导航栏

×
范文大全 > 教案

三年级应用题教案

时间:2023-07-23 三年级应用题教案 应用题教案

三年级应用题教案范例。

教案课件是老师上课预先准备好的,教案课件里的内容是老师自己去完善的。教案是整合资讯化数字化科技和教育教学改革的必要途径,有没有好的教案课件可资借鉴呢?作为一个读者我认为“三年级应用题教案”是众多文章中的佳品,建议您将此页收藏起来以方便再次访问!

三年级应用题教案【篇1】

教学内容:浙教版义务教育教材第六册P103-104

教学目标:

基础目标:1、知识目标:使学生理解、掌握几倍求和(差)应用题的数量关系、结构特征和解题方法,并能正确地进行计算。

发展目标:1、能力目标:提高学生分析、解决实际问题的能力。

2、情感目标:通过记者应聘一事,让学生体验生活、感受生活中处处有数学。

教学重点:正确地解答几倍求和(差)应用题

教学难点:找出中间问题

教学准备:课件、两块表格式的小黑板

板书设计:

小小几倍求和(差)应用题

黑黑33+99=132分33+333=132分33(3+1)=132分

板板

教学过程:

一、创设情境,引发描述

1、谈话引入

师:大家知道处州晚报吗?我们班有没有处州晚报小记者?今年处州晚报记者部经理公开招聘记者,准备培养一位优秀记者,于是进行一场考试。考试分为口试(满分为50分)和笔试(满分为100分),总分高的被聘用。这里是四位参赛者的成绩(挂黑板)。如果你是经理,要想从中选出一位当记者,那么你认为先要解决什么问题?

生:先算出总分。

师:我们来当经理,算一算他们的总分。为了速度快,分工合作,第一组算甲的成绩,第二组算乙的成绩,第三组算丙的成绩,第四组算丁的成绩。开始!

2、复习旧知

①做后反馈:每组各抽一生说出算式(师板书算式:33+99=132分)

②小结:聘用谁当记者?

要求总分,只需怎样?

[教学内容来源于学生身边的开放性事实,让学生在解决生活问题的过程中体验一个决策者的思维方式。]

二、观察规律,自主探究

1、师生谈话,合成目标

师:请同学们观察乙的两项成绩,口试与笔试成绩之间有什么关系?

生:笔试成绩是口试的3倍。

师:同意吗?(拿出另一块黑板,板书学生的发现)

师:那大家能不能像陈老师这样,表示出其他三位应聘者口试与笔试的关系吗?(生说师板书)

三年级应用题教案【篇2】

教学目标

(一)使学生学会解答简单归一应用题并掌握这类应用题的结构特点及解题规律。

(二)使学生扩展解题思路,进一步培养学生观察、分析、解答应用题的能力。

(三)渗透从特殊到一般的辩证唯物主义思想。

教学重点和难点

重点:掌握归一应用题的结构特点(用除法先求单一量)。

难点:列综合算式时正确使用小括号。

教学过程设计

(一)复习准备

启发谈话:

我们学习了连乘、连除应用题,今天我们继续学习两步应用题。首先复习一下,以前学过的应用题中常见的数量关系。

出示练习题(投影)

口答下面的题,并说出数量关系。

3个书架75元,每个书架多少元?买5个同样的书架用多少元?

〔753=25(元)数量关系是:总价数量=单价〕

〔255=125(元)数量关系是:单价数量=总价〕

师:我们把这两问的应用题,去掉一问,还是求买5个同样的书架用多少元?这样的题怎样分析,有什么特点和规律,是我们今天要研究的新问题。

(二)学习新课

想一想,要去掉一问,还求买5个同样的书架用多少元,怎样叙述这道题。(学生思考老师板书例题)然后问学生,这样叙述可以吗?

例1:学校买3个书架,一共用75元。照这样计算,买5个要用多少元?

读题,找出已知条件和问题。

(已知条件是学校买3个书架用75元,买5个书架。问题是买5个书架用多少元?)

摘录:3个75元

5个?元

师:请想一想,题目中照这样计算是什么意思?你是怎样理解的?(互相说一说)

〔照这样计算的意思是按照买3个书架用75元计算,也就是总价数量=单价,按每个书架的钱数去计算。它(单价)是不变的〕

师:为了进一步理解题意,我们用直观的线段图把题目中的已知条件和问题表示出来。(同学回答,老师在黑板上画)

师:根据我们摘录的已知条件和问题,以及线段图,请同学自己分析这道题,先组织一下语言,然后讲给同桌同学听。(使每个同学都有机会发表自己的意见)

在此基础上,请同学回答:

要求买5个书架用多少元,必须先求出每个书架多少元,也就是单价。要求每个书架多少元,必须知道买几个(数量),和用多少钱(总价)。这两个条件是已知,根据3个书架75元可以求出每个书架多少元。再根据每个书架多少元(单价),和买5个书架(数量),可以求出买5个书架多少元,(也就是单价数量=总价)

师:下面请同学按上面分析的思路,写在作业本上。

学生做完后、订正,老师板书,并请学生讲一讲每一步的意思是什么。

(1)每个书架多少元?综合算式:

753=25(元)7535

(2)5个书架多少元?=255

255=125(元)=125(元)

答:买5个书架用125元。

做一做:

一辆汽车2小时行70千米。照这样计算,7小时行多少千米?

(请按我们今天学习的方法,自己独立把这题完成)

702=35(千米)

357=245(千米)

7027

=357

=245(千米)

答:7小时行245千米。

同桌同学交换检查。讲一讲自己的解题思路。

师:例1的已知条件不变,把问题买5个书架要用多少元?改成200元可以买多少个书架?就是我们要学习的例2.

出示例2:

学校买3个书架,一共用75元。照这样计算,200元可以买多少个书架?

读题、审题,独立分析思考:

(1)照这样计算是照哪样计算?

(2)要求200元能买多少个书架,必须知道什么条件?

(3)应该先算什么?再算什么?

在个人独立思考的基础上,进行小组讨论,充分发表自己的意见。

讨论后,请同学打开书,把小标题写在书上,并列出综合算式。

订正时,老师板书。

(1)每个书架多少元?综合列式:

753=25(元)200(753)

(2)200元能买多少个书架?=20xx5

20xx5=8(个)=8(个)

答:200元可以买8个书架。

师:753为什么要加小括号?不加小括号行不行?为什么?

(加小括号是先求每个书架多少元)

师:我们学习了例1、例2.比较一下这两个例题,有什么相同点?有什么不同点?

(两道题前两个已知条件完全相同,第三个条件和问题不同。但是,要求5个书架多少元和200元可以买多少个书架,第一步都要先求每个书架多少元,也就是书架的单价)

下面我们看一组练习,再比较一下。

1.小林看一本故事书,3天看了24页。照这样计算,7天可以看多少页?(列综合算式解答)

2.小林看一本故事书,3天看了24页。照这样计算,全书128页,多少天可以看完?(列综合算式解答)

(三)巩固反馈

选择正确列式、并说明理由。

一台磨面机5小时磨小麦250千克。照这样计算,磨1750千克小麦,需要几小时?

A.25051750B.1750(2505)

C.17502505D.17502505

小结今天我们学习了例1、例2,掌握了这类应用题结构上的特点。最后给大家留一道思考题,请用多种方法解答。

三一班同学上体育课,18人排成2行,照这样计算,全班54人排几行?

小资料〔归一问题〕

这里的归一,是指一种解题方法,即先求出一个单位的数量,(如单价、工效、单位面积的产量等)然后再求出题目所要求的数量。能用这种方法解答的应用题,通常称作归一问题。

在归一问题中,由于有一个单位数量保持不变(常用照这样计算,同样的等语句来说明)。因此,题里的数量成正比例关系,这就使归一问题也可以用比例知识解答。事实上,即使用算术方法解答,有时也可以根据题中数量成倍数扩大(或缩小)的特点来列式。这种解法习惯上称作倍比法。

课堂教学设计说明

本节课是两步应用题的教学,复习准备设计了从连续两问应用题去掉第一问,改编成两步应用题,使学生接受起来比较容易。讲授新课重点抓住归一问题的结构特点和解题方法。始终是引导学生思考,使学生逐步体会归一问题的特点。同时引导学生通过练习归纳总结例1、例2的相同点、不同点。从而使学生掌握这类应用题的解题规律。

三年级应用题教案【篇3】

教学内容:例5“想一想”和“练一练”,练习二十二第1-3题。

教学目标:理解多(少)几求和,几倍求和(差)的应用题的数量关系和结构,学会解答这类应用题。

教学重、难点:弄清两个已知条件的一步计算应用题和两步计算应用题的联系和区别。明确两步应用题的'特征,加深理解。

教具准备:小黑板

教学过程:

一、复习铺垫

1、基本训练

(1)出示:白兔16只,黑兔比白兔多7只,?

