应用题训练(二)
一、倍分关系
1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。
3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。
二、百分比问题:
1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。
2、某商品降价12%后的售价为176元,求该商品的原价。
3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。
三、物资分配:
1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。
2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?
四、比例问题:
1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?
五、调配问题:
1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。
2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。
六、数字问题:
1、三个连续偶数的和是360,求这三个偶数。
2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。
3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。
七、几何问题:
1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。
2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?
应用题训练(二)
一、倍分关系
1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。
3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。
二、百分比问题:
1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。
2、某商品降价12%后的售价为176元,求该商品的原价。
3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。
三、物资分配:
1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。
2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?
四、比例问题:
1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?
五、调配问题:
1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。
2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。
六、数字问题:
1、三个连续偶数的和是360,求这三个偶数。
2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。
3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。
七、几何问题:
1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。
2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?
整体感知
第一单元内容分为三节,第一节:混合运算;第二节:应用题;第三节:数据整理和求平均数。
混合运算中的三步试题是在第五、六册已学过三步试题的基础上进行教学的。本单元的三步试题,是小括号内含有两级运算的三步式题,通过学习,进一步巩固混合运算的运算顺序。在教学中,要充分利用三步式题与两步计算式题间的联系,强化运算顺序,让学生在掌握运算顺序的基础上独立计算,并逐步提高运算的正确率与运算速度。三步计算文字题是在两步计算文字题的基础的扩展,以提高学生理解数学语言并用算式表达的能力和列综合算式的能力,进一步强化运算顺序。计算三步文字题时,要着重从分析文字叙述人手,先确定最后一步是什么运算,再根据数量关系向前推导,确定出先算什么,再算什么,哪一部分在前,哪一部分在后,以及括号怎样使用等,直到列出综合算式。
应用题是本单元的重点,其中两步计算的连乘和连除应用题与第六册学习过的连乘和连除应用题有所不同,特点是未知量可以随两个量的变化而变化。教学时,要从求未知量与两个已知量的联系人手,分析数量关系,得出两种解题思路,进而列式解答。连乘应用题与连除应用题从解题思路上是互逆的,教学时,应加强两种类型题的联系,通过对比练习强化数量关系,并要求会用两种方法解答,能列综合算式解答。
应用题部分还安排了比较容易解答的三步计算应用题,这是原来两步计算应用题的发展。这部分内容离学生生活实际较近,数量关系简单,学生利用两步应用题的基础,通过类推,可以比较容易掌握三步应用题的分析解答方法。教学时,可以从两步应用题引入教学,让学生利用两步计算应用题的解题思路来分析主要数量关系,从与两步应用题的对比中确定运算步骤。应用题教学中,还要注意培养学生利用线段图表示数量关系的能力。同时,教材还介绍了检验的方法,应注意培养学生养成检验的良好习惯,但检验方法只要求学生初
步掌握,不要求写检验过程。数据整理和求平均数是统计的初步知识。教材在以前渗透统计思想的基础上,从本册开始介绍统计的初步知识。数据整理包括简单的统计表和条形统计图,通过教学,要使学生对数据整理有初步认识,会看简单的统计表和统计图,能把不完整的简单统计表或条形统计图填写完整。求平均数是一种统计方法,要着重让学生理解平均数的含义,注意与平均分的区别,初步学会简单的求平均数据的方法。本单元的统计知识都是最基本的,要求学生理解即可。
在本单元教学中,要充分利用新旧知识间的联系,联系学生的生活实际,通过知识间的迁移、类推、比较、拓展,将新知识点与学生原有知识体系联系起来进行教与学。另外,在教学过程中,教师要充分调动学生自主学习的积极性,放手让学生去探究,要多动手、多讨论、多交流,尽量引导学生自己得出结论。要调动学习有困难学生的学习兴趣,使学生感受到学习数学的乐趣,特别是学习应用题的乐趣。此外,在知识学习的同时,要注意结合教学内容,培养学生的能
力,包括计算能力、分析判断能力、综合思维能力、推理能力及动手操作能力等。
教案课件是老师需要精心准备的东西,需要大家认真编写每份教案课件。要知道写好了教案课件,老师面对学生时也会心有成竹。一个好的教案课件应该是怎样的?下面,我们为你推荐了实用教案:应用题教学设计,欢迎阅读,希望你能够喜欢并分享!
