导航栏

×
范文大全 > 高中教案

气体实验定律 万能通用篇

时间:2022-02-07 气体实验定律 实习报告万能篇

教学目标

知识目标

1、知道什么是等温变化,知道玻意耳定律的实验装置和实验过程,掌握玻意耳定律的内容与公式表达.

2、知道什么是等容变化,了解查理定律的实验装置和实验过程,掌握查理定律的内容与公式表达.

3、掌握三种基本图像,并能通过图像得到相关的物理信息.

能力目标

通过实验培养学生的观察能力和实验能力以及分析实验结果得出结论的能力.

情感目标

通过实验,培养学生分析问题和解决问题的能力,同时树立理论联系实际的观点.

教学建议

教材分析

本节的内容涉及三个实验定律:玻意耳定律、查理定律和盖·吕萨克定律.研究压强、体积和温度之间的变化关系,教材深透了一般物理研究方法——“控制变量法”:在研究两个以上变量的关系时,往往是先研究其中两个变量间的关系,保持其它量不变,然后综合起来得到所要研究的几个量之间的关系,在牛顿第二定律、力矩的平衡、单摆周期确定等教学中,我们曾经几次采用这种方法.

教法建议

通过演示实验,及设定变量的方法得到两个实验定律;注意定律成立的条件.提高学生对图像的分析能力.

教学设计方案

教学用具:验证玻意耳定律和查理定律的实验装置各一套.

教学主要过程设计:在教师指导下学生认识实验并帮助记录数据,在教师启发下学生自己分析总结、推理归纳实验规律.

课时安排:2课时

教学步骤

(一)课堂引入:

教师讲解:我们学习了描述气体的三个物理参量——体积、温度、压强,并知道对于一定质量的气体,这三个量中一个量变化时,另外两个量也会相应的发生变化,三个量的变化是互相关联的,那么,对于一定质量的气体,这三个量的变化关系是怎样的呢?这节课,我们便来研究一下!

(二)新课讲解:

教师讲解:在物理学中,当需要研究三个物理量之间的关系时,往往采用“保持一个量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系”,我们研究一定质量的气体温度、体积、压强三者的关系,就可以采用这种方法.首先,我们设定温度不变,研究气体体积和压强的关系.

1、气体的压强与体积的关系——玻意耳定律

演示实验:一定质量的气体,在保持温度不变的情况下改变压强,研究压强与体积的关系.让学盛帮助记录数据.

压强Pa0.5

1.01.52.02.53.03.54.0体积V/L8.04.02.72.01.61.31.11.04.04.04.054.04.03.93.854.0

以横坐标表示气体的体积,纵坐标表示气体的压强,作出压强p与体积的关系如图所示.

可见,一定质量的气体,在体积不变的情况,压强P随体积V的关系图线为一双曲线,称为等温线.①见等温线上的每点表示气体的一个状态.②同一等温线上每一状态的温度均相同.③对同一部分气体,在不同温度下的等温线为一簇双曲线,离坐标轴越近的等温线的温度越高.

通过实验得出,一定质量的某种气体,在温度保持不变的情况下,压强p与体积V的乘积保持不变,即:常量

或压强p与体积V成反比,即:

这个规律叫做玻意耳定律,也可以写成:或

例如:一空气泡从水库向上浮,由于气泡的压强逐渐减小,因此体积逐渐增大.

例题1:如图所示,已知:,求:和

解:根据图像可得:

∵封闭在管中的气体质量、温度均不变.

即:

解得:

2、气体的压强与温度的关系——查理定律

演示实验:一定质量的气体,在体积保持不变的情况下改变温度,研究压强与温度的关系.让学生帮助记录数据.Jk251.Com

压强Pa1.0

1.11.21.31.41.51.61.7温度T/K300330360390420450480510

以横坐标表示气体的温度,纵坐标表示气体的压强,作出压强p与温度T的关系如图所示.

可见,一定质量的气体,在体积不变的情况下,压强p与热力学温度的关系,图线为通过原点的一条直线,称为等容线.

①等容线上的每一点表示气体的一个状态.②同一等容线上每一状态的体积均相同.③对同一部分气体,在不同体积下的等容线为一簇通过原点的直线,离横轴越远的等容线的体积越大().

