导航栏

×
范文大全 > 教案

[教案系列] 《直线和圆的位置关系》教学思考

每个老师需要在上课前弄好自己的教案课件,每位老师都需要认真准备自己的教案课件。只有写好教案课件,这样才能达到预期的教学目标。要写好教案课件,需要注意哪些方面呢?下面是小编帮大家编辑的《[教案系列] 《直线和圆的位置关系》教学思考》,欢迎您阅读和收藏,并分享给身边的朋友!

今天,我顺利地上完《直线和圆的位置关系》第一课时。

本节课,我先让学生在课前自行完成教学案中“课前预习与导学”这一部分,情况良好。上课后先信息反馈进行评讲,然后引导学生回忆了点与圆的位置关系及如何用数量关系来判断点与圆的位置关系。接着以《海上日出》图创设情景,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由小“练习”进行应用,最后通过“例题”“课堂检测”去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在小练习之后我及时地进行总结归纳方法,让学生在以后解决实际问题过程中能一下子找到切入点,培养学生解决实际问题的能力。m.jk251.Com

同时,我也感觉到本节课的教学有不妥之处,主要有以下三点:

1、学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、对于我们学生的情况,初三的教学始终没有摆脱灌输式教学,尽管课上也让学生自主操作、思考,但老师讲的太多,没有给予学生足够的探索、交流的时间,势必会影响到部分学生的思维,限制了学生的发展。所以,我们也要学会该“放手时就放手”,大胆地让学生去思考,也许会有意外的收获。

3、对教材的把握,对学生的实情,在备课时都要考虑。在选题时不仅要照顾到基础薄弱的同学,也要照顾到基础好些的同学,适时选做。对于有些题可以适当地进行变式训练,拓展灵活运用,活跃学生的思维。

总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。

jk251.coM小编推荐

直线圆的位置关系教案模板


授课时间:2004.11.17早上第二节授课班级:初三、1班授课教师:

教学内容:7.7直线和圆的位置关系

教学目标:

知识与技能目标:1、理解直线和圆相交、相切、相离的概念。

2.初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。

过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思

想,培养学生观察、分析、概括、知识迁移的能力;

2.通过例题教学,培养学生灵活运用知识的解决能力。

情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

教学重点:直线和圆的位置关系的判定方法和性质

教学难点:直线和圆的三种位置关系的研究及运用

教学程序设计:

程序

教师活动

学生活动

备注

创设

问题

情景

利用多媒体放映落日的动画。引导学生从公共点个数和圆心到直线的距离两方面体会直线和圆的不同位置关系。

学生看投影并思考问题

调动学生积极主动参与数学活动中.

今天我们学习7.7直线和圆的位置关系。

1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

2、观察圆心到直线的距离d与r的大小变化,类比点和圆的位置关系由圆半径和点与圆心的距离的数量关系来判定,总结得出直线与圆的位置关系由圆心到直线的距离与圆半径之间的数量关系来判定。得到直线和圆的位置关系的判定方法和性质。

例1(课本第89页例)

例2如图,正方形ABCD,边长

为5,AC与BD交于点O,过点

O作EF∥AB分别交AD、BC于

点E、F。以A为圆心,为

半径作圆,则⊙A与直线BD、EF、BC位置关系怎样,说明理由。

学生观察、讨论、概括、总结后回答

学生讨论试解看清条件与图形做出正确的判断

问题的提出及解决,为深刻理解直线和圆的概念做好铺垫

类比点和圆的位置关系来得到新知识

从多个角度对所学知识加以运用

反馈

训练

应用

提高

练习1:教材P.90中1,2.

练习2:在Rt△ABC中,∠C=900,AC=3,AB=5,若以C为圆心、r为半径作圆,那么()

(1)当直线AB与⊙C相切时,r的取值范围是

(1)当直线AB与⊙C相离时,r的取值范围是

(1)当直线AB与⊙C相交时,r的取值范围是

学生在练习本上笔答,互相帮助、纠正

培养了团结协作,相互交流的精神,也培养了学生正确的书写习惯

小结

提高

直线和圆的位置关系:

指导学生回答

探究

活动

问题:如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数

布置

作业

1、课本第101页7.3A组第2、3题

2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

直线与圆的位置关系相关教学方案


《直线和圆的位置关系》的教学设计

太平溪九四中学何风光

一、素质教育目标

㈠知识教学点

⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

㈡能力训练点

经典初中教案直线圆的位置关系


1.知识结构

2.重点、难点分析

重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

3.教法建议

本节内容需要一个课时.