一、教材分析
本课题教学前,学生已经掌握了乘数是两位数乘法的计算方法,并且初步理解并掌握了乘法的一些常见的数量关系。这些都为本课题内容的学习作了充分的知识铺垫和思路孕伏。教材编入这一部分内容的目的一方面是为了巩固乘数是两位数的乘法的计算,另一方面是使学生掌握连乘应用题的数量关系,学会用两种方法解答应用题。本课题内容是两步以上应用题的重要基础之一,通过这一部分内容的学习,可以使学生加深对数量之间关系的理解,发展学生分析、判断、推理、综合等初步逻辑思维能力,把解应用题的水平提高一步。
本课题教材有层次地显示了"连乘应用题"的知识结构。例题之后,教材引导学生按照两种不同的思路去分析应用题的数量关系。
第一种思路:知道有5箱热水瓶,要求一共可以卖多少元,就要先算每箱热水瓶多少元?
第二种思路:知道每个热水瓶卖11元,要求一共可以卖多少元,就要先算5箱共有多少个热水瓶。通过这个分析过程,使学生明白分析这种问题的关键是弄清要算出题中要求的钱数,先选哪个作为已知条件,哪个条件是未知的,需要先算出来。分步列式后,教材又引导学生分别列出综合算式。然后说明:如果解答正确,那么两种解答方法的结果应该相同。可以用这种方法进行检查。再通过"做一做"和练习二十二中1-3题的练习,进一步帮助学生理解这类题目的数量关系,掌握解答方法。最后通过第4题补充条件的练习帮助学生进一步理解连乘应用题的结构数量关系。
本课内容这样有层次地呈示知识结构,符合学生的认知规律,有利于学生分析、判断、推理、综合,建立连乘应用题的认知结构。
本课题的教学目标
1.使学生理解连乘应用题的数量关系,初步会用两种方法解答,知道用一种解法可以检验另一种解法的正确性。
2.初步学会列综合算式解答连乘应用题。
3.培养学生分析、综合能力,渗透事物间相互联系的观点,培养自觉检验的习惯。
教学重点:
分析数量关系。教学难点:用两种方法解答的思路。
教学关键:
弄清要算出"一共可以卖多少元"先选哪个作为已知条件,哪个条件是未知的。
二、教法和学法
1.运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现"温故而知新"的教学思想。
2.运用直观性原则,采用线段图展示条件和问题,帮助学生理解题意,分析数量关系,确定先算什么,再算什么。
3.创设思维环境,引导学生有序地思维,鼓励学生用语言准确、连贯地表述思维过程。
三、教学步骤
(一)复习准备出示复习题,指名补充条件或问题,再解答出来,然后说出列式的根据。
1.,5箱热水瓶多少元?
2.一个商店运进5箱热水瓶,每箱12个,?
3.一个热水瓶卖11元,,一共卖了多少元?通过上面的复习,使学生进一步掌握一步应用题结构和乘法应用题的数量关系,为学习新课做好铺垫。
(二)教学新课
1.学习例题,分三个层次进行。
第一层次:理解题意。出示例
1,要求学生认真读题,说一说有几个已知条件,问题是什么。再想一想例1与复习题有什么关系。揭示了事物之间的联系,暗示了思考方向。画线段图表示题中的条件和问题。要边提问题边画。(图略)问题:
(1)5箱怎样表示?
(2)每箱12个怎样表示?
(3)每个11元用哪条线段表示?
