第一课时
一、教学目标
1.使学生了解正切、余切的概念,能够正确地用、表示直角三角形(其中一个锐角为)中两边的比,了解与成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系。
2.逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力。
3.培养学生独立思考、勇于创新的精神。
二、学法引导
1.教学方法:运用类比法指导学生探索研究新知。
2.学生学法:运用类比法主动探索研究新知。
三、重点、难点、疑点及解决办法
1.重点:了解正切、余切的概念,熟记特殊角的正切值和余切值。
2.难点:了解的概念。
3.疑点:正切与余切概念的混淆.
4.解决办法:通过类比引出概念和性质,再通过大量直接应用,巩固概念和性质。
四、教具准备
投影机、投影片(自制)、三角板
五、教学步骤
(一)明确目标
1.什么是锐角的正弦、余弦?(结合下图回答)。
2.填表
3.互为余角的正弦值、余弦值有何关系?
4.当角度在0°~90°变化时,锐角的正弦值、余弦值有何变化规律?
5.我们已经掌握一个锐角的正弦(余弦)是指直角三角形中该锐角的对边(邻边)与斜边的比值,那么直角三角形中,两直角边的比值与锐角的关系如何呢?在锐角三角函数中,除正、余弦外,还有其他一些三角函数,本节课我们学习。
(二)整体感知
正切、余切的概念,也是本间的重点和关键,是全章知识的基础,对学生今后的学习或工作都十分重要,教材在继第一节正弦和余弦后,又以同样的顺序安排第二节正切余切,像这样,把概论、计算和应用分成两块,每块自与一个整体小循环,第二循环又包含了第一循环的内容,可以有效地克服难点,同时也使学生通过对比,便于掌握锐角三角函数的有关知识。
(三)教学过程
1.引入正切、余切概念
①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?
因为学生在研究过正弦、余弦概念之后,已经接触过这类问题,所以大部分学生能口述证明,并进一步猜测“两直角边的比值一定是”。
②给出正切、余切概念。
如图,在中,把的对边与邻边的比叫做的正切,记作。
即
并把的邻边与对边的比叫做的余切,记作,
即
2.与的关系
请学生观察与的表达式,得结论(或,)这个关系式既重要又易于掌握,必须让学生深刻理解,并与区别开.
3.锐角三角函数
由上图,,,,,把锐角的正弦、余弦、正切、余切都叫做的锐角三角函数。
锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目。
问:锐角三角函数能否为负数?
学生回答这个问题很容易。
4.特殊角的三角函数。
①教师出示幻灯片
请同学推算30°、45°、60°角的正切、余切值。(如下图)
;
;
;
;
;
.
通过学生计算完成表格的过程,不仅复习巩固了正切、余切概念,而且使学生熟记特殊角的正切值与余切值,同时渗透了数形结合的数学思想。
0°,90°正切值与余切值可引导学生查“表”,学生完全能独立查出。
5.根据互为余角的正弦值与余弦值的关系,结合图形,引导学生发现互为余角的正切值与余切值的关系。
结论:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。
即,.
练习:1)请学生回答与的值各是多少?与?与呢?学生口答之后,还可以为程度较高的学生设置问题:与有何关系?为什么?与呢?
2)把下列正切或余切改写成余角的余切或正切:
(1);(2);(3);(4);(5);(6)。
6.例题
【例1】求下列各式的值:
(1);
(2).