(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

(2)在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

教学目标:

1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;

2、通过的探究,向学生渗透分类、数形结合的思想,培养学生

观察、分析和概括的能力;

3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.

教学重点:的判定方法和性质.

教学难点:直线和圆的三种位置关系的研究及运用.

教学设计:

(一)基本概念

1、观察:(组织学生,使学生从感性认识到理性认识)

2、归纳:(引导学生完成)

(1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点

3、概念:(指导学生完成)

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.

(3)相离:直线和圆没有公共点时,叫做直线和圆相离.

研究与理解:

①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.

②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?

(二)直线与圆的位置关系的数量特征

1、迁移:点与圆的位置关系

(1)点P在⊙O内d

(2)点P在⊙O上d=r;

(3)点P在⊙O外d>r.

2、归纳概括:

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

(1)直线l和⊙O相交d

(2)直线l和⊙O相切d=r;

(3)直线l和⊙O相离d>r.

(三)应用

例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?

(1)r=2cm;(2)r=2.4cm;(3)r=3cm.

学生自主完成,老师指导学生规范解题过程.

解:(图形略)过C点作CD⊥AB于D,

在Rt△ABC中,∠C=90°,

AB=,

∵,∴AB·CD=AC·BC,

∴(cm),

(1)当r=2cm时CD>r,∴圆C与AB相离;

(2)当r=2.4cm时,CD=r,∴圆C与AB相切;

(3)当r=3cm时,CD<r,∴圆C与AB相交.

练习P105,1、2.

(四)小结:

1、知识:(指导学生归纳)

2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.

(五)作业:教材P115,1(1)、2、3.

探究活动

问题:如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.

略解:由正三角形的边长为6厘米,可得它一边上的高为9厘米.

①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3.

②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即

直线圆的位置关系的教学方案


1.知识结构

2.重点、难点分析

重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

3.教法建议

本节内容需要一个课时.

(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

(2)在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

第12页

直线圆的位置关系相关教学方案


1.知识结构

2.重点、难点分析

重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

3.教法建议

本节内容需要一个课时.

(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

(2)在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

教学目标:

1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;

2、通过的探究,向学生渗透分类、数形结合的思想,培养学生

观察、分析和概括的能力;

3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.

教学重点:的判定方法和性质.

教学难点:直线和圆的三种位置关系的研究及运用.

教学设计:

(一)基本概念

1、观察:(组织学生,使学生从感性认识到理性认识)

2、归纳:(引导学生完成)

(1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点

3、概念:(指导学生完成)

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.

(3)相离:直线和圆没有公共点时,叫做直线和圆相离.

研究与理解:

①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.

②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?

(二)直线与圆的位置关系的数量特征

1、迁移:点与圆的位置关系

(1)点P在⊙O内d

(2)点P在⊙O上d=r;

(3)点P在⊙O外d>r.

2、归纳概括:

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

(1)直线l和⊙O相交d

(2)直线l和⊙O相切d=r;

(3)直线l和⊙O相离d>r.

(三)应用

例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?

(1)r=2cm;(2)r=2.4cm;(3)r=3cm.

学生自主完成,老师指导学生规范解题过程.

解:(图形略)过C点作CD⊥AB于D,

在Rt△ABC中,∠C=90°,

AB=,

∵,∴AB·CD=AC·BC,

∴(cm),

(1)当r=2cm时CD>r,∴圆C与AB相离;

(2)当r=2.4cm时,CD=r,∴圆C与AB相切;

(3)当r=3cm时,CD<r,∴圆C与AB相交.

练习P105,1、2.

(四)小结:

1、知识:(指导学生归纳)

2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.

(五)作业:教材P115,1(1)、2、3.

探究活动

问题:如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.

略解:由正三角形的边长为6厘米,可得它一边上的高为9厘米.

①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3.