红花有25朵,黄花比红花少10朵,?

足球有12个,皮球的个数是足球的3倍,?

让学生提出问题,并列式解答。

2、出示:

粮店运来面粉240袋,

,运来的面粉和大米一共有多少袋?

让学生读题,讨论:可以补哪些不同的条件?

二、新授:

1、出示:

(1)大米180袋

(2)运来的大米比面粉多60袋

(3)运来的大米比面粉少60袋

(4)运来大米的袋数是面粉的3倍,

2、学生列式口答

4、其余3题,学生尝试解答。

5、学生质疑问难,集体订正

6、讲解第7题

学生说一说要求运来的大米和面粉一共有多少袋?需要知道哪两个条件?

要先算什么?(同桌互说)

7、提问:240+70=310(袋)求的是什么?240+310呢?

8、第(3)(4)题学生说说两题各是先算什么?再算什么?

9、比较:这3题有什么相同的地方和不同的地方?

三、巩固练习

1、第100页第1题

学生列式解答,思考:要求合唱组和舞蹈组一共有多少人?需要知道哪两个条件?先算什么?

2、第100页第2题

学生列式解答,同桌互说:先算什么?再算什么?

3、第101页第1题

说出图意,列式解答。

四、作业:

第101页(2)、(3)。

三年级应用题教案【篇4】

教学目标

(一)使学生学会列综合算式解答一般的两步计算的应用题。

(二)通过列综合算式,提高学生解答应用题的能力。

(三)注意培养学生联贯地、有顺序地进行思维的能力。

教学重点和难点

重点:在分步列式的基础上学习列综合算式解答两步运算的应用题。

难点:在列综合算式中学习正确地使用小括号。

教学过程设计

(一)准备复习

(1)300减去180除以3的商,差是多少?

(事先写好贴在黑板上)

师:根据我们刚学过的方法,进行分析。

本题求的是差,那么要弄清谁是被减数,谁是减数,300是被减数,180除以3的商是减数。

请同学口述列式,老师板书。

300-1803

=300-60

=240

师:同学们,我们要把这道题改编成求商是多少?想一想应该怎样叙述,然后小组讨论一下,互相进行启发,发表个人看法。

讨论后,请同学把改编后的题叙述一下,老师把事先写好的题,贴在黑板上。

300减去180,再除以3,商是多少?

请同学口述本题分析过程。

(这道题是求商是多少,首先弄清谁是被除数,谁是除数。300减去180是被除数,因为被除数没有直接给出,所以要加小括号先算。再除以3是除数。被除数除数=商。)

师:这是我们已经学过的列综合算式解两步运算的文字叙述题,大家掌握很好,今天我们一起学习列综合算式解答两步计算的应用题。

(二)学习新课

出示例题:(写在纸条上贴在黑板上)

三年级同学要浇300棵树,已经浇了180棵。剩下的分三次浇完,平均每次要浇多少棵?

默读题、审题,找出已知条件和所求问题。然后独立分步列式解答。

指名板演:

300-180=120(棵)

1203=40(棵)

请讲一讲300-140是什么意思?(剩下多少棵)

再说一说1203是什么意思?(平均每次要浇多少棵)

师:请同学观察上面两个算式发现了什么?

(第一式的结果是第二式的被除数)

根据题意要求剩下的分三次浇完,平均每次要浇多少棵?应该怎样理解呢?

(也就是把300-180的差平均分成3份,应该用除法计算。被除数是300-180的差,除数是3,用被除数除以除数就可以求出平均每次要浇的棵数)

请同学独立列综合算式解答。

(300-180)3

=1203

=40(棵)

答:平均每次要浇40棵。

(订正时老师板书)请同学讲一讲这个等式的意义。

(三)巩固反馈

投影出示:

1.同学们栽树。一班要栽58棵,二班要栽67棵。平均栽5行,每行栽多少棵?(列综合算式解答)

读题、审题,弄清把哪些树平均栽5行?

(58+67)5

=1255

=25(棵)

订正时,请同学讲一讲为什么这样列式。

2.学校组织同学去博物馆参观。三年级去了62人,四年级去的人数是三年级的2倍。两个年级一共去了多少人?

默读题,独立写在作业本上,然后订正。

三年级+四年级=共多少人

62+622

=62+124

=186(人)

请讲出这个算式的意义。(要求两个年级一共去了多少人,用三年级人数(62人)加上四年级人数(622)。就可以求出两个年级一共去了多少人)

师:很好,有没有不同的算法?

出示线段图,帮助学生理解题意。

看图后讲一讲:(三年级去了62人,四年级去的人数是三年级的2倍,也就是三年级的人数是1份,四年级人数是2份,三、四年级一共是(1+2)份,求一共去了多少人,也就是求(1+2)个62人是多少)

62(1+2)

=623

=186(人)

有哪些同学用这种方法解的?很好,肯于动脑筋。以后解答应用题可以列分步算式,也可以列综合算式。还可以从多角度分析,用不同的方法解。

3.在正确列式后面画,错误列式后面画。

(1)中、高年级听报告。中年级有84人参加,高年级参加的人数是中年级的3倍。听报告的一共有多少人?

A.84+843B.843+84

()()

C.84(1+3)D.843-84

()()

(2)把20个鸡蛋放在篮子里,称得鸡蛋和篮子一共重1250克。如果篮子的重量是350克,每个鸡蛋平均重多少克?

A.125020-350B.(1250+350)20

()()

C.(1250-350)20D.1250-45020

()()

(3)某机床厂,去年上半年生产机床850台,下半年生产机床980台,全年生产机床的台数是计划生产的2倍,去年计划生产机床多少台?

A.850+9802B.(850+980)2

()()

C.(850+980)2D.850+9802

()()

作业:第97页7,8

小资料〔应用题〕

数学教学中的应用题,是指取材于生活、生产以及其他科学中,需要运用数学知识解决的问题。在小学数学中,通常是指用四则运算解决的问题。这些问题往往是实际问题简化和模拟。

应用题作为一种数学问题,就要具备要求解答的数量方面的问题和能够解答此问题的必要条件。这种问题和条件,以及应用题的具体情节,决定了应用题的解法。

应用题能够体现出数学在实际中的应用。用数据说明问题,为对学生进行思想品德教育提供素材。通过解答应用题,可以帮助学生更好地理解所学的知识,掌握所学的内容,对培养学生解决简单实际问题的能力和发展学生的思维也有重要作用。

〔应用题的分类〕

小学数学中的应用题,分为简单应用题和复合应用题两大类。在复合应用题中,按解题方法分类,又可分为一般应用题和典型应用题。

通常把只要用一步计算就能求出答案的应用题叫做简单应用题;把要用两步或两步以上计算才能求出答案的应用题叫做复合应用题。

在复合应用题中,按照传统的算术解法,有特定的解题思路和方法,或有特定名称的应用题,习惯上称为典型应用题;其余的称为一般应用题。引入方程以后,用列方程的方法来解应用题,则典型应用题和一般应用题的区别就不大了。

课堂教学设计说明

本节课的教学内容是在学生学习了用综合算式解答两步计算的文字叙述题的基础上学习用综合算式解答已学过的两步应用题。所以这节课着重放在分步列式的基础上学习如何列综合算式解答。讲授时采用例3的分析方法,让学生多动脑,多动口,多动笔。

三年级应用题教案【篇5】

教学内容:练习八第16-19题。

教学目标:

进一步掌握应用题的结构特征、数量关系和解题思路,提高学生分析解答应用题的能力,培养学生初步的逻辑思维能力和综合运用知识的能力。

教学重、难点:

培养学生初步的逻辑思维能力和综合运用知识的能力。

教学具准备:小黑板、投影片。

教学过程:

一、揭示课题。

我们已经学过了加减法和乘除法的一步计算应用题,今天我们继续学习应用题。

二、基本练习。

⒈口算。

⒉列式解答,并说说是怎样想的。

(1)有5只白兔,黑兔的只数是白兔的3倍,黑兔有多少只?

(2)有5只白兔,15只黑兔,黑兔的只数是白兔的几倍?

指名板演,其余做在练习本上。说说是怎样想的?

提问:有什么相同的地方,有什么不同的地方?

三、应用题训练。

1.做练习八第16题。

(1)出示题目。

(2)引导学生看条件,说说是怎样想的?

(3)学生在课本上连一连。

(4)列式计算。

比较:这两题的条件和问题有什么相同的地方和什么不同的地方?

2.练习八第17题。

(1)出示题目。

(2)让学生独立练习。

集体订正,提问:先求的是什么,再求的是什么?求第二个问题必须先求什么?

