。

注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些。但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。

4.巩固练习

是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练;练习2代入数据,培养学生运算能力。

[参考答案]

1.(1);

(2)由求出或;

(3),

或;

(4)或。

2.(1);

(2)。

说明:计算上比较繁琐,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯。

(四)总结扩展

1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。

2.幻灯片出示图表,请学生完成

四、布置作业

教材P.32习题6.4A组3。

[参考答案]

3.;

五、板书设计

数学教案-解直角三角形


教学建议

1.知识结构:

本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.

2.重点和难点分析:

教学重点和难点:直角三角形的解法.

本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.

3.深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.

锐角三角函数的定义:

实际上分别给了三个量的关系:a、b、c是边的长、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.

当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.

如:已知直角三角形ABC中,,求BC边的长.

画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式

由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得

.

即得BC的长为.

又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.

画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是

也就是

这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得

.

由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.

4.直角三角形的解法可以归纳为以下4种,列表如下:

5.注意非直角三角形问题向直角三角形问题的转化

由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决.请看下例.

例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)

这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个解直角三角形的问题.

在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:

解:作于D,在Rt中,有

又,在Rt中,有

又,

于是,有

由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如

(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.

(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.

(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.

(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.

6.要善于把某些实际问题转化为解直角三角形问题.

很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为解直角三角形问题.

我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?

据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为

另一条直角边为螺钉推进的距离,所以

设螺纹初始角为,则在Rt中,有

∴.

即,螺纹的初始角约为.

这个例子说明,生产和生活中有很多实际问题都可以抽象为一个解直角三角形问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.

一、教学目标

1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;

2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;

3.通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.

二、重点难点疑点及解决办法

1.重点:直角三角形的解法。

2.难点:三角函数在解直角三角形中的灵活运用。

3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。

4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。

三、教学步骤

(一)明确目标

1.在三角形中共有几个元素?

2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?

(1)边角之间关系

(2)三边之间关系

(勾股定理)

(3)锐角之间关系。

以上三点正是解直角三角形的依据,通过复习,使学生便于应用。

(二)整体感知

教材在继锐角三角函数后安排解直角三角形,目的是运用锐用三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础。因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的。综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课。

(三)教学过程

1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形)。

3.例题

【例1】在中,为直角,所对的边分别为,且,解这个三角形。

解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。

解:(1),

(2),

(3)

完成之后引导学生小结“已知一边一角,如何解直角三角形?”

答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。

【例2】在Rt中,,解这个三角形。

在学生独立完成之后,选出最好方法,教师板书。

解:(1),

查表得;

(2)

(3),

∴。

注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些。但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。

4.巩固练习

解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力。

[参考答案]

1.(1);

(2)由求出或;

(3),

或;

(4)或。

2.(1);

(2)。

说明:解直角三角形计算上比较繁琐,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出解直角三角形的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯。

(四)总结扩展

1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。

2.幻灯片出示图表,请学生完成

四、布置作业

教材P.32习题6.4A组3。

[参考答案]

3.;

五、板书设计

经典初中教案解直角三角形


教学建议

1.知识结构:

本小节主要学习的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.

2.重点和难点分析:

教学重点和难点:直角三角形的解法.

本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地的关键.

3.深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.

锐角三角函数的定义:

实际上分别给了三个量的关系:a、b、c是边的长、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.

当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.

如:已知直角三角形ABC中,,求BC边的长.

画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式

由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得

.

即得BC的长为.

又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.

画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是

也就是

这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得

.

由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.

4.直角三角形的解法可以归纳为以下4种,列表如下:

5.注意非直角三角形问题向直角三角形问题的转化

由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过而获得解决.请看下例.

例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)

这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个的问题.

在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:

解:作于D,在Rt中,有

又,在Rt中,有

又,

于是,有

由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如

(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.

(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.

(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.

(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.

6.要善于把某些实际问题转化为问题.

很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为问题.

我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?

据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为

另一条直角边为螺钉推进的距离,所以

设螺纹初始角为,则在Rt中,有

∴.

即,螺纹的初始角约为.

这个例子说明,生产和生活中有很多实际问题都可以抽象为一个问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.

一、教学目标

1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数;

2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数,逐步培养学生分析问题、解决问题的能力;

3.通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.

二、重点·难点·疑点及解决办法

1.重点:直角三角形的解法。

2.难点:三角函数在中的灵活运用。

3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。

4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。

三、教学步骤

(一)明确目标

1.在三角形中共有几个元素?