②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即

经典初中教案数学教案-直线圆的位置关系


公开课教案

授课时间:2004.11.17早上第二节授课班级:初三、1班授课教师:

教学内容:7.7直线和圆的位置关系

教学目标:

知识与技能目标:1、理解直线和圆相交、相切、相离的概念。

2.初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。

过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思

想,培养学生观察、分析、概括、知识迁移的能力;

2.通过例题教学,培养学生灵活运用知识的解决能力。

情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

教学重点:直线和圆的位置关系的判定方法和性质

教学难点:直线和圆的三种位置关系的研究及运用

教学程序设计:

程序

教师活动

学生活动

备注

创设

问题

情景

利用多媒体放映落日的动画。引导学生从公共点个数和圆心到直线的距离两方面体会直线和圆的不同位置关系。

学生看投影并思考问题

调动学生积极主动参与数学活动中.

今天我们学习7.7直线和圆的位置关系。

1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

2、观察圆心到直线的距离d与r的大小变化,类比点和圆的位置关系由圆半径和点与圆心的距离的数量关系来判定,总结得出直线与圆的位置关系由圆心到直线的距离与圆半径之间的数量关系来判定。得到直线和圆的位置关系的判定方法和性质。

例1(课本第89页例)

例2如图,正方形ABCD,边长

为5,AC与BD交于点O,过点

O作EF∥AB分别交AD、BC于

点E、F。以A为圆心,为

半径作圆,则⊙A与直线BD、EF、BC位置关系怎样,说明理由。

学生观察、讨论、概括、总结后回答

学生讨论试解看清条件与图形做出正确的判断

问题的提出及解决,为深刻理解直线和圆的概念做好铺垫

类比点和圆的位置关系来得到新知识

从多个角度对所学知识加以运用

反馈

训练

应用

提高

练习1:教材P.90中1,2.

练习2:在Rt△ABC中,∠C=900,AC=3,AB=5,若以C为圆心、r为半径作圆,那么()

(1)当直线AB与⊙C相切时,r的取值范围是

(1)当直线AB与⊙C相离时,r的取值范围是

(1)当直线AB与⊙C相交时,r的取值范围是

学生在练习本上笔答,互相帮助、纠正

培养了团结协作,相互交流的精神,也培养了学生正确的书写习惯

小结

提高

直线和圆的位置关系:

指导学生回答

探究

活动

问题:如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数

布置

作业

1、课本第101页7.3A组第2、3题

2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

两条直线的位置关系


教学目标

(1)熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断.

(2)理解一条直线到另一条直线的角的概念,掌握两条直线的夹角.

(3)能够根据两条直线的方程求出它们的交点坐标.

(4)掌握点到直线距离公式的推导和应用.

(5)进一步掌握求直线方程的方法.

(6)进一步理解直线方程的概念,理解运用直线的方程讨论两条直线位置关系的思想方法.

(7)通过点到直线距离公式的多种推导方法的探求,培养学生发散思维能力,理解数形结合的思想方法.

教学建议

一、教材分析

1.知识结构

2.重点、难点分析

重点是两条直线的平行与垂直的判断;两条直线的夹角;点到直线的距离.

难点是两条直线垂直条件的推导;一条直线到另一条直线的角的概念和点到直线距离公式的推导.

本节内容与后边内容联系十分紧密,两条直线平行与垂直的条件和点到直线的距离公式在圆锥曲线中都有广泛的应用,因此非常重要.

(1)平行与垂直

①平行

在讨论两条直线平行的问题时,教材先假定了两条直线有斜截式方程,根据倾斜角与斜率的对应关系,将初中学过的两直线平行的充要条件(即判定定理和性质定理)转化为坐标系中的语言,用斜率和截距重新加以刻画,教学中应注意斜率不存在的情况.

②垂直

教材上将直线的斜率转化成方向向量,然后利用向量垂直的条件推出两条直线垂直的条件.结合斜率不存在的情况,两条直线垂直的充要条件可叙述为:

或一个为0,另一个不存在.

(2)夹角

①应正确区分直线到的角、直线到的角、直线和的夹角这三个概念.

到的角是带方向的角,它是指按逆时针方向旋转到与重合时所转的角,它与到的角是不同的,如果设前者是,后者是,则+=.与所夹的不大于的角成为和的夹角,夹角不带方向.