通过实验得出,一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T之比保持不变,即:常量

或压强p与热力学温度T成正比,即:

这个规律叫做查理定律,也可以写成:或

例如:乒乓球挤瘪后,放在热水里泡一会儿,由于球内气体温度升高,压强增大,就把乒乓球挤回球形.

例题2:一定质量的某种气体在20℃时的压强是Pa,保持体积不变,温度升高到50℃,压强是多少?温度降到-17℃时,压强是多少?

解:∵因气体的质量和体积均不变

3、气体的体积和温度的关系——盖·吕萨克定律

教师讲解:由前面我们得到:;;

则可以得到:

也就是说:一定质量的气体,在压强不变的情况下,体积与热力学温度成正比,即:,

这个规律叫做盖·吕萨克定律,也可以写成:或

一定质量的气体,在压强不变的情况下,体积V与热力学温度的关系图线为通过原点的直线,称为等压线.

①等压线上每一点表示气体的一个状态.②同一等压线上每一状态的压强相等.③对同一部分气体,在不同压强下的等压线为一簇通过原点的直线,离横轴越远的等压线的压强越大().

教师总结:理想气体的状态方程是由实验定律推证出来的,我们也可以把玻意耳定律、查理定律、盖·吕萨克定律分别看成是在温度、体积、压强不变的情况下理想气体状态方程的特殊情况,或者说,理想气体的状态方程包括了三个实验定律.

(三)板书设计

二、

1、气体的压强与体积的关系——玻意耳定律

内容:图像:

表达式:

2、气体的压强与温度的关系——查理定律

内容:图像:

表达式:

3、气体的温度与体积的关系——盖·吕萨克定律:

内容:图像:

表达式:

jk251.coM小编推荐

热力学定律 万能通用篇


教学目标

(1)知道热力学第一定律,理解能量守恒定律

(2)对热力学第一定律的数学表达式有简单认识

(3)知道永动机是不可能的

教学建议

教材分析

分析一:本节由改变物体内能的两种方式引出热力学第一定律及其数学表达式,在此基础上结合以往的知识总结出能量守恒定律,最后通过能量守恒定律阐述永动机是不可能的.

分析二:根据热力学第一定律知,物体内能的改变量,运用此公式时,需要注意各物理量的符号:物体内能增加时,为正,物体内能减少时,为负;外界对物体做功时,为正,物体对外界做功时,为负;物体吸收热量时,为正,物体放出热量.

分析三:各种形式的能量在转化和转移过程中保持总量不变,无任何附加条件,而某种或几种能的守恒是要有条件的(例如机械能守恒需要对于系统只有重力或弹力做功).

教法建议

建议一:在讲完热力学第一定律后,给出其表达式,为增进学生对其理解,最好能举出实际例子,应用热力学第一定律计算或解释.

建议二:在讲能量守恒定律后,最好能用它对以往所学知识进行一个简单的总结.要使学生认识到能量守恒定律是一个普遍的规律,热力学第一定律是其一个具体表达形式.另外,为激发学生学习兴趣,阐述能量守恒定律的重要意义,可以简单介绍一下19世纪自然科学的三大发现.

教学设计示例

教学重点:热力学第一定律和能量守恒定律

教学难点:永动机

一、热力学第一定律

改变物体内能的方式有两种:做功和热传递.

运用此公式时,需要注意各物理量的符号:物体内能增加时,为正,物体内能减少时,为负;外界对物体做功时,为正,物体对外界做功时,为负;物体吸收热量时,为正,物体放出热量时,为负.

例1:下列说法中正确的是:

A、物体吸收热量,其内能必增加

B、外界对物体做功,物体内能必增加

C、物体吸收热量,同时对外做功,其内能可能减少

D、物体温度不变,其内能也一定不变

答案:C

评析:在分析问题时,要求考虑比较周全,既要考虑到内能包括分子动能和分子势能,又要考虑到改变内能也有两种方式:做功和热传递.

例题2:空气压缩机在一次压缩中,空气向外界传递的热量2.0×105J,同时空气的内能增加了1.5×105J.这时空气对外做了多少功?

