【教学目标】
1、通过数学活动使学生共同探索有理数加法、减法法则,从而理解并掌握有理数的加法、减法的法则以及有理数的加减混合运算;
2、能熟练进行有理数的加减混合运算。
【教学重点】在有理数的范围内加法交换律、结合律的应用与简化计算。
【教学难点】应用有理数的加法、减法及运算律解决实际问题。
【教学过程】
『问题情境』
先看一个例子:
(-8)-(-10)+(-6)-(+4)
这是一道有理数的加减混合运算题,你会做吗?请同学们思考练习。
『自主探究』
全班交流:老师适时引导、指导、边讨论边总结如下:
(1)上题可以按照运算顺序,从左到右逐一加以计算;
(2)上题通常也可以用有理数减法法则,把它改写:
(-8)+(+10)+(-6)+(-4)
统一为只有加法运算的和式.把加减法统一写成加法的式子,有时也叫做代数和。
(3)在一个和式里,通常把各个加数的括号和它前面的加号,省略不写.如上式可写成省略加号的和的形式:-8+10-6-4
(象这样的式子仍看作和式,读作“负8、正10、负6、负4的和”,按运算意义也可读作“负8加10减6减4”,在这里把除第一个数外的数字前面的符号都可看作为运算符号,又可看作性质符号,这样,性质符号与运算符号既有区别,又有联系,有时可以互相转化。)
『例题讲评』
例1、计算:
(1)2+5-8;(2)14-(-12)+(-25)-17
(3)-3-5+4;(4)-26+43-24+13-46
例2、巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了7km,休息之后,继续向东维护了3km;然后折返向西巡视了11.5km,此时他在住地的什么方向?与驻地的距离是多少?
2.4有理数的加法和减法(4)----随堂练习
评价_______________
1.把下列各式写成省略加号的和的形式,并说出它们的两种读法。
(1)(-12)-(+8)+(-6)-(-5);
(2)(+3.7)-(-2.1)-1.8+(-2.6)
2.把6-(-9)+(-15)-(-3)写成省略加号的和的形式,并计算。
3.计算:
(1)7-(-4)+(-5)(2)-5-(+3)+(-9)-(-7)+
(3)(-10)-(+12)-(-36)+(-23)(4)
(5)(+16)+(-8)-|-3|+|+8|-|-12|-(+5)(6)-21-12+33+12-67
(7)5.4-2.3+1.5-4.2(8)
通过我们的反复打磨和修改,我们呈现出最新的“有理数的乘法教案”,相信这一页上有一些你之前不知道的内容。教案和课件是老师们必不可少的工具,所以在编写时需要花费一定的时间。教案是教学科研的重要资源。
我说课的内容是义务教育课程标准实验教科书(人教版)《数学》七年级上册第一章第四节《有理数的乘法》的第一课时,我将从教材分析、教学目标、教学方法、学法指导、教学程序设计等五个部分进行阐述。
一、教材分析
1、教材的地位和作用
有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上。因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。由于有理数的乘法是有理数最基本的运算之一,因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。
2、教材的重点和难点
本节课的重点是有理数的乘法法则。这是因为:
(1)要熟练地进行有理数的乘法运算,就得深刻理解运算法则,对法则理解得越深,运算才能掌握得越好。
(2)学好有理数的乘法法则,对将要学习的有理数的除法以及其他的运算都是至关重要的。
本节课的难点是有理数乘法中的符号法则。由于初一年级的学生刚接触负数,对负数的意义理解不深,因此,与小学算术数的乘法比较,学生对含有负数特别是两个负数相乘的意义的理解,思维角度变化较大,思维强度也增大。
二、教学目标
1、知识与技能:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2、过程与方法:通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。
3、情感与态度:激发学生学习数学的兴趣,培养学生勇于探索新知的精神。
三、教学方法
本节课的教学是以启发式教学为主,通过教师的引导,启发调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则。它符合教学论中的自觉性和积极性。并有利于培养学生勇于探索新知的创新精神。
四、学法指导
通过本节课的教学,教师引导学生学会观察、比较、归纳等学习方法。让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则,学会自主探究、合作的学习方式,培养学生良好的学习品质。
五、教学程序设计
本节课我的设计理念是:遵循“教学、学习、研究”同步协调的原则,依据教材,恰当地创设情境,激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并创造性地解决问题,教师为学生构建开放的学习环境引导学生体验探索、研究的过程。让学生在探究合作交流的过程中,展示思维过程。
以下我将对每一教学环节分别教什么怎么教,为什么这么教,教学目标的控制等方面加以说明:
(一)创设情境、引入新课
教师利用课件出示问题,学生根据教师交给的问题,独立思考并解决问题,为今后讨论做准备。提供这一组问题,目的在于前两个学段学过求几个相同加数的和用乘法,沿用这个规定,就可以得到(—2)+(—2)=(—2)×2;(—2)+(—2)+(—2)=(—2)×3,……于是就得到我们前两个学段没有学过的负数与正数相乘的乘法,从而引入新课,使学生思路清晰。
(二)观察——猜想
这一教学环节首先让学生观察算式感知两个有理数相乘的三种情况,再以如下问题使学生初步感悟两个有理数相乘的符号法则,最后猜想出有理数的陈法则。
意图是以学生已有知识结构为基础,由一系列算式,猜想出有理数乘法法则,培养学生观察、猜想、归纳、概括的能力。
(三)探究——验证
教师启发学生“为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正”。学生根据教师给出的蜗牛爬行的例子结合问题(1)——(4)先独立思考,然后合作探究,互相启发,互相学习,激发灵感,并得出算式。意图是利用数轴通过蜗牛运动的例子验证有理数乘法法则学生容易接受,并有意识地引导学生主动去探索,从而充分验证了学生的猜想。
(四)比较——提炼
在学生探究的基础上让同学们完成下面的填空题,从而使学生更进一步明确了两个有理数相乘的符号规律,通过观察比较使学生用自己的语言归纳提炼出法则,有利于培养学生观察、比较、分析和概括的思维能力。
(五)分析法则、掌握实质
教师设计以下例子目的使学生归纳出有理数乘法法则步骤,初步培养学生的化归意识。设计抢答题是想让学生熟悉法则,掌握法则实质。
(六)应用——巩固:
例1和例2的教学通过学生板演来完成,再由师生共同评价与完善。例1是运用乘法法则进行运算的基本题,而且一举两得,不仅让学生练习了有理数的乘法,而且得出了有理数范围内倒数的定义;例2是说明有理数乘法的意义,即在什么情况下用乘法解决问题。通过课堂练习不仅巩固了课堂所学的知识由可以使学生体会学习数学成功的喜悦。
(七)小结——反思这一环节我设计了三个问题:
1、本节课你学到了什么?
2、本节课你有何收获?
3、你还有什么疑问?