解:(1);(2)=2.练习1.求下列各式的值:(1);(2);(3);(4);(5).2.填空:(1)(2)若,则锐角(3)若,则锐角学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力。(四)总结扩展请学生小结:本节课了解了正切、余切的概念及与关系.知道特殊角的正切余切值及互为余角的正切值与余切值的关系.本课用到了数形结合的数学思想.结合及,可扩展为.六、布置作业1.看教材P12~P14,培养学生看书习惯。2.教材P16中习题6.2A组2、3、4、5、6.七、板书设计第二课时一、教学目标1.巩固正、余切概念,学会用正、余切来解决问题.2.通过例题教学,培养学生分析问题、解决问题的能力;通过归纳、概括,培养学生逻辑思维能力。3.培养学生独立思考、勇于创新的精神及良好的学习习惯。二、学法引导1.教学方法:指导探索研究法。2.学生学法:主动探索研究法。三、重点、难点、疑点及解决办法1.重点:用正、余切解直角三角形。2.难点:灵活运用正切、余切。3.疑点:学生可能对正切、余切概念掌握不牢,导致出现之类的错误,教学中应引起重视,使学生熟能生巧。4.解决办法:通过教师精心引导,学生积极思维,主动研究发现,及练习巩固解决重难点及疑点。四、教具准备投影机(或电脑)、自制投影片(或课件)、三角板五、教学步骤(一)明确目标结合图,说出什么是的正切、余切?请班级里较差学生回答,以检测其掌握情况.2.与具有什么关系?答:(或或).3.互为余角的正切值与余切值具有什么关系?答:,3.互为余角的正切值与余切值具有什么关系?答:,4.在0°~90°间,正切、余切值随角度变化而变化的规律是什么?通过以上四个问题,使学生对新学的知识有了系统的认识,便于应用.对概念的巩固最好的途径是配备练习题.因此,教师在引导学生复习有关概念后,应出示练习题(投影片).1.在中,为直角,、、所对的边分别为。①若,,则,,,②若,则2.比较大小:①②③④3.计算题:①;②.(二)整体感知本课安排在本小节末,运用本小节的知识去解决一个简单问题,再次为本章第二节解直角三角形做好准备.当然,这个问题只用上一小节学过的正弦、余弦也可以解决,不过那样做,就要先求出斜边,解的过程要繁琐一些。(三)教学过程1.讲授新课【例】在中,为直角,所对的边分别是,已知,,求(保留两位有效数字).这个题是本大节知识的综合运用,考查知识点面面俱到,是检查全体学生是否全面达到教学目标要求有效途径,教学中应引导学生全体参与,积极地探求各种解法,然后加以比较,优选出最佳方法,以培养学生思维的敏捷性、深刻性,形成良好的思维品质。分析:本题已知和,求,观察图不难发现,边恰好是的对边与邻邦边,因此求可选用以下两个关系式:(1),(2).请学生比较一下,哪一个关系计算更简便呢?答:若选用,由此得,用除以含四位有效数字的数,计算比较麻烦;而选用,由此得.用乘以含四位有效数字的数,计算相对方便.解:,∴解完例题之后,应引导学生小结:本题显示了“除法与乘法在一定条件下可以互相转化”,其中“条件”是与互为倒数.认真分析和利用这种转化,有时可使计算简便.2.巩固练习本节课实际上是对前面课的综合,通过对前面知识的综合运用,以培养学生的比较、分析、概括等逻辑思维能力.因此例题后应安排练习题如下:在中,为直角,、、所对的边分别为.(1)已知,,求和.(2)已知,,求和.(3)已知,,求.(4)已知,,求.(5)已知,,求.(6)已知,,求和(保留两位有效数字).教法说明:给学生足够的时间,引导学生讨论、研究,筛选出最佳关系式使计算简便,既培养学生计算能力,巩固所学知识,又能培养学生的思维能力.[参考答案](1),;(2),;(3);(4);(5);(6),.3.对学有余力的学生,可引导其读教材P15想一想.使学生对正弦、余弦间的关系,正切、余切间的关系以及弦、切间的关系有所了解,保证知识的完整性,为高中三角函数的学习打下基础.教师板书.(四)总结、扩展引导学生总结:1.要认真分析直角三角形中的各边与角的三角函数关系.2.因为同一个角的可以互相转化,所以在选用关系时昼选择乘法使计算较简便.六、布置作业1.看教材P1~P17,培养学生看书习惯。2.教材P17习题A组7、8,学有余力的学生可选做B组题。七、板书设计
第一课时
一、教学目标
1.使学生了解正切、余切的概念,能够正确地用、表示直角三角形(其中一个锐角为)中两边的比,了解与成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系。
2.逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力。
3.培养学生独立思考、勇于创新的精神。
二、学法引导
1.教学方法:运用类比法指导学生探索研究新知。
2.学生学法:运用类比法主动探索研究新知。
三、重点、难点、疑点及解决办法
1.重点:了解正切、余切的概念,熟记特殊角的正切值和余切值。
2.难点:了解的概念。
3.疑点:正切与余切概念的混淆.
4.解决办法:通过类比引出概念和性质,再通过大量直接应用,巩固概念和性质。
四、教具准备
投影机、投影片(自制)、三角板
五、教学步骤
(一)明确目标
1.什么是锐角的正弦、余弦?(结合下图回答)。
2.填表
3.互为余角的正弦值、余弦值有何关系?
4.当角度在0°~90°变化时,锐角的正弦值、余弦值有何变化规律?
5.我们已经掌握一个锐角的正弦(余弦)是指直角三角形中该锐角的对边(邻边)与斜边的比值,那么直角三角形中,两直角边的比值与锐角的关系如何呢?在锐角三角函数中,除正、余弦外,还有其他一些三角函数,本节课我们学习。
(二)整体感知
正切、余切的概念,也是本间的重点和关键,是全章知识的基础,对学生今后的学习或工作都十分重要,教材在继第一节正弦和余弦后,又以同样的顺序安排第二节正切余切,像这样,把概论、计算和应用分成两块,每块自与一个整体小循环,第二循环又包含了第一循环的内容,可以有效地克服难点,同时也使学生通过对比,便于掌握锐角三角函数的有关知识。
(三)教学过程
1.引入正切、余切概念
①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?
