1.知识结构
2.重点、难点分析
重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.
难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.
3.教法建议
本节内容需要一个课时.
(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;
(2)在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.
第12页
(一)
教学目标:
1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算;
2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力;
3、在扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想.
教学重点:扇形面积公式的导出及应用.
教学难点:对图形的分析.
教学活动设计:
(一)复习(圆面积)
已知⊙O半径为R,⊙O的面积S是多少?
S=πR2
我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.
扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.
提出新问题:已知⊙O半径为R,求圆心角n°的扇形的面积.
(二)迁移方法、探究新问题、归纳结论
1、迁移方法
教师引导学生迁移推导弧长公式的方法步骤:
(1)圆周长C=2πR;
(2)1°圆心角所对弧长=;
(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;
(4)n°圆心角所对弧长=.
归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则(弧长公式)
2、探究新问题
教师组织学生对比研究:
(1)圆面积S=πR2;
(2)圆心角为1°的扇形的面积=;
(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;
(4)圆心角为n°的扇形的面积=.
归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则
S扇形=(扇形面积公式)
(三)理解公式
教师引导学生理解:
(1)在应用扇形的面积公式S扇形=进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;
(2)公式可以理解记忆(即按照上面推导过程记忆);
提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)
S扇形=lR
想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)
与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.
(四)应用
练习:1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S扇=____.
2、已知扇形面积为,圆心角为120°,则这个扇形的半径R=____.
3、已知半径为2的扇形,面积为,则它的圆心角的度数=____.
4、已知半径为2cm的扇形,其弧长为,则这个扇形的面积,S扇=____.
5、已知半径为2的扇形,面积为,则这个扇形的弧长=____.
(,2,120°,,)
例1、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积.
学生独立完成,对基础较差的学生教师指导
(1)怎样求圆环的面积?
(2)如果设外接圆的半径为R,内切圆的半径为r,R、r与已知边长a有什么联系?
解:设正三角形的外接圆、内切圆的半径分别为R,r,面积为S1、S2.
S=.
∵,∴S=.
说明:要注意整体代入.
对于教材中的例2,可以采用典型例题中第4题,充分让学生探究.
课堂练习:教材P181练习中2、4题.
(五)总结
知识:扇形及扇形面积公式S扇形=,S扇形=lR.
方法能力:迁移能力,对比方法;计算能力的培养.
(六)作业教材P181练习1、3;P187中10.
第1234页
课题:两圆的位置关系
教学目的:掌握两圆的五种位置关系及判定方法;;
教学重点:两圆的五种位置的判定.
教学难点:知识的综合运用.
教学过程:一,复习引入:
请说出直线和圆的位置关系有哪几种?
研究直线和圆的位置关系时,从两个角度来研究这种位置关系的,⑴直线和圆的公共点个数;⑵圆心到直线的距离d与半径r的大小关系,
直线和圆的位置关系
相离
相切
相交
直线和圆的公共点个数
0
1
2
d与r的关系
d>r
d=r
d
二.讲解:圆和圆位置关系.
⑴两圆的公共点个数;
⑵圆心距d与两圆半径R、r的大小关系.
两圆的位置关系
外离
外切
相交
内切
内含
两圆的交点个数
0
1
2
1
0
d与R、r的关系
d>R+r
d=R+r
R-r
d=R-r
d
定理设两个圆的半径为R和r,圆心距为d,则
⑴d>R+rÛ两圆外离;
⑵d=R+rÛ两圆外切;
⑶R-r
⑷d=R-r(R>r)Û两圆内切;
⑸d
三.巩固:
⒈若两圆没有公共点,则两圆的位置关系是()
(A)外离(B)相切(C)内含(D)相离
⒉若两圆只有一个交点,则两圆的位置关系是()
(A)外切(B)内切(C)外切或内切(D)不确定
⒊已知:⊙O1和⊙O2的半径分别为3cm和4cm,根据下列条件判断⊙O1和⊙2的位置关系.
⑴O1O2=8cm;⑵O1O2=7cm;⑶O1O2=5cm;
⑷O1O2=1cm;⑸O1O2=0.5cm;⑹O1O2=0,即⊙O1和⊙O2重合;
四作业:P1372.3.4.5
本文网址:http://m.jk251.com/jiaoan/10533.html
上一篇:教师述职报告【精品】
下一篇:光的衍射 万能通用篇