目的是使学生学会反思回顾总结梳理课堂所学知识完善认知结构,发挥学生的主体作用,提高他们的表达能力。
(八)作业——延展
为了满足不同的学生需要本节课后作业设置了必做题和选做题,通过作业不仅巩固有理数乘法的运算而且也为下节课将要学习的几个不等于零的数乘法和有理数的乘方做铺垫设下伏笔。进一步体现《数学课程标准》所要求的人人都能获得必需的数学、不同的人在数学上得到不同的发展。
本课时的主要内容是有理数的乘法运算,教材首先利用数轴通过蜗牛运动的例子引入有理数乘法法则,目的在于使学生对有理数的乘法法则的合理性有所认识和了解,然后通过例子说明如何运用法则进行计算。
学生通过小学阶段的学习,已经熟悉和掌握了正数及0的乘法运算,上初中后,学习有理数的乘法之前,又相继学习了有理数的加法、减法。有理数的乘法运算与小学学过的乘法运算不同之处是多了符号法则,确定符号之后就化归成了小学的乘法运算。学习有理数的乘法是进一步学习有理数的除法、乘方及有理数的混合运算的基础。
本课时的教学目标确定如下:
1、知识与技能目标:理解有理数的乘法和倒数的意义,掌握有理数乘法法则,能熟练运用有理数乘法法则进行乘法运算。
2、过程与方法目标:通过对实际问题的观察、分析、操作以及归纳概括等活动,经历对有理数乘法法则的探索过程,培养学生的分析概括能力。
3、情感态度与价值观:激发学生学习兴趣,培养学生数形结合、化归和分类讨论思想及合作交流、勇于探索的精神。
1、教学重点:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2、教学难点:有理数乘法中的符号法则、认识和了解有理数乘法法则规定的'合理性。
要实现上述教学目标、突出重点、突破难点,传统的教学方式和学习方式已难以实现的。针对刚迈入初中阶段的学生年龄特点和心理特征,以及他们现有的认知水平,我采用“情境――探究――概括――应用――拓展”的教学模式,用启发式教学,利用“班班通”教学设施,指导学生自主探究、交流合作的学习。改变学生被动接受的学习方式,通过多媒体课件辅助教学,营造可探索的环境,引导学生积极参与,掌握规律,主动地获取新知识。充分调动学生学习积极性。它符合教学论中的自觉性和积极性,并有利于培养学生勇于探索新知的创新精神。
为实现本课时的教学目标,我设计了以下几个教学环节:
首先播放歌曲《蜗牛与黄鹂鸟》,引入新课,然后出示《蜗牛爬行》这样一个问题情境,设置了4个问题,这充分利用了数形结合的教学手段,激发学生探究新知的兴趣。设计意图是充分利用“班班通”教学设施,让学生体验数学与现实生活的密切联系,提高学生学习数学的兴趣和参与程度,同时为学生研究乘法法则创设探索的情境。
如果说上一环节解决了如何引出的问题,那么本环节将解决如何认识的问题。本环节共设置3个教学活动:
先让学生以小组为单位用5分钟时间去充分讨论研究,然后借助多媒体课件,师生共同得出每个问题的算式及结果;在解决上述问题的基础上,再引导学生探究蜗牛不动的情况,以得出有理数同0相乘的情况。设计意图是培养学生的自主探究、交流合作的意识。解决(1)一(4)问题能使学生对乘法法则规定的合理性有所认识和了解,是本节课的难点之一,“班班通”教学设施充分展示了其突破难点,解决问题的。强大辅助教学作用。
得出算式后,组织学生通过交流讨论的方式,比较四个算式(+2)×(+3)=(+6)①、(―2)×(+3)=(―6)②、(+2)×(―3)=(―6)③、(―2)×(―3)=(+6)④两相乘的情况,发现两个因数相乘的积随两个因数符号的变化规律及积的绝对值与各乘数的绝对值的关系,然后归纳有理数的乘法法则。这是本节课的重点,要充分利用多媒体的展示辅助功能进行突破,在学生充分发表意见的基础上,总结出有理数的乘法法则并注意说明:乘法法则的形成,考虑了数学本身的继承与发展,保持了运算律,扩大了运算中数的范围。这个活动的设计意图是培养交流合作、观察与概括能力,感受归纳方法和分类讨论与化归思想。
得出有理数的乘法法则后,通过多媒体指导学生严格应用法则计算(―5)×(―3)和(―7)×4,设计目的是使学生归纳出有理数乘法法则步骤:先确定积的符号,再确定积的绝对值,让学生进一步熟悉法则,掌握法则实质,初步培养学生的化归意识。
得出有理数乘法法则后,接下来借助多媒体进行例1和例2的教学。先让学生独立完成,然后集体交流和订正,注意强调有理数乘法的计算步骤。例1的目的是运用乘法法则进行运算,而且一举两得,不仅让学生练习了有理数的乘法,而且得出了有理数范围内倒数的定义;例2的目的是用有理数乘法解决问题。
这个环节用多媒体出示两组课堂练习:第一组是教材第30页“练习”第1、2、3题,这是一组基础练习,其中第1和第3题采用抢答形式,帮助学生通过练习进一步理解和巩固有理数乘法意义,使学生能熟练运用新知解决问题,;第二组是自编题和备用题,这是拓展提高练习,以进一步提高学生的综合运用能力,使练习显得有层次。这个环节运用多媒体课件可以加大课堂训练量,使学生得到充分的训练。
2、本节课你有何收获?
3、你还有什么疑问?这几个问题,目的是发挥学生的主体作用,促使学生反思和总结本课所学知识,完善认知结构。
通过多媒体布置如下课外作业:
1、教材p38“习题1。4”第1、2、3题;
(一)。目的是通过课外作业,不仅巩固有理数乘法的运算,而且也为下节课将要学习的几个不等于零的数乘法和有理数的乘方做铺垫设下伏笔。
我的说课完毕,谢谢大家!
1.使学生掌握多个有理数相乘的积的符号法则;
2.掌握有理数乘法的交换律和结合律,并利用运算律简化乘法运算;
在师生互动、生生互动的系列活动中,学会与老师及与其他同学交流、沟通和合作,准确表达自己的思维过程。培养学生观察、归纳、概括能力及运算能力.
通过例题与练习,体验“简便运算”带来的愉悦,懂得运算的每一步都必须有依据。通过新知的导入和运用过程,感受到人们认识事物的一般规律是“实践、认识、再实践、再认识”。培养学生的观察和分析能力,渗透转化的教学思想。
1.有理数乘法法则是什么?
2.计算(五分钟训练):
(1)(-2)×3; (2)(-2)×(-3); (3)4×(-1.5); (4)(-5)×(-2.4);
(5)-2×3×(-4); (6) 97×0×(-6);
(7)1×2×3×4×(-5); (8)1×2×3×(-4)×(-5);
(9)1×2×(-3)×(-4)×(-5); (10)1×(-2)×(-3)×(-4)×(-5);
(11)(-1)×(-2)×(-3)×(-4)×(-5).
学习目标:
1、要熟记有理数除法的法则,会进行有理数除法的运算。
2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。
3、能熟练地进行简单的有理数的加减乘除混合运算。
4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有
学习重点:有理数除法的法则及应用;求一个有理数的倒数。
学习难点:在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。
学习过程:
一 前置复习 :
1、有理数的乘法法则是:
举例说明。
2、多个有理数乘法:(1)几个不等于0的有理数相乘,积的符号由 决定,当 时积为正;当 时积为负。
(2)几个有理数相乘, ,积就为零。
二 探究新知:(教师寄语: 现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的.)
自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。,一定要熟记:
(1) 有理数除法运算转化为乘法运算的法则:除以一个数,________________________。
____________________。
(2) 有理数的除法法则:两数相除,_____________,_____________,_____________。
0除以任何_______________________________。
(3) 与以前学过的倒数的概念一样,___________两个有理数互为倒数。
如,3与____互为倒数,-6与_____互为倒数,2.25是____的倒数,___是 的倒数。
三 新知应用:
例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)
学以致用 计算:
(1) (42)7 (2) ( )( )
例2、计算(1) ( )( )( ) (2) ( )( )
(温馨提示:1、 有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、 加减乘除混合运算的运算顺序和小学一样。)
四 课堂练习:独立完成课本P59练习2,3题。(将完整的计算过程写在下面空白处)
五 达标测试:(独立完成)
1 填空:(1)2 的倒数与 的相反数的积是_______。
(2)(1)(3)( )=______。
(3)两个数的商为正数,那么这两个数一定是_________。
(4)一个数的倒数是它本身,则这个数是____________。
2、计算:(1) (2)
(3)、 (4) ( + )
六 总结反思:
1、说一说:
本节课我学会了 ;
使我感触最深的是 ;
我感到最困难的是 ;
我想进一步探究的问题是 。
2、:评一评
自我评价 小组评价 教师评价
七 布置作业
1(必做题) 课本60页习题A组3,4题。(要求:做在作业本上)
2(选做题) 课本60页习题B组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)
教学目的:
1、要求学生会进行有理数的加法运算;
2、使学生更多经历有关知识发生、规律发现过程。
有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。
2、知识形成:
(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。
情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6
同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
四、知识小结:
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
六、每日预题:
1、小学多学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
在课前,我们经常会接触到教案的撰写,教案能够安排教学的方方面面,好的教案能更好地提高学生的学习能力,教案应该从哪方面来写呢?小编为你推荐《[教案借鉴] 有理数减法教案之四》,希望您喜欢。
教学目标
1.知识与技能
使学生会使用计算器进行有理数的加减运算.
2.过程与方法
尝试从不同角度寻求解决问题的方法,并能有效地解决问题.
3.情感、态度与价值观
有克服困难和运用知识解决问题的成功体验.
教学重点难点
重点:记清计算器中常用功能键的用法,多进行实际操作,逐步熟悉计算器的用法.
难点:准确地用计算器进行加减运算.
教与学互动设计
观察体验 大家看这样一个算式:-15.13+4.85+(-7.69)-(-13.38)要计算出它的值,你能有什么方法吗?
引导 使用计算器、电子计算器,简称计算器,具有运算快,操作简便,体积小,功能多等特点,既可帮助我们进行各种复杂的数学计算,还可以帮助我们理解数学概念,有时计算器还可以编程序或绘制各种图形.在信息高速发展的时代,它已成为人们广泛使用的计算工具。
大家对教案都很熟悉了吧,我们可以通过教案来进行更好的教学,通过教案可以帮助自己分析教学的重点,怎样才能写好教案?下面是小编特地为大家整理的“[课件分享] 有理数减法教案其二”。
学习目标:
1、理解加减法统一成加法运算的意义。
2、会将有理数的加减混合运算转化为有理数的加法运算。
3、培养学习数学的兴趣,增强学习数学的信心。
学习重点、难点:有理数加减法统一成加法运算
教学方法:讲练相结合
教学过程
一、学前准备
1、一架飞机作特技表演,起飞后的高度变化如下表:
高度的变化 上升4。5千米 下降3。2千米 上升1。1千米 下降1。4千米
记作 +4。5千米 3。2千米 +1。1千米 1。4千米
请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米。
2、你是怎么算出来的,方法是
二、探究新知
1、现在我们来研究(20)+(+3)(5)(+7),该怎么计算呢?还是先自己独立动动手吧!