解:根据热力学第一定律知

1.5×105J-2.0×105J=-0.5×105J

所以此过程中空气对外做了0.5×105J的功.

二、能量守恒定律

1、复习各种能量的相互转化和转移

2、能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变.(学生看书学习能量守恒定律内容).

3、能量守恒定律的历史意义.

三、永动机

永动机的原理违背了能量守恒定律,所以是不可能的.

举例说明几种永动机模型

四、作业

探究活动

题目:永动机

组织:分组

方案:收集有关永动机的材料,并运用所学知识说明永动机是不可能的

评价:材料的丰富性

气体摩尔体积[时] 万能通用篇


教学目标

知识目标

使学生在了解气体的体积与温度和压强有密切关系的基础上,理解气体摩尔体积的概念。

使学生在理解气体摩尔体积,特别是标准状况下,气体摩尔体积的基础上,掌握有关气体摩尔体积的计算。

能力目标

通过气体摩尔体积的概念和有关计算的教学,培养学生分析、推理、归纳、总结的能力。

通过有关气体摩尔体积计算的教学,培养学生的计算能力,并了解学科间相关知识的联系。

情感目标

通过本节的教学,激发学生的学习兴趣,培养学生的主动参与意识。

通过教学过程中的设问,引导学生科学的思维方法。

教学建议

教材分析

本节教材在学习了物质的量和摩尔质量概念的基础上,学习气体摩尔体积的概念及有关计算,这样的编排,有利于加深理解、巩固和运用有关概念,特别是深化了对物质的量及其单位的理解。本节是今后学习有关气态反应物和生成物的化学方程式的计算,以及学习化学反应速率和化学平衡的重要基础。

本节教材首先注意了学科间的联系和学生已有的知识,通过计算得出1mol几种物质的体积,设问:1mol气态物质的体积是不是也不相同呢?然后介绍气态物质的体积与外界温度、压强的关系,计算出标准状况下1mol气体的体积,引出气体摩尔体积的概念,最后是关于气体摩尔体积概念的计算。

教学建议

教法建议

1.认真钻研新教材,正确理解气体摩尔体积的概念。

原必修本39页“在标准状况下,1mol任何气体所占的体积都约是22.4L,这个体积叫做气体摩尔体积。”认为“22.4L/mol就是气体摩尔体积”。

新教材52页气体摩尔体积的定义为“单位物质的量气体所占的体积叫做气体摩尔体积。即Vm=V/n。”由此可以看出,气体摩尔体积是任意温度和压强下,气体的体积与气体的物质的量之比,而22.4L/mol是在特定条件(如:0℃,101KPa)下的气体摩尔体积。注意:当温度高于0℃,压强大于101Kpa时,1mol任何气体所占的体积也可能是22.4L。

教学中要给学生讲清气体摩尔体积与标准状况下气体摩尔体积22.4L/mol的关系。

2.本节引入方法

⑴计算法:全班学生分成3组,分别计算1mol固、液态几种物质的体积并填表。

物质

1mol物质质量(g)

20℃密度(g/cm3)

体积(cm3)

Fe

6.02×1023

56

7.8

Al

6.02×1023

27

2.7

Pb

6.02×1023

207

11.3

H2O

6.02×1023

18

1(4℃)

H2SO4

6.02×1023

98

1.83

⑵实物展示法:有条件的学校,可分别展示1molFe、Al、Pb、H2O、H2SO4的实物,直观得到体积不同的结论;展示22.4L实物模型,这种实物展示方法学生印象深刻,感性经验得以丰富。

3.列表比较决定物质体积的主要因素(用“√”表示)

物质因素

粒子的数目

粒子间平均距离

粒子本身大小

固、液态

气态

讲清当粒子数相同的条件下,固、液态体积由粒子大小决定,气体体积主要由分子间距离决定。举例:50个乒乓球和50个篮球紧密堆积或间隔1米摆放,前者球的大小决定体积,后者球间的距离决定体积。

4.充分运用多媒体素材,展示微观的变化,活跃课堂气氛,激发学生兴趣。例如:应用微机显示温度、压强对气体体积的影响;固、液、气态物质粒子间距离;1mol液态水(0℃,18mL),加热到100℃气化为水蒸气的体积变化等。