3.练习八第19题。

让学生先讨论,再全班汇报。

三、课堂作业。

练习八第18题。

三年级应用题教案【篇6】

教学内容:练习二十二第10-15题。

教学目标:进一步掌握两步计算应用题的数量关系,,能解答含有两个条件的两步计算应用题。

教学重、难点:掌握从问题想起的分析思路,掌握两步计算应用题的数量关系。

教具准备:小黑板、投影片。

教学过程:

一、基本训练

1、出示:

(1)菜场运来黄瓜250千克,

,运来黄瓜和豆角一共多少千克?

(2)九月份用水150吨,

,十月份比九月份节约用水多少吨?

(3)小明每分行65米,

,小明比小华每分多行多少米?

(1)学生说说补充什么条件,并说出为什么要补这个条件?

(2)学生口头列式解答。

2、引入课题

我们根据应用题的问题,可以找出所需要的条件,这也是我们分析两步计算应用题所用的主要方法之一。也就是在分析两步计算应用题时,从问题开始找数量关系,想需要两个什么条件,确定要先求的中间问题,然后再列式解答。今天这节课,就按这样的方法练习两步计算应用题。(板书课题)

二、基本练习

1、第102页第10题

(1)学生读题,并列式解答。

(2)思考:要求这个电影院共有座位多多少个?必须要知道哪两个条件?

(3)应先算什么?再算什么?

2、第102第11题

(1)学生读题

(2)思考:这道题已知什么条件,要求哪两个问题?

(3)学生一一列式解答,并说说先算什么?再算什么?

(4)比较:这两题都是根据题目里哪两个已知条件来求的?想的过程有什么相同?求这两个问题哪一步是相同的?为什么第一步会相同?哪一步不一样?为什么不一样?

3、集体练习:

(1)一个养鸡场有公鸡150只,养的母鸡比公鸡多250只,一共养鸡多少只?

(2)一个养鸡场有母鸡400只,养的公鸡比母鸡少250只,一共养鸡多少只?

1、学生独立列式解答

2、同桌互说,先算什么?再算什么?

3、比较:这两题有什么相同的地方和不同的地方?

三、变式题练习

1、收苹果650千克,,橘子和苹果共收多少千克?

(1)学生补充不同的条件并列式解答

(2)思考:这些题在解答方法上有什么相同的地方?有什么不同的地方?为什么不一样?

2、第102页第13题

学生读题

思考:

(1)谁跟大雁比?

(2)比大雁每分钟少飞行多少米?必须知道哪两个条件?要先算什么?

3、第102页第15题

冬生家养了18只鸡,鸭的只数是鸡的3倍,?

同桌互相交流,可以提哪些不同问题。

思考:为什么有的问题只要一步就能算出来?而有的问题却要两步才能求出来?为什么要先算鸭的只数?

四、课堂小结:

这节课练习了什么内容?解答两步计算应用题的关键是要找出什么?jk251.COm

五、课堂作业:

三年级应用题教案【篇7】

教学内容:

第95、96页例4,“练一练”,练习二十一第1—3题。

教学目标:

理解从一个数里减去两个部分的两步计算应用题的数量关系,以及解答这类应用题的两种方法,并会解答。

教学重、难点:

初步学会用分析法思路分析应用题的方法。提高分析应用题的能力。

(1)一本书140页,看完80页?

(2)商店运赖100箱苹果,卖掉120箱?

(3)一段布长15米,还剩多少米?

(4)商店有80个水瓶,还剩多少个?

2、小结:

从上面可以看出,根据两个条件,可以求一个问题,根据一个问题,可以想到需要什么条件,补上缺少的条件。

商店有48台电冰箱,卖出35台,还剩多少台?

1、导入:

(2)学生读题,并找出条件和问题。

(3)学生尝试解答。

(5)学生说说是怎样想的?先算什么?再算什么?

(6)教师根据学生的回答板书线段图,帮助学生理解。

(7)同桌互相说说两种方法各是先算什么?再算什么?

第一种解法是怎样想的?先求什么?

第二种解法是怎样想的`?先求什么?

2、课堂小结:

第1种方法是从条件出发进行思考,根据两个条件确定先算什么。第2种方法是从问题出发进行思考的,根据问题找到缺少的条件,确定必须先求什么。以后在解题时,既可以用第一种方法,也可以用第2种方法。

(4)说一说两种方法各是先算什么?再算什么?

比一比,下面每组题的计算结果是不是相同?

第97页第1、2题。

三年级应用题教案【篇8】

教学目标

1.使学生掌握两步应用题(归总)的结构特点和解答方法,能正确迅速地找到中间问题(先求什么).

2.使学生学会列综合算式解答,初步掌握这类应用题的解题规律.

3.训练学生有条理地分析数量关系,培养学生分析、解答应用题的能力.

教学重点

使学生掌握乘、除法应用题的数量关系、结构特征和解答方法.

教学难点

学画线段图,并借助线段图分析题中数量关系.

教学过程

一、联系生活实际,以旧引新.

1.请你根据学过的乘除法数量关系,联系自己的生活实际举例提问.

①单价数量=总价

②路程时间=速度

③工作总量工效=工时

学生可能举例:

①一个足球50元,3个足球多少元?

②我家到姥姥家相距大约120千米,坐汽车行了2小时,这辆汽车每小时行多少千米?

③王师傅用小推车为食堂运菜,每小时运80千克,240千克的菜要几小时运完?

2.改编:工人们修一条路,每天修12米,10天修完.________?求什么?(求这条路长多少米?)为什么?如果去掉这个问题,改成如果每天修15米,几天修完?应该如何解答呢?

此时,学生可能会答也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师提问:要想知道如果每天修15米,几天修完?,就要先求出什么?(工作总量)根据哪一数量关系求工作总量?

教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.

二、尝试探索,学习新知.

1.(1)出示例5:工人们修一条路,每天修12米,10天修完.如果每天修15米,几天修完?

学生们自由读题,理解题意.

教师谈话:通过读题,你想到了那些问题,提出来供同学们思考.

学生可能提出:

题目中已知几个条件,它们各是什么?要求什么问题?线段图应该怎么画?

这道题可以先求什么?(中间问题)为什么?

求出总数量后,再求什么?为什么?

经同学们思考(也可以小组讨论),师生共同解决.

全班重点讨论下面的问题:

a.线段图怎样画?题中什么数量变了,什么没变?

使学生明确:为了清楚地反映数量关系,最好画两条线段,两条线段要同样长,表示同一条路(说明工作总量是固定不变的).

b.要求几天修完,必须先求什么?为什么?

[看图分析:可以从条件出发,已知每天修12米(工效),又知道修了10天(工时),就可以求出这条路全长多少米?(工作总量)还可以从最后的问题出发,要求每天修15米,几天修完?必须知道这条路全长是多少米,题目里没有给工作总量,所以要先求出工作总量.]

共同解题,说出解题方法.

(学生边回答教师边板书:这条路全长多少米?

1210=120(米)

几天修完?

12015=8(天)

综合算式:121015

⑤请学生说一说怎样检验?

(2)教师提问:如果将第三个条件改成每天修20米、每天修30米、每天修40米,问题不变,仍求几天修完?应该怎样列式?

121020=6(天)121030=4(天)

121040=3(天)

(3)教师提问:如果将第三个条件和问题改成如果要求6天修完,每天应修多少米?应该怎样解答呢?

订正:这条路长多少米?1210=120(米).

每天应修多少米?1206=20(米).

综合算式:12106

全班共同订正,说说你的解题思路,每一步算式的含义.

(4)教师提问:再将第三个条件改成要求5天修完、2天修完,问题不变,仍求每天应修多少米?怎样列式?

12105=24(米)12102=60(米)

2.对比质疑,归纳概括.

教师提问:比较例5、改编题,它们有什么共同点和不同点?

使学生明确:从应用题的结构上看,前两个条件是相同的,给了单一量和数量,第三个条件和问题不同,正好互相交换了一下.从解题思路上看,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的(题目中一般在第一句话表示出来).不同的是:总数量份数=每份数,总数量每份数=份数.

教师说明:具有以上特点的应用题叫做归总应用题.(出示课题)

三、巩固练习,发展提高.

1.独立完成下题.

①小华读一本书,每天读12页,6天可以读完.如果每天读9页,几天可以读完?

②小华和小刚读同样一本书,小华每天读12页,6天读完,小刚想8天读完,平均每天要读几页?

订正时说说解题的思路各是什么?

2.填表:

解放军列队出操.填出每行人数或行数.(说说解题思路)

每行人数

12

20

45

行数

15

10

四、课堂小结.

今天学习的是什么?你有什么收获?

五、布置作业.

1.方师傅给食堂运菜.如果用小推车每次运75千克,8次能运完.如果改用平板车运,4次就能运完.平板车每次运多少千克?