因为学生在研究过正弦、余弦概念之后,已经接触过这类问题,所以大部分学生能口述证明,并进一步猜测“两直角边的比值一定是”。
②给出正切、余切概念。
如图,在中,把的对边与邻边的比叫做的正切,记作。
即
并把的邻边与对边的比叫做的余切,记作,
即
2.与的关系
请学生观察与的表达式,得结论(或,)这个关系式既重要又易于掌握,必须让学生深刻理解,并与区别开.
3.锐角三角函数
由上图,,,,,把锐角的正弦、余弦、正切、余切都叫做的锐角三角函数。
锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目。
问:锐角三角函数能否为负数?
学生回答这个问题很容易。
4.特殊角的三角函数。
①教师出示幻灯片
请同学推算30°、45°、60°角的正切、余切值。(如下图)
;
;
;
;
;
.
通过学生计算完成表格的过程,不仅复习巩固了正切、余切概念,而且使学生熟记特殊角的正切值与余切值,同时渗透了数形结合的数学思想。
0°,90°正切值与余切值可引导学生查“表”,学生完全能独立查出。
5.根据互为余角的正弦值与余弦值的关系,结合图形,引导学生发现互为余角的正切值与余切值的关系。
结论:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。
即,.
练习:1)请学生回答与的值各是多少?与?与呢?学生口答之后,还可以为程度较高的学生设置问题:与有何关系?为什么?与呢?
2)把下列正切或余切改写成余角的余切或正切:
(1);(2);(3);(4);(5);(6)。
6.例题
【例1】求下列各式的值:
(1);
(2).
解:(1);(2)=2.练习1.求下列各式的值:(1);(2);(3);(4);(5).2.填空:(1)(2)若,则锐角(3)若,则锐角学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力。(四)总结扩展请学生小结:本节课了解了正切、余切的概念及与关系.知道特殊角的正切余切值及互为余角的正切值与余切值的关系.本课用到了数形结合的数学思想.结合及,可扩展为.六、布置作业1.看教材P12~P14,培养学生看书习惯。2.教材P16中习题6.2A组2、3、4、5、6.七、板书设计第12页
锐角的三角比
------正切和余切
一、教学目标:
1、理解锐角的正切、余切概念,能正确使用锐角的正切、余切的符号语言。
2、通过探究活动,培养学生观察、分析问题,归纳、总结知识的能力;通过题目的变式,培养用转化思想解决数学问题的能力;通过不同题型的训练,提高学生的通试能力;通过探索题的教学,培养学生的创新意识。
3、通过不同题型的训练,培养学生的数学学习素养,通过学习形式的变换,孕育学生的品质。
4、培养学生间良好的互动协作精神和对知识强烈的求知欲。
二、教学设计的指导思想:
贯彻“教为主导、学为主体、练为主线”的原则,引导学生自始至终地参与学习的全过程,让学生在探索过程中学得愉快、扎实、灵活,学会学习,发展能力。
三、重、难点及教学策略:
重点:锐角的正切、余切概念,探究能力的培养
难点:理解一个锐角确定的直角三角形的两边的比是一个确定的值。
策略:突出重点、突破难点。
四、教学准备:
U盘,电脑,一副三角板,一块三角形模型,网格纸
五、教学环节的流程简图:
创设问题情境——→问题的研究——→讲授新课——→归纳小结及布置作业
六、教学过程:
一)创设问题情境:
1、引领练习:
①在Rt△ABC中,∠C=90°,当∠A=45°时,
随着三角形的边长的放大或缩小时,上面的比值是否发生变化?
②在Rt△ABC中,∠C=90°,当∠A=30°时,
随着三角形的边长的放大或缩小时,上面的比值是否发生变化?
2、提出问题:
在Rt△ABC中,∠C=90°,一般情况下,
当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值是否发生变化?
二)问题的研究:
1、几何画板动画演示:
2、运用定理证明:
得出结论:在Rt△ABC中,∠C=90°,一般情况下,
当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值不变。
三)讲授新课:
课题:29.1正切和余切
1、基本概念:
①在Rt△ABC中,∠C=90°,
正切:tgA==
(tangent)(tanA)
(tg∠BAC)
余切:ctgA==
(cotA)
②tgA=
③若∠A+∠B=90°,则tgA=ctgB,ctgA=tgB
2、例题讲解:
例1:在Rt△ABC中,∠C=90°,AC=12,BC=7,
①求tgA的值.
②求tgB的值.
③过C点作CD⊥AB于D,求tg∠DCA的值.