5.通过阅读、设问、讨论,突破难点。讨论题有:物质体积的大小取决与哪些微观因素?决定固、液、气态物质体积的主要因素?在粒子数一定的情况下,为什么气体体积主要取决于分子间距离?为什么比较一定量气体的体积,要在相同的温度和压强下进行才有意义?为什么相同外界条件下,1mol固、液态物质所具有的体积不同,而1mol气体物质所具有的体积却大致相同?在相同条件下,相同物质的量的气体所具有的体积是否相同?为什么1mol液态水变为1mol水蒸气体积由18mL变为3.06×104mL体积扩大1700倍?

6.在理解标况下气体摩尔体积这一特例时,应强调以下4点:①标准状况②物质的量为1mol③任何气体物质④约为22.4L只有符合这些条件,22.4L才是1mol任何气体在标准状况下的体积。因此,非标准状况下或固、液态物质,不能使用22.4L/mol.

7.教材52页“在相同的温度和压强下,相同体积的任何气体都含有相同数目的分子”,应指出这个结论即为阿伏加德罗定律。学生基础较好的班级,还可简单介绍阿伏加德罗定律的几个重要推论。

8.教材53页的例题2,是关于气体摩尔体积的计算,教学中应指出密度法是计算气体相对分子质量的常用方法,即M=ρVm如果是标准状况下,则:M=ρ·22.4L/mol

9.在V、n、m、N之间的关系可放在学习气体摩尔体积计算例题前进行,也可放在课后小结进行。

教学建议

关于气体摩尔体积

1.气体摩尔体积1mol某气体的体积即气体摩尔体积,单位为L/mol。标准状况下任何气体的体积均为22.4L。即标准状况下气体摩尔体积为22.4L/mol。

2.阿伏加德罗定律同温同压下体积相同的任何气体都含有相同的分子数即阿伏加德罗定律。由此可见气体的体积比在同温同压下必等于分子数比。由此可以导出同温同压下不同气体间的关系:

(1)同温同压下,气体的体积比等于物质的量比。

(2)同温同容下,气体的压强比等于物质的量比。

(3)同温同压下,气体的摩尔质量比等于密度比。

(4)同温同压下,同体积的气体质量比等于摩尔质量比。

(5)同温同压下,同质量气体的体积比等于摩尔质量的反比。

此外还在运用时要结合物理中的同物质的量的气体在同温时,其体积与压强成反比;气体体积与热力学温度在同压条件下成正比。

3.气体摩尔体积的常见应用标准状况下1mol气体为22.4L,即可导出其质量便是该气体的摩尔质量。据此可求出未知化学式的气体摩尔质量和相对分子质量,也可求出1L气体的质量即气体密度。反之也可由气体密度求摩尔质量。同温同压下两气体的密度比叫气体的相对密度,可据以由气体的相对密度求气体的摩尔质量,如某气体对的相对密度为15,则其相对分子质量为。常见的有:

(1)由标准状况下气体密度求相对分子质量:

(2)由相对密度求气体的相对分子质量:若为对的相对密度则为:,若为对空气的相对密度则为:.

*(3)求混合气体的平均相对分子质量():即混合气体1mol时的质量数值。在已知各组成气体的体积分数时见①,若为质量分数见②:

(4)由同温同压下气体反应时的体积比求分子数比,进而推分子式。

(5)直接将气体摩尔体积代入有关化学方程式进行计算。

(6)气体反应物的体积比即分子数比可便于找出过量气体。

第12页

欧姆定律教案一 万能通用篇


(一)教学目的

1.掌握欧姆定律,能熟练地运用欧姆定律计算有关电压、电流和电阻的简单问题。

2.培养学生解答电学问题的良好习惯。

(二)教具:

书写有提问和例题的投影幻灯片。

(三)教学过程

1.复习

提问:(使用投影幻灯片)表1、表2是某同学研究电流跟电压、电阻关系时的两组实验数据。请在表格中空白部分填写出正确数值,并说明道理。

答:表1填3伏和0.9安。根据:在电阻一定的情况下,导体中的电流跟导体两端的电压成正比。

表2填0.15安和15欧。根据:在电压不变的情况下,导体中的电流跟导体的电阻成反比。

2.进行新课

(1)欧姆定律

由实验我们已知道了在电阻一定时,导体中的电流跟这段导体两端的电压成正比,在电压不变的情况下,导体中的电流跟导体的电阻成反比。把以上实验结果综合起来得出结论,即欧姆定律。

