2.1比零小的数(2)
教学目标:
1.乐于接受数学信息,能用正、负数表示具有相反意义的量
2.借助生活中的实例理解有理数的意义,通过将有理数分类,感受分类的思想
重点:能应用正负数表示具有相反意义的量
难点:运用有理数表示实际生活问题中的量
教学设计:
1.情境创设
情境(1):课本第15页实例
操作指导:投影出示日常生活中一些表示具有相反意义的量的实例,让学生感受用正负数来描述它们所带来的便捷
情境(2):学生自己举一些生活中表示具有相反意义的量的实例
2.探索活动
(1).由课本中"零上的气温用正数表示,零下的气温用负数表示"入手,指导学生思考日常生活中还有那些意义相反的事例.又如何用正负数表示这些事例的量.这里可设置一些问题引导学生讨论.如:
①.零上温度用正数表示,零下温度用负数表示.你能用正负数表示收入与支出、增产与减产等问题中的相关量吗?
②.如果某次智力竞赛加100分表示为+100分,则扣50分如何表示?-200分表示什么意思?
⑵.课本第16页例2
⑶.有理数的概念
这是学生第一次接触分类,要让学生初步感受分类思想.让学生感受分类的思想及方法以及有理数分类的另一方法:有理数可以分"正有理数,负有理数,0"
(让学生模仿课本上的形式写出相应的分类表)
⑷.课本第16页"练一练"
3.关于计算器教学
由于计算器型号不一定一致,因此负数的输入方法也可能略有不同,可以在课内统一指导学生操作,也可以在课外指导学生阅读计算器使用说明书,让学生自行操作
4.小结
各小组互相讨论总结,得出本节课的主要内容:如何用正、负数表示一对具有相反意义的量;有理数的分类
5.布置作业:课本p17习题2.1第3.4.5题
建湖县建阳中学张仁勇
上一篇:第二章有理数2.1比零小的数(1)
下一篇:2.1比0小的数(一)教学设计
一、教学目标
1.使学生理解并掌握分式的概念,了解有理式的概念;
2.使学生能够求出分式有意义的条件;
3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;
4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.
二、重点、难点、疑点及解决办法
1.教学重点和难点明确分式的分母不为零.
2.疑点及解决办法通过类比分数的意义,加强对分式意义的理解.
三、教学过程
【新课引入】
前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)
【新课】
1.分式的定义
(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(2)由学生举几个分式的例子.
(3)学生小结分式的概念中应注意的问题.
①分母中含有字母.
②如同分数一样,分式的分母不能为零.
(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]
2.有理式的分类
请学生类比有理数的分类为有理式分类:
例1当取何值时,下列分式有意义?
(1);
解:由分母得.
∴当时,原分式有意义.
(2);
解:由分母得.
∴当时,原分式有意义.
(3);
解:∵恒成立,
∴取一切实数时,原分式都有意义.
(4).
解:由分母得.
∴当且时,原分式有意义.
思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?
例2当取何值时,下列分式的值为零?
(1);
解:由分子得.
而当时,分母.
∴当时,原分式值为零.
小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.
(2);
解:由分子得.
而当时,分母,分式无意义.
当时,分母.
∴当时,原分式值为零.
(3);
解:由分子得.
而当时,分母.
当时,分母.
∴当或时,原分式值都为零.
(4).
解:由分子得.
而当时,,分式无意义.
∴没有使原分式的值为零的的值,即原分式值不可能为零.
(四)总结、扩展
1.分式与分数的区别.
2.分式何时有意义?
3.分式何时值为零?
(五)随堂练习
1.填空题:
(1)当时,分式的值为零
(2)当时,分式的值为零
(3)当时,分式的值为零
2.教材p55中1、2、3.
八、布置作业
教材p56中a组3、4;b组(1)、(2)、(3).
九、板书设计
课题例1
1.定义例2
2.有理式分类
课时教案
课题:课题2燃料和热量
一、教学目标(知识目标、能力目标、情意目标)
⒈知识与技能:⑴知道化石燃料是人类重要的自然资源,对人类生活起着重要作用;同时,知道石油炼制出的几种主要产品及其用途。
⑵了解化学反应中的能量变化,认识燃料充分燃烧的重要性。
⒉过程与方法:通过一些探究活动,进一步认识与体验科学探究的过程。
⒊情感态度与价值观:了解化石燃料的不可再生性,认识合理开采和节约使用化石燃料的重要性。
二、教学重点⒈煤、石油、天然气三大化石燃料
⒉化学变化中能量的变化
难点⒈燃料充分燃烧的条件和意义
⒉化学变化中能量的变化
三、教学模式(或方法):探究活动与教师讲述结合
四、教学过程
复习课题1燃烧的条件⑴可燃物
⑵氧气(或空气)
⑶温度要达到着火点
教师强调可燃物有许多是燃料,引导学生阅读课本上第一小节,引出三大化石燃料——煤、石油和天然气。
一、煤、石油和天然气
煤:是非常复杂的混合物,主要由碳元素组成,还含有氮、硫等元素,讨论回答课本上有关煤的知识中的探究问题。
教师小结。
石油:是非常复杂的混合物,主要由碳、氢元素组成,通过一些方法可以炼制得到许多产品,如汽油、煤油、柴油、石蜡等;讨论回答课本上有关石油的知识中的探究问题。
教师小结。
天然气:主要成分是甲烷,化学式为ch4,
做甲烷燃烧的探究实验,提醒学生一定要检验气体的纯度,让学生观察现象,并根据现象判断出甲烷燃烧的产物是水和二氧化碳,并根据该实验推断出甲烷中含有碳元素和氢元素。
介绍“可燃冰”
二、燃烧中能量的变化
做探究实验——镁带和稀盐酸的反应。
现象:有气泡生成,试管壁发烫。
结论:镁带和稀盐酸的反应时要放出热量。
有的化学反应放热,如物质的燃烧、金属和酸的反应
有的则吸热,如碳和二氧化碳的反应、木炭还原氧化铜等。
要使燃料充分燃烧的条件:
一是要有充足的氧气
二是要和空气有足够大的接触面积。
教师小结:⑴知道化石燃料是人类重要的自然资源,对人类生活起着重要作用;同时,知道石油炼制出的几种主要产品及其用途。
⑵了解化学反应中的能量变化,认识燃料充分燃烧的重要性。
一、教学目标
1.掌握矩形的定义,知道矩形与平行四边形的关系.