2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。
3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 。再把加号记在脑子里,省略不写
如:(—20)+(+3)—(—5)—(+7) 有加法也有减法
=(—20)+(+3)+(+5)+(—7) 先把减法转化为加法
= —20+3+5—7 再把加号记在脑子里,省略不写
可以读作:负20、正3、正5、负7的 或者负20加3加5减7。
4、师生完整写出解题过程
三、解决问题
1、解决引例中的问题,再比较前面的方法,你的感觉是
2、例题:计算—4。4—(—4 )—(+2 )+(—2 )+12。4
3、练习:计算 1)(7)(+5)+(4)(10)
三、巩固
1、小结:说说这节课的收获
2、P241、2
3、计算
1)2718+(7)32 2)
四、作业
1、P255 2、P26第8题、14题
无论何时,教案都是我们准备教学的一种最好的方式,我们可以通过教案来进行更好的教学,写出一份教学方案需要经过精心的准备,优秀的教案是什么样子的?可以看看本站收集的《教案范文: 有理数减法教学设计写作范例》,希望能够为您提供参考。
教学目标
知识与技能:
熟记有理数的减法法则,能熟练进行有理数减法运算。
过程与方法:
1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;
2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。
情感态度价值观:
4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。
教学重、难点
重点:有理数减法法则和运算
难点及突破:有理数减法法则的推导
教学用具
多媒体
教学过程设计
一、导入
我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?
生:减法
师:今天我们一起来学习有理数的减法!
二、一起研究
下表是中央气象台发布的20xx年1月28日天气预报中部分城市的和最低气温统计表
城市/°C最低气温/°C
昆明92
杭州6-2
北京-2-12
温差怎么表示?(温差=-最低气温)
1.那么怎么表示这一天的温差呢?学生填表回答
城市表示温差的算式观察到的温差/°C
昆明9-27
杭州
北京
结论:昆明的温差可表示成9-2=7°C
杭州的温差可表示成6-(-2)=8°C
北京的温差可表示成-2-(-12)=10°C
2.现在我们来看这样一组算式,填空:
9+________=7; 6+______=8; -2+_______=10.
3.比较:9-2=7 9+(-2)=7
6-(-2)=8 6+2=8
-2-(-12)=10 -2+(+12)=10
思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。
怎样把加法转化为减法运算?
法则:减去一个数,等于加上这个数的相反数。
4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?
例1(略)
注意:减法转化为加法时,减数一定要改变符号
例2 (略)
三、练习:
P28 1、2
四、小结
1.理解有理数减法运算的法则。
2.熟悉有理数减法运算的两个步骤
3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。
五、板书设计
1.6 有理数减法
1.减法法则:减去一个数,等于加上这个数的相反数
a-b=a+(-b)
2.例
教案课件是我们老师工作的一部分,因此每天老师都会按质按时去写好教案课件。要知道一份优秀的教案课件应当与时俱进,还需包含各个知识点。怎么样的教案才算是好教案课件?由此,小编为你收集并整理了有理数教案精品相信你能找到对自己有用的内容。
本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册P80页的有理数的减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用
(二) 教学目标:
1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。
3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
1、复习有理数的加法法则,为新课的讲授作好铺垫。
(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。
(二)新课讲解环节:
让学生比较上面这两个算式并讨论后得出:
继续让学生比较上面这两个算式并讨论后得出:
2、讲解课本P80的内容,回答复习题2提出的问题即如何求(-10)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。
3、出示温度计,用多媒体出现(如P81的图2-20),并进行动画演示,通过求15℃ 比5℃ 高多少?15℃ 比-5℃ 高多少?的实例来说明减法法则的合理性以及有理数减法的实际意义。同时进行练习反馈:课本P82的练习1,
4、通过例题教学使学生巩固方法,初步具备解决问题的能力。
例2.计算(1) 7.2 - (-4.8) ; (2) (-3 - ) - 5
说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。
(三) 巩固练习环节:
让学生完成课本P82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。
本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a-b=a+(-b)
(五)布置课后作业:课本P83习题2.6的2、3、4、5的偶数题
通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。
一、教材分析:
《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。
鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:
1、知识目标:
经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。
2、能力目标:
经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。
3、情感目标:
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。
二、学情分析:
我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。
在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。
三、教法选择及学法指导:
《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。
上述教学程序的.实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。
一、教材分析:
《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。
鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:
1、知识目标:
经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。
2、能力目标:
经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。
3、情感目标:
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。
二、学情分析:
我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。
在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。
三、教法选择及学法指导:
《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。
上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。
1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。提问:合肥今天的温差是多少度?你是怎样计算的?
2、自然过渡到乌鲁木齐的温差的计算问题,在学生列出算式4–(–3)后引入课题:有理数的减法
通过温度的比较让学生明白减法的实际意义在于同类量之间的比较,为后来运用减法解决实际问题打下基础。
从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣。同时这也符合七年级学生的认知特征,使学生乐于进一步探索。
教学目标
1. 会把有理数的加减法混合运算统一为加法运算;
2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想.
教学重点
把有理数的加减法混合运算统一为加法运算.
教学难点
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变.
教学过程
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算.
1.完成下列计算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).
归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;
(2)式统一成加法是________________________________;
省略负数前面的加号和( )后的形式是______________________;
读作____________________ 或 _______________________.
展示交流
1.把下列运算统一成加法运算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
(4) 14-(-12)+(-25)-17=_____________________________________.
2. 将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________.
3.将下列运算先统一成加法,再省略加号:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________.
4. 仿照本P37例6,完成下列计算:
(1) -4-5+6 ; (2) -23+41-24+12-46.
5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?
盘点收获
个案补充
课堂反馈
1.计算:
2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?
迁移创新
一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?
课堂作业
本P39 习题2 .5第6题(1)、 (3)、(5), 第7题 .
教学目标
1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算;
2.了解倒数概念,会求给定有理数的倒数;
3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节教学的重点是熟练进行运算,教学难点 是理解法则。
1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。
2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。
(二)知识结构
(三)教法建议
1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。
2.关于0不能做除数的问题,让学生结合小学的`知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。
3.理解倒数的概念
(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。
(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。
(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。
4.关于倒数的求法要注意:
(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.
(2)正数的倒数是正数,负数的倒数仍是负数.
(3)负倒数的定义:乘积是-1的两个数互为负倒数.
教学设计示例
一、素质教育目标
(一)知识教学点
1.了解有理数除法的定义.
2.理解倒数的意义.
3.掌握有理数除法法则,会进行运算.
(二)能力训练点
1.通过有理数除法法则的导出及运算,让学生体会转化思想.
2.培养学生运用数学思想指导思维活动的能力.
(三)德育渗透点
通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.
(四)美育渗透点
把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.
二、学法引导
1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.
2.学生学法:通过练习探索新知→归纳除法法则→巩固练习
三、重点、难点、疑点及解决办法
1.重点:除法法则的灵活运用和倒数的概念.
2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.
3.疑点:对零不能作除数与零没有倒数的理解.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片、彩粉笔.
六、师生互动活动设计
教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.
【教法说明】同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.
(二)探索新知,讲授新课
1.倒数.
(出示投影1)
4×( )=1; ×( )=1; 0.5×( )=1;
0×( )=1; -4×( )=1; ×( )=1.
学生活动:口答以上题目.
【教法说明】在有理数乘法的基础础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.
师问:两个数乘积是1,这两个数有什么关系?
学生活动:乘积是1的两个数互为倒数.(板书)
师问:0有倒数吗?为什么?
学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.
师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.
提出问题:根据以上题目,怎样求整数、分数、小数的倒数?
【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.
(出示投影2)
求下列各数的倒数:
(1); (2); (3);
(4); (5)-5; (6)1.
学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.
2.
计算:8÷(-4).
计算:8×()=? (-2)
∴8÷(-4)=8×().
再尝试:-16÷(-2)=? -16×()=?
师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?
学生活动:同桌互相讨论.(一个学生回答)
师强调后板书:
[板书]
【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.
(三)尝试反馈,巩固练习
师在黑板上出示例题.
计算(1)(-36)÷9, (2)()÷().
学生尝试做此题目.
(出示投影3)
1.计算:
(1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;
(4)1÷(-9); (5)0÷(-8); (6)16÷(-3).
2.计算:
(1)()÷(); (2)(-6.5)÷0.13;
(3)()÷(); (4)÷(-1).
学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).
【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.
提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?
学生活动:分组讨论,1—2个同学回答.
[板书]
2.两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何不等于0的数,都得0.
【教法说明】通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.
(四)变式训练,培养能力
回顾例1 计算:(1)(-36)÷9; (2)()÷().
提出问题:每个题目你想采用哪种法则计算更简单?
学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.
(2)题仍用除以一个数等于乘以这个数的倒数较简单.
提出问题:-36:9=?;:()=?它们都属于除法运算吗?
学生活动:口答出答案.
(出示投影4)
例2 化简下列分数
(1); (2); (3)或3:(-36)
(4); (5).
例3 计算
(1)()÷(-6); (2)-3.5÷×();
(3)(-6)÷(-4)×().