当到的角为锐角时,则和的夹角也是;当到的角为钝角时,则和的夹角也是.

②在求直线到的角时,应注意分析图形的几何性质,找出与,的倾斜角,关系,得出或,然后由,联想差角的正切公式,便可把图形的几何性质转化为坐标语言来表示,推导出

再由与的夹角与到的角之间的关系,而得出夹角计算公式

这种把“形”转化为“数”的方法,是解析几何的基本方法,要认真揣摩.

③对于以上两个求角公式,在解决实际问题时,要注意根据具体情况选用.

(3)交点

①求两条直线的交点问题就是求它们的方程的公共解的问题,这可以由直线的方程与方程的直线的定义来理解.

②在同一平面内,两条直线有三种位置关系:相交、平行、重合,相应的由直线方程组成的二元一次方程组的解有三种情况:有惟一解、无解、无数多个解.但在实际判定时,利用直线的斜率和截距更方便.若,,则:

与相交;

且;

与重合且.

(4)点到直线的距离

①点到直线的距离公式是研究点与直线位置关系的重要工具.教科书借助于直角三角形的面积公式,推导出点到直线的距离公式.在推导过程中,把与两条坐标轴都不平行的线段的长度的计算,转化为与坐标轴平等或垂直的线段长度的计算,从而简化了运算过程.

②利用点到直线的距离公式可推出两平行线,间的距离公式:.

③点到直线距离公式的推导,有多种方法,应鼓励同学们思考,下面介绍一种较简便的方法.

如右图,设,过点作直线的垂线,垂足为,则有

即,

当时,上述公式也成立.

(5)当直线中有一条没有斜率时,讨论平行、垂直、角、距离的问题,不必套用以上结论,这时可结合图形几何性质;直接求解.

二、教法建议

1.本节知识与初中所学的平面几何知识和三角知识联系非常紧密,教学时应加强启发和引导.如学生对两条直线的平行同位角相等的条件已经非常熟悉,因此在研究两直线平行时,应引导学生迅速建立联系:同位角—倾斜角—斜率(直线方程).又如,在求到的角时,根据图形中角的关系,建立与倾斜角和的联系(有且只有或两种情况),进而借助三角建立与斜率的关系,得出公式.

2.本节内容中在研究两直线的垂直条件时,由于采用向量这一更高级的工具来处理,显得既简单又深刻.所以教学中应注意向量工具的运用,可让学生尝试用向量推导两直线平行的条件和点到直线距离公式的推导.

3.本节内容新概念不多,但要求推导的内容不少,教学时要坚持启发式的教学思想,重点放在思路的探求和结论或公式的运用上.本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能熟练地掌握公式,增强学生动手计算的能力.本节还要加强根据已知条件求直线方程的教学.

4.不仅要使学生熟悉用斜率求两直线夹角的公式,也要掌握根据直线方程系数求夹角的方法(即教材中例6的方法),同时会根据所给条件选用.

5.已知两直线的方程会求其交点即可,不必研究两直线方程系数与位置关系之间的关系.

6.在学习点到直线距离公式时,可利用课余时间发动学生寻找更多的推导公式的方法,并通过寻找多种推导公式的方法,锻炼思维,培养能力.

7.本节学完以后学生可以解决很多较复杂、较综合的问题,如对称问题、直线系过定点问题、光路最短与足球射门角度最大等最值问题.教学中应适当安排一些这样的内容,以训练学生思维和培养学生分析问题、解决问题的能力.

教学设计方案

课题:点到直线的距离

教学目标:(1)理解点到直线距离公式的推导过程.

(2)会求点到直线的距离.

(3)在探索点到直线距离公式推导思路的过程中,培养学生发散思维、积极探索的精神.

教学用具:计算机

教学方法:启发引导法,讨论法

教学过程:

一、引入

点到直线的距离是指过点作的垂线,与垂足之间的长度

【问题1】已知点(-1,2)和直线:,求点到直线的距离.

(由学生分析、解答)

分析:先求出过点和垂直的直线:

:,再求出和的交点

如果把问题1一般化就有如下问题:

【问题2】已知:和直线:(不在直线上,且,),试求点到直线的距离.