2.招待所新来一批客人.每间住2人,需要15间房.如果每间房住3人,需要几间房?

板书:

探究活动

折纸条游戏

活动目的

学生通过手、脑、口多种感官参与认知活动,加深对归总应用题的认识;锻炼灵活的思维能力,提高数学素质.

活动准备

学生两人一组,每组准备1张较长的彩条,一张表格.

活动过程

1.规则:两人一组,甲任意将彩条折成2段(或几段),乙测量出一段彩条的长度并记录,接着两人互换任务,乙将彩条折成不同的段数请甲根据第一次的测量结果猜出现在每段彩条的长度并记录,互相检查(计算)猜对为赢;此为一局;每场游戏可定为4局,赢者一局加10分,输者记0分并送对方10分,最后分高者为胜.

2.所填表格如下:

三年级应用题教案【篇9】

教学内容:九年义务教育五年制小学数学第五册第84页例题。

教学目的:通过本节课的教学,使学生初步掌握一些常见的与除法应用题有关的数量关系,培养提高学生的抽象概括能力、推理能力和解答应用题能力。

教学重点:掌握除法应用题中常见的数量关系。

教学难点:能根据乘法数量关系推导出除法数量关系。

教学准备:投影仪、投影片、小黑板。

教学过程:

-、复习引入

请同学们回忆一下,我们学过乘法应用题中有哪些常见的数量关系学生边回答,教师边在黑板的右侧贴卡片。

这是我们以前学过的乘法应用题中的常见的数量关系,教师鼓励学生回答并引出课题,这节课我们来研究除法应用题和常见的数量关系。

[评:通过复习乘法应用题常见的数量关系,引入新课,沟通了新旧知识之间的联系,便于学生进行知识的迁移。]

二、出示学习目标

1.选择学习目标

看到这个题目后,你想学到哪些知识

2.教师把同学们说的内容归纳后出示学习目标。

(1)学习和掌握除法应用题中常见的数量关系。

(2)能运用除法应用题中常见的数量关系解答应用题。

[评析:学生根据课题,选择本节课的学习目标,激发学生学习知识兴趣。]

三、新课教学

1.学习例题

(1)自己读题,想一想,这道题已知什么怎样列式

(2)这道题的数量关系是什么学生回答,师贴出卡片。

(3)出示例题第(2)题,请学生认真读题,想这道题已知什么,求什么,怎样列式。

(4)学生讨论根据什么这样列式

师强调:除法应用题中常见的数量关系是根据乘法应用题常见的数量关系推导出来的。

(5)在解答例题第(1)题的基础上要求学生改编成另一道除法应用题。

(6)改编的这道题就是我们要学习的例题中的第(3)题。

(7)引导学生回忆是怎样学习例题第(2)题的

(8)根据例题第(2)题的学法学习例题第(3)题,并在练习本上解答写出数量关系,小组评议。

(9)请学生板演并讲思路。

[评析:例题中的3个小题的设计有层次、有坡度。教学习方法,由扶到放,教学内容由浅入深,教学要求逐步提高,特别是在解答(1)的基础上要求学生编出另一道除法应用题,给学生创造学习的机会,培养创新学习的能力。]

小结:在老师的引导下,同学们都能积极思考,通过例题的学习,我们掌握了根据一个乘法数量关系,可以推导出两个除法数量关系,并且利用这些数量关系可以解答相应的除法应用题。那么能不能根据一个除法数量关系推导出另一个除法数量关系和乘法数量关系呢(给学生时间思考并回答)

[评析:小结的设计注重教给学生思维方法,培养学生总结概括的能力。]

2.做一做。

出示投影(做一做)

(1)请同学读题,根据题意解答并推导数量关系。

(2)根据(1)题编出两道相应的除法应用题,并且独立解答,再讲思路。

[评析:对做一做,教师采取调动学生积极性的方法,让学生独立做,意在鼓励学生运用所学的知识。]

(3)引导学生理解和记忆数量关系,找出记忆方法。

小结:同学们真动脑筋,比老师想的还好,只要记住其中的一个乘法数量关系,就可以推导出另两个除法的数量关系。

四、巩固强化

1.根据一个数量关系推导出另外两个数量关系。(出示卡片)

工效时间=工作总量单产量数量=总产量

2.在练习十九中选出一道求总产量的应用题,口头列式并解答。

3.再分别找出求数量、单产量的应用题,并补充缺少的问题,再口头列式解答。

[评析:选题、补充条件问题的设计,意在培养学生综合运用知识的能力。]

五、课堂小结

这节课我们学习了什么内容怎样推导常见的数量关系师生共同概括。

六,布置作业

根据乘法的数量关系推导出除法的数量关系,并编出相应的应用题,解答出来。

[总评:本节课的教学内容是本单元的教学重点之一。教师根据教学内容和学生的年龄特点,让学生积极参与教学的过程,采用根据乘法常见的数量关系,推导出相应的除法数量关系。选题、编题、补充条件问题等多种方法,教给学生学习方法,注重培养学生灵活运用知识的能力,特别是在培养学生创新能力方面尤为突出。

三年级应用题教案【篇10】

教学目标

1.理解以和倍问题为基础的分数应用题的解题思路.会列方程解答此类应用题.

2.培养学生的迁移类推能力.

3.培养学生运用所学的知识解决生活中的实际问题的能力.

教学重点

理解应用的数量关系,找到题目中的等量关系.

教学难点

找准题中的等量关系.

教学过程

一、复习。(用含有字母的式子表示)

1、果园里有苹果树x棵,梨树的棵数是苹果树棵数的3/4。梨树有|()棵。

苹果树和梨树一共有()棵。

2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。

二、生活引入.

上一年,有一位学生问我|:老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢?

1.老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了.

2.板书课题:分数除法应用题。

3、学生读题,理解题意弄清谁是单位1,画出线段图.

4、分层指导。

思考:

(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?

(2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师、杨莹的岁数用含有的式子怎么表示?

5.学生练习,集体订正,说明思路。

三、尝试练习

(一)出示例3

例3.饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的.白兔和黑兔

各有几只?

1.读题,理解题意弄清谁是单位1,画出线段图.

2.小组回答:

(1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?

(2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的只数用含有的式子怎么表示?

3.学生练习。

4.学生打开书本对答。(65页)

解:设白兔的只数为只,黑兔的只数是.

白兔只数+黑兔只数=总只数

答:白兔有15只,黑兔有3只.

4.教师提问:这道题还可以怎样列式?

18(1+)什么意思?

(二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答.

1.商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

2.商店运来的苹果比沙果多60筐,其中沙果的.筐数是苹果的,苹果和沙果各有多少筐?

教师归纳:今天学习的应用题在解答时要根据分率句确定单位1,把单位1设为.

另一个数就是几分之几.根据已知条件列出方程解答.

四、巩固练习.

(一)变式练习

小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?

(二)对比练习

1.李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多少吨?

2.李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?

(三)选择练习

果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?

解:设桃树有棵.

A.B.

C.D.

五、质疑总结.

1.用方程解这类题的关键是什么?

2.用算术方法解答时应注意什么?

六、板书设计

分数除法应用题

解:设老师的年龄是岁.

......老师年龄

42-30=12......杨莹的年龄

答:老师30岁,杨莹12岁.

三年级应用题教案【篇11】

教学内容:教科书第102、103页上的内容,练习二十三的第1-4题。

教学目的:使学生初步了解连除应用题的基本结构及数量关系,通过不同的分析思路进行解答。同时学习解题的检验方法,进一步提高学生的分析和解题能力。

教学重点:了解连除应用题的基本结构及数量关系。

教学难点:了解连除应用题的数量关系,并通过不同的分析思路进行解答。

教学关键:通过不同数量关系、分析思路进行解答。

教学过程

一、复习。

1、根据条件,提出问题进行解答。

(1)三年级同学去参观农业展览,他们平均分成2队,每队分成3组?

(2)三年级同学去参观农业展览。他们每队有3组,每组有15人,?

(3)三年级90个同学去参观农业展览,他们平均分成2队,?

(4)三年级同学去参观农业展览,他们每队有45人,平均分成3组,?

2、三年级同学去参观农业展览,他们平均分成2队,每队分成3组,每组15人,一共有多少人?

教师引导学生小结后,把复习中的连乘应用题改变一个条件和问题,使它成为例2导入新课。

二、新授。

l、教学例2。三年级同学参观农业展览。把90人平均分成2队,每队平均分成3组,每组有多少人?

(1)读题,结合线段图理解题意。

训练学生离开原题目,看线段图复述题意。参观农业展览的三年级同学90人平均分成2队,每队平均分成3组,每组有多少人?