2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?

(1)边角之间关系

(2)三边之间关系

(勾股定理)

(3)锐角之间关系。

以上三点正是的依据,通过复习,使学生便于应用。

(二)整体感知

教材在继锐角三角函数后安排,目的是运用锐用三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础。因此在把实际问题转化为数学问题之后,就是运用本课——的知识来解决的。综上所述,一课在本章中是起到承上启下作用的重要一课。

(三)教学过程

1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语既可以使学生大概了解的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做)。

3.例题

【例1】

中,为直角,所对的边分别为,且,解这个三角形。

的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。

解:(1),

(2),

(3)

完成之后引导学生小结“已知一边一角,如何?”

答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。

【例2】在Rt中,,解这个三角形。

在学生独立完成之后,选出最好方法,教师板书。

解:(1),

查表得;

(2)

(3),

∴。

注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些。但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。

4.巩固练习

是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练;练习2代入数据,培养学生运算能力。

[参考答案]

1.(1);

(2)由求出或;

(3),

或;

(4)或。

2.(1);

(2)。

说明:计算上比较繁琐,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯。

(四)总结扩展

1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。

2.幻灯片出示图表,请学生完成

四、布置作业

教材P.32习题6.4A组3。

[参考答案]

3.;

五、板书设计

三角形全等的判定相关教学方案


课题:三角形全等的判定(三)

教学目标:

1、知识目标:

(1)掌握已知三边画三角形的方法;

(2)掌握边边边公理,能用边边边公理证明两个三角形全等;

(3)会添加较明显的辅助线.

2、能力目标:

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力.

3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过变式训练,培养学生“举一反三”的学习习惯.

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得

问:通过上面问题的分析,满足什么条件的两个三角形全等?

让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有三边对应相等的两个三角形全等。

应用格式:(略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

(3)、此公理与前面学过的公理区别与联系

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

(5)说明AAA与SSA不能判定三角形全等。

3、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的点评。

例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

求证:AD⊥BC

分析:(设问程序)

(1)要证AD⊥BC只要证什么?

(2)要证∠1=只要证什么?

(3)要证∠1=∠2只要证什么?

(4)△ABD和△ACD全等的条件具备吗?依据是什么?

证明:(略)

(2)讲解例2(投影例2)

例2已知:如图AB=DC,AD=BC

求证:∠A=∠C

(1)学生思考、分析、讨论,教师巡视,适当参与讨论。

(2)找学生代表口述证明思路。

思路1:连接BD(如图)

证△ABD≌△CDB(SSS)先得∠A=∠C

思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

(3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

例3如图,已知AB=AC,DB=DC

(1)若E、F、G、H分别是各边的中点,求证:EH=FG

(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上写出证明,然后选择投影显示。

证明:(略)

说明:证直线垂直可证两直线夹角等于,而由两邻补角相等证两直线的夹角等于,又是很重要的一种方法。

例4如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

求证:AC=2AE.

证明:(略)

学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

5、课堂小结:

(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

(2)三种方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业:

a、书面作业P70#11、12

b、上交作业P70#14P71B组3

板书设计:

三角形全等的判定的教学方案


课题:全等三角形的判定(二)

教学目标:

1、知识目标:

(1)熟记角边角公理、角角边推论的内容;

(2)能应用角边角公理及其推论证明两个三角形全等.

2、能力目标:

(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力.

3、情感目标:

(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

教学重点:学会运用角边角公理及其推论证明两个三角形全等.

教学难点:SAS公理、ASA公理和AAS推论的综合运用.

教学用具:直尺、微机

教学方法:探究类比法

教学过程:

1、新课引入

投影显示

这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案.

2、公理的获得

问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?

让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.

公理:有两角和它们的夹边对应相等的两个三角形全等.

应用格式:(略)

强调:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)

所以找条件归结成两句话:已知中找,图形中看.

(3)、公理与前面公理1的区别与联系.

以上几点可运用类比公理1的模式进行学习.

3、推论的获得

改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?

学生分析讨论,教师巡视,适当参与讨论.

4、公理的应用

(1)讲解例1.学生分析完成,教师注重完成后的总结.

注意区别“对应边和对边”

解:(略)

(2)讲解例2

投影例2:

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上定出证明,一名学生板书.教师强调

证明格式:用大括号写出公理的三个条件,最后写出

结论.

第12页

本文网址:http://m.jk251.com/jiaoan/9069.html

相关文章
最新更新

热门标签