3、巩固练习:
①选择题:
1.在Rt△ABC中,∠C=90°,若各边的长都扩大3倍,则∠B的正切值()
A.扩大3倍B.缩小为原来的C.没有变化D.扩大9倍
2.在Rt△ABC中,∠C=90°,∠A和∠B的对边是a,b,则与的值相等的是()
A.tgAB.tgBC.ctgAD.ctgB
②解答题:
如图,△ABC是直角三角形,∠C=90°,D、E在BC上,AC=4,
BD=5,DE=2,EC=3,∠ABC=α,
∠ADC=β,∠AEC=γ,
求:①tgα。
②ctgβ。
③tgγ。
4、探索题:能否在网格纸中画一个Rt△,使其中一个锐角的正切值为。
四)小结:(略)
五)思考题:已知:在Rt△ABC中,∠C=90°,tgA、tgB是方程的两根,求m.。
六)布置作业:
七、板书设计:(略)
八、教学随笔:(略)
【教学要求】
1.会正确画出数轴.
2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数.
3.会利用数轴比较有理数的大小.
4.初步感受“数形结合”的思想方法.
【教学过程设计建议(第一课时)】
1.情境创设
观察温度计或刻度尺上刻度的排列顺序,直观地将小学里用直线上的点表示数的方法推广到用来表示有理数,正确建立数轴的概念.除温度计和刻度尺外,杆秤、天平等都是较好的数学模型.
2.探索活动
(1)观察温度计或刻度尺上的刻度,根据课本上两个卡通人的提示,引导学生讨论:直线上的点能表示负数(如一10,一15)吗?通过在温度计上找一10℃、一15℃的位置的活动,感受可以用直线上的点表示负数.
(2)依据画数轴的步骤,正确画出数轴.可以在安排2~3名学生“板演”的同时巡视全班,及时给予针对性的操作指导.
数轴的位置通常是水平的,但也可以是任意位置的,要发现并及时展示那些画法正确但放置方向不同、单位长度不同的数轴.要特别注意指导学生正确标注负数.
可以让学生对照“做一做”的几个步骤共同评价“板演”作业,形成对数轴的正确认识.
3.例题教学
例2是让学生学会在数轴上表示有理数,教师还可以再增加一些练习,然后引导学生评价卡通人的结论.需要注意的是,不要提及“数轴上任何一点是否都表示一个有理数”之类的话题,因为虽然任何一个有理数在数轴上都有惟一的点与它对应,但有理数与数轴上的点并不一一对应,而这是学生当前无法认识和回答的.
可以根据学生的实际情况,适当增加在数轴上表示分数的练习.
【教学过程设计建议(第二课时)】
1.探索活动
借助生活经验(温度的高低),引导学生探索:
数轴上的点的位置与它所表示的数的大小有什么关系,得出“在数轴上右边的点所表示的数大于左
边的点所表示的数”.
“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识.
对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:
在数轴上,表示一3的点a在原点左边3个单位长度,表示一2的点b在原点左边2个单位长度,不难看出点a在点b的左边,即得一3
数轴上的点从左到右的顺序,就是它所表示的数从小到大的顺序.这种规定与日常生活结论是一致的.
2.例题教学
例3较简单,直接应用结论的第二部分进行判断;例4给出了利用数轴比较两个负数大小的规范表述.
3.小结
“数形结合”是化抽象为直观、化难为易的一种常用的数学方法.华罗庚先生指出:“数缺形时少直观,形少数时难入微.”小结时,除要讲清数轴本身的意义外,还应通过有理数的大小比较,让学生感受到这一方法带来的便利.
上一篇:2.2数轴学案
下一篇:华师大版七上2.2数轴(含答案)
教学目标
1.使学生了解命题、真命题和假命题等概念.
2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果……,那么……”的形式
重点和难点
分清命题的题设和结论,既是教学的重点又是教学的难点.
教学过程
一、引入
请大家随意说出一些语句,教师把它们写在黑板上.如:
(1)对顶角相等吗?
(2)作一条线段AB=2cm;
(3)我爱初二(1)班;
(4)两直线平行,同位角相等;
(5)相等的两个角,一定是对顶角.
二、新课
问:上述语句中,哪些是判断一件事情的句子?
答:(3)、(4)、(5)是判断一件事情的句子.
教师指出:判断是对事物进行肯定或否定的一种思维形式,判断一件事情的句子,叫做命题.数学课堂里,只研究数学命题,如(4)、(5).
例1请大家说出若干个(数学)命题,再分析一下,每一个命题由几部分组成?
(1)等角的补角相等;
(2)有理数一定是自然数;
(3)内错角相等两直线平行;
(4)如果a是有理数,那么a2>a;
(5)每一个大于4的偶数都可以表示成两个质数之和(即著名的哥德巴赫猜想).