学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.
【教法说明】例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:
如在(1)()÷(-6)中.
根据方法①()÷(-6)=×()=.
根据方法②()÷(-6)=(24+)×=4+=.
让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.
(五)归纳小结
师:今天我们学习了及倒数的概念,回答问题:
1.的倒数是__________________();
2.;
3.若、同号,则;
若、异号,则;
若,时,则;
学生活动:分组讨论,三个学生口答.
教学目标
1.了解有理数加法的意义,理解有理数加法法则的合理性;
2.能运用有理数加法法则,正确进行有理数加法运算;
3.经历探索有理数加法法则的过程,感受数学学习的方法;
4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力.
教学重点
能运用有理数加法法则,正确进行有理数加法运算.
教学难点
经历探索有理数加法法则的过程,感受数学学习的方法.
教学过程(教师)
一、创设情境
小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?
1.试一试
甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.
你能把上面比赛的过程及结果用有理数的算式表示出来吗?
做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:
2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流.
你还能举出一些应用有理数加法的实际例子吗?
二、探究归纳
1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________
2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________
3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?
请用数轴和算式分别表示以上过程及结果:
算式:________________________
仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.
4.观察、思考、讨论、交流并得出有理数加法法则.
讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?
《2.5有理数的加法与减法》课时练习
1.七年级(3)班同学李亮在一次班级运动会上参加三级跳远比赛,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最远?成绩是多少?
2.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.
(1)通过计算说明小虫是否回到起点P.
(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.
2.5有理数的加法与减法:同步练习
1.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:km)
+17,-9,+7,-15,-3,+11,-6,-8,+5,+16
(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?
(2)养护过程中,最远外离出发点有多远?
(3)若汽车耗油量为0.09升/km,则这次养护共耗油多少升?
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
会把所给的各数填入它所属于的集合里
教学方法:
问题引导法
学习方法:
自主探究法
一、情境诱导
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将上面的数填入下面两个集合:正整数集合{},负整数集合{},填完了吗?
(2)将上面的数填入下面两个集合:整数集合{},分数集合{},填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)
二、自学指导
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.xxxxxxxxxxx、xxxx、xxxxxxx统称为整数,
2.xxxxxxx和xxxxxxxxx统称为分数
3.xxxxxxxxxx统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:;正整数:、负整数:、正分数:、负分数:.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:xxxxx、xxxxxx和xxxxxxx,分数可分为:xxxxxxx和xxxxxxxxx.有理数按符号不同可分为正有理数,xxxxxxx和xxxxxxxx.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{…}负数集合:{…}
正整数集合:{…}负分数集合:{…}
4.下列说法正确的是()
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D.0既不是正数也不是负数
5、下列说法正确的有()
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
一、知识回顾
(1)有理数的加、减法法则;
(2)特别值得注意的问题(同号、异号、相反数)
二、新课导入
计算:-5-(+3)+(-7)-(-15)
解:原式=(-5)+(-3)+(-7)+(+15)=0
另解:原式=-5-3-7+15=0
强调:①省略“+”②省略“()”③更简化
读法:①读代数和;②直接读+、-
板书课题:有理数的加减混合运算
三、例题讲解
例计算下列各式略
小结:
有理数加减混合运算的步骤:
⑴写成代数和;
⑵观察有无相反数;
⑶运用交换、结合律达到同号相加或同分母运算或凑整
⑷写出结果
四、学生练习
可以在黑板的下方进行。
讲解评析、纠错订正。
数学思考:
计算:1-2+3-4+5-6+7-8+…+99-100
五、课堂小结
师生共同小结本节课的内容。
六、布置作业
A、B、c分层次布置。
知识与技能:
熟记有理数的减法法则,能熟练进行有理数减法运算。
过程与方法:
1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;
2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。
情感态度价值观:
4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。
我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?
下表是中央气象台发布的20xx年1月28日天气预报中部分城市的和最低气温统计表
2.现在我们来看这样一组算式,填空:
9+________=7; 6+______=8; -2+_______=10.
思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。
怎样把加法转化为减法运算?
4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?
1.理解有理数减法运算的法则。
3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。
一、教学目标:
知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗 透转化思想,通过有理数的 减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
四、教 材分析:本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
如图:
这是20xx年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?
再计算:(+10)+(-3),师让学生观察两式结果,由此得到:
观察减法是否可以转化为加法 计算呢?是如何转化的呢?
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与-3相加会得到-10,那么这个数是多少?
教师进一步引导学生观察式子,你能得到什么结论呢?
教师总结:由以上两式可以看出减法运算可以转化成加法运算。
教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?
教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。
强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)
教师板书做示范,强调解题的规范性, 然后师生共同总结解题步骤,(1)转化(2)进行加法运算。
例2:小明家蔬菜大棚的气温是24℃,此时棚外的气温是-13℃,棚内气温比棚外气温高多少摄氏度?
师巡视指导,最后师生讲评两个学生的解题过程。
1、谈谈本节课你有哪些收获和体会?[
教师点评:有 理数减法法则是一个转化法则,要求同学们掌握并能应用进 行计算。
4、水银的凝固点是-38.87℃,酒精的凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?
学生思考后抢答,尽量照顾不同层次的学生参与的积极性。
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
创设问题情境,激发学生的认知兴趣。
让学生通过尝试,自己认识减法可以转化为加法计算。
学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力
可以培养学生严谨的学风和良好 的学习习惯,同时锻炼学生的表达能力
可以照顾不层次的学生,调动学生学习积极性。
通过练习让学生进一步巩固新知,体验知识的应用性。
能增强学生学习的主动性和参与意识。
学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
有理数减法法则:
教学反思:
本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有 一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。
教学目标
1、让学生能进行包括小数或分数的有理数的加减混合运算。
2、让学生进一步体会到有理数减法可以转化为加法进行计算,并体会有理数加减法在实际中的应用。
教学重点与难点
重点:有理数加法和减法的混合运算。
难点:减法统一成加法再写成代数和的形式。
教学过程
一、复习引入
课本P56图是一条河流在枯水期的水位图。此时,桥面距水面的高度为多少米?
可用两种方法回答这个问题。
第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。可得算式:12.5+0.3=12.8(米)。
第二个方法:利用有理数减法法则得算式:
12.5-(-0.3)=12.8(米)。
比较两个算式,使学生进一步体会减法可以转化为加法。另外,此题中进行了含有小数的有理数的减法运算。
二、新课的进行
某地区一天早晨的气温是-9℃,中午上升了11℃,半夜又下降了6℃。半夜的温度是多少?
解法一:(-9)+11=2,2+(-6)=-4。
所以半夜的温度是-4℃。
解法二:-9+11-6=2-6=-4。所以半夜的温度是-4℃。
比较以上两种解法,结果是一样的,而解法二中的算式是有理数加减的运算。
议一议:P57议一议
通过对此问题的讨论,学生将回顾有理数的加法法则,并用以进行有关小数的运算。计算如下:
4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)
此时飞机比飞点高了1千米。
注意运算顺序是从左到右的计算过程。
还可以这样计算:4.5-3.2+1.1-1.4
=1.3+1.1-1.4=2.4-1.4=1(千米)
此时飞机比飞点高了1千米。
比较以上两种算法,你发现了什么?
(1)我们可以把有理数的加减法的混合运算统一成加法运算,使加减法的混合运算化为单一的加法运算。
(2)有理数的加减混合运算统一为加法运算以后,保留各加数的性质符号,去掉括号并把加号省略,而形成加减混合运算的简洁的形式。
例1 计算(P58例1)
三、课堂练习
四、课堂小结
根据有理数的减法法则,我们知道风是有理数的减法,都可以转化为加法,利用有理数的加法法则去运算。因此,我们可以把有理数加减法的混合运算统一成加法以后,可以将算式写成省略括号及前面加号的.形式。
五、作业设计
1、P58 习题2.7 1,3
有理数大班教案主题范文:
有理数的引入
一、教学目标
1. 理解和掌握有理数的概念;
2. 能正确运用有理数的运算规则;
3. 能将实际问题转化为有理数的表示并解决问题;
4. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重难点
1. 有理数的定义和性质;
2. 有理数的运算规则。
三、教学准备
1. 教师准备有理数的教学课件、实例题和习题;
2. 学生准备课本、笔记本。
四、教学过程
1. 导入
教师出示一段视频,视频中展示了一个划圆规、直尺和米尺的实验,引导学生思考实验的结果,提出问题:你们知道为什么我们把直尺上的刻度分为厘米呢?
学生讨论一下,可以得出直尺上的刻度是有理数。
引导学生了解实数的划分重要性及其相关概念。
2. 引入
通过巧妙地引入实数的划分,教师引导学生概括出有理数的概念,引进有理数的概念。
3. 提出问题
教师提出以下问题:
(1)负整数、零和正整数都是什么数?
(2)两个有理数相加(减)的结果怎样?
(3)两个有理数相乘(除)的结果怎样?
