导航栏

×
范文大全 > 初中教案

给儿子的一封信

初中教师上课前最好是准备一份教案,教案有利于教学水平的提高,可以通过编写教案认识自己教学的优点和不足。好的初中教案都有哪些内容?可以看看本站收集的《给儿子的一封信》,希望能够为您提供参考。

刘亚洲

教学目标

1.理解父辈的殷切希望。

2.选用大量事例的方法

3.理解文中富有哲理的语言

重点难点

1.重点:理解信中饱含对儿子的一片深情

2.难点:赏析有关精彩语段

教学时间

一课时

教学设计

一、预习

二、导入

作者简介

三、研读课文

?文中父亲肯定了儿子的哪些优点,又提出了哪些希望。

明确:父亲首先肯定了儿子最大的优点是心地善良,对大自然,对所有的生命充满爱心。决不干些弄虚作假的事。父亲认为儿子的另一个优点是具有平民思想。比如对胡同特别感兴趣,不喜欢搞特殊化,对家庭和附加于家庭上的东西没兴趣。

父亲重视的是儿子的思想品质,而不仅是他的学业,这很值得我们深思的。

父亲又提出了两点希望:一是应有博大的胸怀。要豁达,要跨跃心理的雄关,要征服自己,不要纠缠于一些小事。二是要有铁一般的意志,这是针对儿子小事尚可,中事不够,大事就不够提出的,希望儿子成为坚强者能办大事。

这两点希望表达了父亲对儿子的一片深情,希望儿子不断完善自我,这也是对我们广大青少年提出的要求。

?信中举了哪些事例,举出你印象最深的谈谈感受。

(1)为了说明儿子心地善良,作者举了儿子四岁时见人摘花、砍树就生气;直到今天为保护海洋生物而不吃鱼,考试做错题而已从同桌得知正确答案而不改。

可以看出父亲对儿子十分关注,对十年前的事情还记忆犹新。在叙述中父亲如数家珍,赞赏之情溢于言表。作者还将自己同儿子进行对照,反省自自。

(2)在信的开头,为了激励儿子积极进取,举了“我和你妈妈”“你爷爷”“你外公”十五、六岁就参军的事例,还有甘罗,刘胡兰的事迹。

举这些事例,希望儿子从小胸怀大志,有一个与众不同的精彩人生,可以看出父亲的良苦用心。

(3)举儿子对胡同文化特别兴趣,不搞特殊化,不炫耀自己的家庭。

在儿子的诸多优点中,作者特别珍视这个优点,作者主为平民思想是现代化和现政治最重要的灵魂。可以看出儿子正是受了家庭的潜移默化的影响,才具有了这个特点。这个事例看似平凡,但给人深思。

(4)举了儿子在意别人的批评,别人的看法,无端地被一些小事所困扰。父亲表达了自怀的担忧,用了邓小平三次栽倒三次站起来的事例启发儿子要战胜自我,超越自我。

文中有很多可以做为名言警句的段落,请摘录你喜欢的,并加以分析。

?世上没有两片相同的树叶,也没有相同的人生之旅。

?人心如海,世事如烟,偏你心中是一片净土。

?在狼面前是羊,在羊面前是狼,这其实是一种不平等。当别人强大时,用谄媚取悦对方;当自己强大时,用作践别人来取悦自己。

?你就是你,你不是别人,先做自己,再做别人。有些父母希望孩子做这个做那个,其实是在孩子身上寻找自己。

?应有博大的胸怀。天空大,比天空还大的是人心。

?放得下,拿得起,举泰山如茶几。

?聪明是一种才富,意志是更大的财富。聪明人办小事,坚强者办大事。战斗最难坚持的是最后三分钟。

四、小结

本文表达了父辈对儿子的殷切希望,在字里行间我们真切体会到父亲对儿子的一片深情。

五、作业

jK251.COm精选阅读

信客教学设计(范文)