教师启发学生得出:一个命题,由题设和结论两部分组成,都可以写成“如果……,那么……”的形式,也可以简称为“若A则B”.
练习:把上述(1)至(5),都按“如果……,那么……”的形式,表述一遍.
例2在例1的(1)至(5)个命题中,所作的判断是否都正确?怎么检验各个命题的真伪?
(l)“如果两个角是等角的补角,那么这两个角相等.”是正确的命题,已经由补角的定义得到证明.
(2)“如果是有理数,那么它一定是自然数”。是不正确的命题(判断),反例如是有理数但不是自然数。
(3)“如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.”是正确的命题,已证.
(4)“如果a是有理数,那么a2>a.”是不正确的命题,反例如a=1,a2=a.
(5)“如果是一个大于4的偶数,那么它可以表示成两个质数之和.”这个命题,至今没人举出一个反例,说明它不正确;也没有人完全证明它正确.我国著名数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”,即已经证明了“1+2”,离“1+1”这颗数学王冠上的珍珠,只差“一步之遥”.这是目前世界上对这个命题的真伪的判定,所能达到的最好结果.
教师帮助学生归纳:命题既然是一个判断,就有判断是否正确的区别.
真命题---如果题设成立那么结论一定成立,这样的命题叫做真命题.
假命题---如果题设成立,不能保证结论总是成立,也就是说结论不成立,这样的命题叫做假命题.注意:不是命题与假命题的区别!
怎样判断一个命题的真假?检验真理的唯一标准是实践.数学中,判断一个命题是真命题,要经过证明(或以公理形式,即由实践证明的形式出现);判断一个命题是假命题,只需举出一个反例即可.
例3试将下列各个命题的题设和结论相互颠倒或变为否定式,得到新的命题,并判断这些命题的真假.
(1)对顶角相等;
(2)两直线平行,同位角相等;
(3)若a=0,则ab=0;
(4)两条直线不平行,则一定相交;
(5)凡相等的角都是直角.
解:
(l)对顶角相等(真);
相等的角是对顶角(假);
不是对顶角不相等(假);
不相等的角不是对顶角(真).
(2)两直线平行,同位角相等(真);
同位角相等,两直线平行(真);
两直线不平行,同位角不相等(真);
同位角不相等,两直线不平行(真).
(3)若a=0,则ab=0(真);
若ab=0,则a=0(假);
若a≠0,则ab≠0(假);
若ab≠0,则a≠0(真).
(4)两条直线不平行,则一定相交(假);
两条直线相交,则一定不平行(真);
两条直线平行,则一定不相交(真);
两条直线不相交,则一定平行(假).
(注)本小题如果添上“在同一平面内”的大前提条件,那么假命题将变为真命题.
(5)凡相等的角都是直角(假);
凡直角都相等(真);
凡不相等的角不都是直角(真);
凡不都是直角的角不相等(假).
说明:本例,尤其是第(5)小题,视学生接受情况,教师灵活掌握.讲还是不讲,讲到什么程度,介不介绍四种命题(原、逆、否、逆否),都有较大的伸缩性.
小结:
命题---判断一件事情的句子;
命题的结构---;如果(题设)……,那么(结论)……;
命题的真假---正确或错误的判断;
四种命题---原、逆、否、逆否.
(用投影片显示或挂小黑板)
三、作业
1.在下列语句中,指出哪些是命题,哪些不是命题.如果是命题,指出命题的真假,并仿照例3说出一些新的命题来.
(l)如果AB⊥CD于O,那么∠AOC=90°;
(2)取线段AB的中点C;
(3)两条直线相交,有且只有一个交点;
(4)一个平角的度数是180°;
(5)若a=b,则a2=b2;
(6)如果一个数的末位数字是0,那么它一定能够被5整除;
(7)同角的余角相等;
(8)周角的一半等于直角.
2.选作题
判断命题“如果n是自然数,那么n2+n+17是质数”的真假.
