导航栏

×
范文大全 > 初中教案

吆喝的教学方案

初中教师经常会接触到教案的撰写,通过不断的写教案,我们可以提高自己的语言组织能力,在教案中总结好经验与教训,我们才能逐步成熟起来。如何才能写好初中教案呢?小编为你推荐《吆喝的教学方案》,希望您喜欢。

课题

学习目标:①了解文常,掌握生字词

②品味语言,体会作者对北京吆喝声的情感,进而学会对生活的观察和表达。

③感受老北京的民风民俗,引起对民俗文化的关注。

学习难点:目标②

第一部分:自学探究——雏凤清声

一、做预习

1、识作者:

萧乾(1910~1999)原名萧丙乾,蒙古族,北京人。作家、记者、翻译家。

本文选自散文集《北京城杂忆》.本书获中国首届散文奖.作者这样写道:“《北京城杂忆》不是知识性的,我是站在今天和昨天,新的和旧的北京城之间,以抚今追忆的心态来书写我的一些怀念和感触。”

2、读全文,测字词

(1)给下列加点词注音

招徕()囿于()

铁铉()小钹()

合辙压韵()秫秸秆()

馄饨()荸荠()

佐料()饽饽()

(2)解释下列词语。

招徕:

囿于:

合辙押韵:

二、赏吆喝

文中写了很多吆喝,你认为谁最会吆喝,为什么?(请勾出来,简要批注)

第二部分:拓展探究——群凤和鸣

三、悟吆喝

细读4—14自然段,体会作者对北京吆喝声怀着怎样的情感。

四、惜民俗

我们家乡有哪些吆喝声,请把你所听到的重庆街头的吆喝声在组内交流,试着学学,体会其中的韵味。

第三部分:检测提升——凤翔九天

我们身边还有哪些民俗风情,请大家想一想、写一写。

jK251.COm精选阅读

的教学方案


2.1比0小的数(一)教学设计

江苏教育学院附属高级中学崔宁宁

【设计思路】本节课是第二章的起始课,也是学生进入初中的第一节概念课.因此,为了让学生感受数学就处处存在于我们生活周围,本节课以现实生活为素材,从学生的生活经验、经历和已有的知识出发,创设恰当的情境:气温的表示和一个小游戏的结果的表示,让学生意识到他们小学里所学的数已经不够用了,意识到引入其他新数的必要性.紧接着展现现实生活中常见的情境图片引进负数.

本节课的第二个处理点是将“有理数的分类”提前,而将“正、负数可以表示相反意义的量”放置第二课时,因为可以说“正、负数可以表示相反意义的量”是对正、负数的一个应用,这样在第二课时不仅可以对有理数进行复习,而且还对有理数进行应用,让学生感受学数学的目的是为了用数学.

本节课的第三点就是对有理数进行分类.这点主要是用指出有理数所包含的全部对象的方法给出有理数的定义及分类,而有理数的分类实际上是有理数的定义的另一种表达形式.这里让学生初步感受分类思想,也开始逐渐地培养学生的分类思想.

【教学过程】

一、教学目标

1.根据已有的知识经验,借助生活中的实例认识负数,理解正数、负数的不同意义,体会负数引入的必要性;

2.理解有理数的意义,并会将有理数分类;

3.初步培养学生的分类思想.

二、教学重点、难点

重点:1.辨别正数与负数,理解负数的意义;

2.有理数的分类.

难点:1.负数概念的建立;

2.有理数的两种分类方法.

三、教学方法及手段:讨论法、讲授法

四、教学工具:多媒体课件

五、教学过程

1、创设情境引入新课

首先引导学生回忆:小学学过哪些数?是不是我们生活中遇到的任何量都可以用它们来表示呢?(可先让学生举例回答)

由此创设下列情境:

情境一:据气象台播报,2005年1月12日,南京的最高气温为零上9度,最低气温为零下3度,问:若将零上9度记为9℃,零下3度能记为3℃吗?