【教学目标】

熟悉课文,掌握全文结构,分析人物性格,对信客人物品质的整体把握。

【教学重点】熟悉全文,掌握课文结构。

【教学难点】

感受信客的品格和精神。

【教学时间】

1课时。

【教学过程】

一、导入

1、作者简介:

作者余秋雨是我国当代著名的艺术理论家、文化史学者、散文家。曾被授予“国家级突出贡献专家”称号。主要著作有《文化苦旅》、《秋雨散文》、《山居笔记》、《行者无疆》、《千年一叹》等,其中散文集《文化苦旅》曾获得多个书评大奖,《山居笔记》更获得海外华文文学最高奖第一名。

2、导语:

现在通讯事业发达了,电话、互联网的出现使我们的沟通方便多了,但是传统的书信联系在很多地方仍然扮演着重要的角色。而邮递员也延续着他们的工作。不知道大家对邮递员有什么印象呢?

二、听了几个同学对邮递员的看法后,我们看看余秋雨先生所写的邮递员也就是信客的故事

1、自由朗读课文,找出生字词,并给文章的四个部分各写一个小。

生字词:克扣接济唏嘘稀罕噩耗呵斥诘问焦灼伎俩

颠沛吊唁文绉绉穷愁潦倒风尘苦旅鸡零狗碎低眉顺眼连声诺诺

生死祸福

文章结构:信客当信客的原因──信客是怎样做信客的──信客为什么不做信客了──信客为什么当教师、校长也是好样的。

2、阅读课文一遍后,思考一下文中的信客给你的印象是怎么样的呢?可以用形容词来描述一下吗?

任劳任怨待人宽容善良厚道恪尽职守有才干。

3、结合课后练习第一大题的3个小问题,再次仔细阅读课文,请几个同学说说文中主要写了信客的哪些故事,各个故事又体现信客怎样的为人呢?

任劳任怨:代读写书信帮忙料理乡人后事、安抚死者家属

待人宽容:遭别人怀疑、遭同乡诬称为小偷仍不计较

恪尽职守:前后当了三十年的信客

有才干:当教师、校长同样受到赞誉

4、在信客的这么多的故事中,哪个最让你感动呢?并说说原因。

5、解答课后的练习。

三、小结

回顾文中信客的故事和他的为人,如果让你在信客的墓碑上写碑文,你回用一句怎样的话来写呢?

【板书】

信客当信客的原因──信客是怎样做信客的──信客为什么不做信客了──信客为什么当教师、校长也是好样的。

任劳任怨:代读写书信帮忙料理乡人后事、安抚死者家属。

待人宽容:遭别人怀疑、遭同乡诬称为小偷仍不计较。

恪尽职守:前后当了三十年的信客。

有才干:当教师、校长同样受到赞誉。

一元一次方程的应用


教学设计示例

教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察能力,提高他们分析问题和解决问题的能力;

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点

一元一次方程解简单的应用题的方法和步骤.

课堂教学过程设计

一、从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉.

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.

其苹果数为3×5+9=24.

答:第一小组有5名同学,共摘苹果24个.

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.

(设第一小组共摘了x个苹果,则依题意,得)

三、课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.

四、师生共同小结

首先,让学生回答如下问题:

1.本节课学习了哪些内容?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆.

五、作业

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数

一元一次不等式组它的解法


教学建议

一、知识结构

本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.

二、重点、难点分析

本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.

1.在构成不等式组的几个不等式中

①这几个一元一次不等式必须含有同一个未知数;②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.

2.当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.

3.由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:

【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立.所以说这个不等式组无解或说其解集为空集.②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找.

三、教法建议

1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲.

2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容.

3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆.

4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算.

(一)

一、素质教育目标

(一)知识教学点

1.理解一元一次不等式组解集的概念,会利用数轴较简单的一元一次不等式组.

2.掌握一元一次不等式组解集的几种情况.