统计图的选择教学目标:1、通过比较三种统计图,理解三种统计图的特点,并能根据不同问题选择适当的统计图描述数据。2、进一步发展学生的数感和统计观念。重点和难点:重点:通过比较三种统计图,理解三种统计图各自的特点,并能根据不同问题选择适当统计图描述数据。难点:条形统计图与折线统计图的联系与区别。教学方法:观察法、讨论法相结合。能力培养:能根据不同问题选择适当统计图描述、整理数据,制作统计图要因题而定。培养学生合作探究的能力。情感态度与价值观:在教学中渗透保护环境的观念,培养学生热爱自然,爱护动物的意识。课前准备:多媒体课件、小黑板、白纸、彩笔(学生自备)教材分析和教学设计:本节课是在学完扇形统计图之后,通过对例题中报纸上数据的分析,使学生理解三种统计图的不同特点,并能根据具体问题选择适当的统计图描述数据。针对这节课的教学重点和难点,作了如下的教学设计:1、创设情景2、探索知识3、难点突破4、巩固练习5、探究升级学生在比较折线统计图和条形统计图时有一定困难,因此在教学中利用课件安排了对比很明显的两组数据来帮助学生理解它们的联系和区别。让学生从实际中来体会。最后在探究升级部分使学生明确,在很多情况下,三种统计图可以互相转化,它们在表示数据时的侧重点不同。但在特殊的情况下,只能选择一种统计图来呈现结果。教学中以自制的配套课件辅助。学法指导:在整个教学过程中,注重学生观察能力、分析能力、自学能力、相互合作能力的培养,改过去被动的接受为主动的探究,通过自己的观察、分析、讨论来理解知识,并在此过程中体会出数学的学习方法,以利于今后的学习。新课教学过程(教学程序及内容)学生活动设计一、创设情境:(教师活动):引入可由前面刚学过的折线图、条形图引入,在具体表示数据时,究竟选择哪种统计图合适呢?从而引入本节内容:统计图的选择。(出示幻灯片1)让学生观察反映世界人口情况的数据,尽可能多的获取信息。问:同学们从中了解到了什情况?(出示幻灯片2)小明根据上面的数据制成了上面三幅统计图。问:1、三幅统计图分别是什麽统计图?2、你喜欢哪幅统计图,说出你的理由?二、探索知识:在学生初步感受了三种统计图后,逐渐引导学生观察、讨论三种统计图的特点。启发学生围绕以下问题展开讨论。1、你们知道三幅统计图分别表示了什麽内容吗?2、从哪幅统计图可看出世界人口的变化情况?3、2050年非洲人口大约将达到多少亿呢?你从哪幅统计图中得到这个数据的?4、哪个洲的人口较多?你从哪幅统计图中得到此结论?怎麽得到的?5、同学们比较三种统计图的特点,你们发现了什麽?(出示幻灯片3)三种统计图的特点:条形统计图能清楚地表示出各个项目的具体数据。扇形统计图能清楚地表示出各部分在总体中所占的百分比。折线统计图能清楚的反映同一事物的变化情况。三、难点突破:(出示幻灯片4)班上某位学生在前5单元的数学测验成绩的统计表。让学生根据三种统计图的特点选择适当的统计图来表示这些数据。让学生说出理由。学生会选择条形统计图或折线统计图,自然引出了二者的比较。(出示幻灯片5)通过具体的例子让学生充分体会条形统计图和折线统计图的区别与联系。学生讨论围绕以下问题展开:(1)、哪个车间的产值高?两个车间的总产值哪个季度高?(2)、哪个车间的产值增长快?第三季度哪个车间的产值是下降的?(3)、以上结论你是分别从哪张统计图得到的?那这组数据选择什麽统计图好呢?对比了条形统计图和折线统计图的特点可以得出:该同学的成绩用折线统计图较好。让学生说出理由。建议学生制作一幅自己学习成绩统计图,来督促自己努力学习。四、巩固练习:(出示幻灯片6)让学生根据总结出的每种统计图的特点来选择适当的统计图,教师适时引导,让学生充分表达自己的理由。在教学中渗透爱护环境的观念,培养学生热爱自然,爱护动物的意识。1、几种濒危动物数量;2、家庭主要支出情况调查数据五、探究升级:让学生轻松一下,想像这样一幅画面,在夏天晴朗的夜晚,天上的星星一闪一闪,偶尔还会有流星划过寂静的夜空。一幅多麽美丽的画面呀!今天老师就给同学们带来了一组有关星星的数据(出示幻灯片7)。九大行星拥有的卫星数。让学生结合数据来谈谈感受,选择适当的统计图表示这些数据。同桌两人互相交流,尽可能多的获取信息和数据。观察统计图,思考统计图的含义。谈谈自己的理解。(1)、让学生独立观察,思考,用自己的语言描述这三种统计图的各自特点;(2)、组织学生充分交流;(3)、在学生充分交流后,教师明晰三种统计图的特点。学生相互讨论,交流,答案只要合理就给予肯定。给学生充分的时间,让学生通过观察和讨论,得出条形统计图与折线统计图的联系与区别:两种统计图都能表示出数据的大小。但条形统计图的柱形高低可以更直观的表示出数据的大小关系。折线统计图能体现出同一事物数据的变化情况。经过讨论得出问题的答案:1、条形统计图较好。2、扇形统计图较好。并阐述理由。独立思考做出选择。画草图分析,得出结论。小结:学生小结,老师对学生的努力探究,积极合作解决问题的态度给予肯定。作业:出示幻灯片7板书设计:
条形统计图数据大小折线统计图数据变化扇形统计图各部分占总体的百分比
教学目标:1.学会用示意图分析数量关系解决问题,体会示意图与表格在分析应用题中的特点;会根据问题中的数量关系列出方程组求解,会检验结试论是否符合题意.2.经历和体验列二元一次方程组解决实际问题的过程,进一步体会方程组是刻划现实世界的有效数学模型,及数学的应用价值;提高学生的分析问题和解决问题的能力.教学重点:1.用示意图结合表格分析问题中的数量关系的方法.2.熟悉常见问题情境的含意.教学难点:让学生理解具体问题的情境,找出数量关系列出方程组.教学准备:用实物讲解问题(5),用多媒体课件讲解问题(6)教学过程:1.情境创设:1.1.呈现问题(5)1.2.问题:从图中你可获得什么信息?1.3.展示实物让学生进一步理解示意图.【学生活动:先观察图形再与同学交流,再观察实物分析解决问题】2.解决问题:2.1.设可制作甲种纸盒子x个,乙种纸盒y个,你会如何分配这两种材料呢?2.2.解(略)2.3.检验:求出的解符合题意吗?【学生活动:在老师指导下,尝试列表、分析解决问题】3.情境之二:3.1.投影问题(6)及图片,让学生先想象问题的具体情境,理解示意图.【学生活动:尝试分析问题,想象情境,试画出示意图】3.2.动画演示情境,帮助学生丰富经验,理解题意.【学生活动:观察动画,丰富自己的知识经验】3.3.用示意图结合表格分析.
v
s
t
情形(1)
情形(2)