4. 学习
(1)有理数的定义
教师对有理数进行定义,包括整数的定义、正数和负数的定义,同时解释零的定义。
(2)有理数的绝对值
教师引导学生了解绝对值的概念,并介绍绝对值的性质。
(3)有理数的大小关系
教师通过实例,引导学生掌握有理数的大小关系及其性质。
5. 练习
(1)基本运算
教师出示基本运算实例,让学生进行计算,并帮助学生理解加法、减法、乘法和除法的运算规则。
(2)解决实际问题
教师出示一些实际问题,让学生通过将其转化为有理数的表示进行解决,培养学生的解决问题的能力。
6. 归纳总结
教师引导学生总结有理数的概念、性质和运算规则。
7. 拓展延伸
教师介绍无理数的概念,与有理数进行对比,引发学生对实数的思考与讨论。
8. 课堂小结
教师与学生一起总结本节课的重点、难点,并夯实学生对有理数概念和运算规则的理解。
五、课后作业
1. 完成课后习题,巩固有理数的运算规则;
2. 准备参与下节课的讨论。
教学目标:
1、会将有理数的减法运算转化为有理数的加法运算。
2、会将有理数的加减混合运算转化为有理数的加法运算。
教学重点、难点:
会进行有理数的减法运算,会进行有理数的加减混合运算。
课前复习:
1、有理数加法法则是什么?
2、有理数加法运算律是什么?
教学过程:
一、有理数的减法法则
实际生活中有很多时候要涉及到有理数的减法。例如:某地某天的气温是―2至5C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:C)。显然,这天的温差是5―(―2)。这里就用到了有理数的减法。
我们知道,减法是与加法相反的运算,计算5―(―2),就是要求一个数,使之与(―2)的和得4,因为与―3相加得4,所以这个数应该是7,即:5―(―2)=7。
(1)另一方面,我们知道5+(+2)=7
(2)由(1),(2)有5―(―2)=5+(+2)
(3)从(3)式能看出减―2相当于加哪个数吗?
用上面的方法考虑:
0―(―2)=___, 0+(+2)=___;
1―(―2)=___, 1+(+2)=____;
―5―(―2)=___, ―5+(+2)=___。
这些数减3的结果与它们加+2的结果相同吗?
从(3)式能看出减―2相当于加哪个数吗?把5换成0,1,—5,用上面的方法考虑,并看它们的结果相同吗?
计算:10-8=___,10+(-8)=____;
13-7=___,13+(-7)=____。
上述式子表明:减去一个数,等于加上这个数的相反数。
于是,得到有理数减法法则:减去一个数,等于加这个数的相反数。
用式子可以表示成ab=a+(b)
例题解析:
计算:
(1)(-4)―(―5);
(2)0-6;
(3)7.1―(―4.9);
解:(1)(-4)―(―5)=(-4)+5=1;
(2))0-6=0+(-6)=-6;
(3)7.1―(―4.9)=7.1+4.9=12;
二、有理数加减混合运算
有理数的.加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式。
例如:(+2)-(-3)-(+4)+(-5)可以写成(+2)+(+3)+(-4)+(-5)
将上面这个式子写成省略加号和括号的形式即为:(+2)+(+3)+(-4)+(-5)=2+3-4-5
对于这个式子,有两种读法:①读作“2加3减4减5”;②读作“2、3、-4、-5的和”
例1计算(-20)+(+3)-(-5)-(+7)
解:(-20)+(+3)-(-5)-(+7)
=(-20)+(+3)+(+5)+(-7)
=-20+
3+5-7
=-20-7+3+5
=-27+8
=-19
说明:计算时,可以按照运算顺序,从左到右逐一加以计算,从以上我们可以得出,引入相反数后,加减混合运算可以统一为加法运算:
a+b
c=a+b+(c)
三、加法运算律在加减混合运算中的作用与方法
加法运算律在加减混合运算中的运用,可以使一些计算简便,例如利用加法运算律使符号相同的加数在一起,或使和为整数的加数在一起,或使分母相同或便于通分的加数在一起等等
例2。用两种方法计算:-4.4-(-4)-(+2)+(-2)+12.4
解法1:-4.4-(-4)-(+2)+(-2)+12.4
=-4.4+4+(-2)+(-2)+12.4
=(-4.4+12.4)+4+[(-2)+(-2)]
=8+[4+(-5)]
=8+(-1)=7
此解法是将和为整数、便于通分的加数在一起
解法2:-4.4-(-4)-(+2)+(-2)+12.4
=-4.4+4-2-2+12.4
=(8+4-2-2)
=8+(-1)=7
此种方法是将整数部分与小数部分分别相加使计算简化
四、小结:
(1)有理数减法法则:减去一个数,等于加这个数的相反数。用式子可以表示成:
ab=a+(b)
(2)有理数加减混合运算可以统一为加法运算,即:a+b
c=a+b+(c)
(3)有理数加法运算律:
①加法交换律:a+b=b+a
②加法结合律:(a+b)+c=a+(b+c)
五、课后作业
1.4.1有理数的乘法(2)【教学目标】1.巩固有理数乘法法则;2.探索多个有理数相乘时,积的符号的确定方法.【对话探索设计】〖探索1〗1.下列各式的积为什么是负的?(1)-2×3×4×5×6;(2)2×(-3)×4×(-5)×6×7×8×9×(-10).2.下列各式的积为什么是正的?(1)(-2)×(-3)×4×5×6×7;(2)-2×3×4×5×(-6)×7×8×(-9)×(-10).〖观察1〗p38.观察〖思考归纳〗几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?(见p38.思考)与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值〖例题学习〗p39.例3〖观察2〗p39.观察〖练习〗p39.练习〖作业〗p46.7.(1),(2)(3),8,9,10,11.〖补充练习〗1.(1)若a=3,a与2a哪个大?若a=0呢?又若a=-3呢?(2)a与2a哪个大?(3)判断:9a一定大于2a;(4)判断:9a一定不小于2a.(5)判断:9a有可能小于2a.2."几个数相乘,积的符号由负因数的个数决定"这句话错在哪里?3.若a>b,则ac>bc吗?为什么?请举例说明.4.若mn=0,那么一定有()(a)m=n=0.(b)m=0,n≠0.(c)m≠0,n=0.(d)m、n中至少有一个为0.5.利用乘法法则完成下表,你能发现什么规律?
×
3
2
1
0
-1
-2
-3
3
9
6
3
0
-3
2
6
2
2
1
3
2
1
0
-1
-2
-3
6.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为-a,你认为哪家商店该彩电的降价的百分率大?为什么?(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么?
与“有理数教案”相关的议题是本文讨论的焦点,不妨参考一下本文,希望你喜欢。做好教案课件是老师上好课的前提,每个老师都需要仔细规划教案课件。对于新手教师来说制定好的教案尤为重要。
《有理数的惩罚》教学设计
一、学情分析:
1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。
2、学生的活动基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。
二、教材分析:
教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。
本节课的数学目标是:
1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;
2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:
三、教学过程设计:
本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节:问题情境,引入新课
问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。
(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。
设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。
第二环节:探索猜想,发现结论
问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式
(-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:
(-3)×3=_____;
(-3)×2=_____;
(-3)×1=_____;
(-3)×0=_____。
(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:
(-3)×(-1)=_____;
(-3)×(-2)=_____;
(-3)×(-3)=_____;
(-3)×(-4)=_____。
教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,能力和表述能力。
教后事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。
(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。
第三环节:验证明确结论
问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
(—4)×1=_____;
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合
一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。
教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。
(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。
(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。
第四环节:运用巩固,练习提高
活动内容:
(1)1。计算:
⑴(-4)×5; ⑵(5-)×(-7);
⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);
(2)2。计算:
⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);
3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?
(4)计算:
⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.
教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;
(2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
(-1)×(-2)×(-3)×(-4)=_____;
(-1)×(-2)×(-3)×(-4)×0=_____。
通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。
第五环节:感悟反思课堂小结
问题
1.本节课大家学会了什么?
2.有理数乘法法则如何叙述?”
3.有理数乘法法则的探索采用了什么方法?