(2)引导学生结合线段图进行思路分析。

①从条件上分析。提问:

(A)题目中哪些条件可以解诀哪些问题?

(B)要求每组有多少人,应先求什么?

学生回答时,教师引导学生得出以下两个方面的内容:

(a)根据已知条件,把90人平均分成2队,可以求出每队有多少人。把求出的每队有(902)人当作条件与已知的每队平均分成3组,就能求出每组有多少人。因此要求每组有多少人,必须先求出每队有多少人。

(b)根据已知条件,平均分成2队,每队有3组,可以求出一共有多少组,把求出的一共有(32)组当作条件与总人数90人,就能求出每组有多少人。因此要求每组有多少人,可以先算一共分成多少组。

从问题上分析。提问:

(A)要求每组有多少人,应需要哪两个条件?

(B)要求出问题,应先求出什么?

教师引导学生讨论回答,得出以下两个方面的内容:

(a)要求每组有多少人?需要每队人数与每队组数这两个条件,而已知每队平均分成3组,所以应先求出每队有多少人。

(b)要求每组有多少人?也可以从总人数与总组数这两个条件出发。已知总人数90人,所以应先求一共分成多少组。

(3)教师小结以上分析方法,与学生共同探讨得出以下两种不同的解答方法。

①解法一:(A)平均每队有多少人?

902=45(人)

(B)平均每组有多少人?

453=15(人)

综合列式:9023

=453

=15(人)答:平均每组15人。

②解法二:(A)一共分了多少组?

32=6(组)

(B)平均每组有多少人?

906=15(人)

综合列式:90(32)

=906

=15(人)答:平均每组15入。

2、指导解题的检验方法。

(1)引导想一想:这道题除了用一种解法检验另一种解法以外,还可以怎样检验?

(2)指导学生用问题与条件交换的方法进行检验。如:

想:已经算出每组有15人,又知每队平均分成3组,可能算出每队的人数。(1)153=45(人)

已经算出每队有45入,已知平均分成2队,可以算出一共有多少人、(2)452=90(人)

这样算得的结果和题里的已知条件相同,说明解答正确。

三、巩固。完成教科书第103页的做一做题目。

四、作业。做练习二十三的第1-4题。

(3)归一应用题

教学内容:教科书第107页、109页上的内容,练习二十四的第1、2、4题。

教学目的:使学生初步掌握正、反归一应用题的数量关系、结构特征及解题关键,学会用综合算式解答正、反归一应用题,逐步培养学生的分析和解答应用题的能力。

教学重点:掌握正、反归一应用题的数量关系、结构特征。

教学难点:用综合算式解答正、反归一应用题。

教学关键:逐步培养学生的分析和解答应用题的能力。

教学过程

一、复习。

1、设问。我校开展读书活动,添置一批书架,要买这样的5个需要多少元?这道题能解答吗?为什么?(要求买5个书架需要多少元,就是求总价,必须知道单价和数量,数量题目已经告诉我们了,单价却没有告诉,所以不能解答。)

2、解答下面各题,并说出题中的数量关系。

(1)书架每个25元,买5个要用多少元?(已知单价和数量求总价,就用单价乘以数量。)

(2)书架每个25元,200元可以买多少个书架?(已知单价和总价求数量,就用总价除以单价。)

3、求下列问题,需要知道哪两个条件?

(1)3小时行多少千米?(每小时行多少千米与行了几小时)

(2)需要几小时完成?(做多少个零件与每小时做多少个)

二、新授。

1、引言。复习题中第1小题书架的单价已经直接告诉我们,现在老师把它改为间接条件,变为两步计算应用题,这就是要学习的新内容例3。

上一阶段,我问学习了连乘,连除应用题,今天学习的例3又不同于这两类应用题的乘、除两步计算应用题。

2、教学例3。学校买3个书架,一共用75元。照这样计算,买5个书架要用多少元?

(1)读题,审题。

①摘录条件和问题:

3个书架共用--75元

5个书架--?元

②训练学生根据摘录的条件和问题复述题意。

结合复述题意说明照这样计算的意思是每个书架按照同样的价钱计算。

(2)画线段图示意并分析题意。

3个书架用75元,用线段图表示。

买5个书架用多少元,要用另一条线段表示:

接着,引导学生看线段图进行分析:

①要求买5个书架要用多少元,必须知道哪两个条件?(要求总价必须知道单价与数量。)

③已知数量买5个,所以应先求什么?(单价)

③怎样求出单价?

议论后,让学生在黑板上的第一条线段图上标出问题。

(3)分步列式解答:

①每个书架多少元?753=25(元)

②5个书架多少元?255=125(元)

答:买5个书架要用125元。

分步列式计算后,让学生在黑板上画的第二条线段图上标出总价。

(4)引导学生列综合算式解答,并说出每步算式表示的意思。

7535

=255

=125(元)

(5)让学生检验计算结果是否正确。

3、练习:第107页上做一做题目。

小结:从以上的例题与做一做题目可以看到,今天学习的解题方法是:根据前两个已知条件用平均分方法来出单位数量,即每份数、(具体地说,例题中的1个书架多少元?做一做题目中的1小时行多少千米?)然后以它为标准(照这样计算)再用乘法求出有几个这样的单位数量是多少。

4、教学例4。学校买3个书架,一共用75元。照这样计算,200元可以买多少个书架?

(1)读题,审题。①摘录条件和问题:

3个书架共用--75元

?个书架--200元

②训练学生根据摘录的条件和问题复述题意。

(2)指导画线段图。

可让学生利用例3的线段图来改画。其中第一条不变,擦去第二条上的分段点;将5个书架的5用?替换,?元的?用200元替换。然后引导学生想,200元买的书架要多一些,所以第二条线段要加长一些,要成为:

(3)引导学生看线段图分析,同时在第一条和第二条的线段图上分别标上所求的问题。

思考:要求200元可以买多少个书架,要先算什么?

①每个书架多少元?753=25(元)

③200元可以买多少个书架?20xx5=8(个)

答:200元可以买8个书架。

用综合列式:注意为什么要加上小括号?(要改变其运算顺序,必须加上小括号。)

200(753)

=20xx5

=8(个)

(4)让学生说说怎样检验计算结果是否正确。

5、引导比较例3、例4的相同点和不同点。

(1)相同点:两道题的前两个已知条件完全相同。解题的第一步都是除法求出一个单位数量是多少?(一个书架多少元。)

(2)不同点:两个例题中的第三个条件和问题不同。例3求出一个单位数量是多少后,用乘法来出所求的问题;例4求出一个单位数量是多少后,用除法求出所求的问题。

三、巩固。完成教科书第108页上的做一做题目。

(1)读题,解析照这样计算。

(2)学生独立做题:先分步列式,再列综合算式。

四、总结。今天,学习的例3、例4及两道做一做题目中,都有一个共同的特点:第一步用除法求出一个单位数量是多少,(如例3、例4的求一个书架多少元)然后以这个单位数量为标准,(即题中的照这样计算)根据题目的要求用乘法或除法求出所要求的问题。有这样解题特征的应用题,通常是叫做归一应用题。

五、作业。做练习二十四的第1、2、4题。

JK251.com延伸阅读

应用题教案模板


应用题训练(二)

一、倍分关系

1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。

3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。

二、百分比问题:

1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。

2、某商品降价12%后的售价为176元,求该商品的原价。

3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。

三、物资分配:

1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。

2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?

四、比例问题:

1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?

2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。

3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?

五、调配问题:

1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。

2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。

六、数字问题:

1、三个连续偶数的和是360,求这三个偶数。

2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。

3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。

七、几何问题:

1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。

2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?

应用题训练(二)

一、倍分关系

1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。

3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。

二、百分比问题:

1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。

2、某商品降价12%后的售价为176元,求该商品的原价。

3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。

三、物资分配:

1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。

2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?

四、比例问题:

1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?

2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。

3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?

五、调配问题:

1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。

2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。

六、数字问题:

1、三个连续偶数的和是360,求这三个偶数。

2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。

3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。

七、几何问题:

1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。

2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?