板书:〈第二节欧姆定律

1.内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。

欧姆定律是德国物理学家欧姆在19世纪初期(1827年)经过大量实验得出的一条关于电路的重要定律。

欧姆定律的公式:如果用U表示加在导体两端的电压,R表示这段导体的电阻,I表示这段导体中的电流,那么,欧姆定律可以写成如下公式:

公式中I、U、R的单位分别是安、伏和欧。

公式的物理意义:当导体的电阻R一定时,导体两端的电压增加几倍,通过这段导体的电流就增加几倍。这反映导体的电阻一定时,导体中的电流跟导体两端的电压成正比例关系(I∝U)。当电压一定时,导体的电阻增加到原来的几倍,则导体中的电流就减小为原来的几分之一。反映了电压一定时,导体中的电流跟导体的电阻成反比例的关系(I∝

I—电流(安)U—电压(伏)R—电阻(欧)〉

有关欧姆定律的几点说明:

①欧姆定律中的电流、电压和电阻这三个量是对同一段导体而言的。

②对于一段电路,只要知道I、U和R三个物理量中的两个,就可以应用欧姆定律求出另一个。

③使用公式进行计算时,各物理量要用所要求的单位。

(2)应用欧姆定律计算有关电流、电压和电阻的简单问题。

例题1:课本中的例题1。(使用投影片)

学生读题,根据题意教师板演,画好电路图(如课本中的图8—2)。说明某导体两端所加电压的图示法。在图上标明已知量的符号、数值和未知量的符号。

解题过程要求写好已知、求、解和答。解题过程写出根据公式,然后代入数值,要有单位,最后得出结果。

板书:〈例题1:

已知:R=807欧,U=220伏。

求:I。

解:根据欧姆定律

答:通过这盏电灯的电流约为0.27安。〉

例题2:课本中例题2。(使用投影片)

板书:〈例题2〉

要求学生在笔记本上按例题1的要求解答。由一位同学到黑板上进行板演。

学生板演完毕,组织全体学生讨论、分析正误。教师小结。

①电路图及解题过程是否符合规范要求。

②答题叙述要完整。本题答:要使小灯泡正常发光,在它两端应加2.8伏的电压。

③解释U=IR的意义:导体两端的电压在数值上等于通过导体的电流跟导体电阻的乘积。不能认为“电压跟电流成正比,跟电阻成反比。”因为这样表述颠倒了因果关系也不符合物理事实。

例题3:课本中的例题3。(使用投影片)

板书:〈例题3〉

解题方法同例题2。学生板演完毕,组织学生讨论、分析正误。教师小结。

体的电流跟这段导体两端的电压成正比。所以U、I的比值是一定的。对于不同的导体,其比值一般不同。U和I的比值反映了导体电阻的大小。导体的电阻是导体本身的一种性质,它的大小决定于材料、长度和

电阻跟导体两端的电压成正比,跟导体中的电流成反比。由于电阻是导体本身的一种性质,所以某导体两端的电压是零时,导体中的电流也等于零,而这个导体的电阻值是不变的。

②通过例题3的解答,介绍用伏安法测电阻的原理和方法。

板书:(书写于例题3题解后)

〈用电压表和电流表测电阻的方法叫做伏安法。〉

3.小结

(1)简述欧姆定律的内容、公式及公式中各物理量的单位。

什么叫伏安法测电阻?原理是什么?

(2)讨论:通过课本中本节的“想想议议”,使学生知道:

①电流表的电阻很小(有的只有零点几欧),因此,实验中绝对不允许直接把电流表接到电源的两极上。否则,通过电流表的电流过大,有烧毁电流表的危险。

②电压表的电阻很大(约几千欧),把电压表直接连在电源的两极上测电压时,由于通过电压表的电流很小,一般不会烧毁电压表。

4.布置作业

课本本节后的练习1、4。

(四)说明:通过例题,要领会培养学生在审题基础上画好电路图,按规范化要求解题。

注:本教案依据的教材是人教社初中物理第二册。

理想气体的状态方程() 万能通用篇


教学目标

知识目标

1、知道摩尔气体常量.了解克拉珀龙方程的推导过程.