(4)问题怎样表示?这一步使学生知道怎样理解题意,为分析数量关系打下基矗第二层次,分析数量关系。教师可以引导学生从问题入手,提出要求"一共可以卖多少元?"必须知道哪两个条件?启发学生说出不同的做法。方法之一:方法之二:一共可以卖多少元?每箱多少元有几箱一共可以卖多少元?每个多少元有几个然后教师组织学生讨论第一种分析思路,每箱多少元,有几箱,这两个条件中哪个是已知的,哪个是未知的?应该先算什么?再算什么?学生明白之后,再引导学生讨论第二种分析思路,确定先算什么,再算什么。第三层次,确定算法。引导学生结合分析结果,确定怎样列式计算,并说说为什么这样算?分步列式计算之后,教师要指出,我们采用不同的思路就得到了不同的解题方法,今后学习应用题,还会遇到这种情况,如果我们遇到问题,能从不同角度思考问题,对今后的学习是十分有利的。然后,要求学生将两种解法分别列出综合算式,再比较两种算法的差别,并说明理由。
2.反馈校正。指导学生做教科书99页上的"做一做",要求学生认真审题,用两种方法解答。教师巡视,注意帮助有困难的学生,并给以适当的提示。做完后指名说说思考过程,集体订正。如有问题,及时校正。
3.小结。指出两种解答方法是一样的,我们可以用一种解法的结果来检验另一种解法的结果是不是正确。
并要求学生阅读99页例题下面的一段话。
(三)课堂练习
1.做练习二十二第1题,审题之后提示学生想一想与例题有什么类似的地方,然后要求学生独立完成。做完后集体订正时要先看两种解答方法的结果是否一样,如果不一样,表明列式或计算有错误,要及时检查。同时对有困难的学生要给以帮助和指导。
2.做第2题,要求独立完成,发现问题及时纠正。
3.做第4题。读题后提问,题中有几个已知条件?问题是什么?能不能解答?还需要补充什么条件?(学生在补充条件时,只要不是非常脱离实际,就要采用。)集体订正时,教师让两个补充条件不一样的学生分别说出做题过程,并说明列式的理由。
(四)课后作业
100页第3题
(五)全课小结。(略)
根据教育教学要求,老师在开课前需要精心备课,具体就是准备好教案课件,这样才能确保课堂的高质量。教案作为教育管理领域中不可或缺的工具,老师会仔细规划每份教案课件的重难点,才能让学生在课堂上学到更多。那么,怎样的教学课件才是优秀的呢?想了解有关 “比例应用题教案” 的更多信息吗?我们精心整理了详细的资讯,希望对您有所帮助!
教学内容:苏教版第十二册P51
教学目标:1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生运用正、反比例的意义正确解答应用题。
3、渗透函数的初步思想,建立事物是相互联系的这一辨
证观点,培养学生的判断推理能力和分析能力。
教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。
教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路
教学准备:课件
教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,
揭示意义;巩固练习,考考自己;分层练习,深化新知)
一、铺垫孕伏,建立表象
1、判断下面每题中的两种量成什么比例关系?
○1速度一定,路程和时间()○2路程一定,速度和时间()
○3单价一定,总价和数量()○4每小时耕地公顷数一定,耕地的总公顷数和时间
○5全校学生做操,每行站的人数和站的行数
2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。
指名学生口答,老师板书。
二、创设情境,探究新知
从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)
1、教学例1
(1)出示例1(课件演示)让学生读题
一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?
师:你用什么方法解答,给大家介绍一下如何?(自由回答)
(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)
学生解答如下几种:
解法一:14025=705=350千米
解法二:140(52)=1402.5=350千米
如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:
A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?
B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)
C它们有什么关系?(行驶的路程和时间成正比例关系)
D题中照这样的速度就是说一定,那么和成比例关系?因此和的是相等的。
教师板书:速度一定,路程和时间成正比例。
师追问:两次行驶的路程和时间的什么相等(比值相等)
解法三:(用比例方法,怎样列式)
解:设甲乙两地间的总路长X千米
140X或140:2=X:5
252X=1405
X=350
答:甲乙两地之间公路长350千米。
小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。
2、怎样检验这道题做得是否正确呢?
3、变式练习改编题
出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?
4、教学例2(课件演示)
(1)出示例2,学生读题
例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?
提问:(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度时间=路程)这道题里哪个数量是不变的量?
