导航栏

×
范文大全 > 小学教案

分数整数相乘的计算 小学教案范例

时间:2022-03-19 分数除以整数教案 分数除以整数的课件

分数和整数相乘的计算

教学内容:分数和整数相乘的计算

教材分析:在已学过的整数乘法的意义和分数加法计算的基础上,教学分数乘整数的意义和分数乘整数、整数乘分数的计算方法。

学情分析:对于分数乘法的意义与整数乘法的意义的区别还有待进一步强调,学生在计算时会出现不先约分或与分母相乘的错误。

教学目标:掌握分数和整数相乘可以表示求几个相同加数的和的简便运算的意义,能运用分数和整数相乘的计算法则进行有关计算,并且知道先约分后计算比较简便。

教学重点:分数乘法的意义,分数与整数相乘的计算方法。

教学过程:

一、复习

1、把下列分数化成小数。

2/53/203/87/251/49/50

说说分母是20、25、50的分数化小数的简便化法。如何判断一个分数能不能化成有限小数。

2、说说约分的依据,再对下列分数进行约分。

3/124/816/2026/395/14

3、计算后再说说下列各组分数加法各有什么特点。

1/6+2/6+3/62/3+1/123/10+3/10+3/10

二、新授

1、分数乘整数的意义

(1)推导

由3/10+3/10+3/10,得出3个3/10相加,可以写成3/10×3,说说3/10×3所表示的意义。再由1/5+1/5+1/5+1/5可写成一个怎样的算式。说说1/5×4所表示的意义。

(2)讨论

1/5+2/7能不能也写成一个乘法算式,为什么?

(3)得出分数乘整数的意义。

表示求几个相同加数的和的简便运算。b/a×c即表示c个b/a的和是多少。

(4)练习

说说下列各式的意义

1/4×73/5×84/9×35/12×3

列出下列各题的算式

3个7/9的和是多少?4与3/8的和是多少?5/8的9倍是多少?

2、分数和整数相乘的计算方法

(1)推导

3/10+3/10+3/10=9/10,所以3/10×3=9/10.用小数乘法也可来验证,0.3×3=0.9。观察这个9/10是怎样得来的。再举例:2/5×7,由意义可得到2/5+2/5+2/5+2/5+2/5+2/5+2/5=2+2+2+2+2+2+2/5=2×7/5=14/5。再用小数乘法来进行验证0.4×7=2.8。

(2)猜测

说说下列各式的结果

1/5×43/5×26/7×33/17×54/15×4

(3)让学生说说分数和整数相乘的计算方法。得出b/a×c=b×c/a

(4)归纳总结出分数和整数相乘的计算方法。

由b/a×c=b×c/a,说说c×b/a等于什么。得出分数和整数相乘,只要用分数的分子和整数相乘的积作分子,分母不变。

(5)练习

3/5×4=()×()/5()×5/12=()×3/()

()/5×()=3×4/()3/()×()=()×7/16

(6)出示例1请学生尝试练习。

(7)明确先约分后计算,使计算简便。

注意a、在乘的情况下才能约分b、约分是在分子和分母之间进行的

三、巩固

1、课本第三页上的练一练。

2、课本第7页上的练习一第1、2题,第3题的第一行。注意一定要先约分后计算。

四、小结

1、分数乘整数的意义。b/a×c表示c个b/a是多少

2、分数和整数相乘的计算方法。b/a×c=c×b/a=b×c/a,用分数的分子和整数相乘的积作分子,分母不变。

3、注意先约分后计算可以使运算来得简便。分清4/5×5和4/5+5的区别。约分只有在乘法的情况下才能进行,而且是在分子和分母之间进行的。

五、作业

课本第7页练习一第3题的第二行,第4、5、6、7题

六、教后小记

学生对分数乘整数的意义掌握较好,但有部分学生对于c个b/a的和与c与b/a的和相混淆。计算的法则掌握情况也较好,不过有个别学生出现整数和分母约分,还有极个别学生把加法也用乘法的方法来计算。可以看出学生对于所学内容的理解运用还有待进一步的加强。