【学生活动:在老师指导下,尝试列表、分析解决问题】3.4.列方程组求解(略)3.5.检验合理性(略)4.拓展与延伸:两列火车分别在两平行的铁轨上行驶,其中快车长168m慢车长184m,如果相向而行,从相遇到离开需4s;如果同向而行,从快车追上慢车到离开需要16s;求两车的速度.4.1先让学生自行审题,画出示意图,想象情境.【学生活动:尝试分析问题,想象情境,试画出示意图】4.2动画演示情境,帮助学生理解题意.【学生活动:观察动画,丰富自己的知识经验】4.3列表列方程解决问题.【学生活动:在老师指导下,尝试列表、分析解决问题】5.巩固练习:课本p119页1、2【学生活动:练习,板演】6.小结:用示意图和表格分析问题各有什么特点?【学生活动:分小组议一议,在教师组织下达成共识】7.作业:课本p120-121:5、7板书设计:(略)
一、教学目的
1.使学生理解自变量的取值范围和函数值的意义。
2.使学生理解求自变量的取值范围的两个依据。
3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。
4.通过求函数中自变量的取值范围使学生进一步理解函数概念。
二、教学重点、难点
重点:函数自变量取值的求法。
难点:函灵敏处变量取值的确定。
三、教学过程
复习提问
1.函数的定义是什么?函数概念包含哪三个方面的内容?
2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?
(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的条件是什么?
(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)
4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。
新课
1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。
2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:
(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。
(2)自变量取值范围要使实际问题有意义。
3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。
推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。
4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:
(1)例3中的4个小题归纳起来仍是三类题型。
(2)求函数值的问题实际是求代数式值的问题。
补充例题
求下列函数当x=3时的函数值:
(1)y=6x-4;(2)y=--5x2;(3)y=3/7x-1;(4)。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小结
1.解析法的意义:用数学式子表示函数的方法叫解析法。
2.求函数自变量取值范围的两个方法(依据):
(1)要使函数的解析式有意义。
①函数的解析式是整式时,自变量可取全体实数;
②函数的解析式是分式时,自变量的取值应使分母≠0;
③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。
(2)对于反映实际问题的函数关系,应使实际问题有意义。
3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。
练习:P94中1,2,3。
作业:P95~P96中A组3,4,5,6,7。B组1,2。
四、教学注意问题
1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。
2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。
3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。
unit7foodsanddrinks(language)
教学目标1.让学生能掌握现在完成时的基本意义及形式。
2.帮助学生了解现在完成时中出现的副词:alreadyandyet;everandnever;sinceandfor;的用法及区别。
3.能在练习中较好地运用现在完成时。
教材分析
重点和难点1.掌握现在完成时的基本意义及形式
2.副词:alreadyandyet;everandnever;sinceandfor;的用法及区别。
3.过去分词的构成。
教具准备
教学过程
step1.leading-in
guessinggame,languagea1.showthepicturetothess,askthemtolistencarefullyandtrytofindoutwhatitis.
step2.revision(3mins)
reviewwhatwehavelearnedyesterday.
asksssomequestionsusingthepresentprefecttense.letthemanswerthequestionsinwholesentences.
e.g.t:“haveyouhadbreakfast?”
s:“yes,ihave.”/“no,lhaven’t.”
step3.learningandpractice(30mins)
1.alreadyandyet(10mins)
(1)t:"areyouhungry?”and“whydoyoufeelso?”
accordingtotheanswersofthess,theteachercanwritedownthesentenceswithalreadyandyetontheblackboard.andguidethemtofindtherulesinthistwoword.(groupwork)
rules:alreadycanbeusedinthepositivesentences.
yetcanbeusedinthenegativesentences.