(二)能力训练点

通过利用数轴解不等式组,培养学生的观察能力、分析能力、归纳总结能力.

(三)德育渗透点

通过不等式组解集的求法,培养学生的观察与分析能力,渗透辩证唯物主义的观点.

(四)美育渗透点

用数轴求不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美.

二、学法引导

1.教学方法:引导发现法、观察法、归纳总结法.

2.学生学法:学会利用数轴将两个不等式的解集表示出来,并观察出其公共部分,再小结出不等式组的解集.

三、重点·难点·疑点及解决办法

(一)重点

理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组解集的几种情况.

(二)难点

正确理解一元一次不等式组解集的含义.

(三)疑点

弄清一元一次不等式解集和不等式组的解集的关系,以及对四种不等式组解集的一般形式的理解.

(四)解决办法

加强对不等式组解集含义的理解,并熟练掌握用数轴表示不等式解集,利用观察法、归纳法即可掌握求不等式组解集的办法.

四、课时安排

一课时.

五、教具学具准备

直尺、铅笔、投影仪或电脑、自制胶片.

六、师生互动活动设计

1.教师设计提问有关一元一次不等式的定义及其解集的概念,并复习用数轴表示一元一次不等式的解集的方法.

2.教示范一元一次不等式组解集的四种常规图形的表示方法,并引导学生理解记忆它们.

3.通过反复的师生共练,从实践中归纳小结出不等式组解集的规律.

七、教学步骤

(一)明确目标

本节课重点学习用数轴表示不等式组解集的方法,并能熟练地加以应用.

(二)整体感知

要正确表示出不等式组的解集的关键在于学会用数轴表示.若有解,必为其公共部分;若无公共部分,则为无解.并要正确地理解一元一次不等式组解集的规律.

(三)教学过程

1.创设情境,复习引入

(1)什么是一元一次不等式,不等式的解,不等式的解集,解不等式?

(2)已知一个数比2大但比4小,请在数轴上表示数.

学生活动:口答(1)题.板演(2)题,如下图所示:

教师分析:一个数比2大但比4小,说明取值使不等式与都成立,把一元一次不等式与合在一起,就组成了一个一元一次不等式组,记作在数轴上表示不等式①②的解集

可以看出,使不等式,都成立的值,是所有大于2并且小于4的数(记作),它们是不等式①、②的解集的公共部分,在数轴上表示成:

不等式①、②的解集的公共部分,叫做由不等式①、②组成的一元一次不等式组的解集.

【教法说明】通过学生板演,教师分析,使学生形成对不等式组解集的初步认识,激发了他们应用旧知识探索新知识的热情.

2.探索新知,讲授新课

(1)不等式组的解集:一般地,几个一元一次不等式的解集的公共部分叫做由它们组成的不等式组的解集.

说明:求不等式组解集的关键是找不等式解集的“公共部分”.若有公共部分,公共部分即为解集;若无公共部分,则不等式组无解.

(2)解不等式组:求不等式组解集的过程叫解不等式组.

请同学们根据自己的理解,解答下列各题.

例1利用数轴判断下列不等式组有无解集?若有解集,请求出.

①②③④

学生活动:学生在练习本上完成,同时指定四个学生板演.板演完成后,由学生判断是否正确.

解:①②

不等式组解集为不等式组解集为

③④

不等式组解集为不等式组无解

【教法说明】教学时,可用彩笔在数轴上描出折线的公共部分,这样可以使学生直观、形象地理解不等式组解集的含义,并掌握解集的表示方法.

3.尝试反馈,巩固知识

利用数轴判断下列不等式组有无解集?如有,请表示出来.

(1)(2)(3)(4)

教学活动:独立完成,同桌互阅,投影出示正确答案.

教师活动:抽查部分学生,纠正错误.

一元一次不等式组中,不等式个数多于两个,解集求法有无变化呢?同学们通过解答下列各题,仔细体会.