jK251.com其他人还在看

“分数与整数相乘”的堂小插曲 优秀小学教案 教案精选


“分数与整数”相乘是数学义务教材十一册第一个单元的一个内容,在备课时,觉得这一节课的知识点不是很难,学生应该比较容易就能够掌握的。果然,那天在上的时候,感觉一切都挺顺畅的,学生都能根据算式说出分数乘法的意义,计算法则的推导也比较顺利。但是在巩固练习时却出现了一些问题,如3/4×10大部分学生都采用了书上的第三种方法,也就是分子和整数直接约分,但是在书写时好多的学生都把整数约得的数写在了整数的下面导致最后一步计算时把2和5相乘的积作为分母了,虽然在上新课时我也强调了整数约得的数一定要写在整数的上面,但是没想到自认为讲得很清楚的题目,学生的错误率还是挺高的。于是我又把这方面注意的事项向学生不厌其烦的讲,后面又用大量的习题来巩固,但是班里的徐某某也不知道是怎么回事,一会做对了,一会又写错格式导致计算错误。当时自己心里就开始有点火了,怎么回事啊,这么简单的题目还在这里错,那里错的,是不是成心捣乱了,下面的同学也在议论开了,也学生干脆说,老师再给他出个十几题,让他多做就应该记住了。想想也是,就在我打算让徐同学下课到我办公室再补一补时,芳芳却站起来对我说,“老师,其实不用让徐到办公室再补课的,我有个挺管用的方法,保证能够做对题目。”“是吗?”我将信将疑的说,大家都知道,芳芳在我们班中初于中下水平,平时的考试也只在七、八十分,她能有好的办法来解决这个棘手的问题吗?就在我怀疑时,只听见她说:“刚才我在做题时一开始也会犯错误,后来想起以前不是学过把整数化成分数的方法吗?于是我就把整数化成分母是1的分数,这样用分数线把分母和分子分开以后,约分时书写格式自然而然就对了,不会再上下搞不清楚了。”这个看似有点“笨”的办法我一开始怎么就没想到呢?怎么就光顾着把自己认为可行的方法一定要硬灌给学生呢?接下来,我又出了两题类似的题目,全班同学只有两个同学做错,都是算错,没有一个人再犯刚才的错误,连徐都高兴的在下面喊“这么简单啊,都做对了!”这件事给我的触动挺大的,在平时的课堂教学中,教师所教授的方法是不是一定是最好?有时当教学上遇到瓶颈时,我们有没有弯下腰去,多听听学生的意见?平时成绩不好的学生,真的就一直处于被动“灌输”的位置吗?

分数乘整数教学片断与反思 小学教案范例


教学片断:

师:哪些同学知道3/10×3的计算结果?

(绝大多数学生举起了手,部分同学迫不及待地说出了答案:9/10。)

师:说一说你是怎么计算的?

生1:我从书上看到,分数与整数相乘时,只要把分子与整数相乘就可以了,分母不变。所以,3×3=9,分子是9,分母仍然是10,结果就是9/10。

(举手的学生都点头表示同意生1的发言,有个别学生表示是从课外数学班的学习中了解到的。)

师:老师也同意用这个方法进行分数与整数相乘的计算。对于这个内容,大家还有什么疑问?

生2:为什么只把分子与整数相乘,分母10不和3相乘?

师:多好的问题!(这个问题正是理解算理的关键。)大家有什么想法?可以在小组内交流。

(几分钟以后,许多同学举起了手。)

生3:我是这么想的:3/10表示3个1/10相加,同分母分数加减法的计算法则是,分母不变,只把分子相加减。所以分母不变,只计算分子3+3+3,也就是3×3就可以了。

师:你能抓住分数乘整数的意义,从而将分数乘整数与分数加法的计算方法联系起来思考,真好!

生4:3/10里面有3个1/10,3/10的3倍就是有9个1/10,也就是9/10。

师:你对分数的计算单位以及分数单位的个数理解得很透彻!

生5:如果将3/10的分子和分母都乘3,根据分数的基本性质,结果还是3/10,而不是3个3/10。

师:生5从反面给我们讲明了分母不能与整数相乘的道理,谢谢你。

生6:我认为3/10等于0.3,0.3×3等于0.9,也就是9/10。所以,3/10×3等于9/10。

生7:我想给大家举个例子说明3/10×3等于9。老师拿来10支粉笔,每天用去3/10,也就是3支,三天用去9支,也就是用去这些粉笔的9/10。

师:用日常生活中的实例来理解数学,也是一种非常好的学习方法。

[反思]

在这一片断中,学生积极主动地投入到问题的研讨和解决之中,课堂气氛轻松、活泼。反思这一教学过程的成功,主要有以下两个原因。

一、尊重学生的“数学现实”。

在第一次教学《分数乘整数》之后,其实班里已经有许多学生知道了分数乘整数的计算方法。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时,我故意将分数乘整数的结论“灌输”给学生,省去了获取结论的研究过程,意在让学生问“为什么”。这时学生抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母10不和3相乘?”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。

二、实现教学学习的个性化。

每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,教师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果;也有的学生通过生动的数学实例进行了分析。由此我深深地体会到,包或教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。

分数乘整数优秀模板


第二单元分数乘法

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、分数乘法计算法则的推导。

1、分数乘法

(1)分数乘整数教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。1、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点:引导学生总结分数乘整数的计算法则。教学过程:一、复习

1.出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少?9个11是多少?8个6是多少?

