导航栏

×
范文大全 > 初中教案

圆周角教案模板

时间:2022-02-11

我相信初中教师都接触过教案,撰写教案有利于教研活动的开展,可以通过编写教案认识自己教学的优点和不足。怎样写好自己的初中教案呢?下面是小编为您精心收集整理,为您带来的《圆周角教案模板》,仅供参考,希望对您有帮助。

第一课时(一)

教学目标:

(1)理解的概念,掌握的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:的概念和定理

教学难点:定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

教学活动设计:(在教师指导下完成)

(一)的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角.

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数.(如右图)

2、引题:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是.(如右图)(演示图形,提出的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做

3、概念辨析:

教材P93中1题:判断下列各图形中的是不是,并说明理由.

学生归纳:一个角是的条件:①顶点在圆上;②两边都和圆相交.

(二)的定理

1、提出的度数问题

问题:的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的的三种情况:圆心在的一边上、圆心在内部、圆心在外部.

(在教师引导下完成)

(1)当圆心在的一边上时,与相应的圆心角的关系:(演示图形)观察得知圆心在上时,是圆心角的一半.

提出必须用严格的数学方法去证明.

证明:(圆心在上)

(2)其它情况,与相应圆心角的关系:

当圆心在外部时(或在内部时)引导学生作辅助线将问题转化成圆心在一边上的情况,从而运用前面的结论,得出这时仍然等于相应的圆心角的结论.

证明:作出过C的直径(略)

定理:一条弧所对的

周角等于它所对圆心角的一半.

说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)

(三)定理的应用

1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.

求证:∠ACB=2∠BAC

让学生自主分析、解得,教师规范推理过程.

说明:①推理要严密;②符号应用要严格,教师要讲清.

2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求∠ACB、∠ADB的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的的度数?

说明:一条弧所对的有无数多个,却这条弧所对的的度数只有一个,但一条弦所对的的度数只有两个.

(四)总结

知识:(1)定义及其两个特征;(2)定理的内容.

思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

(五)作业教材P100中习题A组6,7,8

第二、三课时(二、三)

教学目标:

(1)掌握定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;

(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

(3)培养添加辅助线的能力和思维的广阔性.

教学重点:定理的三个推论的应用.

教学难点:三个推论的灵活应用以及辅助线的添加.

教学活动设计:

(一)创设学习情境

问题1:画一个圆,以B、C为弧的端点能画多少个?它们有什么关系?

问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?

(二)分析、研究、交流、归纳

让学生分析、研究,并充分交流.

注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立.

老师组织学生归纳:

推论1:同弧或等弧所对的相等;在同圆或等圆中,相等的所对的弧也相等.

重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.

问题:“同弧”能否改成“同弦”呢?同弦所对的一定相等吗?(学生通过交流获得知识)

问题3:(1)一个特殊的圆弧——半圆,它所对的是什么样的角?

(2)如果一条弧所对的是90°,那么这条弧所对的圆心角是什么样的角?

学生通过以上两个问题的解决,在教师引导下得推论2:

推论2:半圆(或直径)所对的是直角;90°的所对的弦直径.

指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.

启发学生根据推论2推出推论3:

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.

指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.

(三)应用、反思

例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.

求证:AB·AC=AE·AD.

对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.

交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).

解(略)

教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点.

指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的,以便利用直径上的是直角的性质.

变式练习1:如图,△ABC内接于⊙O,∠1=∠2.

求证:AB·AC=AE·AD.

变式练习2:如图,已知△ABC内接于⊙O,弦AE平分

∠BAC交BC于D.

求证:AB·AC=AE·AD.

指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.

例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;

求BC,AD和BD的长.

解:(略)

说明:充分利用直径所对的为直角,解直角三角形.

练习:教材P96中1、2

(四)小结(指导学生共同小结)

知识:本节课主要学习了定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.

能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的或构成相似三角形,这种基本技能技巧一定要掌握.

(五)作业

教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.

探究活动

我们已经学习了“的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.