利用数轴解下列不等式组:

(1)(2)

(3)(4)

学生活动:分析讨论,尝试得出答案;指名回答,与投影出示的正确解题过程对比.

答案:(1)(2)(3)(4)无解

4.变式训练,培养能力

单项选择:

(1)不等式组的整数解是()

A.0,1B.0C.1D.

(2)不等式组的负整数解是()

A.-2,0,-1B.-2C.-2,-1D.不能确定

(3)不等式组的解集在数轴上表示正确的是()

(4)不等式组的解集在数轴上表示正确的为()

(5)根据图中所示可知不等式组的解集为()

A.B.C.D.

学生活动:前后桌结组讨论完成,各组以抢答方式说出答案.

参考答案:C,C,D,A,C

【教法说明】设置上述题组旨在训练学生的思维能力;以抢答形式完成则是为了激发学生探索知识的热情.

(四)总结、扩展

不等式组1.图示

2.折线特点3.解集4.解集与公共部分关系

折线的公共部分

即为不等式组的解集

无解若,不等式组的解集是什么?有规律可寻吗?

【教法说明】学生通过实践尝试得到规律,以此揭示规律存在的一般性、必然性,既训练了学生的归纳总结能力,也充分发挥了主体作用.

注意问题:教学时,每组不等式不要超过三个,关键是使学生理解和掌握解不等式的方法,不宜过于难、过于多,避免重复的机械计算.

八、布置作业

(一)必做题:P781;P79A组1.

(二)选择题:

填空题:

1.不等式组的非负整数解是_______________.

2.若同时满足与,则的取值范围是______________.

3.一元一次不等式组()的解集为,则与的大小关系为____________.

【教法说明】补充题旨在训练学生的思维能力、应变能力和解题灵活性.

参考答案

略.

九、板书设计

6.4(一)

三、小结

数学教案-一元一次方程它的解法


一、素质教育目标

(一)知识教学点

1.要求学生学会用移项解方程的方法.

2.使学生掌握移项变号的基本原则.

(二)能力训练点

由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.

(三)德育渗透点

用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.

(四)美育渗透点

用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.

二、学法引导

1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.

2.学生学法:练习→移项法制→练习

三、重点、难点、疑点及解决办法

1.重点:移项法则的掌握.

2.难点:移项法解一元一次方程的步骤.

3.疑点:移项变号的掌握.

四、课时安排

3课时

五、教具学具准备

投影仪或电脑、自制胶片、复合胶片.

六、师生互动活动设计

教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.

七、教学步骤

(一)创设情境,复习导入

师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.

(出示投影1)

利用等式的性质解方程

(1);(2);

解:方程的两边都加7,解:方程的两边都减去,

得,得,

即.合并同类项得.

【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.

提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?

(二)探索新知,讲授新课

投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.

(出示投影2)

师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?

2.改变的项有什么变化?

学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.

师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的项都改变了原来的符号.

【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.

师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.

(三)尝试反馈,巩固练习

师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.

学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.

【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.

对比练习:(出示投影3)

解方程:(1);(2);

(3);(4).

学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.

师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)

【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.

巩固练习:(出示投影4)

通过移项解下列方程,并写出检验.

(1);(2);

(3);(4).

【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.

(四)变式训练,培养能力

(出示投影5)

口答:

1.下面的移项对不对?如果不对,错在哪里?应怎样改正?

(1)从,得到;

(2)从,得到;

(3)从,得到;

2.小明在解方程时,是这样写的解题过程:;

(1)小明这样写对不对?为什么?

(2)应该怎样写?

【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式.

(出示投影6)

用移项解方程:

(1);(2);

(3);(4).

【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目.

学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分.

(出示投影7)

解下列方程:

(1);(2);(3);

(4);(5);(6).

【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识.

(五)归纳小结

师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点.②检验要把所得未知数的值代入原方程.