二、点到直线距离

分析1:要求的长度可以象问题1的解法一样,利用两点的距离公式可以求的长度.

∵点坐标已知,∴只要求出点坐标就可以了.

又∵点是直线和直线的交点

又∵直线的方程已知

∴只要求出直线的方程就可以了.

即:←点坐标←直线与直线的交点←直线的方程←直线的斜率←直线的斜率

(这一解法在课前由学生自学完成,课上进行评价总结)

问:这种解法好不好,为什么?

根据学生讨论,教师适时启发、引导,得出

分析2:如果垂直坐标轴,则交点和距离都容易求出,那么不妨做出与坐标轴垂直的线段和,如图1所示,显然相对而言,和好求一些,事实上,设到直线的距离为,坐标为,坐标为,则易求:

所以:,

所以:

根据三角形面积公式:

所以:(至此问题2已经解决)

公式的完善.

容易验证(由学生完成):

当,即轴时,公式成立;

当,即轴时,公式成立;

当点在上时,公式成立.

公式结构特点

师生一起总结:

(1)分子是点坐标代入直线方程;

(2)分母是直线未知数、系数平方和的算术根.

类似于勾股定理求斜边的长

三、检测与巩固

练习1

(1)到直线的距离是________.

(2)到直线的距离是_______.

(3)用公式解到直线的距离是______.

(4)到直线的距离是_________.

订正答案:(1)5;(2)0;(3);(4).

练习2

1.求平行直线和的距离.

解:在直线上任取一点,如,则两平行线的距离就是点到直线的距离.

因此,==

【问题3】

两条平行直线的距离是否有公式可以推出呢?求两条平行直线与0的距离.

解:在直线上任取一点,如

则两平行线的距离就是点到直线的距离,(如图2).

因此,==

注意:用公式时,注意一次项系数是否一致.

四、小结作业

1、点到直线的距离公式及其推导;

师生一起总结点到直线距离公式的推导过程:

2、利用公式求点到直线的距离.

3、探索两平行直线的距离

4、探索“已知点到直线的距离及一条直线求另一条直线距离.

作业:P5413、14、16思考研究:运用多种方法推导点到直线的距离公式.

两圆的位置关系的教学方案


课题:两圆的位置关系

教学目的:掌握两圆的五种位置关系及判定方法;;

教学重点:两圆的五种位置的判定.

教学难点:知识的综合运用.

教学过程:一,复习引入:

请说出直线和圆的位置关系有哪几种?

研究直线和圆的位置关系时,从两个角度来研究这种位置关系的,⑴直线和圆的公共点个数;⑵圆心到直线的距离d与半径r的大小关系,

直线和圆的位置关系

相离

相切

相交

直线和圆的公共点个数

0

1

2

d与r的关系

d>r

d=r

d

二.讲解:圆和圆位置关系.

⑴两圆的公共点个数;

⑵圆心距d与两圆半径R、r的大小关系.

两圆的位置关系

外离

外切

相交

内切

内含

两圆的交点个数

0

1

2

1

0

d与R、r的关系

d>R+r

d=R+r

R-r

d=R-r

d

定理设两个圆的半径为R和r,圆心距为d,则

⑴d>R+rÛ两圆外离;

⑵d=R+rÛ两圆外切;

⑶R-r

⑷d=R-r(R>r)Û两圆内切;

⑸dr)Û两圆内含.

三.巩固:

⒈若两圆没有公共点,则两圆的位置关系是()

(A)外离(B)相切(C)内含(D)相离

⒉若两圆只有一个交点,则两圆的位置关系是()

(A)外切(B)内切(C)外切或内切(D)不确定

⒊已知:⊙O1和⊙O2的半径分别为3cm和4cm,根据下列条件判断⊙O1和⊙2的位置关系.

⑴O1O2=8cm;⑵O1O2=7cm;⑶O1O2=5cm;

⑷O1O2=1cm;⑸O1O2=0.5cm;⑹O1O2=0,即⊙O1和⊙O2重合;

四作业:P1372.3.4.5

本文网址:http://m.jk251.com/jiaoan/53147.html

相关文章
最新更新

热门标签