提示:(1)连结BC,可得∠E=(的度数—的度数)

(2)延长AE、CE分别交圆于B、D,则∠B=的度数,

∠C=的度数,

∴∠AEC=∠B+∠C=(的度数+的度数).

jK251.COm精选阅读

经典初中教案圆周角


第一课时(一)

教学目标:

(1)理解的概念,掌握的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:的概念和定理

教学难点:定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.教学活动设计:(在教师指导下完成)(一)的概念1、复习提问:(1)什么是圆心角?答:顶点在圆心的角叫圆心角.(2)圆心角的度数定理是什么?答:圆心角的度数等于它所对弧的度数.(如右图)2、引题:如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是.(如右图)(演示图形,提出的定义)定义:顶点在圆周上,并且两边都和圆相交的角叫做3、概念辨析:教材P93中1题:判断下列各图形中的是不是,并说明理由.学生归纳:一个角是的条件:①顶点在圆上;②两边都和圆相交.(二)的定理1、提出的度数问题问题:的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的的三种情况:圆心在的一边上、圆心在内部、圆心在外部.(在教师引导下完成)(1)当圆心在的一边上时,与相应的圆心角的关系:(演示图形)观察得知圆心在上时,是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在上)(2)其它情况,与相应圆心角的关系:当圆心在外部时(或在内部时)引导学生作辅助线将问题转化成圆心在一边上的情况,从而运用前面的结论,得出这时仍然等于相应的圆心角的结论.证明:作出过C的直径(略)定理:一条弧所对的周角等于它所对圆心角的一半.说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)(三)定理的应用1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC让学生自主分析、解得,教师规范推理过程.说明:①推理要严密;②符号应用要严格,教师要讲清.2、巩固练习:(1)如图,已知圆心角∠AOB=100°,求∠ACB、∠ADB的度数?(2)一条弦分圆为1:4两部分,求这弦所对的的度数?说明:一条弧所对的有无数多个,却这条弧所对的的度数只有一个,但一条弦所对的的度数只有两个.(四)总结知识:(1)定义及其两个特征;(2)定理的内容.思想方法:一种方法和一种思想:在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.(五)作业教材P100中习题A组6,7,8第二、三课时(二、三)教学目标:(1)掌握定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;(3)培养添加辅助线的能力和思维的广阔性.教学重点:定理的三个推论的应用.教学难点:三个推论的灵活应用以及辅助线的添加.教学活动设计:(一)创设学习情境问题1:画一个圆,以B、C为弧的端点能画多少个?它们有什么关系?问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?(二)分析、研究、交流、归纳让学生分析、研究,并充分交流.注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立.老师组织学生归纳:推论1:同弧或等弧所对的相等;在同圆或等圆中,相等的所对的弧也相等.重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.问题:“同弧”能否改成“同弦”呢?同弦所对的一定相等吗?(学生通过交流获得知识)问题3:(1)一个特殊的圆弧——半圆,它所对的是什么样的角?(2)如果一条弧所对的是90°,那么这条弧所对的圆心角是什么样的角?学生通过以上两个问题的解决,在教师引导下得推论2:推论2:半圆(或直径)所对的是直角;90°的所对的弦直径.指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.启发学生根据推论2推出推论3:推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.(三)应用、反思例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.求证:AB·AC=AE·AD.对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).解(略)教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点.指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的,以便利用直径上的是直角的性质.变式练习1:如图,△ABC内接于⊙O,∠1=∠2.求证:AB·AC=AE·AD.变式练习2:如图,已知△ABC内接于⊙O,弦AE平分∠BAC交BC于D.求证:AB·AC=AE·AD.指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;求BC,AD和BD的长.解:(略)说明:充分利用直径所对的为直角,解直角三角形.练习:教材P96中1、2(四)小结(指导学生共同小结)知识:本节课主要学习了定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的或构成相似三角形,这种基本技能技巧一定要掌握.(五)作业教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.探究活动我们已经学习了“的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.提示:(1)连结BC,可得∠E=(的度数—的度数)(2)延长AE、CE分别交圆于B、D,则∠B=的度数,∠C=的度数,∴∠AEC=∠B+∠C=(的度数+的度数).