八、随堂练习

1.判断下列移项是否正确

(1)从得()

(2)从得()

(3)从得()

(4)从得()

2.选择题

(1)对于方程,移项正确的是()

A.B.

C.D.

(2)对于方程移项正确的是()

A.B.

C.D.

3.用移项法解方程,并写出检验

(1);

(2);

(3).

九、布置作业

课本第205页A组1.(1)(3)(5).

十、板书设计

随堂练习答案

1.×××√

2.DC

3.略

作业答案

(5)

解:移项得

合并同类项得

检验:略

探究活动

运动与学习成绩

班里共有25个学生,其中17人会骑自行车,13人会游泳,8人会打篮球.全部掌握这三种运动项目的学生一个也没有.在这25个学生中,有6人数学成绩不及格.而参加以上运动的学生中,有2人数学成绩优秀,没有数学不及格的(学习成绩分优秀、良好、及格、不及格).问:全班数学成绩优秀的学生有几名?既会游泳又会打篮球的有几人?

参考答案:

全班数学成绩及格的学生有25-6=19(人),参加运动的人次共有17+13+8=38,因没有一个学生掌握三个运动项目,且数学没有不及格的,所以参加运动的学生共19人.每人掌握两个运动项目,19人中有17个会骑自行车,只有两个学生同时会游泳又会打篮球.

参加运动的共19人,且数学成绩全部及格,不参加运动的数学全不及格,所以全班数学成绩优秀的学生只有2名.

可化为一元一次方程的分式方程


一、教学目标

1.使学生理解分式方程的意义.

2.使学生掌握的一般解法.

3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.

4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握的解法,使学生熟练掌握解分式方程的技巧.

5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.

二、教学重点和难点

1.教学重点:

(1)的解法.

(2)分式方程转化为整式方程的方法及其中的转化思想.

2.教学难点:理解解分式方程时产生增根的原因.

三、教学方法

启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.

四、教学手段

演示法和同学练习相结合,以练习为主.

五、教学过程

(一)复习及引入新课

1.提问:什么叫方程?什么叫方程的解?

答:含有未知数的等式叫做方程.

使方程两边相等的未知数的值,叫做方程的解.

2.

解:(1)当时,

左边=,

右边=0,

∴左边=右边,

(2)

(3)

3、在本章开始我们曾提出一个问题,经过分析得到问题的量为两个分式:,根据量间的关系列出方程:

这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.

(二)新课

板书课题:

板书:分式方程的定义.

分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.

练习:判断下列各式哪个是分式方程.(投影)

(1);(2);(3);

(4);(5)

在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)(5)是分式方程.

1、如何求解方程?

先由同学讨论如何解这个方程.

在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.如何去掉?方程两边同乘最简公分母.

解:两边同乘以最简公分母x(x-6)得

90(x-6)=60x解这个整式方程得x=18.

如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.

检验:把x=18代入原方程

,

左边=右边

∴x=18是原方程的解.

2、如何解方程?

此题可由学生讨论解决.

解:方程两边同乘最简公分母(x+1)(x-1),得整式方程x+1=2

解整式方程,得x=1.

x=1时原方程的解是否正确?

检验:将x=1代入原方程,可知x=1使分式方程两边的分式分母均为零,这两个分式没意义,因此x=1不是原分式方程的解.

∴原方程无解.

讨论:1、2两题都是方程两边同除最简公分母将分式方程转化为整式方程,为什么2求出的x=1不是原方程的解,而我们又得到了x=1呢?

分析:方程同解原理2指出:方程的两边都乘以不等于零的同一个数,所得的方程与原方程同解.

在解1中,方程两边都乘以x(x-6),接着求出x=18,而当x=18时,2(x+5)=216,所以相当于方程两边都乘以16(≠0),因此所得的整式方程与原方程同解.

在解2中,方程两边都乘以(x+1)(x-1),接着求出x=1,相当于方程两边都乘以零,结果使原方程无意义,这样得到的整式方程与原方程不同解.