混合运算应用题 教案精选


整体感知

第一单元内容分为三节,第一节:混合运算;第二节:应用题;第三节:数据整理和求平均数。

混合运算中的三步试题是在第五、六册已学过三步试题的基础上进行教学的。本单元的三步试题,是小括号内含有两级运算的三步式题,通过学习,进一步巩固混合运算的运算顺序。在教学中,要充分利用三步式题与两步计算式题间的联系,强化运算顺序,让学生在掌握运算顺序的基础上独立计算,并逐步提高运算的正确率与运算速度。三步计算文字题是在两步计算文字题的基础的扩展,以提高学生理解数学语言并用算式表达的能力和列综合算式的能力,进一步强化运算顺序。计算三步文字题时,要着重从分析文字叙述人手,先确定最后一步是什么运算,再根据数量关系向前推导,确定出先算什么,再算什么,哪一部分在前,哪一部分在后,以及括号怎样使用等,直到列出综合算式。

应用题是本单元的重点,其中两步计算的连乘和连除应用题与第六册学习过的连乘和连除应用题有所不同,特点是未知量可以随两个量的变化而变化。教学时,要从求未知量与两个已知量的联系人手,分析数量关系,得出两种解题思路,进而列式解答。连乘应用题与连除应用题从解题思路上是互逆的,教学时,应加强两种类型题的联系,通过对比练习强化数量关系,并要求会用两种方法解答,能列综合算式解答。

应用题部分还安排了比较容易解答的三步计算应用题,这是原来两步计算应用题的发展。这部分内容离学生生活实际较近,数量关系简单,学生利用两步应用题的基础,通过类推,可以比较容易掌握三步应用题的分析解答方法。教学时,可以从两步应用题引入教学,让学生利用两步计算应用题的解题思路来分析主要数量关系,从与两步应用题的对比中确定运算步骤。应用题教学中,还要注意培养学生利用线段图表示数量关系的能力。同时,教材还介绍了检验的方法,应注意培养学生养成检验的良好习惯,但检验方法只要求学生初

步掌握,不要求写检验过程。数据整理和求平均数是统计的初步知识。教材在以前渗透统计思想的基础上,从本册开始介绍统计的初步知识。数据整理包括简单的统计表和条形统计图,通过教学,要使学生对数据整理有初步认识,会看简单的统计表和统计图,能把不完整的简单统计表或条形统计图填写完整。求平均数是一种统计方法,要着重让学生理解平均数的含义,注意与平均分的区别,初步学会简单的求平均数据的方法。本单元的统计知识都是最基本的,要求学生理解即可。

在本单元教学中,要充分利用新旧知识间的联系,联系学生的生活实际,通过知识间的迁移、类推、比较、拓展,将新知识点与学生原有知识体系联系起来进行教与学。另外,在教学过程中,教师要充分调动学生自主学习的积极性,放手让学生去探究,要多动手、多讨论、多交流,尽量引导学生自己得出结论。要调动学习有困难学生的学习兴趣,使学生感受到学习数学的乐趣,特别是学习应用题的乐趣。此外,在知识学习的同时,要注意结合教学内容,培养学生的能

力,包括计算能力、分析判断能力、综合思维能力、推理能力及动手操作能力等。

实用教案:应用题教学设计


教案课件是老师需要精心准备的东西,需要大家认真编写每份教案课件。要知道写好了教案课件,老师面对学生时也会心有成竹。一个好的教案课件应该是怎样的?下面,我们为你推荐了实用教案:应用题教学设计,欢迎阅读,希望你能够喜欢并分享!

一、教材分析

本课题教学前,学生已经掌握了乘数是两位数乘法的计算方法,并且初步理解并掌握了乘法的一些常见的数量关系。这些都为本课题内容的学习作了充分的知识铺垫和思路孕伏。教材编入这一部分内容的目的一方面是为了巩固乘数是两位数的乘法的计算,另一方面是使学生掌握连乘应用题的数量关系,学会用两种方法解答应用题。本课题内容是两步以上应用题的重要基础之一,通过这一部分内容的学习,可以使学生加深对数量之间关系的理解,发展学生分析、判断、推理、综合等初步逻辑思维能力,把解应用题的水平提高一步。

本课题教材有层次地显示了"连乘应用题"的知识结构。例题之后,教材引导学生按照两种不同的思路去分析应用题的数量关系。

第一种思路:知道有5箱热水瓶,要求一共可以卖多少元,就要先算每箱热水瓶多少元?

第二种思路:知道每个热水瓶卖11元,要求一共可以卖多少元,就要先算5箱共有多少个热水瓶。通过这个分析过程,使学生明白分析这种问题的关键是弄清要算出题中要求的钱数,先选哪个作为已知条件,哪个条件是未知的,需要先算出来。分步列式后,教材又引导学生分别列出综合算式。然后说明:如果解答正确,那么两种解答方法的结果应该相同。可以用这种方法进行检查。再通过"做一做"和练习二十二中1-3题的练习,进一步帮助学生理解这类题目的数量关系,掌握解答方法。最后通过第4题补充条件的练习帮助学生进一步理解连乘应用题的结构数量关系。

本课内容这样有层次地呈示知识结构,符合学生的认知规律,有利于学生分析、判断、推理、综合,建立连乘应用题的认知结构。

本课题的教学目标

1.使学生理解连乘应用题的数量关系,初步会用两种方法解答,知道用一种解法可以检验另一种解法的正确性。

2.初步学会列综合算式解答连乘应用题。

3.培养学生分析、综合能力,渗透事物间相互联系的观点,培养自觉检验的习惯。

教学重点:

分析数量关系。教学难点:用两种方法解答的思路。

教学关键:

弄清要算出"一共可以卖多少元"先选哪个作为已知条件,哪个条件是未知的。

二、教法和学法

1.运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现"温故而知新"的教学思想。

2.运用直观性原则,采用线段图展示条件和问题,帮助学生理解题意,分析数量关系,确定先算什么,再算什么。

3.创设思维环境,引导学生有序地思维,鼓励学生用语言准确、连贯地表述思维过程。

三、教学步骤

(一)复习准备出示复习题,指名补充条件或问题,再解答出来,然后说出列式的根据。

1.,5箱热水瓶多少元?

2.一个商店运进5箱热水瓶,每箱12个,?

3.一个热水瓶卖11元,,一共卖了多少元?通过上面的复习,使学生进一步掌握一步应用题结构和乘法应用题的数量关系,为学习新课做好铺垫。

(二)教学新课

1.学习例题,分三个层次进行。

第一层次:理解题意。出示例

1,要求学生认真读题,说一说有几个已知条件,问题是什么。再想一想例1与复习题有什么关系。揭示了事物之间的联系,暗示了思考方向。画线段图表示题中的条件和问题。要边提问题边画。(图略)问题:

(1)5箱怎样表示?

(2)每箱12个怎样表示?

(3)每个11元用哪条线段表示?

(4)问题怎样表示?这一步使学生知道怎样理解题意,为分析数量关系打下基矗第二层次,分析数量关系。教师可以引导学生从问题入手,提出要求"一共可以卖多少元?"必须知道哪两个条件?启发学生说出不同的做法。方法之一:方法之二:一共可以卖多少元?每箱多少元有几箱一共可以卖多少元?每个多少元有几个然后教师组织学生讨论第一种分析思路,每箱多少元,有几箱,这两个条件中哪个是已知的,哪个是未知的?应该先算什么?再算什么?学生明白之后,再引导学生讨论第二种分析思路,确定先算什么,再算什么。第三层次,确定算法。引导学生结合分析结果,确定怎样列式计算,并说说为什么这样算?分步列式计算之后,教师要指出,我们采用不同的思路就得到了不同的解题方法,今后学习应用题,还会遇到这种情况,如果我们遇到问题,能从不同角度思考问题,对今后的学习是十分有利的。然后,要求学生将两种解法分别列出综合算式,再比较两种算法的差别,并说明理由。

2.反馈校正。指导学生做教科书99页上的"做一做",要求学生认真审题,用两种方法解答。教师巡视,注意帮助有困难的学生,并给以适当的提示。做完后指名说说思考过程,集体订正。如有问题,及时校正。

3.小结。指出两种解答方法是一样的,我们可以用一种解法的结果来检验另一种解法的结果是不是正确。

并要求学生阅读99页例题下面的一段话。

(三)课堂练习

1.做练习二十二第1题,审题之后提示学生想一想与例题有什么类似的地方,然后要求学生独立完成。做完后集体订正时要先看两种解答方法的结果是否一样,如果不一样,表明列式或计算有错误,要及时检查。同时对有困难的学生要给以帮助和指导。

2.做第2题,要求独立完成,发现问题及时纠正。

3.做第4题。读题后提问,题中有几个已知条件?问题是什么?能不能解答?还需要补充什么条件?(学生在补充条件时,只要不是非常脱离实际,就要采用。)集体订正时,教师让两个补充条件不一样的学生分别说出做题过程,并说明列式的理由。

(四)课后作业

100页第3题

(五)全课小结。(略)

比例应用题教案8篇


根据教育教学要求,老师在开课前需要精心备课,具体就是准备好教案课件,这样才能确保课堂的高质量。教案作为教育管理领域中不可或缺的工具,老师会仔细规划每份教案课件的重难点,才能让学生在课堂上学到更多。那么,怎样的教学课件才是优秀的呢?想了解有关 “比例应用题教案” 的更多信息吗?我们精心整理了详细的资讯,希望对您有所帮助!