(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
学生利用以前的方法解答。
7054=3504=87.5(千米)
(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)
这道题里的路程是一定的,和成比例,所以两次行驶的和的是相等的。
指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。
(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程
4X=705X=705/4X=87.5
答:每小时行驶87.5千米。
师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?B)题中哪一种是固定不变的?从哪里看出来?C)它们有什么关系?D)这道题的一定,和成比例关系,所以两次行驶的
和的是相等的。
(5)变式练习(改编题)
出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?
解:设需要x小时到达
87.5x=705x=4
答:需要4小时到达。
三、归纳总结,揭示意义
想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。
指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)
四、巩固练习,考考自己(课件演示)
请你们按照刚才学习例题的方法去分析,只要列出式子就行。
1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
以上1、2两题,学生做完将鼠标移到看看做对了没有进行自我判断。
3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,?
(2)王师傅4小时生产了200个零件,照这样计算?
4、四选一,每题只能选一次
(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)
a.15030=1200xb.30:150=1200:x
c.150x=301200d.150:30=1200:x
(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)
a.608=3xb.60:8=3:x
c.608=(8-3)xd.3:x=8:60
(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)
a.540=480xb.5:40=x:480
c.40x=5480d.40:5=x:480
(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)
a.245=6xb.24:5=6:x
c.(24+6)x=245d.(24+6):x=24:5
(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)
a.375%=2xb.75%:3=2:x
c.75%x=23d.3:75%=2:x
五、分层练习,深化新知
○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x
○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?
1230=(12+6)X
○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?
12028=(120+20)X
六、全课总结,温故知新
解比例应用题的一般步骤是什么?(学生自己用语言叙述)
一般方法和步骤:
1、判断题目中两种相关联的量是成正比例还是反比例;
2、设未知量为x,注意写明计量单位;
3、列出比例式,并解比例式;
4、检查后写出答案;
5、特别注意所得答案是否符合实际。
七、课后反馈,挑战难题
小明受老师委托,编一些比例应用题,于是他前往数学超市选购了一些条件:
计划每天生产30辆、实际每天生产40辆、计划25天完成、实际20天完成、计划一共生产了900辆、实际一共生产了1000辆
小明需要你的帮助,你会怎样编题?
教学内容:P51-52例1、例2,正、反比例应用题
教学目的:认识正、反比例应用题的特点,理解掌握这种应用题的解题思路和解题方法,能正确解答,发展学生的思维。
教学过程:
一、复习
判断下面的量各成什么比例
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
二、导入新课
说数量关系,判断成什么比例,列出等式。
一台抽水机5小时抽水40立方米,照这样计算,9小时可抽水X立方米。
三、学习新课
1、学例1
(1)将导入题中的X立方米改成多少立方米?
(2)讨论:怎样用比例的知识来解这道题止的导入题的想法能给我们启示吗?
(3)试一试:学生练习讲解例题,教师根据情况作点拨。
(4)小结:说一说用正比例知识解答这道应用题要怎样想?怎样做?
2、数学想一想
放手让学生自己做,并说说列等式的依据。
3、教学例2
(1)出示例2,读题
(2)讨论并试一试:能仿照例1的解题过程用比例的知识解答例2吗?
(3)说一说:将自己的解法及想法告诉大家。
教师作点拨
4、学习想一想
独立练习后班次讲
5、小结:解题思路
(2)判断比例关系
(3)找出对应数值
(4)列出等式解答
追问:你认为解题关键是什么?
四、巩固练习
1、做练一练
2、练习十第1题
评讲时比较异同
五、课堂小结:
这节课你学习了哪些内容?你认为哪些是重点?
六、作业
P5354第2题,第10题。
七、课后作业
P53第3题
教学内容:课本第91页例4;练一练;《作业本》第39页。
教学目标:进一步巩固反比例的意义,掌握用反比例方法解应用题的方法和步骤。
教学重点:学会用反比例解归总应用题
教学难点:判断题中哪两个量是成反比例的量,列出等积式。
教学过程:
一、复习准备:
1、三角形面积一定,底和高成什么比例?为什么?