像这样,在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.

注意:由分式方程转化为一元一次方程过程中,要去分母就必须同乘一个整式,但整式可能为零,不能满足方程变换同解的原则,就使得分式方程可能产生增根,因此解分式方程后就必须检验.

由此可以想到,只要把求得的x的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根;若该式的值为零,则是原方程的增根.如能保证求解过程正确,则这种验根方法比较简便.

例1、解方程

对于例题给学生示范做题的格式、步骤.(投影显示步骤格式)

解:方程两边同乘x(x-2),约去分母,得

5(x-2)=7x解这个整式方程,得

x=5.

检验:把x=-5代入最简公分母

x(x-2)=35≠0,

∴x=-5是原方程的解.

例2、解方程

解:方程两边同乘最简公分母(x-2),约去分母,得

1=x-1-3(x-2).(-3这项不要忘乘)

解这个整式方程,得

x=2.

检验:当x=2时,代入最简公分母(x-2)=0,

∴x=2是增根,

∴原方程无解.

注意:要求学生一定要严格按解题格式步骤完成.

(三)总结

解分式方程的一般步骤:

1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.

2.解这个整式方程.

3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.

(四)练习

教材P.98中1由学生在黑板上写,教师订正.

六、作业

教材P.101中1.

七、板书设计

数学教案-含字母系数的一元一次方程的教学方案


教学目标

1.使学生正确认识含有字母系数的一元一次方程.

2.使学生掌握含有字母系数的一元一次方程的解法.

3.使学生会进行简单的公式变形.

4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣.

教学重点:

(1)含有字母系数的一元一次方程的解法.

(2)公式变形.

教学难点:

(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系.

(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形.

教学方法

启发式教学和讨论式教学相结合

教学手段

多媒体

教学过程

(一)复习提问

提出问题:

1.什么是一元一次方程?

在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.

2.解一元一次方程的步骤是什么?

答:(1)去分母、去括号.

(2)移项——未知项移到等号一边常数项移到等号另一边.

注意:移项要变号.

(3)合并同类项——提未知数.

(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程.

(二)引入新课

提出问题:一个数的a倍(a≠0)等于b,求这个数.

引导学生列出方程:ax=b(a≠0).

让学生讨论:

(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)

(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程.)

强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项.

(三)新课

1.含有字母系数的一元一次方程的定义

ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程.

2.含有字母系数的一元一次方程的解法

教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:

ax=b(a≠0).

由学生讨论这个解法的思路对不对,解的过程对不对?

在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系.

含有字母系数的一元一次方程的解法和学过的含有数字系数的一元一次方程的解法相同.(即仍需要采用去分母、去括号、移项、合并同类项、方程两边同除以未知数的系数等步骤.)

特别注意:用含有字母的式子去乘或者除方程的两边,这个式子的值不能为零.

3.讲解例题

例1解方程ax+b2=bx+a2(a≠b).

解:移项,得ax-bx=a2-b2,

合并同类项,得(a-b)x=a2-b2.

∵a≠b,∴a-b≠0.

x=a+b.

注意:

1.在没有特别说明的情况下,一般x、y、z表示未知数,a、b、c表示已知数.

2.在未知项系数化为1这一步是最易出错的一步,一定要说明未知项系数(式)不为零之后才可以方程两边同除以未知项系数(式).

3.方

例2、解方程

分析:去分母时,要方程两边同乘ab,而需ab≠0,那么题目中有没有这个条件呢?有隐含条件a≠0,b≠0.

解:b(x-b)=2ab-a(x-a)(a+b≠0).

bx-b2=2ab-ax+a2(去分母注意“2”这项不要忘记乘以最简公分母.)

ba+ax=a2+2ab+b2

(a+b)x=(a+b)2.

∵a+b≠0,

∴x=a+b.

(四)课堂练习

解下列方程:

教材P.90.练习题1—4.