比例应用题教案【篇1】

教学内容:苏教版第十二册P51

教学目标:1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生运用正、反比例的意义正确解答应用题。

3、渗透函数的初步思想,建立事物是相互联系的这一辨

证观点,培养学生的判断推理能力和分析能力。

教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。

教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路

教学准备:课件

教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,

揭示意义;巩固练习,考考自己;分层练习,深化新知)

一、铺垫孕伏,建立表象

1、判断下面每题中的两种量成什么比例关系?

○1速度一定,路程和时间()○2路程一定,速度和时间()

○3单价一定,总价和数量()○4每小时耕地公顷数一定,耕地的总公顷数和时间

○5全校学生做操,每行站的人数和站的行数

2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。

指名学生口答,老师板书。

二、创设情境,探究新知

从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)

1、教学例1

(1)出示例1(课件演示)让学生读题

一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

师:你用什么方法解答,给大家介绍一下如何?(自由回答)

(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)

学生解答如下几种:

解法一:14025=705=350千米

解法二:140(52)=1402.5=350千米

如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:

A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?

B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)

C它们有什么关系?(行驶的路程和时间成正比例关系)

D题中照这样的速度就是说一定,那么和成比例关系?因此和的是相等的。

教师板书:速度一定,路程和时间成正比例。

师追问:两次行驶的路程和时间的什么相等(比值相等)

解法三:(用比例方法,怎样列式)

解:设甲乙两地间的总路长X千米

140X或140:2=X:5

252X=1405

X=350

答:甲乙两地之间公路长350千米。

小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。

2、怎样检验这道题做得是否正确呢?

3、变式练习改编题

出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?

4、教学例2(课件演示)

(1)出示例2,学生读题

例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?

提问:(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

学生利用以前的方法解答。

7054=3504=87.5(千米)

(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)

这道题里的路程是一定的,和成比例,所以两次行驶的和的是相等的。

指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。

(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程

4X=705X=705/4X=87.5

答:每小时行驶87.5千米。

师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?B)题中哪一种是固定不变的?从哪里看出来?C)它们有什么关系?D)这道题的一定,和成比例关系,所以两次行驶的

和的是相等的。

(5)变式练习(改编题)

出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?

解:设需要x小时到达

87.5x=705x=4

答:需要4小时到达。

三、归纳总结,揭示意义

想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。

指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)

四、巩固练习,考考自己(课件演示)

请你们按照刚才学习例题的方法去分析,只要列出式子就行。

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

以上1、2两题,学生做完将鼠标移到看看做对了没有进行自我判断。

3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,?

(2)王师傅4小时生产了200个零件,照这样计算?

4、四选一,每题只能选一次

(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)

a.15030=1200xb.30:150=1200:x

c.150x=301200d.150:30=1200:x

(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)

a.608=3xb.60:8=3:x

c.608=(8-3)xd.3:x=8:60

(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)

a.540=480xb.5:40=x:480

c.40x=5480d.40:5=x:480

(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)

a.245=6xb.24:5=6:x

c.(24+6)x=245d.(24+6):x=24:5

(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)

a.375%=2xb.75%:3=2:x

c.75%x=23d.3:75%=2:x

五、分层练习,深化新知

○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x

○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?

1230=(12+6)X

○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?

12028=(120+20)X

六、全课总结,温故知新

解比例应用题的一般步骤是什么?(学生自己用语言叙述)

一般方法和步骤:

1、判断题目中两种相关联的量是成正比例还是反比例;

2、设未知量为x,注意写明计量单位;

3、列出比例式,并解比例式;

4、检查后写出答案;

5、特别注意所得答案是否符合实际。

七、课后反馈,挑战难题

小明受老师委托,编一些比例应用题,于是他前往数学超市选购了一些条件:

计划每天生产30辆、实际每天生产40辆、计划25天完成、实际20天完成、计划一共生产了900辆、实际一共生产了1000辆

小明需要你的帮助,你会怎样编题?

比例应用题教案【篇2】

教学内容:P51-52例1、例2,正、反比例应用题

教学目的:认识正、反比例应用题的特点,理解掌握这种应用题的解题思路和解题方法,能正确解答,发展学生的思维。

教学过程:

一、复习

判断下面的量各成什么比例

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

二、导入新课

说数量关系,判断成什么比例,列出等式。

一台抽水机5小时抽水40立方米,照这样计算,9小时可抽水X立方米。

三、学习新课

1、学例1

(1)将导入题中的X立方米改成多少立方米?

(2)讨论:怎样用比例的知识来解这道题止的导入题的想法能给我们启示吗?

(3)试一试:学生练习讲解例题,教师根据情况作点拨。

(4)小结:说一说用正比例知识解答这道应用题要怎样想?怎样做?

2、数学想一想

放手让学生自己做,并说说列等式的依据。

3、教学例2

(1)出示例2,读题

(2)讨论并试一试:能仿照例1的解题过程用比例的知识解答例2吗?

(3)说一说:将自己的解法及想法告诉大家。

教师作点拨

4、学习想一想

独立练习后班次讲

5、小结:解题思路

(2)判断比例关系

(3)找出对应数值

(4)列出等式解答

追问:你认为解题关键是什么?

四、巩固练习

1、做练一练

2、练习十第1题

评讲时比较异同

五、课堂小结:

这节课你学习了哪些内容?你认为哪些是重点?

六、作业

P5354第2题,第10题。

七、课后作业

P53第3题

比例应用题教案【篇3】

教学内容:课本第91页例4;练一练;《作业本》第39页。

教学目标:进一步巩固反比例的意义,掌握用反比例方法解应用题的方法和步骤。

教学重点:学会用反比例解归总应用题

教学难点:判断题中哪两个量是成反比例的量,列出等积式。

教学过程:

一、复习准备:

1、三角形面积一定,底和高成什么比例?为什么?

2、甲、乙两种量,只要它们相对应的数的积一定,这两种量一定成反比例,对吗?举例说明?

二、新授:

1、教学例4。

例4:一艘货轮每小时航行20千米,6小时可以到达目的地。如果要5小时到达,每小时航行多少千米?

观察:

⑴、题中有哪几个量?

⑵、从题中可见哪个数量是一定的?

分析:

想:因为速度时间=路程,由于4小时与3小时航行路程相同,可确定行驶的速度与时间成反比例,所以两次航行与时间的乘积相等。

解:设每小时需航行X千米。

5X=206

X=2065=24(千米)

X=24

(检验)

答:每小时需盘航行24千米。

2、改条件:5小时到达为每小时行15千米,要求几小时到达应怎样列式?

3、试一试。

(1)甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

(2)同学们做操,每行站30人,正好站12行,如果每行站36人,可以站多少行?

分析:⑴、从已知数量可知,哪个量是一定的?

⑵、可利用比例解题,也可利用一般方法解题?

三、巩固练习:练一练。

四、小结:

今天学习了什么?

五、《作业本》p39.

比例应用题教案【篇4】

教学目的

1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.

3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.

教学重点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学难点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学过程

一、复习准备.

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.

(2)总价一定,每件物品的价格和所买的数量.

(3)小朋友的年龄与身高.

(4)正方体每一个面的面积和正方体的表面积.

(5)被减数一定,减数和差.

谈话引入:我们今天运用正反比例的知识来解决实际问题.

(板书:用比例知识解应用题)

二、探讨新知.

(一)教学例5(用比例解答下题)

修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?

1.学生读题,独立解答.

2.学生反馈:

3.分析:

(1)为什么需要用正比例解答?

(2)12和要求的天数之间有什么关系?

4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.

(二)反馈.

1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈.

1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?

2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?

3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?

4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?

四、课堂总结.

通过这堂课的学习,你有什么收获?

比例应用题教案【篇5】

教学内容:教材第115页正、反比例的意义和正、反比例应用题、练一练,练习二十二第1、2题。

教学要求:

1、使学生更清楚地认识正比例和反比例关系的特征,能正确判断成正比例关系或反比例关系的量。

2、使学生进一步掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题,进一步培养学生分析、推理和判断等思维能力。

教学过程:

一、揭示课题

这节课,复习正、反比例关系和正、反比例应用题。通过复习,要进一步认识正、反比例的意义,掌握正、反比例应用题的数量关系、解题思路和解题方法,能更正确地判断成正、反比例关系的量,正确地解答正、反比例应用题。

二、复习正、反比例的意义。

1、复习正、反比例的意义。

提问:如果用x和y表示成比例关系的两种相关联的量,那么,什么情况下成正比例关系,什么情况下成反比例关系?

想一想,成正比例关系和成反比例关系的两种量有什么相同点和不同点?