情境二:某班举行数学竞赛评分标准是:答对一题加10分,答错一题扣10分,不回答得0分;四个代表队答题情况如下表:

下载完整版:2.1比0小的数(一)教学设计(如果不能下载,请右击用迅雷下载)

上一篇:2.1比零小的数(2)

下一篇:没有了

§.的教学方案


§7.2转盘游戏

教学目标:

1.在试验中进一步体会不确定事件的特点;

2.通过试验总结不确定事件发生的等可能性;

3.通过转盘游戏进一步突出事件发生的可能性是有大小的,同时复习一些基本统计量的意义、运算和有理数的加减运算;

4.能列举简单事件所有可能发生的结果。

教学重点:1.不确定事件的特点和不确定事件发生的等可能性;

2.列举简单事件所有发生的可能结果。

教学难点:列举简单事件所有发生的可能结果。

教学过程:

一、复习引入:

指针指在什么颜色区域的可能性大?

条件:任写6个-10至10之间的数.

二、课堂活动:

1.游戏规则:

(1)任意抽一组数,算出这组数的平均数;

(2)自由转动转盘,当转盘停止转动后,指针落在某个区域;

(3)根据转动和刚才的计算得到结果.

2.议一议:

(1)这个转盘转到哪部分的可能性大?

(2)在做上述游戏的过程中,你如何调整卡片上的数据的?

(3)将各小组活动进行汇总,”平均数增大1”的次数占次数的百分比的多少?”平均数减少1”的呢?

(4)如果将这个实验继续做下去,卡片上所有数的平均数会增大还是减少?

3.试一试:

请设计一个转盘,使得它停止转动时,指针落在绿色区域的可能性比落在白色区域的大.小明设计的转盘有三种颜色,你觉得可能吗?

4.练一练:

下面是两个可以自由转动的转盘,分别转动这两个转盘,你认为转动哪种颜色的可能性最大?说明理由.

5.小结:

生活中有哪些现象是一定发生的、很可能发生的、可能发生的、不太可能发生的、不可能发生的?

6.作业:

1.见作业本.

2.书面设计一个对双方都公平的游戏.

镶嵌的教学方案


一、教学目标

1.会用正多边形无缝隙、不重叠地覆盖平面。

2.让学生在应用已有的数学知识和能力,探索和解决镶嵌问题的过程中,感受数学知识的价值,增强应用意识,获得各种体验。

二、教学活动的建议

探究性活动是一种心得学习方式,它不是老师讲授、学生听讲的学习方式,而是学生自己应用已有的数学知识和能力,去探索研究生活中有趣而富有挑战问题的活动过程。

建议本节教学活动采用以下形式:

(1)(1)学生自己提出研究课题;

(2)(2)学生自己设计制订活动方案;

(3)(3)操作实践;

(4)(4)回顾和总结。

教学活动中,教师提供必要的指点和帮助。引导学生对探究性活动进行反思,不仅关注学生是否能用已有的知识去探究和解决问题,并更多地关注学生自主探究、与他人合作的愿望和能力。

三、关于镶嵌

1.1.镶嵌,作为数学学习的一项探究性活动,主要有以下两个方面的原因:

(1)如果用“数学的眼光”观察事物,那么用正方形的地砖铺地,就是“正方形”这种几何图形可以无缝隙、不重叠地拼合。

(2)“几何“中研究图形性质时,也常常要把图形拼合。比如,两个全等的直角三角形可以拼合成一个等腰三角形,或一个矩形,或一个平行四边形;又如,六个全等的等边三角形可以拼合成一个正六边形,四个全等的等边三角形可以拼合成一个较大的等边三角形等。

2.2.各种平面图形能作“平面镶嵌”的必备条件,是图形拼合后同一个顶点的若干个角的和恰好等于360°。

(1)用同一种正多边形镶嵌,只要正多边形内角的度数整除360°,这种正多边形就能作平面镶嵌。比如正三角形、正方形、正六边形能作平面镶嵌,而正五边形、正七边形、正八边形、正九边形、……的内角的度数都不能整除360°,所以这些正多边形都不能镶嵌。

(2)用两种或三种正多边形镶嵌,详见163~166页内容。

(3)用一种任意的凸多边形镶嵌。

从正多边形镶嵌中可以知道:只要研究任意的三角形、四边形、六边形能否作平面镶嵌,而不必考虑其他多边形能否镶嵌(这是因为:假如这类多边形能作镶嵌,那么这类正多边形必能作镶嵌,这与上面研究的结论矛盾)

矩形的教学方案


一、教学目标

1.掌握矩形的定义,知道矩形与平行四边形的关系.