补充练习:

5.a2(x+b)=b2(x+a)(a2≠b2).

解:a2x+a2b=b2x+ab2

(a2-b2)x=ab(b-a).

∵a2≠b2,∴a2-b2≠0

解:2x(a-3)-(a+2)(a-3)=x(a+2)

(a-b)x=(a+2)(a-3).

∵a≠8,∴a-8≠0

(五)小结

1.这节课我们要理解含有字母系数的一元一次方程的概念,掌握含有字母系数的方程与数字系数方程的区别与联系.

2.含有字母系数的方程的解法与只含有数字系数的方程的解法相同.但必须注意:用含有字母的式子去乘或除方程的两边,这式子的值不能为零.

六、布置作业

教材P.93.A组1—6;B组1、

注意:A组第6题要给些提示.

七、板书设计

探究活动

a=bc型数量关系

问题引入:

问题设置:有一大捆粗细均匀的电线,现要确定其中长度的值,怎样做比较简捷?(使用的工具不限,可以从中先取一段作为检验样品)

提示:由于电线的粗细均匀分布的,所以每段同样长度的电线的质量相等。

1、由学生讨论,得出结论。

2、教师再加深一步提问:在我们讨论的问题涉及的量中,如果电线的总质量为a,总

长度为b,单位长度的质量为c,a,b,c之间有什么关系?

由学生归纳出:a=bc。对于解决问题:可先取1米长的电线,称出它的质量,再称

出其余电线的总质量,则(米)是其余电线的长度,所以这捆电线的总长度为()米。

引出可题:探究活动:a=bc型数量关系。

1、b、c之一为定值时.

读课本P.96—P.97并填表1和表2中发现a=bc型数量关系有什么规律和特点?

(1)分析表1

表1中,A=bc,b、c增加(或减小)A相应的增大(或减小)如矩形1和矩形2项比

较:宽c=1,长由2变为4。

面积也由2增加到4;矩形3,4类似,再看矩形1和矩形3:长都为b=2,宽由1增加到2,面积也变为原来的2倍,矩形2、4类似。

得出结论,A=bc中,当b,c之一为定值(定量)时,A随另一量的变化而变化,与之成正比例。

(2)分析表2

(1)表2从理论上证明了对表1的分析的结果。

(2)矩形推拉窗的活动扇的通风面积A和拉开长度b成正比。(高为定值)

(3)从实际中猜想,或由经验得出的结论,在经理论上去验证,再用于实际,这是

我们数需解决问题常用的方法之一,是由实际到抽象再由抽象到实际的辩证唯物主义思想。

2、为定值时

读书P.98—P.99,填P.99空,自己试着分析数据,看到出什么结论?

分析:这组数据的前提:面积A一定,b,c之间的关系是反比例。

可见,a=bc型数量关系不仅在实际生活中存在,而且有巨大的作用。

这三个式子是同一种数量关系的三种不同形式,由其中一个式子可以得出另两个式子。

3、实际问题中,常见的a=bc型数量关系。

(1)总价=单价×货物数量;

(2)利息=利率×本金;

(3)路程=速度×时间;

(4)工作量=效率×时间;

(5)质量=密度×体积。

…例1、每个同学购一本代数教科书,书的单价是2元,求总金额y(元)与学生数n(个)的关系。

策略:总价=单价×数量。而数量等于学生人数n,故不难求得关系式。

解:y=2n

总结:本题考查a=bc型关系式,解题关键是弄清数量关系。

例2、一辆汽车以30km/h的速度行驶,行驶路程s(km)与行使的时间t(h)有怎样的关系呢?请表示出来。

解:s=30t

例3、一种储蓄的年利率为2.25%,写出利息y(元)与存入本金x(元)之间的关系(假定存期一年)。

解:y=2.25%x

程的解是分式形式时,一般要化成最简分式或整式.

本文网址:http://m.jk251.com/jiaoan/4430.html

相关文章
最新更新

热门标签