2、甲、乙两种量,只要它们相对应的数的积一定,这两种量一定成反比例,对吗?举例说明?
二、新授:
1、教学例4。
例4:一艘货轮每小时航行20千米,6小时可以到达目的地。如果要5小时到达,每小时航行多少千米?
观察:
⑴、题中有哪几个量?
⑵、从题中可见哪个数量是一定的?
分析:
想:因为速度时间=路程,由于4小时与3小时航行路程相同,可确定行驶的速度与时间成反比例,所以两次航行与时间的乘积相等。
解:设每小时需航行X千米。
5X=206
X=2065=24(千米)
X=24
(检验)
答:每小时需盘航行24千米。
2、改条件:5小时到达为每小时行15千米,要求几小时到达应怎样列式?
3、试一试。
(1)甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?
(2)同学们做操,每行站30人,正好站12行,如果每行站36人,可以站多少行?
分析:⑴、从已知数量可知,哪个量是一定的?
⑵、可利用比例解题,也可利用一般方法解题?
三、巩固练习:练一练。
四、小结:
今天学习了什么?
五、《作业本》p39.
教学目的
1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.
教学重点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学难点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学过程
一、复习准备.
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.
(2)总价一定,每件物品的价格和所买的数量.
(3)小朋友的年龄与身高.
(4)正方体每一个面的面积和正方体的表面积.
(5)被减数一定,减数和差.
谈话引入:我们今天运用正反比例的知识来解决实际问题.
(板书:用比例知识解应用题)
二、探讨新知.
(一)教学例5(用比例解答下题)
修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?
1.学生读题,独立解答.
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.
(二)反馈.
1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.
1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?
2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?
3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?
4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?
四、课堂总结.
通过这堂课的学习,你有什么收获?
教学内容:教材第115页正、反比例的意义和正、反比例应用题、练一练,练习二十二第1、2题。
教学要求:
1、使学生更清楚地认识正比例和反比例关系的特征,能正确判断成正比例关系或反比例关系的量。
2、使学生进一步掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题,进一步培养学生分析、推理和判断等思维能力。
教学过程:
一、揭示课题
这节课,复习正、反比例关系和正、反比例应用题。通过复习,要进一步认识正、反比例的意义,掌握正、反比例应用题的数量关系、解题思路和解题方法,能更正确地判断成正、反比例关系的量,正确地解答正、反比例应用题。
二、复习正、反比例的意义。
1、复习正、反比例的意义。
提问:如果用x和y表示成比例关系的两种相关联的量,那么,什么情况下成正比例关系,什么情况下成反比例关系?
想一想,成正比例关系和成反比例关系的两种量有什么相同点和不同点?
指出:正比例关系和反比例关系的相同点是:都有相关联的两种量,一种量随着另一种量的变化而变化。不同点是:成正比例关系的两种量中相对应数值的比值一定,成反比例关系的两种量中相对应数值的积一定。
2、判断正、反比例关系。
(1)做练一练第1题。
指名学生口答。
提问:判断是不是成比例和成什么比例的根据是什么?
(2)做练习二十二第1题。
指名学生口答。
3、判断x和y这两种量成什么关系,为什么?
指出:我们根据正、反比例关系的特点,可以判断两种相关联的量成什么比例。如果一道题里两种量成正比例或反比例关系,我们就可以应用比例的知识,根据比值相等或者积相等的数量关系来解答。
三、复习正、反比例应用题。
1、做练一练第2题第1题。
让学生读题,判断两种量成什么比例。
提问:这道题成正比例关系,要根据什么相等来列式解答?
指名一人板演,其余学生做在练习本上。
集体订正,突出列式的等量关系是比值一定。
做练一练第2题第(2)题。
指名一人板演,其余学生做在练习本上。
集体订正。
提问:这道题是怎样想的?成反比例关系的应用题,要根据什么来列式解答?
3、启发学生思考:
你认为正比例应用题实际上是我们过去学过的哪一类应用题?反比例应用题是哪一类应用题?
怎样解答正、反比例应用题?