(2)计算:

++=++=

2.引出课题。++这题我们还可以怎么计算?今天我们就来学习分数乘法。二、新授1、利用++教学分数乘法。(1)这道加法算式中,加数各是多少?(都是)(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,×3)(3)++=9,那么++=×3,所以×3=____________=9。同学们想想看,×3=9计算过程是怎样的?谁能把它补充完整。2、出示例1,画出线段图,学生独立列式解答。?

(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。4、练习:练习完成“做一做”第2题。5、教学例2(1)出示×6,学生独立计算。(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?(3)学生通过自己的想法的来约分:a、先约分再计算;b、先计算得出乘积后约分。(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)2、“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)三、作业练习二第1、2、4题。

“整数除以分数”教学设计 教案精选


教学目标:

通过自主探究、合作交流,理解整数除以分数的计算方法。

能正确计算整数除以分数,并能解决简单的数学问题。

学生在学习活动中能进行观察、抽象、猜想、验证等数学活动,获得良好的学习情感。

教学过程:

一、引入课题。

1.同学你,喜欢动物吗这节课我们就通过数学来了解几种动物的情况。古代有一种动物被称作人们的邮递员,知道它是谁吗鸽子每小时可飞多少千米呢

2.有这样一组信息:

出示:一只鸽子小时飞行12千米。1小时行多少千米

你会用线段图表示条件吗

求鸽子1小时飞行多少千米,算式怎么列

这是整数除以分数(板书课题)

二、探究新知。

1、12÷怎样计算呢你能否根据线段图发现不同的解法呢

学生可能有以下三种方法:

①12÷=12÷0.2

这是转化成整数除以小数进行计算。

②12×5

为什么乘5能在图中解释一下吗

③12÷=60

2、12÷的结果是多少你是怎么想的

学生可能会有:

①12÷和12×5都是求鸽子1小时飞行的路程,应该相等。

②12÷等于乘的倒数。

提问:你怎么想到的

从一个例子推想出来的结论,是否适用于所有的例子呢这时可称之为猜想。想证明猜想是正确的,你认为应该怎么办

3、出示下面两题,请学生解答并说出思考过程。

1.蜜蜂

2.猫

这两题的计算过程符合刚才的猜想吗能否说明猜想适用于所有整数除以分数的情况呢

4、出示:

一只蝴蝶小时可飞行()千米,1小时可飞行多少千米

你想知道四分之几小时飞行的千米数为什么

补充小时可飞行24千米。

算式怎么列怎样计算呢先独立思考,然后小组讨论。

学生可能有:

24×,24×3÷4,24××4,24÷3+24,24÷0.75

如果24×是正确的,结果应是相同的,验证一下。

这些算式之间有没有内在的联系呢能否转化成24×呢

教师引导完成:

5、猜想正确吗用不同的事例来证明猜想是非常了不起的办法,老师告诉你们,猜想是对的。在中学的学习中,同学们还会学习如何证明猜想。

(若有化成除以小数的,提问:两种计算方法,哪种更好)

计算整数除以分数,哪种方法最方便

三、巩固练习

①4÷2/3=4×()2÷1/5=2×()

②p35.练一练1

③计算8÷2/310÷15/16

四、解决问题

苍蝇小时可飞4千米

蝙蝠小时可飞4千米

游戏a÷2/3÷3/4

机动:

榨油机2/5小时榨油360千克,1小时榨油多少千克?

有3升西瓜汁,倒入能装1/5升的杯子里,可以倒几杯?

角形面积的计算 小学教案范例


教学内容

p27~28

教学目标

1、使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。

2、通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。

3、引导学生运用转化的方法探索规律。

教学重点:

理解并掌握三角形面积的计算公式。

教学难点:

理解三角形面积计算公式的推导过程。

教学准备:

投影和自制三角形面积演示纸板等

教学过程:

一、创设情境,引入课题

右图是一张三角形彩纸,它的面积是多少?

提问:这块彩纸是什么形状?你会算出它的面积吗?

引入:怎样把三角形转化成我们已学过的图形,然后算出它的面积呢?我们这节课就来探讨这个问题。

二、探索新知

1.推导三角形面积计算公式。

(1)操作感知:让学生用学具并用自己喜欢的办法探索怎样把三角形转化成平行四边形。

(2)汇报、交流,总结两种转化方法。

重点讨论:①拼成的平行四边形与原来的三角形有什么关系?②怎样计算三角形的面积?