2.掌握矩形的性质定理.
3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.
4.通过性质的学习,体会矩形的应用美.
二、教法设计
观察、启发、总结、提高,类比探讨,讨论分析,启发式.
三、重点、难点及解决办法
1.教学重点:矩形的性质及其推论.
2.教学难点:矩形的本质属性及性质定理的综合应用.
四、课时安排
1课时
五、教具学具准备
教具(一个活动的平行四边形),投影仪及胶片,常用画图工具
六、师生互动活动设计
教具演示、创设情境,观察猜想,推理论证
七、教学步骤
【复习提问】
什么叫平行四边形?它和四边形有什么区别?
【引入新课】
我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形——矩形(写出课题).
【讲解新课】
制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).
矩形的性质:
既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.
继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.
矩形性质定理1:矩形的四个角都是直角.
矩形性质定理2:矩形对角线相等.
由矩形性质定理2我们可以得到
推论:直角三角形斜边上的中线等于斜边的一半.
(这实际上是△的一个重要性质,即△斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)
例1已知如图1矩形的两条对角线相交于点,,,求矩形对角线的长.(按教材的格式)
(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)
【总结、扩展】
1.小结:(用投影打出)
(1)矩形、平行四边形、四边形从属关系如图.
(2)矩形性质.
1.具有平行四边形的所有性质.
2.特有性质:四个角都是直角,对角线相等.
3.思考题:已知如图,是矩形对角线交点,平分,,求的度数
八、布置作业
教材P158中2、5,P195中7.
九、板书设计
十、随堂练习
教材P146中1、2、3、4
矩形教学示例第二课时
一、教学目标
1.掌握矩形的性质定理.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
二、教法设计
观察、启发、总结、提高,类比探讨,讨论分析,启发式.
三、重点、难点及解决办法
1.教学重点:矩形的判定.
2.教学难点:矩形的判定及性质的综合应用.
四、课时安排
1课时
五、教具学具准备
教具(一个活动的平行四边形),投影仪及胶片,常用画图工具
六、师生互动活动设计
教具演示、创设情境,观察猜想,推理论证
七、教学步骤
【复习提问】
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
【引入新课】
1.矩形的判定.
2.矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.
【讲解新课】
1.矩形判定定理
矩形判定定理1:有三个角是直角的四边形是矩形.
矩形判定定理2:对角钱相等的平行四边形是矩形.
分析判定定理1
教师问:四边形内角和等于多少度?根据四边形内角和定理,可知第四个角是多少度?最后由定义知此四边形为矩形.
分析判定定理2
教师问:如图1,这个定理有几个条件?学生答;有两个.(1)是平行四边形,(2)两条对角线相等.
教师问:据此只需征什么就可以了?
学生答:只要证一个角是直角就可以了.
引导学生完成证明.
教师问:两条对角线相等的四边形是不是矩形?
学生答:不是.
教师问:为什么?
学生答:因为两条对角线相等,推不出四边形是平行四边形.
归纳矩形判定方法(由学生小结):
(1)一个角是直角的平行四边形.
(2)对角线相等的平行四边形.
(3)有三个角是直角的四边形.
2.矩形判定方法的实际应用
除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.
3.矩形知识的综合应用
例2已知的对角线,相交于,△是等边三角形,,求这个平行四边形的面积(图2).
分析解题思路:
(1)先判定为矩形.
(2)求出△的直角边的长.
(3)计算.
【总结、扩展】
1.小结
(1)矩形的判定方法l、2都是有两个条件:
①是平行四边形,②有一个角是直角或对角线相等.
判定方法3的两个条件是:①是四边形,②有三个直角.
(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.
2.思考题:已知:如图3中,以为斜边作△,又为直角.求证:四边形是矩形.
八、布置作业
教材P158中3、4,P159中13(1);P196中8
九、板书设计
矩形(二)
矩形的判定小结
判定定理1:……例2……(1)……
判定定理2:……(2)……
十、随堂练习
教材P148中1、2
补充
1.若是四边形对角线的交点,且,则四边形是()
A.平行四边形B.矩形C.梯形D.以上答案均不对
2.已知:在四边形中,,且
求证:四边形是矩形
3.已知中,,,,
求证:四边形是矩形
本文网址:http://m.jk251.com/jiaoan/13245.html
上一篇:煤石油的教学方案
下一篇:关于盐类水解[时]的高中教案推荐