2、在理解克拉珀龙方程内容的基础上学会方程的应用.

3、进一步强化对气体状态方程的应用.

能力目标

通过克拉珀龙方程的推导,培养学生对问题的分析、推理、综合能力.

情感目标

通过对不同类型题目的练习,引导学生自己分析研究和归纳出解题方法并根据实验选用不同的气体状态方程的表达式,培养其分析和判断能力.

教学建议

教材分析

气体实验定律和克拉珀龙方程都是气体的状态方程,其区别仅在于再实验定律中未知的常量C,再克拉珀龙方程中得到了具体的表述,即,因此,对处在某种状态下的一定质量的某种气体来说,借助普适气体常量,在已知两个状态参量的情况下便可以由克拉珀龙方程直接求出第三个参量,而无需另一个状态的参与,所以运用克拉珀龙方程解题不涉及过程问题,对于解决变质量问题尤为方便.

教法建议

在教师讲解克拉珀龙方程时,要让学生深刻理解普适常量的物理意义,注意普适常量的单位.

在应用方程解题时,注意单位必须是统一的国际单位制.

教学设计方案

教学过程总体设计

1、老师复习前面知识引入,通过提问启发学生理解克拉珀龙方程的推导.

2、学生积极思考、讨论,推导克拉珀龙方程并掌握其应用.

(一)教学重点、难点以及相应的解决办法

1、重点:克拉珀龙方程的推导和内容.

2、难点:在用克拉珀龙方程解题时如何根据题意选好研究对象,找出等量关系(列方程).

3、疑点:摩尔气体常量为什么与气体的质量和种类无关.

解决办法:明确研究对象,并把作为研究对象的气体所发生的过程弄清楚.

(二)教具学具:投影片

(三)师生互动活动设计

让学生先回顾一些基本常数,结合气态方程在老师引导下推导克拉珀龙方程,并利用所学规律解题.

(四)教学步骤

本节利用前面学过的知识推导克拉珀龙方程,并用克拉珀龙方程解题,与以前学过的方法比较,归纳解题方法,是热力学中最重要的一节.

1、摩尔气体常量

问:理想气体状态方程(常量)中的常量C与什么因素有关?

答:实验表明,常量C与气体的质量和种类有关.

问:对1mol的某种气体,常量C应为多少?

∵1mol的气体,在标准状态下:

——摩尔气体常量.

对于1mol的理想气体:

——1mol理想气体的状态方程.

2、克拉珀龙方程

对于nmol的理想气体:

或(m为气体的质量,M为气体的摩尔质量)克拉珀龙方程.

3、克拉珀龙方程的应用

例题讲解(参考备课资料中的典型例题)

4、总结、扩展

(1)克拉珀龙方程的推导

由(恒量)

当m、M一定时——一定质量的理想气体状态方程

当m、M、T一定时——玻意耳定律

当m、M、T一定时——查理定律

当m、M、p一定时——盖·吕萨克定律

因此,克拉珀龙方程既反映了理想气体在某一状态各参量的关系,也可以得出气体在两个状态下各气体状态参量的关系,所以,它包括了本章的所有规律,是本章的核心,把克拉珀龙方程与化学知识相结合,可编写理化综合题对考生考查.

(2)关于图像研究克拉珀龙方程

由克拉珀龙方程,可得三条等值线对应的函数关系分别为:

、、.

气体状态变化图线包括图、图和图三种图线,所有题中有以下形式:

①三种图线的相互转换;

②由图线的物理意义确定气体的三个状态参量的关系;

③结合围绕判断气体状态变化过程中的内能变化情况,在这些题型中,求解时首先要清楚各种图线的物理意义,再结合三个实验定律、气体状态方程,克拉珀龙方程以及热力学第一定律求解即可.

本文网址://m.jk251.com/jiaoan/9408.html

相关文章
最新更新

热门标签