形成共识:①两个完全一样的三角形都可以拼成一个平行四边形,这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高。②因为三角形的面积=拼成的平行四边形面积÷2

强化理解推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?

板书:三角形面积=底×高÷2

(3)用字母公式表示。

如果用s表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:s=ah÷2。(板书)

2.即时练习:让学生完成课前引入中的求彩纸面积的问题,并组织交流。

4×3÷2=12÷2=6(c㎡)

通过交流引导学生进一步认识三角形面积和平行四边形面积计算方法的异同点。

三、巩固练习

指导学生完成p28“试一试”。

四、总结全课

让学生谈谈这节课的收获和体会:怎样求三角形的面积?三角形面积的计算公式是怎样推导的?

五、作业

1.课内作业:p28“练一练”第一题。

2.课外作业:优化作业相关练习。

分数的简单计算之教学设计 优秀小学教案 教案精选


分数的简单计算学习设计

共5课时总第52课时

教学目标:

1、使学生会计算简单的同分母分数的加、减法。

2、在理解分数意义的基础上,使学生学会解决简单的有关分数加减法的实际问题。

3、培养学生自主学习的精神,动手操作能力和解决问题的能力。

教学过程:

一、情境导入

1、填空

(1)3/4里有()个1/4(2)2/5里有()个1/5

(3)4/8里有()个1/8(4)5/9里有()个1/9

2、创设情境,引入课题。

(1)展示情境图内容,让学生观察,提问:你看到了什么?你想提出什么数学问题?

(2)根据学生的回答引出课题:分数的简单计算,板书课题。

二、探索新知

1、教学分数的加法

(1)让学生借助学具计算:2/8+1/8

(2)学生交流:请学生说出计算的方法。

(3)教师用教具演示2/8+1/8的过程:让学生理解分数加法的算理。

2、教学分数的减法

(1)用教具演示从5/6里减去2/6的过程。

(2)让学生说出教师演示的过程。

(3)让学生根据教师演示的过程列出算式。

(4)提问:5/6表示几个1/6?2/6表示几个1/6?

(5)引导学生说出算理并计算,师板书。

3、教学例3

(1)出示1个圆片:整个圆可以用几表示?用分数表示是几分之几?

(2)用教具演示减的过程,然后让学生说一说演示的意思。

(3)学生根据演示列出算式1-1/4=

(4)让学生独立计算后全班交流:请学生说出计算过程。

4、学生小组讨论,然后师生共同小结同分母分数的加、减法的计算方法。

三、实践应用

1、生独立完成第100页的“做一做”1、2题,然后集体讲解订正。

2、作业:教科书第101页的1、2题。

四、全课总结

1、通过今天的学习,你有什么新的收获?

2、师总结。

分数乘分数教学反思 小学教案范例


今天教学了分数乘分数(例4和例5),在课前研究教材时就觉得不太好理解,因为例题中都有两个单位“1”,比如画斜线的1份占1/2的1/4,此时的单位"1"是1/2,但是对于整个长方形来说是1/8,此时的单位“1”是一个长方形。

后面的1/2的3/4,以及对例5的两个算式的理解都是同出一辙。但要注意两者教学时的区别:例4是让学生从图中猜想(感知)出两个分数乘分数的结果。例5是让学生先猜算结果,再用图来验证。二者在教学中的顺序是相反的,但其目的都是让学生从图形直观感知进而理会出分数乘分数的计算方法。

但是从学生的反馈来看,好像不能够充分理解,确实是太抽象了,虽然有图的辅助。分开来看都能理解——斜线部分是1/2的1/4,又是这张纸的1/8。但是为什么1/2的1/4就是1/8呢?这其间可是隐含着两个不同的单位"1"啊。学生能转得过来吗?单靠猜想感知行吗?教学时我是照书按步就班的教的,但有不少学生好像钻到云雾里去了。

为什么呢?怎么办呢?

原因很简单——太抽象了。

办法是有的——化抽象为形象:我们来看看练习九的第1题,与例题的最大的区别在于例题是在数之间思考,练习中的第1题是在数量之间的思考。不要小瞧这一点变化,借助数量来理解就比例题数之间的理解要容易得多。

本课的教学目的是教学分数乘分数的计算方法,前面的几个例题都是借助具体的数量让学生理解算理的,而分数乘分数比前面的几个例题都复杂些,但是却摆脱数量而抽象成数,学生的思维难度陡增。为什么不借助数量呢?如果把例题转换成像练习九第1题这样的情境,学生会很容易列式,也比较容易理解算理。在此基础之上,再抽象成数,如例题式样的,学生学起来会好得多。]

本文网址://m.jk251.com/jiaoan/19152.html

相关文章
最新更新

热门标签