数学教案-圆周角


第一课时圆周角(一)

教学目标:

(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:圆周角的概念和圆周角定理

教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.教学活动设计:(在教师指导下完成)(一)圆周角的概念1、复习提问:(1)什么是圆心角?答:顶点在圆心的角叫圆心角.(2)圆心角的度数定理是什么?答:圆心角的度数等于它所对弧的度数.(如右图)2、引题圆周角:如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角3、概念辨析:教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.(二)圆周角的定理1、提出圆周角的度数问题问题:圆周角的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.(在教师引导下完成)(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.证明:作出过C的直径(略)圆周角定理:一条弧所对的周角等于它所对圆心角的一半.说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)(三)定理的应用1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC让学生自主分析、解得,教师规范推理过程.说明:①推理要严密;②符号应用要严格,教师要讲清.2、巩固练习:(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.(四)总结知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.思想方法:一种方法和一种思想:在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.(五)作业教材P100中习题A组6,7,8第二、三课时圆周角(二、三)教学目标:(1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;(3)培养添加辅助线的能力和思维的广阔性.教学重点:圆周角定理的三个推论的应用.教学难点:三个推论的灵活应用以及辅助线的添加.教学活动设计:(一)创设学习情境问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?(二)分析、研究、交流、归纳让学生分析、研究,并充分交流.注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立.老师组织学生归纳:推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)问题3:(1)一个特殊的圆弧——半圆,它所对的圆周角是什么样的角?(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?学生通过以上两个问题的解决,在教师引导下得推论2:推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.启发学生根据推论2推出推论3:推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.(三)应用、反思例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.求证:ABAC=AEAD.对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).解(略)教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点.指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.变式练习1:如图,△ABC内接于⊙O,∠1=∠2.求证:ABAC=AEAD.变式练习2:如图,已知△ABC内接于⊙O,弦AE平分∠BAC交BC于D.求证:ABAC=AEAD.指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;求BC,AD和BD的长.解:(略)说明:充分利用直径所对的圆周角为直角,解直角三角形.练习:教材P96中1、2(四)小结(指导学生共同小结)知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.(五)作业教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.探究活动我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.提示:(1)连结BC,可得∠E=(的度数—的度数)(2)延长AE、CE分别交圆于B、D,则∠B=的度数,∠C=的度数,∴∠AEC=∠B+∠C=(的度数+的度数).

圆周角的教学方案


第一课时(一)

教学目标:

(1)理解的概念,掌握的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:的概念和定理

教学难点:定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

教学活动设计:(在教师指导下完成)

(一)的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角.

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数.(如右图)

2、引题:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是.(如右图)(演示图形,提出的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做

3、概念辨析:

教材P93中1题:判断下列各图形中的是不是,并说明理由.

学生归纳:一个角是的条件:①顶点在圆上;②两边都和圆相交.

(二)的定理

1、提出的度数问题

问题:的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的的三种情况:圆心在的一边上、圆心在内部、圆心在外部.

(在教师引导下完成)

(1)当圆心在的一边上时,与相应的圆心角的关系:(演示图形)观察得知圆心在上时,是圆心角的一半.

提出必须用严格的数学方法去证明.

证明:(圆心在上)

(2)其它情况,与相应圆心角的关系:

当圆心在外部时(或在内部时)引导学生作辅助线将问题转化成圆心在一边上的情况,从而运用前面的结论,得出这时仍然等于相应的圆心角的结论.

证明:作出过C的直径(略)

定理:一条弧所对的

周角等于它所对圆心角的一半.

说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)

(三)定理的应用

1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.

求证:∠ACB=2∠BAC

让学生自主分析、解得,教师规范推理过程.

说明:①推理要严密;②符号应用要严格,教师要讲清.

2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求∠ACB、∠ADB的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的的度数?

说明:一条弧所对的有无数多个,却这条弧所对的的度数只有一个,但一条弦所对的的度数只有两个.

(四)总结

知识:(1)定义及其两个特征;(2)定理的内容.