2.掌握矩形的性质定理.

3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.

4.通过性质的学习,体会矩形的应用美.

二、教法设计

观察、启发、总结、提高,类比探讨,讨论分析,启发式.

三、重点、难点及解决办法

1.教学重点:矩形的性质及其推论.

2.教学难点:矩形的本质属性及性质定理的综合应用.

四、课时安排

1课时

五、教具学具准备

教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

六、师生互动活动设计

教具演示、创设情境,观察猜想,推理论证

七、教学步骤

【复习提问】

什么叫平行四边形?它和四边形有什么区别?

【引入新课】

我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形——矩形(写出课题).

【讲解新课】

制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).

矩形的性质:

既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.

继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.

矩形性质定理1:矩形的四个角都是直角.

矩形性质定理2:矩形对角线相等.

由矩形性质定理2我们可以得到

推论:直角三角形斜边上的中线等于斜边的一半.

(这实际上是△的一个重要性质,即△斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)

例1已知如图1矩形的两条对角线相交于点,,,求矩形对角线的长.(按教材的格式)

(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)

【总结、扩展】

1.小结:(用投影打出)

(1)矩形、平行四边形、四边形从属关系如图.

(2)矩形性质.

1.具有平行四边形的所有性质.

2.特有性质:四个角都是直角,对角线相等.

3.思考题:已知如图,是矩形对角线交点,平分,,求的度数

人琴俱亡的教学方案


刘义庆〖学习目标〗1、有感情的诵读古文,体会用独特悼念方式表达深厚的兄弟情谊2、掌握常见的文言实词与虚词,品味简洁传神的语言3、重点:掌握常见的文言实词与虚词。4、难点:体会用独特悼念方式表达深厚的兄弟情谊,感受凄美的爱的感情熏陶。〖课前学习〗查工具书解决课文中的生字词,能正确拼读,并了解词的大意。〖课堂学习〗第一块:整体感知课文教学步骤1.导入,组织学生默读默读课文了(liǎo)不悲笃(dǔ)舆(yú)奔(bēn)丧恸(tòng)亦卒(zú)不调(tiáo)2.组织学生多种方式朗读按要求读课文第二块:深入分析兄弟之情教学步骤1.让学生看注释翻译课文看注释疏通文意实词:笃:(病)重;索:要;舆:轿子;径:直往;素:向来,一向;卒:死虚词:而:表承接,不译;了:完全;既:已经;俱:全,都。因:于是译文:王子猷、王子敬都病得很重,子敬先死了。王子猷问手下人:“为什么总听不到(子敬的)消息?(这)一定是他已经死了。”说话时完全不悲伤。就要轿子来去奔丧事,一路上都没哭。子敬一向喜欢弹琴,(子猷)一直走进去坐在灵床上,拿过子敬的琴来弹,几根弦的声音已经不协调了,(子猷)把琴扔在地上说:“子敬啊,子敬啊,你人和琴都死了。”于是痛哭了很久,几乎要昏过去。过了一个月,(子猷)也死了。2.探究(1)、子猷以自己独特的不同寻常的方式悼念了弟弟子敬,独特在哪?(2)、你如何理解子猷的独特的悼念方式?3.组织交流小组推荐交流,小组互评4.拓展延伸:手足情是一个不老的话题,生活中你有没有真切的体会?第三块:布置作业将本文扩写成500字左右的文章,对子猷悼念弟弟前后的神态、心理、动作进行合理想象。

本文网址:http://m.jk251.com/jiaoan/3804.html

相关文章
最新更新

热门标签