指出:用比例知识解答应用题,要先判断两种相关联的量成什么比例。如果成正比例,根据比值相等列等式解答;如果成反比例,根据积相等列等式解答。
四、课堂作业
练习二十二第2题
教学内容:P53~54、第4~13题,思考题,正、反比例应用题的练习。
教学目的:进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。
教学过程:
一、基本训练
P53第4题,口答并说明理由
二、基本题练习
1、做练习十第5题
2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?
用比例的知识怎样解答呢,请大家自己做一做。
评讲:说一说是怎样想的?
(板书:速度时间=路程(一定)=反比例
=正比例
提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?
3、练习小结:(略)
三、综合练习
3、练习十第11题
启发学生用几种方法解答
4、做练习十第13题
(1)提问:这是一道什么应用题?可以怎样列式解答?
(2)把树苗总数看做单位1,成活棵数是94%,你还能用比例知识解答吗?
四、讲解思考题
引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?
五、课堂小结:
通过本课的练习,你进一步明确了哪些内容?
六、作业:
第8、9、10题
七、课后作业:
第6、7、12题
教材分析:
正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例联系,以及列出比例式所需的相等联系,即行驶的路程和时间成正比例联系,所以两次行的路程和时间的比是相等的然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生想一想,如果改变例1题目里的条件和问题该怎样解答。
教学对象分析:
成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。
正比例应用题教学设计
三元坊小学梁智丹
教学内容:人教版23页至24页例1以及相应的做一做。
教学目标:
1、掌握用正比例的方法解答相关应用题;
2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,
从而加深对正比例意义的理解;
3、培养学生分析问题、解决问题的能力;
4发展学生综合运用知识解决简单实际问题的能力。
教学重点:掌握用正比例的方法解答应用题
教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
教学过程:
一、谈话导入:
1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?
2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?
刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。
二、新课教学:
先来研究这样一个问题。
1、出示例1
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
2、分析解答应用题
(1)请一位同学读一读题目
(2)这道题要求什么?已知什么条件?
(3)能不能用以前学过的方法解答?
(4)让学生自己解答,边订正边板书:
14025
=705
=350(千米)
答:________________。
3、激励引新
这两种方法都合理,还可以有什么方法解答呢?
学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?
三、探讨新知
1、提出问题
师:请同学们结合课本上的例题,讨论以下问题。
(1)题目中相关联的两种量是________和________。
(2)________必定,_________和_________成_______比例联系。
(3)______行驶的_____和_____的________相等。
2、学生自学例题后小组讨论。
3、组间交流:小组代表把讨论结果在班内交流
4、学生尝试解答后评价(指名学生板演)
5、怎样检验?把检验过程写出来。
6、概括总结
(1)
用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就必定要用比例的方法解。
(2)明确解题步骤。(板)
用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。
1.分析判断
2.找出列比例式所需的相等联系
3.设未知数列等式
4.求解
5.检验写答语
[NextPage]四、练习提高
1、基本练习
(1)例题改编
①如果把这道题的第三个和问题改成:已知公路长350千米,需要行驶多少小时?该怎样解答?
②让学生解答改编后的应用题,集体订正。
③小结:比较一下改编后的题和例1有什么联系和区别?
例1的条件和问题以后,题中成正比例的联系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:
140/2=350/x
(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?
2、变式练习
3、理论运用
(1)汇报数据:刚才我们上课时提到怎教材分析:
正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例联系,以及列出比例式所需的相等联系,即行驶的路程和时间成正比例联系,所以两次行的路程和时间的比是相等的然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生想一想,如果改变例1题目里的条件和问题该怎样解答。
教学对象分析:
成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。
教学目标:
1、掌握用正比例的方法解答相关应用题;
2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,
从而加深对正比例意义的理解;
3、培养学生分析问题、解决问题的能力;
4发展学生综合运用知识解决简单实际问题的能力。
教学重点:掌握用正比例的方法解答应用题
教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
教学过程:
一、谈话导入:
1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?
2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?
刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。
二、新课教学:
先来研究这样一个问题。
1、出示例1
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
2、分析解答应用题
(1)请一位同学读一读题目
(2)这道题要求什么?已知什么条件?
(3)能不能用以前学过的方法解答?
(4)让学生自己解答,边订正边板书:
14025
=705
=350(千米)
答:________________。
3、激励引新
这两种方法都合理,还可以有什么方法解答呢?
学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?
三、探讨新知
1、提出问题
师:请同学们结合课本上的例题,讨论以下问题。
(1)题目中相关联的两种量是________和________。
(2)________必定,_________和_________成_______比例联系。
(3)______行驶的_____和_____的________相等。
2、学生自学例题后小组讨论。
3、组间交流:小组代表把讨论结果在班内交流
4、学生尝试解答后评价(指名学生板演)
5、怎样检验?把检验过程写出来。
6、概括总结
(1)
用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就必定要用比例的方法解。
(2)明确解题步骤。(板)
用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。
1.分析判断
2.找出列比例式所需的相等联系
3.设未知数列等式
4.求解
5.检验写答语
四、练习提高
1、基本练习
(1)例题改编
①如果把这道题的第三个和问题改成:已知公路长350千米,需要行驶多少小时?该怎样解答?
②让学生解答改编后的应用题,集体订正。
③小结:比较一下改编后的题和例1有什么联系和区别?
例1的条件和问题以后,题中成正比例的联系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:
140/2=350/x
(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?
2、变式练习
3、理论运用
(1)汇报数据:刚才我们上课时提到怎样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。
(2)能用这些数据编一道正比例应用题吗?
(3)小组合作编题
五、总结
今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?
样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。
(2)能用这些数据编一道正比例应用题吗?
(3)小组合作编题
五、总结
今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?
【教学内容】p98页练习十九6—11。【教学要求】1、复习分数应用题的结构特征和解题规律,能正确运用单位“1”的量×分率=分率的对应量。2、能正确分析分率句,把握分数应用题的解题的关键。3、能用方程解答分数除法应用题。【教学重点】分数应用题。【教学难点】正确画图分析分率句。【教学过程】一、分析分率句。先说出下面各题里把哪个数量看作单位“1”,再把数量关系式写完整。1、苹果的重量是梨的—讲解分析方法:⑴找到分率;⑵分析分率是“谁”的几分之几,即把“谁”看作单位“1”;⑶找分率的对应量;⑷正确写分数的数量关系;⑸在此基础上进行灵活地变化。如上例:“1”梨—苹果重量所以,梨的重量×—=苹果重量梨×(1+—)=梨和苹果一共的重量梨×(1-—)=梨比苹果多的重量。2、实际烧煤量比计划烧煤量节约了—。分析:节约了—是节约了谁的—?从“比”字入手“比”后面的量作标准的即为单位“1”,也就是节约了计划烧煤量的—,因此:“1”计划烧煤量—实际比计划节约的烧煤量。计划烧煤量×—=实际比计划节约的烧煤量计划烧煤量×(1-—)=实际烧煤量3、六年级学生出勤率是98%。分析:理解出勤率的含义,“率”通常指百分率出勤人数—————×100%=出勤率应出勤人数“1”应出勤人数98%出勤人数应出勤人数×98%=出勤人数应出勤人数×(1-98%)=缺席人数注意:计算的如“含水率、出勤率、优秀率、成活率”等,一般都指部分数占总数的百分之几,因此这里的百分率应小于1(即100%)。二、练习。1、一根铁丝长60米,一根铜丝长80米,铁丝的长度是铜丝的几分之几?铜丝比铁丝长几分之几?2、⑴丰华农场种玉米120公顷,种小麦的面积是玉米的—,种小麦多少公顷?⑵丰华农场种玉米120公顷,是种小麦面积的1—倍,种小麦多少公顷?⑶先改变上面两题中的第二个已知条件,使它们分别成为一道两步计算应用题,再解答。三、作业。练习十九6—11。
本文网址://m.jk251.com/jiaoan/109029.html
上一篇:小班语言教案
下一篇:2024班主任工作计划模板4篇