指出:正比例关系和反比例关系的相同点是:都有相关联的两种量,一种量随着另一种量的变化而变化。不同点是:成正比例关系的两种量中相对应数值的比值一定,成反比例关系的两种量中相对应数值的积一定。

2、判断正、反比例关系。

(1)做练一练第1题。

指名学生口答。

提问:判断是不是成比例和成什么比例的根据是什么?

(2)做练习二十二第1题。

指名学生口答。

3、判断x和y这两种量成什么关系,为什么?

指出:我们根据正、反比例关系的特点,可以判断两种相关联的量成什么比例。如果一道题里两种量成正比例或反比例关系,我们就可以应用比例的知识,根据比值相等或者积相等的数量关系来解答。

三、复习正、反比例应用题。

1、做练一练第2题第1题。

让学生读题,判断两种量成什么比例。

提问:这道题成正比例关系,要根据什么相等来列式解答?

指名一人板演,其余学生做在练习本上。

集体订正,突出列式的等量关系是比值一定。

做练一练第2题第(2)题。

指名一人板演,其余学生做在练习本上。

集体订正。

提问:这道题是怎样想的?成反比例关系的应用题,要根据什么来列式解答?

3、启发学生思考:

你认为正比例应用题实际上是我们过去学过的哪一类应用题?反比例应用题是哪一类应用题?

怎样解答正、反比例应用题?

指出:用比例知识解答应用题,要先判断两种相关联的量成什么比例。如果成正比例,根据比值相等列等式解答;如果成反比例,根据积相等列等式解答。

四、课堂作业

练习二十二第2题

比例应用题教案【篇6】

教学内容:P53~54、第4~13题,思考题,正、反比例应用题的练习。

教学目的:进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。

教学过程:

一、基本训练

P53第4题,口答并说明理由

二、基本题练习

1、做练习十第5题

2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?

用比例的知识怎样解答呢,请大家自己做一做。

评讲:说一说是怎样想的?

(板书:速度时间=路程(一定)=反比例

=正比例

提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?

3、练习小结:(略)

三、综合练习

3、练习十第11题

启发学生用几种方法解答

4、做练习十第13题

(1)提问:这是一道什么应用题?可以怎样列式解答?

(2)把树苗总数看做单位1,成活棵数是94%,你还能用比例知识解答吗?

四、讲解思考题

引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?

五、课堂小结:

通过本课的练习,你进一步明确了哪些内容?

六、作业:

第8、9、10题

七、课后作业:

第6、7、12题

比例应用题教案【篇7】

教材分析:

正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例联系,以及列出比例式所需的相等联系,即行驶的路程和时间成正比例联系,所以两次行的路程和时间的比是相等的然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生想一想,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

正比例应用题教学设计

三元坊小学梁智丹

教学内容:人教版23页至24页例1以及相应的做一做。

教学目标:

1、掌握用正比例的方法解答相关应用题;

2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,

从而加深对正比例意义的理解;

3、培养学生分析问题、解决问题的能力;

4发展学生综合运用知识解决简单实际问题的能力。

教学重点:掌握用正比例的方法解答应用题

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、谈话导入:

1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?

2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。

二、新课教学:

先来研究这样一个问题。

1、出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、分析解答应用题

(1)请一位同学读一读题目

(2)这道题要求什么?已知什么条件?

(3)能不能用以前学过的方法解答?

(4)让学生自己解答,边订正边板书:

14025

=705

=350(千米)

答:________________。

3、激励引新

这两种方法都合理,还可以有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、探讨新知

1、提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1)题目中相关联的两种量是________和________。

(2)________必定,_________和_________成_______比例联系。

(3)______行驶的_____和_____的________相等。

2、学生自学例题后小组讨论。

3、组间交流:小组代表把讨论结果在班内交流

4、学生尝试解答后评价(指名学生板演)

5、怎样检验?把检验过程写出来。

6、概括总结

(1)

用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就必定要用比例的方法解。

(2)明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1.分析判断

2.找出列比例式所需的相等联系

3.设未知数列等式

4.求解

5.检验写答语

[NextPage]

四、练习提高

1、基本练习

(1)例题改编

①如果把这道题的第三个和问题改成:已知公路长350千米,需要行驶多少小时?该怎样解答?

②让学生解答改编后的应用题,集体订正。

③小结:比较一下改编后的题和例1有什么联系和区别?

例1的条件和问题以后,题中成正比例的联系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:

140/2=350/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

2、变式练习

3、理论运用

(1)汇报数据:刚才我们上课时提到怎教材分析:

正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例联系,以及列出比例式所需的相等联系,即行驶的路程和时间成正比例联系,所以两次行的路程和时间的比是相等的然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生想一想,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

比例应用题教案【篇8】

教学目标:

1、掌握用正比例的方法解答相关应用题;

2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,

从而加深对正比例意义的理解;

3、培养学生分析问题、解决问题的能力;

4发展学生综合运用知识解决简单实际问题的能力。

教学重点:掌握用正比例的方法解答应用题

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、谈话导入:

1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?

2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。

二、新课教学:

先来研究这样一个问题。

1、出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、分析解答应用题

(1)请一位同学读一读题目

(2)这道题要求什么?已知什么条件?

(3)能不能用以前学过的方法解答?

(4)让学生自己解答,边订正边板书:

14025

=705

=350(千米)

答:________________。

3、激励引新

这两种方法都合理,还可以有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、探讨新知

1、提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1)题目中相关联的两种量是________和________。

(2)________必定,_________和_________成_______比例联系。

(3)______行驶的_____和_____的________相等。

2、学生自学例题后小组讨论。

3、组间交流:小组代表把讨论结果在班内交流

4、学生尝试解答后评价(指名学生板演)

5、怎样检验?把检验过程写出来。

6、概括总结

(1)

用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就必定要用比例的方法解。

(2)明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1.分析判断

2.找出列比例式所需的相等联系

3.设未知数列等式

4.求解

5.检验写答语

四、练习提高

1、基本练习

(1)例题改编

①如果把这道题的第三个和问题改成:已知公路长350千米,需要行驶多少小时?该怎样解答?

②让学生解答改编后的应用题,集体订正。

③小结:比较一下改编后的题和例1有什么联系和区别?

例1的条件和问题以后,题中成正比例的联系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:

140/2=350/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

2、变式练习

3、理论运用

(1)汇报数据:刚才我们上课时提到怎样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。

(2)能用这些数据编一道正比例应用题吗?

(3)小组合作编题

五、总结

今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?

样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。

(2)能用这些数据编一道正比例应用题吗?

(3)小组合作编题

五、总结

今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?

分数应用题 优秀教案推荐


【教学内容】p98页练习十九6—11。【教学要求】1、复习分数应用题的结构特征和解题规律,能正确运用单位“1”的量×分率=分率的对应量。2、能正确分析分率句,把握分数应用题的解题的关键。3、能用方程解答分数除法应用题。【教学重点】分数应用题。【教学难点】正确画图分析分率句。【教学过程】一、分析分率句。先说出下面各题里把哪个数量看作单位“1”,再把数量关系式写完整。1、苹果的重量是梨的—讲解分析方法:⑴找到分率;⑵分析分率是“谁”的几分之几,即把“谁”看作单位“1”;⑶找分率的对应量;⑷正确写分数的数量关系;⑸在此基础上进行灵活地变化。如上例:“1”梨—苹果重量所以,梨的重量×—=苹果重量梨×(1+—)=梨和苹果一共的重量梨×(1-—)=梨比苹果多的重量。2、实际烧煤量比计划烧煤量节约了—。分析:节约了—是节约了谁的—?从“比”字入手“比”后面的量作标准的即为单位“1”,也就是节约了计划烧煤量的—,因此:“1”计划烧煤量—实际比计划节约的烧煤量。计划烧煤量×—=实际比计划节约的烧煤量计划烧煤量×(1-—)=实际烧煤量3、六年级学生出勤率是98%。分析:理解出勤率的含义,“率”通常指百分率出勤人数—————×100%=出勤率应出勤人数“1”应出勤人数98%出勤人数应出勤人数×98%=出勤人数应出勤人数×(1-98%)=缺席人数注意:计算的如“含水率、出勤率、优秀率、成活率”等,一般都指部分数占总数的百分之几,因此这里的百分率应小于1(即100%)。二、练习。1、一根铁丝长60米,一根铜丝长80米,铁丝的长度是铜丝的几分之几?铜丝比铁丝长几分之几?2、⑴丰华农场种玉米120公顷,种小麦的面积是玉米的—,种小麦多少公顷?⑵丰华农场种玉米120公顷,是种小麦面积的1—倍,种小麦多少公顷?⑶先改变上面两题中的第二个已知条件,使它们分别成为一道两步计算应用题,再解答。三、作业。练习十九6—11。

本文网址://m.jk251.com/jiaoan/109029.html

相关文章
最新更新

热门标签