(2)finishexaonpage103
2.everandnever(10mins)
(1)t:”whichbreakfastdoyoulike,westoreast?”tcanshowthepicturesatthesametime.t:”haveyouevervisitedaboard?”andwritedownthesentenceswitheverandneverontheblackboard.guidesstofindtherules.(groupwork)
(2)makeupasimilardialoguetoexbonpage104.
3.sinceandfor(10mins)
(1)readtheconversationbetweenhansanddoris.
a.introducethenewwords:”hamburg,hamburg.
b.askssfinishtheexerciseandtellthowtheyfindtheanswers.
(2)letthemsumuptheusageofsinceandfor.
step4.morepractice(6mins)
choosesomeexercisesfrombookb.
step5.homework(1mins)
(1)finishlanguageonbookb.
(2)makeupseveralsentencesaboutthelanguagespointstheyhavelearnedtoday.
教学反思
〖本单元地位〗1.在教材中的地位《思想品德课程标准》(实验稿)(以后简称《课标》)对七年级的教学内容进行了较大调整。在七年级,删去部分心理学概念等内容,降低了对一些概念的识记或理解要求,以淡化学科体系,减轻学生负担。而把心理品质教育、道德教育与健康人格教育结合起来,以加强学生的品格修养为重点。本单元突出提高学生观察、感受、体验、参与社会公共生活的能力,发展学生交往与沟通的能力,以及培养学生健康的心理品质。2.在学生发展中的地位七年级的学生正处于青春期,其心理变化伴随着生理变化,这是一个心理半独立半封闭时期,学生从以前依赖性高的生活状态与心理特征开始逐渐走向独立和成熟。从目前这个时代背景来看,一些学生都不能很好地适应自身的变化、周围环境的变化、教学以及学习方式的变化,等等,进而出现盲从或者逆反的心理,消极应对学习,学习成绩的下降。因此,这一部分知识内容对于学生发展来说,处于承上启下的位置。〖本单元的设计思路〗本单元概括了中学生遇到的两个主要问题:怎样面对新的学习环境和怎样面对新阶段的学习生活。第一个问题分解为怎样了解和适应新的校园环境和怎样交结新朋友这两个小问题。第二个问题,则分解为为什么学习和怎样学习这两个问题。第一单元的主题是针对青少年的生理、心理发展规律以及社会现实背景而设计的。进入新的校园环境,学生充满了新奇、紧张和激动,在新环境中也是最容易迷失的阶段。因此,本章提出环境适应问题,进而转移到学习生活上。图示:步入新学校了解适应新环境的方法和重要性第一课适应新环境结识新朋友了解结交新同学的方法和途径学习的理由了解学习的重要意义第二课开始新学习学习风向标了解学习的基本技巧和方法〖课标依据〗1.“适应新环境”中“步入新学校”部分:体会和谐的共同生活需要相互尊重、理解宽容和相互帮助,懂得爱护公共环境和设施、遵守公德和秩序体现着对他人的尊重。(2.2.5b)2.“适应新环境”中“结识新朋友”部分:正确认识同学之间的情感、交往与友谊。了解基本的交往礼仪与技能,养成团结合作、乐于助人的品质。(2.1.5b,2.1.6c)3.“开始新学习”中“学习的理由”部分:知道法律对未成年人的特殊保护,义务教育法的有关内容,树立法制观念。形成良好的学习态度。(1.3.3,3.3.2)4.“开始新学习”中“学习风向标”部分:正确对待学习压力,克服考试焦虑,培养积极的学习态度,了解一般学习方法,养成良好的学习态度。(1.1.5c,3.1.2)〖教学评价建议〗1.建议采用成长记录袋(见《课标》19页)的评价方式。将学生活动的资料收集起来,作为学生成长记录的一部分,也可以作为以后评价的参考依据。2.本课可以设计较多的集体活动,建议采用项目评价(见《课标》19页)。3.本课学习方法一节,可以深入一些,一些内容不易为学生所理解时,可以对个别学生进行谈话方式的评价。
本文网址:http://m.jk251.com/jiaoan/10481.html
上一篇:初中毕业赠言