4.你的困惑是什么
教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。
教后反思事项:学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。
第六环节:布置作业
巩固作业:教科书知识技能1、2;问题解决1;联系扩广1
预习作业;略
四、教学反思:
1、设计条理的问题串,使观察、猜想、验证水到渠成
2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。
3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。
有理数的除法是一种基本的有理数运算,它的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除法的混合运算,以及知道0不能作除数的规定和刚学过的有理数乘法的基础上进行的,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
本节课的教学目标:
1、通过对有理数除法法则的探求,理解有理数除法法则,会进行有理数的除法运算。
2、会求有理数的倒数(特别是负数的倒数)。
3、通过把有理数的除法运算转化为乘法培养学生的转化思想。本节课的重点:熟练进行有理数的除法。
说课内容:有理数的除法运算,会求一个负数的倒数,难点是熟练掌握有理数的除法,难点的突出关键点在运算时,先确定商的符号,然后再根据不同情况采取适当的方法来求商的绝对值。因而教学时,让学生通过求实例理解有理数,除法与小学除法基本相同,只是增加了符号的变化。根据本节教材内容和学生的实际水平,为了更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用探求,发现,讲练相结合的教学方法。本节课的教学过程如下:
一、导入
1、复习有理数的乘法法则,为新课的讲解作为铺垫。
2、提出已知两个因数的积和其中一个因数,求另一个因数用什么运算,引出有理数的除法。
二、新课讲授
1、探究:由12/3是什么意思,商是几?引到(-12)/(-3)是什么意思?从而由已学的除法是乘法的逆运算得出(-12)/(-3)=4,或从除以一个数等于乘以另一个数的倒数考虑,把除法转化成乘法来计算。
2、接着由一组有理数除法题目,先计算然后通过引导学生观察比较每题的除数,被除数的符号,绝对值与商的符号,绝对值的关系,总结出规律,得出有理数的法则1,并提醒学生注意0不能作除数。
3、再准备两组题目让学生练习,通过练习加深对法则的理解及加强运算的能力。
4、通过课本中的做一做,比较每组算式的关系,总结出规律得到有理数除法法则2,并指出如何根据具体情况来选择这两个法则再根据法则2及做一做中第1题并结合小学时求正数的倒数的方法,归纳得出求负数的倒数的方法,并指出0没有倒数。
三、巩固提高
通过练习,让学生的新知识得到巩固,并纠正错误。
四、总结反思
让学生感受本节课所学的有哪些知识,本节课的知识点。
五、检测反馈
根据课后习题,选择适当的题目作为课堂作业,让学生更加熟练掌握本节课的知识。
板书设计:
1、 有理数除法法则。
2、 倒数的求法。
教学目标
1、使学生了解加减统一为加法对简化计算所起的作用
2、能灵活运用加法运算律进行有理数的加减混合运算
3、培养学生观察、讨论、积极思维探索的能力
4、激发学生对数学的兴趣,培养学生热爱数学的情感。
教学重点、难点
能灵活运用加法运算律进行有理数的加减混合运算
教学过程
一、设问题情况
+(-1)-(-2)+(-3)-(-4)+(-5)-(-6)……(-50)
鼓励学生发言、讨论交流
1、出问题
(1)如何解该?
(2)如何将减号进行转变?
三、新课讲授
根据上题,我们知道有理数的减法是先把它化为有理数的加法,即加减统一成加法
例:(-8)-(-10)+(-6)-(+4)如何统一成加号?
省略加号如何表示?-8+10-6-4
注:在一个和式里,通常把各个加数的刮号与它前面的加法省略不写
如何读呢?
按和式读做“负8,正0,负6负4的和”
按运算意义读做负8加10减6减4
例1、把(+1)+(-3)-(+2)-(-4)-(+6)写成省略加号的和的形式,并把它读出来。
解:原式=(+1)+(-3)+(-2)+(+4)+(-6)
=1-3-2+4-6
学生板演,练习用两种方法读出
例2、计算
(1)-24+3.2-1.6+3.5+0.3
(2)0-21+3-(-0.5)-(-6)-(+4)
解(1)因为原式表示-24,3.2,-16,-3.5,0.3的和,所以可将加数适当交换位置,并作适当的结合进行计算,即
-24+3.2-16-3.5+0.3
=(-24-16)+(3.2+0.3)-3.5
=-40+3.5-3.5
=-40 .
(2)0-21+3-(-0.5)-(-6)-(+4)
=0+(-21)+(+3)+(+6)+(-4)
=-21+3+6-4
=(-21-4)+(3+6)
=-25+9
=-16
提问:如何解?(多种方法)
法一:按正常顺序来解(从左到右)
法二:运用简便方法来解(加法交换律和结合律)
问:为什么要用加法运算律?该如何灵活运用?
如何使得计算简便?
1、正数和正数放在一起,负数和负数放在一起
2、互为相反数的放在一起
3、同分母的放在一起
4、能凑整的放在一起
四、练习
1、把下列各式写成省略加号和的形式,并说出他们的两种读法
(1)(-12)-(+8)+(-6)-(-5)
(2)(+3.7)-(-2.1)-1.8+(-2.6)
2、计算
(1)-30-11-(-10)+(-12)+18
(2)3 1/2-(-21/4)+(-1/3)-0.25+(+1/6)
五、小结:
1、加减法统一为加法
2、进行有理数加减混合运算的注意点
(1)互为相反数放在一起
(2)同分母的放在一起
(3)能凑整的放在一起
(4)小数与小数放在一起,整数与正数放在一起(等等)
六、作业:P47习题2.8(2、3)
一、教学目标:
知识目标:让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
能力目标:在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。
情感目标:让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心。经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他人合作交流的重要性。
1、教学重点:
有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。
2、教学难点:
有理数的乘方符号法则的理解。
二、说教学方法
启发诱导式、实践探究式。
三、说教学设计
(一)创设问题、引入新知
a(1)边长为2的正方形的面积是多少?
(2)棱长为2的正方体的体积是多少?
(3)学生活动:
我们把一张纸对折后裁开,可以裁成几张纸?对折两次后可以裁成几张纸?对折三次呢?
猜想对折10次后可以裁成几张纸?
对折20次后的纸张的厚度比我们大唐发电厂的烟囱的高度还高,你信吗?
学完这节课后,你就知道结果了。
(让学生思考回答、教师引导、归纳同时板书问题答案)
学习新知:
(二)、自主学习新知:
1、阅读书了解什么是乘方?还有那些新的概念?
2、同学们想一想?以上乘法与前面学习过乘法有什么不同?
(让学生观察回答,教师引入乘方、幂、底数、指数的概念、归纳同时板书问题答案)
板书:求n个相同因数的积的运算叫做乘方。
乘方的结果叫做幂。
一个数可以表示成这个数本身的一次方,指数1通常省略不写。
3、提出问题:到目前为止,对有理数来说,我们学过的运算有哪些?分别是什么?运算结果叫什么?(让学生讨论交流回答,教师板书问题答案)。
板书答案:
运算:加、减、乘、除、乘方
结果:和、差、积、商、幂
4、检验学习:
在这里,我设置了三组题,第一组学生组内完成,采用组内互检方式完成。
第二三组题先由学生独立完成,在由组长检查,并让两名学生到黑板上展示交流,教师给予点评。
(三)探究乘方的符号法则
设置了四组习题探究规律:
1、完成下面的计算:
22= 32= 43 = 104=
(-3)2= (-2)4= (-3)4=
(-3)3= (-10)3= (-2)5=
02= 03 = 04= 06=
2、思考:根据上面计算的结果想一想:正数的幂的符号与指数有何关系;负数的幂的符号与指数有何关系?
师生总结:正数的任何次幂都是正数;0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。
板书结论:负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0
(四)学习使用计算器计算乘方的方法。
1、每组一个计算器,教师讲解,学生操作。
2、解决引例折叠20次后纸张的厚度。如果一张纸的厚度为0.2毫米,试用计算器求出结果。
(五)小结反思
通过这节课的学习,你有什么收获?你还有什么疑惑?
课堂检测、布置作业。
(目的:为巩固本节所学的知识,了解学生掌握知识的情况及应用知识的能力。)
有理数的乘除法
一、教学目标
知识与技能:
①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。
②会进行有理数乘法运算。
③了解有理数的倒数定义,会求一个数的倒数。
过程与方法:
①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。
②提高学生的运算能力
情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。
二、 教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法中的符号法则.
三、教学过程
(一) 创设问题情景,激发学生的求知欲望,复习旧知,导入新课
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。4天后,甲、乙水库各自水位的总变化量是多少?
如果用正号表示水位的上升、用负号表示水位的下降。那么,4天后,甲水库水位的总变化量是:3+3+3=34=12㎝
乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出课题:有理数的乘法
(二)学生探索新知,归纳法则
学生分为四个小组活动,进行乘法法则的探索
设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:
(1)向右爬行,3分钟后的位置?
(2)向左爬行,3分钟后的位置?
(3)向右爬行,3分钟前的位置?
(4)向左爬行,3分钟前的位置?
(学生思考后回答) 要确定蜗牛的位置需要知道:距离和方向。
为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。
(1) 情形一:蜗牛在现在位置的右边6㎝处。式子表示为:
(+2)(+3)=+6
数轴表示如右:
(2)情形二:蜗牛在现在位置的左边6㎝处。式子表示为: (-2)3=-6
数轴表示如右:
(3)情形三:蜗牛在现在位置的左边6㎝处。式子表示为: (+2)(-3)=-6
数轴表示如右
(4)情形四:蜗牛在现在位置的右边6㎝处。式子表示为: (-2)(-3)=+6
数轴表示如右:
仔细观察上面得到的四个式子:
(1)(+2)(+3)=+6
(2)(-2)3=-6
(3)(+2)(-3)=-6
(4)(-2)(-3)=+6
根据你对乘法的思考,你得到什么规律?
(三)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)(+)=( ) 同号得
(-)(+)=( ) 异号得
(+)(-)=( ) 异号得
(-)(-)=( ) 同号得
b.任何数与零相乘,积仍为 。
(四)师生共同用文字叙述有理数乘法法则。
归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
(五) 运用法则计算,巩固法则。
例1计算:(1) (-5) (2) (-7) (3) (-3) (4)(-3) (- )
引导学生观察、分析例1中(4)小题两因数的关系,得出:有理数中仍然有:乘积是1的两个数互为倒数.