思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

(五)作业教材P100中习题A组6,7,8

第12页

教案模板


2.1比零小的数(2)

教学目标:

1.乐于接受数学信息,能用正、负数表示具有相反意义的量

2.借助生活中的实例理解有理数的意义,通过将有理数分类,感受分类的思想

重点:能应用正负数表示具有相反意义的量

难点:运用有理数表示实际生活问题中的量

教学设计:

1.情境创设

情境(1):课本第15页实例

操作指导:投影出示日常生活中一些表示具有相反意义的量的实例,让学生感受用正负数来描述它们所带来的便捷

情境(2):学生自己举一些生活中表示具有相反意义的量的实例

2.探索活动

(1).由课本中"零上的气温用正数表示,零下的气温用负数表示"入手,指导学生思考日常生活中还有那些意义相反的事例.又如何用正负数表示这些事例的量.这里可设置一些问题引导学生讨论.如:

①.零上温度用正数表示,零下温度用负数表示.你能用正负数表示收入与支出、增产与减产等问题中的相关量吗?

②.如果某次智力竞赛加100分表示为+100分,则扣50分如何表示?-200分表示什么意思?

⑵.课本第16页例2

⑶.有理数的概念

这是学生第一次接触分类,要让学生初步感受分类思想.让学生感受分类的思想及方法以及有理数分类的另一方法:有理数可以分"正有理数,负有理数,0"

(让学生模仿课本上的形式写出相应的分类表)

⑷.课本第16页"练一练"

3.关于计算器教学

由于计算器型号不一定一致,因此负数的输入方法也可能略有不同,可以在课内统一指导学生操作,也可以在课外指导学生阅读计算器使用说明书,让学生自行操作

4.小结

各小组互相讨论总结,得出本节课的主要内容:如何用正、负数表示一对具有相反意义的量;有理数的分类

5.布置作业:课本p17习题2.1第3.4.5题

建湖县建阳中学张仁勇

上一篇:第二章有理数2.1比零小的数(1)

下一篇:2.1比0小的数(一)教学设计

分教案模板


一、教学目标

1.使学生理解并掌握分式的概念,了解有理式的概念;

2.使学生能够求出分式有意义的条件;

3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

二、重点、难点、疑点及解决办法

1.教学重点和难点明确分式的分母不为零.

2.疑点及解决办法通过类比分数的意义,加强对分式意义的理解.

三、教学过程

【新课引入】

前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

【新课】

1.分式的定义

(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

(2)由学生举几个分式的例子.

(3)学生小结分式的概念中应注意的问题.

①分母中含有字母.

②如同分数一样,分式的分母不能为零.

(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

2.有理式的分类

请学生类比有理数的分类为有理式分类:

例1当取何值时,下列分式有意义?

(1);

解:由分母得.

∴当时,原分式有意义.

(2);

解:由分母得.

∴当时,原分式有意义.

(3);

解:∵恒成立,

∴取一切实数时,原分式都有意义.

(4).

解:由分母得.

∴当且时,原分式有意义.

思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

例2当取何值时,下列分式的值为零?

(1);

解:由分子得.

而当时,分母.

∴当时,原分式值为零.

小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

(2);

解:由分子得.

而当时,分母,分式无意义.

当时,分母.

∴当时,原分式值为零.

(3);

解:由分子得.

而当时,分母.

当时,分母.

∴当或时,原分式值都为零.

(4).

解:由分子得.

而当时,,分式无意义.

∴没有使原分式的值为零的的值,即原分式值不可能为零.

(四)总结、扩展

1.分式与分数的区别.

2.分式何时有意义?

3.分式何时值为零?

(五)随堂练习

1.填空题:

(1)当时,分式的值为零

(2)当时,分式的值为零

(3)当时,分式的值为零

2.教材p55中1、2、3.

八、布置作业

教材p56中a组3、4;b组(1)、(2)、(3).

九、板书设计

课题例1

1.定义例2

2.有理式分类

本文网址:http://m.jk251.com/jiaoan/10048.html

相关文章
最新更新

热门标签