例2. 见课本P30页
(六)分层练习,巩固提高。
(1)计算(口答):
① ② ③ ④
⑤ ⑥ ⑦ ⑧
四.课题小结
(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。
(2)如何进行两个有理数的乘法运算: 先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。
五.作业布置
课本P30页练习1,2,3.
1.4.2 有理数的乘法
(第2课时)
一、教学目标:
1、经历探索多个有理数相乘的符号确定法则.
2、会进行有理数的乘法运算.
3、通过对问题的探索,培养观察、分析和概括的能力.
二、教学重点和难点
学习重点:多个有理数乘法运算符号的确定
学习难点:正确进行多个有理数的乘法运算
三、教学过程
(一)、学前准备
请同学们先合作做个游戏: 用9张扑克牌(可以替代的纸片也行)全部反面向上放在桌上,每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,看看能否使所有的牌都正面向上?
结果怎么样,你能明白其中的数学道理吗?
(二)、探究新知
1、观察:下列各式的积是正的还是负的?
234(-5),
23(-4)(-5),
2(3) (4)(-5),
(-2) (-3) (-4) (-5).
思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
分组讨论交流,再用自己的语言表达所发现的规律:
几个不是0的数相乘,负因数的个数是 偶数 时,积是正数;负因数的个数是 奇数 时,积是负数.
2、利用所得到的规律,看看翻牌游戏中的数学道理。
(三)、新知应用
1、例题3,(30页)例3,
请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由 几个数相乘,如果其中又因数为0,积等于0
例:7.8(-8.1)O (-19.6)
师生小结:几个数相乘,如果其中又因数为0,积等于0
2、练习
计算
1)、58(7)(0.25) 2)、
四、课堂小结
1、通过这节课的学习,我的感受是:几个数相乘,如果其中又因数为0,积等于0
五.作业布置
一、选择
1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )
A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负
2.若干个不等于0的有理数相乘,积的符号( )
A.由因数的个数决定 B.由正因数的个数决定
C.由负因数的个数决定 D.由负因数和正因数个数的差为决定
3.下列运算结果为负值的是( )
A.(-7)(-6) B.(-6)+(-4); C.0 (-2)(-3) D.(-7)-(-15)
4.下列运算错误的是( )
A.(-2)(-3)=6 B.
C.(-5)(-2)(-4)=-40 D.(-3)(-2)(-4)=-24
二、计算 1、(-7.6) 2、 .
1.4.3 有理数的乘法
(第3课时)
一、教学目标:
1、熟练有理数的乘法运算并能用乘法运算律简化运算.
2、让学生通过观察、思考、探究、讨论,主动地进行学习.
3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程.
二、教学重点和难点
教学重点:正确运用运算律,使运算简化
教学难点:运用运算律,使运算简化
三、教学过程
一、学前准备
1、下面两组练习,请同学们选择一组计算.并比较它们的结果:
1)(-7)8 8(-7)
[(-2)(-6)]5 (-2)[(-6)5]
2)(- )(- ) (- )(- )
[ (- )](-4) [(- )(-4)]
3)
请以小组为单位,相互检查,看计算对了吗?
二、探究新知
1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.
2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?
3、归纳、总结
乘法交换律:两个数相乘,交换因数的位置,积 相等 .
即:ab= ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等
即:(ab)c= a(bc)
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加
即:a(b+c)=ab+bc
三、新知应用
1、例题
用两种方法计算 ( + - )12
2、看谁算得快,算得准
1)(-7)(- ) 2) 9 15.
四、课堂小结
怎么样,这节课有什么收获,还有那些问题没有解决?
乘法交换律:两个数相乘,交换因数的位置,积 相等 .
即:ab= ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等
即:(ab)c= a(bc)
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加
即:a(b+c)=ab+bc
五.作业布置
1、(-85)(-25) 2、(- )15(-1 );
3、( ) 4、 (7).
5、-9(-11)+12(-9) 6、
1.4.4 有理数的除法
(第4课时)
一、教学目标:
1、理解除法是乘法的逆运算;
2、掌握除法法则,会进行有理数的除法运算;
3、经历利用已有知识解决新问题的探索过程.
二、教学重点和难点
教学重点:有理数的除法法则
教学难点:理解商的符号及其绝对值与被除数和除数的关系
三.教学过程
(一)、学前准备
1、师生活动
1)、小明从家里到学校,每分钟走50米,共走了20分钟.
问小明家离学校有 1000 米,列出的算式为 50 20=1000 .
2)放学时,小明仍然以每分钟50米的速度回家,应该走 20 分钟.
列出的算式为 1000 =20
从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算
(二)、合作交流、探究新知
1、小组合作完成
比较大小:8(-4) 8(一 );
(-15)3 (-15)
(一1 )(一2) (-1 )(一 )
再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 乘这个数的倒数.
2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .
2,运用法则计算:
(1)(-15)(-3); (2)(-12)(一 ); (3)(-8)(一 )
3,师生共同完成P34例5.
(三)1、练习:P35
2、P35例6、例7、
3、练习: P36第1、2题
四.课堂小结
通过这节课的学习,你的收获是:
1)、除以一个不等于0的数,等于 乘这个数的倒数.
2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .
五.作业布置
1、计算
(1)(+48)(+6); (2) ;
(3)4(-2); (4)0(-1000).
2、计算.
(1)(-1155)[(-11)(+3)(-5)]; (2)375
1、P39第1、2、3、4题
1.4.5有理数的除法
(第5课时)
一、教学目标:
1、学会用计算器进行有理数的除法运算.
2、掌握有理数的混合运算顺序.
3、通过探究、练习,养成良好的学习习惯
二、教学重点和难点
1、学习重点:有理数的混合运算
2、学习难点:运算顺序的确定与性质符号的处理
三、教学过程
(一)、学前准备
1、计算
1)(0.0318)(1.4) 2)2+(8)2
(二)、探究新知
1、由上面的问题1,计算方便吗?想过别的方法吗?
2、由上面的问题2,你的计算方法是先算 乘除 法,再算 加减 法。
3、结合问题1,阅读课本P36P37页内容(带计算器的同学跟着操作、练习)
4、结合问题2,你先猜想,有理数的混合运算顺序应该是 先算乘除法,再算加减法 。
5、阅读P36,并动手做做
三、新知应用
1、计算
1)、186(2) 2)11+(22)3(11)
3)(0.1) (100)
四.课堂小结:请你回顾本节课所学习的主要内容:
1、有理数的混合运算顺序应该是 先算乘除法,再算加减法 。
2、计算器的使用。
五、作业 1、P39第7题(4、5、7、8)、 第8题
教师:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.
于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).
这里用到正数和负数的加法,这样的加法怎样进行运算呢?下面就让我们一起来探讨1.3.1有理数的加法(一)。
1、看下面的问题:
一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作− 5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?
学生: 两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8
教师: 如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
教师:对于这个问题,可以用数轴来分析,我们把数轴的原点作为第一次运动的起点,第二次运动的起点是第一次运动的终点,有第二次运动的终点与原点的相对位置得出两次运动的结果.
教师:如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
学生:两次运动后物体从起点向右运动了 2m,写成算式就是5+(−3) = 2
2、 探究:
利用数轴,求以下情况时物体两次运动的结果;
(1)先向右运动3 m,再向左运动5 m,物体从起点向____运动了_____m .
(2)先向右运动5 m,再向左运动5 m,物体从起点向____运动了_____m .
(3)先向左运动5 m,再向右运动5 m,物体从起点向____运动了_____m .
教师:同学们,请你们自己利用数轴进行分析,完成填空.
教师:教师巡视,帮助有困难的学生,了解各小组自主学习的进展情况。
学生1:(第一组)依次填:(1)左;-2;(2)没走;0;(3)没走;0。
学生2:(第二组)(1)左;-2;(2)左或右;0;(3)左或右;0。
教师:说得真好!那第一题和第三题用算式怎样表示?
如果物体第一秒向右(或左)运动5 m,第二秒原地不动,两秒后物体从起点向右或向左运动了多少m?
教师;回答非常好。
现在我们来观察上面得出的7个式子,你能发现什么规律?
① 5+3 = 8;②(−5)+(−3) = −8;③5+(−3) = 2;④3+(-5)=-2;
⑤5+(-5)=0;⑥-5+5=0;⑦5+0=5或(-5)+0=-5。
教师:同学们在观察时,注意考虑它的符号, 同桌之间互相讨论。
在学生回答的基础上,教师适当补充得出有理数的加法法则:
①同号的两数相加,取相同的符号,并把绝对值相加.
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.
③一个数同0相加,仍得这个数.
一、 成功学习
1、成功目标(学习要高效,目标不可少)
①理解并掌握有理数减法法则,能熟练的进行有理数的减法运算。
②探索把减法运算转化为加法运算的过程,进一步体会转化思想。
2、成功自学(目标已明确,高效来自学)
自学教材第21~22页,完成下列内容
(1)通过21页的'小云朵里的内容你知道如何列式吗?
(2)观察课本22页“探究”的内容,你能从中有什么新发现?请同学们换几个数再试一试。
(3)有理数的减法法则是
(4)通过自学课本第22页例4,你认为有理数减法计算的具体步骤是什么呢?
(5)大数减小数结果是数,小数减大数结果是
数,两个相等的数相减差是你能举出一些例子吗?
3、成功合作(小组面对面,交流更方便)
自学课本后,组长带领小组成员,核对(1)(2)(3)(4)(5)题,讨论交流,集思广益,相信你们会学有所获。
4、成功量学( 收获有多少, 量学见分晓)
(1) 列式计算
①比3℃低20℃的温度是多少?
②比-10℃低31.5℃的温度是多少?
(2) 计算(过程要完整)
①0-(-52) ②(+2)-(-8)③(4/3)-(4/3) ④(4.6)-7.8
二、 成功展示(展示风采,相信自己)
1、学生展示自学部分(可分组回答)
2、学生展示量学部分(可黑板展示)
三、 成功测学(冲刺检测,相信我最棒!)
1、基础题:比-2小1的数是。
2、计算:
①|-3|-7?? ②7.3-(-6.8)? ③(-2.5)-0.5? ④0-(-2012)
3、综合题:下列结论正确的个数是()
①如果两个数的差是正数,那么这个数都是正数;②两个数的差不一定小于这两个数的和;③两个数的差一定小于被减数;④零减去任何数都等于这个数的相反数。
A、1? B、2? C、3 D、4
四、成功思学
————————————————————————————
1.算式(-3)×(-3)×(-3)×(-3)用幂的形式可表示为,其值为.
2.在今年的“两会”上,温家宝总理在政府工作报告中提出,要在5年之内,在全国逐步取消农业税,减轻农民负担.目前我国农民每年交纳的农业税约为300亿远,用科学记数法表示为(结果保留3个有效数字).
3.计算的结果为.
4.圆周率=3.141592653…,如果取近似数3.142,它精确到位,有效数字是.
5.用计算器计算:
1.下列语句中的各数不是近似数的是.
2.用四舍五入法按要求对0.05019取近似值,其中错误的是()
C.0.05(保留两个有效数字)D.0.0502(精确到0.0001)
A.B.C.D.
(3);(4)-(-2)3(-0.5)4.
2.计算:
(1)23-32-(-2)×(-7);
1.用科学记数法表示下列各数:
(1)地球距离太阳约有一亿五千万千米;
(2)第五次全国人口普查,我国人口总数约为129533万人.
2.请你把32,这六个数按从小到大的顺序排列,并用“
3.假如我们的计算机每秒钟能够计算10亿种可能性,那么,10台计算机一个世纪能够分析多少种可能性?与比较,哪个大?(假如一年有365天,一天有24小时)
一、
三、
1.(1);(2);(3);(4)0.5.
2.(1)-15;(2).
四、
1.(1)1.5×108万千米;(2)1.3×105万人,或1.3×109人.
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2,教科书第10页练习。
此练习中出现了集合的概念,可向学生作如下的说明。
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业
(1)必做题:教科书第18页习题1、2第1题
(2)教师自行准备本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
初中数学教学策略
一、激发学生的学习兴趣
兴趣是最好的老师。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。虽然我国素质教育已经开展多年了,但是许多教师在讲课的时候还是很难进行启发式教学,往往将本来应该是十分生动的内容,以“填鸭式、满堂灌”的方式讲述。因此,教师一定要注意激发学生的学习兴趣,在讲授知识时多考虑一下自己讲授的知识以及教授的方法能否引发学生的兴趣。
激发学生的学习兴趣,教师可以做到以下几点:(1)设置问题情境,让学生积极思考,提高学生独立思考问题的能力,培养学生的逻辑思维能力。(2)利用多媒体进行教学。随着科学技术的进步,多媒体教学已经得到了普遍发展。通过多媒体教学教师可以将抽象的数学符号、枯燥的数学定理、复杂的证明过程呈现出来。这样就可以使学生获得一定感性思维。(3)向学生讲述一下关于数学的小知识或者是小故事,激发学生的学习兴趣。
比如,冀教版初中数学八年级上册第十六章的知识点是勾股定理,教师在讲勾股定理这一章时,可以向学生讲述一下古代人是怎样发现勾股定理的,或者是向学生讲述一下古代人是怎样将数学知识运用到生活中去的。再比如,第十五章的知识点是轴对称,教师可以列举一些体现轴对称特点的中国古代建筑物,比如说故宫的建筑模式。
二、建立民主平等的师生关系
素质教育要求师生之间是一种民主平等的关系,师生双方在教学内容上是传递与接受的关系;在人格上是平等关系;在社会道德上是相互促进的关系。教师在日常教学过程中一定要充分发扬民主,建立和谐的师生关系。比如,在数学课堂上,有学生认为教师有的地方讲的不对,然后在全班同学面前给教师提了出来。在这种情况下,教师应该大度宽容,首先应该表扬学生积极思考问题,其次,仔细考虑自己是否真的出错了。最后,如果有错要及时改正。在初中数学教学过程中,教师应该充分调动学生的积极性和主动性,形成互动、互惠的师生关系。
三、建立多元化的教学目标
教学目标具有激励、导向、评价作用,对教师的教学和学生的学习都具有十分重要的作用。教师在设置数学教学目标的时候,要注意将知识与能力、过程与方法、情感态度与价值观紧密结合起来。数学教学不仅要注意问题的解决,也要关注学生的思维过程。教师要成为学生学习的指导者和促进者,不仅要注重学习的结果,更要注重学生学习的过程。教师要合理运用教学方法教学方法的设计应该遵循多样性、灵活性、综合性、创新性的原则。在选择教学方法时,教师应该依据教学规律和教学原则。
除此之外,教师在选择教学方法时要依据学生的学习特点,要符合学生的身心发展规律。同时还要依据教学的组织形式、时间、设备条件进行教学方法的选择。由于中学生的注意力还不是特别集中,在一节课中只运用一种教学方法会使学生产生疲惫和倦怠,因此,教师在讲授过程中应该综合运用多种教学方法,以引起学生的注意力和积极性。比如,在学习《命题与证明》这一章时,教师应该采用讲授法、谈话法、练习法等,这样既可以使学生掌握一定的新知识又能够及时掌握新知识,同时又激发了学生学习的积极性和主动性。教师在教学中应多采用启发式教学。所谓启发式教学就是教师要承认学生的主体地位,充分调动学生的学习积极性和主动性,引导学生独立思考、积极探索,生动活泼地学习,自觉地掌握科学知识,提高分析问题、解决问题的能力。初中教师在教学过程中,一定要时刻注意启发学生的思维。这样才能够激发学生的学习兴趣,使课堂变得生动、有趣。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。
四、总结
综上所述,在初中数学教学过程中要运用恰当、科学的教学策略。教师一定要根据学生的实际情况,根据教材的具体内容制定科学的教学策略,以提高教学质量和学生学习的质量。教师在进行教学时一定要遵循直观性原则、因材施教原则、理论联系实际原则、科学性等原则。教学策略是多种多样的,比如激发学生的学习兴趣;树立多元化的教学目标;建立民主平等的师生关系等。教师一定要跟随教育改革的步伐,跟随时代的潮流,积极探索教学之路,提升数学教学水平,培养出高素质的学生。
第一章 有理数
课题:1.1 正数和负数(1)
【学习目标】:1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念
【导学指导】:
一、知识链接:
1、小学里学过哪些数请写出来: 、 、 。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。
(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
(3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:
1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数: , ,3.14,+3065,0,-239;
则正数有_____________________;负数有____________________。
4.下列结论中正确的是 ( )
A.0既是正数,又是负数 B.O是最小的正数
C.0是最大的负数 D.0既不是正数,也不是负数
5.给出下列各数:-3,0,+5, ,+3.1, ,20xx,+20xx;
其中是负数的有 ( )
A.2个 B.3个 C.4个 D.5个
【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做 ,小于0的数叫做 。
(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【拓展训练】:
1.零下15℃,表示为_________,比O℃低4℃的温度是_________。
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.甲比乙大-3岁表示的意义是______________________。
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
【总结反思】:
课题:1.1正数和负数(2)
【学习目标】:
1、会用正、负数表示具有相反意义的量;
2、通过正、负数学习,培养学生应用数学知识的意识;
【学习重点】:用正、负数表示具有相反意义的量;
【学习难点】:实际问题中的数量关系;
【导学指导】
一、知识链接.
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。
问题:零为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明。
参考例子:温度表示中的零上,零下和零度。
二.自主探究
问题:(课本第4页例题)
先引导学生分析,再让学生独立完成
例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
2)20xx年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%, 中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率;
解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;
2)六个国家20xx年商品进出口总额的增长率:
美国___________ 德国__________
法国___________ 英国__________
意大利__________ 中国__________
本文网址://m.jk251.com/jiaoan/17876.html